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Abstract This paper is concerned with stabilization for a class of Takagi-Sugeno fuzzy neural networks
(TSFNNs) with time-varying delays. An impulsive control scheme is employed to stabilize a TSFNN. We
firstly establish the model of TSFNNs by using fuzzy sets and fuzzy reasoning and propose the problem of
impulsive stabilization for this model. Then, we present several stabilization conditions based on Lyapunov
function, inequality techniques and linear matrix inequality approach. Two numerical examples are provided
to illustrate the efficiency of impulsive stabilization for TSFNNs by using fixed impulsive interval and variable
impulsive intervals, respectively.
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1 Introduction

Fuzzy logic theory has been efficiently developed to many applications and shown to be an effective approach
to deal with analysis and synthesis problems for complex nonlinear systems. Since Takagi and Sugeno first
introduced fuzzy models in [24], the dynamic fuzzy model has become a popular tool and has been successfully
and effectively employed in most model-based fuzzy analysis approaches [2,15,23]. In addition, the ordinary
Takagi-Sugeno fuzzy model (TSFM) has been further extended to time-delay systems and many interesting
results have been reported including stability analysis and synthesis, robust H∞ control, and stabilization
[1,3,9,10,20,27,29]. The main features of the TSFM are as follows: local dynamics in different state space
regions are represented by linear models and the overall fuzzy model of the system is achieved by fuzzy
blending of these local fuzzy models.

Recently, the fuzzy modeling method has also been used to represent neural network models [11,13,17].
In Huang et al. [13], utilized the TSFM to describe a set of stochastic Hopfield neural networks with time-
varying delays and proposed a sufficient condition to guarantee global exponential stability in the mean square.
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More recently, based on the Lyapunov-Krasovskii functional theory, linear matrix inequality (LMI) approach
and Leibniz-Newton formula, Hou et al. [11] derived a delay-dependent stability criterion to ensure the global
exponential stability of Takagi-Sugeno (TS) fuzzy cellular neural networks with time-varying delays and this
criterion removed the assumption that the time derivative of time-varying delays must be smaller than one.
Although stability analysis of TS fuzzy neural networks (TSFNNs) has been gradually carried out, it is worth
noting that neural networks can exhibit complicated dynamics or chaotic behaviors if the network’s parameters
and time delays are appropriately specified (see Refs. [7,18]).

Accordingly, some effective controllers for a variety of neural networks have been designed to stabilize
states of these neural networks [4,5,8,16,21]. Samidurai et al. [21] and Rakkiyappan et al. [19] established
several sufficient criteria for the global exponential stability of neutral-type impulsive neural networks with
different kinds of delays via the Lyapunov-Krasovskii functional combining with the LMI approach. In [4,
5], Cheng proposed a decentralized feedback control method to stabilize a class of neural networks with
uncertainties and time-varying delays. Despite these fruitful achievements, according to the best of the authors’
knowledge, the proposed work in this paper on TSFNNs is new in the literature. The related stabilization
problems are interesting and challenging. The reason of using impulsive control to stabilize the TSFNNs in
our work is that impulsive control can give better performance than continuous control in some practical cases
[6,22,28].

In this paper, we investigate a class of TSFNNs and obtain stabilization conditions under which the TSFNNs
can be forced to converge by means of impulsive control approach. A model transformation method used in
[30] is adopted to simplify TSFNN model and no differentiability restriction on time-varying delays is required
in our results. We also give two numerical examples to illustrate the efficiency of impulsive stabilization for
TSFNNs using fixed impulsive interval and variable impulsive intervals, respectively. The proposed approach
is also possible to be applied to other complex TSFNNs, such as TSFNNs with environmental noise, TSFNNs
with uncertain parameters, TSFNNs with distributed delays and so on.

Throughout this paper, we use the following notations: Rn denotes the n-dimensional real space; Rn×m

is the set of real n × m matrices; R+ is the set of non-negative real numbers; Z represents the set of positive
integer numbers; AT and A−1 denote the transpose and inverse of matrix A, respectively; P > 0 (P < 0,
respectively) represents P is a positive (negative, respectively) definite symmetric matrix; λmax(P) (λmin(P),
respectively) denotes the maximum (minimum, respectively) eigenvalue of the real symmetric matrix, P .
I represents the identity matrix of appropriate dimension; diag(·) is used for represent a block diagonal
matrix; N(1, n) =: {1, 2, . . . , n};PC ([−τm, 0],Rn) denotes the set of piecewise left continuous functions
ϕ : [−τm, 0] → R

n, τm > 0; ‖ · ‖ denotes the Euclidean vector norm or spectral norm as appropriate.

2 Model description and preliminaries

Consider the following neural network with time-varying delays
{

u̇(t) = −Cu(t) + Ag(u(t)) + Bg(u(t − τ(t))) + J,
u(t0 + s) = φ(s), s ∈ [−τm, 0], (1)

where t > t0, u(t) = (u1(t), . . . , un(t))T ∈ R
n denotes the state vector associated with the neurons; g(u(t)) =

(g1(u1(t)), . . . , gn(un(t)))T and g(u(t − τ(t))) = (g1(u1(t − τ1(t))), . . . , gn(un(t − τn(t))))T represent the
neuron activation functions; J = (J1, . . . , Jn)

T is the constant external input vector; C = diag(c1, c2, . . . , cn)
denotes the state feedback coefficient matrix with positive entries; A = (ai j )n×n and B = (bi j )n×n are
connection weight matrix and delayed connection weight matrix, respectively; τ(t) is a vector of time-varying
delays corresponding to the finite speed of axonal signal transmission. A natural assumption on τ(t) is made as
0 ≤ τi (t) ≤ τm, i ∈ N(1, n).φ(s) = (φ1(s), . . . , φn(s))T ∈ R

n denotes the initial value which is a continuous
function defined on [t0 − τm, t0].

Throughout the paper, we make the following assumption.

Assumption 2.1 The activation function g(·) satisfies

0 ≤ gi (s1) − gi (s2)

s1 − s2
≤ li , i ∈ N(1, n), (2)

for any s1, s2 ∈ R and s1 �= s2.
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As we know, system dynamics can be captured by a set of fuzzy rules which characterize local correlations
in the state space. Each local dynamic described by the fuzzy IF-THEN rules has the property of linear
input-output relation. By using the TSFM concept, the authors in [11,13,17] constructed stochastic TS fuzzy
Hopfield neural networks, TS fuzzy cellular neural networks, and TS fuzzy bidirectional associative memory
(BAM) neural networks, respectively, and derived some interesting results on stability criteria for these neural
network models.

Now, we recall the TSFM concept and propose a TSFNNs represented by a TSFM composed of a set of
fuzzy implications. The r th rule of this TSFM is of the following form:

Model Rule r :
IF θ1(t) is ηr

1 and · · · and θp(t) is ηr
p

THEN {
u̇(t) = −Cr (t)u(t) + Ar g(u(t)) + Br g(u(t − τ(t))) + Jr ,
u(t0 + s) = φ(s), s ∈ [−τm, 0], (3)

where θ(t) = (θ1(t), θ2(t), . . . , θp(t))T is the premise variable vector, ηk
j ( j ∈ N(1, p), r ∈ N(1, m)) is the

fuzzy set and r is the number of model rules.
Suppose System (3) has an equilibrium u∗ = [u∗

1, u∗
2, . . . , u∗

n]. Then we shift the equilibrium u∗ of System
(3) to the origin by using the transformation x(t) = u(t) − u∗ and System (3) can be transformed into the
following form:

Model Rule r :
IF θ1(t) is ηr

1 and · · · and θp(t) is ηr
p

THEN {
ẋ(t) = −Cr (t)x(t) + Ar f (x(t)) + Br f (x(t − τ(t))),
x(t0 + s) = ϕ(s), s ∈ [−τm, 0], (4)

where ϕ ∈ PC ([−τm, 0],Rn), f (x(t)) = g(u(t)) − g(u∗), f (x(t − τ(t))) = g(u(t − τ(t))) − g(u∗),
Next, in order to ensure the origin of System (4) to be stable, we employ an impulsive control scheme

which has been utilized to stabilize high-order Hopfield-Type neural networks (see [16]), that is, consider the
following system

Model Rule r:
IF θ1(t) is ηr

1 and · · · and θp(t) is ηr
p

THEN ⎧⎪⎨
⎪⎩

ẋ(t) = −Cr (t)x(t) + Ar f (x(t))
+Br f (x(t − τ(t))), t ≥ t0, t �= tk,

�x(t) = Ekr x(tk), t = tk, k ∈ Z,
x(σ + s) = ϕ(s), t ∈ [−τm, 0], σ ≥ t0,

(5)

where �x(t)|t=tk = x(t+k ) − x(t−k ). Here, x(t+k ) = limh→0+ x(tk + h), x(t−k ) = limh→0+ x(tk − h) with
discontinuity instants t1 < t2 < · · · < tk < · · · , limk→∞ tk = ∞, where t1 > t0. For convenience, let
t0 = 0 and h > 0 be sufficiently small. Without loss of generality, it is assumed that x(tk) = x(t−k ) =
limh→0+ x(tk − h). Ekr (r ∈ N(1, m)) are the impulsive control coefficient matrices.

Let hr (θ(t)) be the normalized membership function of the inferred fuzzy set Mr (θ(t)), i.e.,

hr (θ(t)) = Mr (θ(t))∑m
r=1 Mr (θ(t))

,

where

Mr (θ(t)) =
p∏

j=1

ηr
j (θ j (t)),

where ηr
j (θ j (t)) is the grade of membership of θ j (t) in ηr

j . According to the theory of fuzzy sets, it is obvious
that

Mr (θ(t)) ≥ 0, r ∈ N(1, m),

m∑
r=1

Mr (θ(t)) > 0,
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for all t. And this implies

hr (θ(t)) ≥ 0, r ∈ N(1, m),

m∑
r=1

hr (θ(t)) = 1,

for all t.
To simplify the analysis, let the impulsive coefficient Ekr = Ekr ∈ N(1, m). Hence, the fuzzy system (5)

can be expressed as ⎧⎪⎨
⎪⎩

ẋ(t) = ∑m
r=1 hr (θ(t))[−Cr x(t) + Ar f (x(t))

+Br f (x(t − τ(t)))], t ≥ t0, t �= tk,
�x(t) = Ek x(tk), t = tk, k ∈ Z,
x(s + σ) = ϕ(s), t ∈ [−τm, 0], σ ≥ t0.

(6)

From the definitions of f (x(t)) and f (x(t − τ(t))), we can define, for i ∈ N(1, n),

Fi (xi (t)) =
{ fi (xi (t))

xi (t)
, xi (t) �= 0,

0, xi (t) = 0,
(7)

Fi (xi (t − τi (t))) =
{ fi (xi (t−τi (t)))

xi (t−τi (t))
, xi (t − τi (t)) �= 0,

0, xi (t − τi (t)) = 0.
(8)

Thus System (6) can be transformed as follows:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = ∑m
r=1 hr (θ(t))[−Cr x(t) + Ar F̂x(t)

+Br F̂τ x(t − τ(t))], t ≥ t0, t �= tk,
�x(t) = Ek x(tk), t = tk, k ∈ Z,
x(s + σ) = ϕ(s), t ∈ [−τm, 0], σ ≥ t0,

(9)

where

F̂ = diag
(

F1(x1(t)), F2(x2(t)), . . . , Fn(xn(t))
)
,

F̂τ = diag
(

F1(x1(t − τ1(t))), F2(x2(t − τ2(t))),

. . . , Fn(xn(t − τn(t)))
)
.

Remark 2.2 Recalling the Assumption 2.1 on the activation functions, it is obvious that 0 ≤ Fi (xi (t)) ≤ li
and 0 ≤ Fi (xi (t − τi (t))) ≤ li , i ∈ N(1, n).

It is worth mentioning that the aim of ensuring stability of System (3) will be accomplished through the
transformation x(t) = u(t) − v∗ if we design a proper impulsive controller �x(tk) = Ek x(tk) to stabilize
System (9). Thereby, we only need consider stability of System (9).

In what follows, we need the following definitions and lemmas.

Definition 2.3 (stable, [16]). The origin of System (9) with impulses is said to be stable, if for any σ ≥ t0 and
ε > 0, there is δ = δ(γ, ε) > 0 such that ϕ ∈ PC (δ)t ≥ σ implies that ‖x(t; σ, ϕ)‖ < ε for t ≥ σ. If δ is
independent of σ, then the origin of System (9) with impulses is said to be uniformly stable.

Definition 2.4 (Asymptotically stable, [16]). The origin of System (9) with impulses is said to be (uniformly)
asymptotically stable, if it is (uniformly) stable, and there exists γ > 0 and T = T (ε, γ ) for any ε > 0, such
that for each σ ≥ t0 and ϕ ∈ PC ([−τm, 0],Rn) with sups∈[−τm ,0] ‖ϕ(s)‖ < γ, ‖x(t; σ, ϕ)‖ < ε holds for
t > σ + T .

Definition 2.5 (Exponentially stable). The origin of System (9) with impulses is said to be exponentially
stable, if there exist  > 0, μ > 0 such that for every ϕ ∈ PC ([−τm, 0],Rn) satisfy

‖x(t;ϕ)‖ ≤ ‖x0‖e−μ(t−t0), (10)

where x0 = x(t+0 ) ∈ R
n, t0 ∈ R

+.
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Definition 2.6 [14]. The function V : Rn × [t0, ∞) → R
+ belongs to class V0 if it satisfies the following

conditions:

(1) the function V is continuous on each of the sets Rn × (tk−1, tk] and for all t ≥ t0V (0, t) ≡ 0;
(2) V (x, t) is locally Lipschitzian in x ∈ R

n;
(3) for each k ∈ Z, there exist finite limits

⎧⎪⎨
⎪⎩

lim
(y,t)→(x,τ−

k )

V (y, t) = V (x, τ−
k ) = V (x, τk),

lim
(y,t)→(x,τ+

k )

V (y, t) = V (x, τ+
k ).

(11)

Definition 2.7 [14]. Let V ∈ V0, for t ∈ (tk−1, tk], we define

D+V (x(t), t) = lim
h→0+ sup

1

h
[V (x(t + h), t + h) − V (x(t), t)].

Lemma 2.8 [26]. Let �1, �2, �3 be real matrices of appropriate dimensions with �3 > 0. Then for any
vectors x and y with appropriate dimensions,

2xT�T
1 �2 y ≤ xT�T

1 �3�1x + yT�T
2 �−1

3 �2 y.

Lemma 2.9 [12]. For any x ∈ R
n, if P ∈ R

n×n is a positive definite matrix, Q ∈ R
n×n is a symmetric matrix,

then

λmin(P−1 Q)xT Px ≤ xT Qx ≤ λmax(P−1 Q)xT Px .

Lemma 2.10 (Halanay inequality [25]) Let a > b > 0 and v(t) be a non-negative continuous function on
[t0 − τ, t0], and satisfy the following inequality:

D+v(t) ≤ −av(t) + bṽ(t), t ≥ t0,

where ṽ(t) = supt−τ≤s≤t v(s)τ is a non-negative constant, then there exists a constant λ > 0 satisfying

v(t) ≤ ṽ(t0)e
−λ(t−t0), t ≥ t0,

where λ is unique positive solution of the following equation:

λ = a − beλτ .

3 Main results

In this section, we shall state and prove two theorems on asymptotical stability and exponential stability,
respectively, for TSFNN (9) with impulses based on two different analysis techniques. Our results show that
the impulses play an important role in stabilizing the TSFNN (9).

Theorem 3.1 The origin of System (9) is uniformly stable if there exists a positive definite matrix P and two
positive numbers ε1 > 0 and ε2 > 0 such that

(C1) the impulsive intervals satisfy

tk − tk−1 < − ln α3/

(
α1 + α2

α3

)
, k ∈ Z

hold, where 0 < α3 < 1,
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α1 = max
1≤r≤m

λmax

(
P−1(−2PCr + ε1 P Ar AT

r P

+ε−1
1 L2 + ε2 P Br BT

r P)
)

,

α2 = λmax

(
ε−1

2 P−1L2
)
,

α3 = λmax

(
P−1(I + Ek)

T P(I + Ek)
)
, k ∈ Z.

Moreover, if condition (C1) holds and

(C2) there exists κ > 1 such that xT(t +s)Px(t +s) < κxT(t)Px(t)s ∈ [−τm, 0] and ρ = α1+κ|α2| < 0,
then the origin of System (9) is uniformly asymptotically stable.

Proof Consider a Lyapunov function

V (x(t), t) = xT(t)Px(t).

Clearly, V (x(t), t) ∈ V0 and λmin(P)‖x(t)‖2 ≤ V (x(t), t) ≤ λmax(P)‖x(t)‖2. Hence, there is δ = δ(ε) > 0

such that δ < ε

√
α3λmin(P)
λmax(P)

.

When t �= tk, k ∈ Z, we have

D+V (x(t), t) ≤
m∑

r=1

hr (θ(t))
[
2xT(t)P

(
− Cr x(t)

+Ar F̂x(t) + Br F̂τ x(t − τ(t))
)]

. (12)

Making use of Lemma 2.8, one can obtain

2xT(t)P Ar F̂x(t) ≤ ε1xT(t)P Ar AT
r Px + ε−1

1 xT L2x, (13)

and

2xT(t)P Br F̂τ x(t − τ(t)) ≤ ε2xT(t)P Br BT
r Px + ε−1

2 xT(t − τ(t))L2x(t − τ(t)). (14)

Substituting (13) and (14) into (12) together with Lemma 2.9 gives

D+V (x(t), t) ≤ α1V (x(t), t) + α2V (x(t − τ(t)), t). (15)

For any σ ≥ t0 and ϕ ∈ PC (δ), let x(t) = x(t; σ, ϕ) be the solution of (9) through (σ, ϕ).
First, we shall prove that for t ∈ [σ, tk]

V (x(t), t) ≤ λmax(P)

α3
δ2, (16)

where σ ∈ (tk−1, tk] for some k ∈ Z.
Obviously, since α3 < 1 and for any t ∈ [σ − τm, σ ], there exists � ∈ [−τm, 0] such that t = � + σ.

Therefore, for σ − τm ≤ t < σ, we have

V (x(t), t) = V (x(� + σ), � + σ)

= V (ϕ(�), � + σ) ≤ λmax(P)‖ϕ(�)‖2

≤ λmax(P)δ2 <
λmax(P)

α3
δ2. (17)
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Suppose that (16) does not hold. Then there is s ∈ (σ, tk], such that

V (x(s), s) >
λmax(P)

α3
δ2 > λmax(P)δ2.

By σ ∈ (tk−1, tk] and the continuity of V (x(t), t) on [σ, tk], then there exists t1 ∈ (σ, s] such that⎧⎪⎨
⎪⎩

V (x(t1), t1) = λmax(P)
α3

δ2,

V (x(t), t) ≤ λmax(P)
α3

δ2, σ ≤ t ≤ t1,
D+(x(t1), t1) ≥ 0.

(18)

Note that for t ∈ [σ − τm, σ ], {
V (x(t), t) ≤ λmax(P)δ2,

(λmax(P)/α3)δ
2 > λmax(P)δ2.

(19)

Hence, there exists t2 ∈ (σ, t1) such that⎧⎨
⎩

V (x(t2), t2) = λmax(P)δ2,

V (x(t), t) ≥ λmax(P)δ2, t2 ≤ t ≤ t1,
D+(x(t2), t2) ≥ 0.

(20)

From (18–20), we have

V (x(t + s), t + s) ≤ λmax(P)
α3

δ2

≤ 1
α3

V (x(t), t), s ∈ [−τm, 0],
for t ∈ [t2, t1], i.e.,

xT(t − τ(t))Px(t − τ(t)) ≤ (1/α3)xT(t)Px(t).

Then for t ∈ [t2, t1]

D+V (x(t), t) ≤
(
α1 + α2

α3

)
xT(t)Px(t)

=
(
α1 + α2

α3

)
V (x(t), t). (21)

Integrating Inequality (21) on t ∈ [t2, t1], we get
t1∫

t2

D+V (x(t), t)

V (x(t), t)
dt ≤

t1∫
t2

(
α1 + α2

α3

)
dt

≤
tk∫

tk−1

(
α1 + α2

α3

)
dt =

(
α1 + α2

α3

)
(tk − tk−1)

≤ − ln α3. (22)

On the other hand,
t1∫

t2

D+V (x(t), t)

V (x(t), t)
dt

=
V (x(t1),t1)∫

V (x(t2),t2)

dv

v

=
λmax(P)

α3
δ2∫

λmax(P)δ2

dv

v
= − ln α3
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which contradicts (22). Hence, Inequality (16) holds.
From (16) and the condition (C1) of Theorem 3.1, we derive

V (x(t+k ), t+k ) = xT(tk)(I + Ek)
T P(I + Ek)x(tk)

≤ α3xT(tk)Px(tk) = α3V (x(tk), tk)

≤ λmax(P)δ2. (23)

Similarly, we can obtain that

V (x(t), t) ≤ λmax(P)

α3
δ2, tk ≤ t ≤ tk+1

and V (x(tk+1), tk+1) ≤ λmax(P)δ2.
Through simple induction, we can prove that

V (x(t), t) ≤ λmax(P)

α3
δ2, tk+q ≤ t ≤ tk+q+1

and

V (x(tk+q+1), tk+q+1) ≤ λmax(P)δ2,

for q = 0, 1, 2, . . . .
By virtue of (16) and α3 < 1, we have

V (x(t), t) ≤ λmax(P)

α3
δ2, t ≥ σ. (24)

Hence, for t ≥ σ,

λmin(P)‖x(t)‖2 ≤ V (x(t), t) ≤ λmax(P)

α3
δ2, (25)

which implies

‖x(t)‖ ≤ δ

√
λmax(P)

α3λmin(P)
< ε.

Thereby, according to Definition 2.3, the zero solution of TSFNN (9) with impulses is uniformly stable.
Using this conclusion together with (17) and (24), for given q̂ > 0, we can choose a δ > 0 such that
ϕ ∈ PC ([−τm, 0],Rn) with sups∈[−τm ,0] ‖ϕ(s)‖ < δ, which implies that for t ≥ σ − τm, ‖x(t; σ, ϕ)‖ < q̂
and

V (x(t), t) ≤ λmax(P)

α3
δ2.

Now, for given 0 < ε < q̂, there exists a number d = d(ε) > 0 such that for λmin(P)ε2 ≤ s ≤ λmax(P)
α3

δ2,

d < (κ − 1)s. Let N = N (ε) > 0 be the smallest integer such that λmax(P)
α3

δ2 ≤ λmin(P)ε2 + Nd. Set

x(t) = x(t; σ, ϕ), δ̂ = max
{

− λmax(P)δ2

ρα3
, τm

}
and let T = T (ε) = (2N − 1)δ̂. We shall prove that

V (x(t), t) ≤ λmin(P)ε2, for t ≥ σ + T . (26)

Using contradiction approach and mathematical induction, we can prove, in general, that

V (x(t), t) ≤ λmin(P)ε2 + (N − i)d,

for t ≥ σ + (2i − 1)δ̂i ∈ N(1, N ). Due to the limitation of space, we omit it here.
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Therefore, when choosing i = N , we obtain

V (x(t), t) ≤ λmin(P)ε2,

for t ≥ σ + (2N − 1)δ̂.
Therefore, Inequality (26) holds, which implies

‖x(t)‖ < ε,

for t ≥ σ + T . The proof of Theorem 3.1 is completed. ��
Based on Lyapunov function together with LMI approach and Halanay inequality, we give the following

theorem on exponential stability.

Theorem 3.2 If there exists positive definite matrices P, Q1, Q2 and two positive numbers a > 0, b > 0 such
that the following LMI

⎡
⎢⎢⎣

aI − 2PCr + L Q1L P Ar P Br
1
2 P Br L

AT
r P −Q1 0 0

BT
r P 0 −Q2 0

1
2 L BT

r P 0 0 −bI + 1
4 L Q2L

⎤
⎥⎥⎦ < 0 (27)

and

γk = λmax

(
P−1(I + Ek)

T P(I + Ek)
)

< 1

hold, then the zero solution of TSFNN (9) with impulses is exponentially stable with the decay degree μ which
is a positive solution of the equation μ = å − b̊eμτm where å = a

λmax(P)
, b̊ = b

λmin(P)
.

Proof Consider the Lyapunov function

V (x(t), t) = xT(t)Px(t) (28)

and calculate D+V (x(t), t) along with (9)

D+V (x(t), t) ≤
m∑

r=1

hr (θ(t))
[
2xT(t)P

(
− Cr x(t)

+Ar F̂x(t) + Br F̂τ x(t − τ(t))
)]

. (29)

From Remark 2.2, we know that

−1

2
li ≤ Fi (xi ) − 1

2
li ≤ 1

2
li , i ∈ N(1, n),

that is,

−1

2
L ≤ F̂ − 1

2
L ≤ 1

2
L .
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Therefore, by utilizing Lemma 2.8, we can derive

2xT(t)P Ar F̂x(t)

≤ xT(t)P Ar Q−1
1 AT

r Px + xT L Q1Lx, (30)

2xT(t)P Br F̂τ x(t − τ(t))

= 2xT(t)P Br

(
F̂τ − 1

2
L
)

x(t − τ(t))

−2xT(t)P Br

(
− 1

2
L
)

x(t − τ(t))

≤ xT(t)P Br Q−1
2 BT

r Px

+xT(t − τ(t))
(

F̂τ − 1

2
L
)T

Q2

×
(

F̂τ − 1

2
L
)

x(t − τ(t))

+xT(t)P Br Lx(t − τ(t))

≤ xT(t)P Br Q−1
2 BT

r Px

+1

4
xT(t − τ(t))L Q2Lx(t − τ(t))

+xT(t)P Br Lx(t − τ(t)). (31)

Combining with (29–31) and using Lemma 2.9, it follows that

D+V (x(t), t) ≤
m∑

r=1

hr (θ(t))ξT(t)�ξ(t) − åV (t) + b̊V (t − τ(t)) (32)

where

ξT(t) = [xT(t) xT(t − τ(t))],
å = a

λmax(P)
, b̊ = b

λmin(P)
,

� =
[

ϒ1
1
2 P Br L

1
2 L BT

r P −bI + 1
4 L Q2L

]

ϒ1 = aI − 2PCr + P Ar Q−1
1 AT

r P

+L Q1L + P Br Q−1
2 BT

r P.

It results from the Schur Complement Lemma that, LMI (27) is equivalent to � < 0. Hence, we obtain

D+V (x(t), t) ≤ −åV (t) + b̊V (t − τ(t)). (33)

Accordingly, by Lemma 2.10, it follows from (33) that for t ∈ (tk−1, tk]k ∈ Z,

V (x(t), t) ≤ V (x(t+k−1), t+k−1)e
−μ(t−tk−1), (34)

where μ is the unique positive root of μ = å − b̊eμτm .
Meanwhile, from Lemma 2.9, one has

V (x(t+k ), t+k ) = xT(t+k )Px(t+k )

= [(I + Ek)x(tk)]T P[(I + Ek)x(tk)]
≤ γk xT(tk)Px(tk). (35)

Therefore, for t ∈ (t0, t1],
V (x(t), t) ≤ V (x0, t+0 )e−μ(t−t0),
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which leads to

V (x(t1), t1) ≤ V (x0, t+0 )e−μ(t1−t0),

and

V (x(t+1 ), t+1 ) ≤ γ1V (x(t1), t1) ≤ γ1V (x0, t+0 )e−μ(t1−t0).

Similarly, for t ∈ (t1, t2],

V (x(t), t) ≤ V (x(t+1 ), t+1 )e−μ(t−t1)

≤ γ1V (x0, t+0 )e−μ(t−t0),

then

V (x(t2), t2) ≤ γ1V (x0, t+0 )e−μ(t2−t0)

and

V (x(t+2 ), t+2 ) ≤ γ2V (x(t2), t2) ≤ γ1γ2V (x0, t+0 )e−μ(t2−t0).

The rest may be deduced by analogy. In general, for t ∈ (tk, tk+1],

V (x(t), t) ≤ γ1γ2 · · · γk V (x0, t+0 )e−μ(t−t0), (36)

which yields

‖x(t)‖ ≤ ‖x0‖e− μ
2 (t−t0), (37)

where  = √
(γ1γ2 . . . γk)λmax(P)/λmin(P).

Therefore, according to Definition 2.5, the zero solution of TSFNN (9) with impulses is exponentially
stable.

��
Remark 3.3 Both Theorems 3.1 and 3.2 do not need the differential assumption on time-varying delays, which
makes our results more applicable. Moreover, when the number of fuzzy model rules is set as one, i.e., m = 1,
system (9) degenerates into a general impulsive neural networks with time-varying delays. Therefore, one can
easily extend our results to stability of general impulsive neural networks with time-varying delays.

4 Numerical simulations

In this section, we will apply the proposed results to impulsive stabilization of TSFNNs by using two impulsive
strategies.

Simulation 1–Stabilization of almost periodic orbits using fixed impulsive intervals

Consider a TSFNN with time-varying delays and impulses:

⎧⎪⎨
⎪⎩

ẋ(t) = ∑2
r=1 hr (θ(t))[−Cr x(t) + Ar f (x(t))

+Br f (x(t − τ(t)))], t ≥ t0, t �= tk,
�x(t) = Ek x(tk), t = tk, k ∈ Z,
x(s) = ϕ(s), t ∈ [−1.6, 0],

(38)
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Fig. 1 The phase plot of state variables of (38) without impulsive control
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Fig. 2 The time responses of state variables of (38) with impulsive control

where the model parameters are given as follows:

C1 = C2 = diag(1, 1),

A1 =
[

2 −0.1
−5 2

]
, A2 =

[
2 −3
3 2

]

B1 =
[−1.5 −0.1

−0.2 −1.5

]
, B2 =

[−2.5 −1
1.2 −2

]

Ek = −
[

0.8 0
0 0.8

]
, k ∈ Z,

fi (x) = tanh(x), τi (t) = 1 + 0.6 cos2(t), i = 1, 2,

Here, the membership functions are given as h1(θ(t)) = sin2(
x1(t)

3 ), h2(θ(t)) = cos2(
x1(t)

3 ).
Without impulsive effects, i.e., Ek = 0, k ∈ Z, the TSFNN (38) exhibits almost periodic behaviors. The

phase plot of state variables with initial values ϕ1(s) = 0.4 and ϕ2(s) = 0.5(s ∈ [−1.6, 0]) is shown in Fig. 1.
Now, let us impose impulses on the model and take tk − tk−1 = 0.08 for every k ∈ Z. In Theorem 3.1, choose
P = I, ε1 = 0.1, ε2 = 2, it is straightforward to verify that the impulsive intervals satisfy tk − tk−1 < 0.0866.
Therefore, according to Theorem 3.1, the origin of TSFNN (38) is uniformly stable. The time responses of
state variables are depicted in Fig. 2.
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Fig. 3 The phase plot of state variables of (39) without impulsive control
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Fig. 4 The time responses of state variables of (39) with impulsive control

Simulation 2–Stabilization of periodic orbits using variable impulsive intervals
Consider another TSFNN with time-varying delays and impulses:

⎧⎪⎨
⎪⎩

ẋ(t) = ∑2
r=1 hr (θ(t))[−Cr x(t) + Ar f (x(t))

+Br f (x(t − τ(t)))], t ≥ t0, t �= tk,
�x(t) = Ek x(tk), t = tk, k ∈ Z,
x(s) = ϕ(s), t ∈ [−1, 0],

(39)

where the model parameters are given as follows:

C1 = C2 = diag(3.5, 3.5),

A1 =
[

3 −0.1
0.4 2

]
, A2 =

[
1.8 20
0.1 1.8

]
,

B1 =
[−1.5 −0.1

−1.2 −1.3

]
, B2 =

[−1.63 0.1
0.1 −1.63

]
,

Ek = −
[

0.6 0
0 0.6

]
, k ∈ Z,

fi (x) = tanh(0.6x), τi (t) = 3, i = 1, 2,

Here, the membership functions are given as h1(θ(t)) = 1
1+esin(x1) , h2(θ(t)) = 1 − h1(θ(t)).

Without impulsive effects, i.e., Ek = 0, k ∈ Z, the TSFNN (55) exhibits periodic orbits The phase plot of
state variables with initial values ϕ1(s) = 0.2 and ϕ2(s) = −0.1 (s ∈ [−3, 0]) is shown in Fig. 3. Now, let
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Fig. 5 The variable impulsive intervals in Simulation 2

us impose impulses on the model and by using the Matlab LMI Control Toolbox to solve the LMI (27), we
obtain the solution as follows:

P =
[

46.6676 −0.3143
−0.3143 42.7611

]
> 0,

a = 88.6283, b = 66.9761,

Q1 =
[

208.1018 6.0348
6.0348 137.1213

]
> 0,

Q2 =
[

202.8380 29.8833
29.8833 140.6959

]
> 0.

Thus it can be directly verified that

γk = 0.1600 < 1, k ∈ Z, μ = 0.124 > 0.

Thereby, all the conditions in Theorem 3.2 are satisfied, which implies that the origin of the TSFNN (39) has
been stabilized. Figure 4 shows the stabilized state trajectories of TSFNN (39) under initial values ϕ1(s) = 0.2
and ϕ2(s) = 0.1(s ∈ [−3, 0]) after imposing impulsive control on the model with random impulsive intervals
tk − tk−1 ∈ [0.3, 0.6]. The varieties of the random impulsive intervals are shown in Fig. 5.

5 Conclusions

Although a few efforts on stability analysis of TSFNNs have been made, little study has been performed for
stabilization of TSFNNs. In this paper, we discuss stabilization of TSFNNs with time-varying delays and
present two stabilization criteria to guarantee the stability of the networks by employing an impulsive control
scheme. One of the proposed conditions is in terms of LMI which can be readily solved by using standard
numerical software. Two periodic TSFNNs have been provided to demonstrate the applicability and validity
of the proposed control scheme.
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