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Abstract In this paper we apply the Du Fort–Frankel finite difference scheme on Burgers equation and solve
three test problems. We calculate the numerical solutions using Mathematica 7.0 for different values of vis-
cosity. We have considered smallest value of viscosity as 10−4 and observe that the numerical solutions are in
good agreement with the exact solution.
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1 Introduction

The Burgers equation which is going to be examined is

∂w

∂t
+ w

∂w

∂x
− νd

2

∂2w

∂x2 = 0, (x, t) ∈ (0, 1) × (0, T ] (1.1)

with the initial condition

w(x, 0) = f (x), 0 ≤ x ≤ 1, (1.2)

and the boundary conditions

w(0, t) = g1(t), w(1, t) = g2(t), 0 ≤ t ≤ T, (1.3)
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where νd > 0 is the coefficient of viscous diffusion, and f (x), g1(t) and g2(t) are the sufficiently smooth
given functions in space and time domain.

Burgers equation (1.1) can model several physical phenomenon such as traffic flow, shock waves, turbu-
lence problems, cosmology, seismology and continuous stochastic processes. It can also be used to test the
various numerical algorithm. Due to its wide range of applicability, researchers [3,5,7] were attracted to it and
studied properties of its solution using various numerical techniques.

In [3] the Group-Explicit method is introduced which is semi explicit, unconditionally stable and is of
order O

(
�t + (�x)2 + �t

�x

)
with consistency condition �t

�x → 0 as �t,�x → 0. In [5] using the Hopf–Cole
transformation the Burgers equation is reduced into linear heat equation and a standard explicit finite difference
approximation is derived. Then assuming that this explicit finite difference scheme has product solution, they
derived exact explicit finite difference solution which converges to the Fourier solution as mesh size tends to
zero. In [7] Douglas finite difference scheme is considered which is unconditionally stable. In [6] a numerical
method is proposed to approximate the solution of the nonlinear Burgers equation which is based on colloca-
tion of modified cubic B-splines over finite elements. They computed the numerical solutions to the Burgers
equation without transforming the equation and without using the linearization. In a recent review article [2]
different techniques for the solution of nonlinear Burgers equation are presented.

In this paper we consider Du Fort–Frankel [8, p. 102] finite difference scheme which is unconditionally
stable and has local truncation error O((�x)2 +(�t)2 +(�t/�x)2) which tends to zero as (�x,�t) → (0, 0)
provided (�t/�x) → 0. Du Fort–Frankel method is explicit, so matrix inversions are not required for com-
putations and it is therefore simpler to program and cheaper to solve (on a per time-step basis). We compare
the absolute errors for our results to the absolute errors of Douglas finite difference scheme [7] and present
this comparison using graphs. It can be observed that if we can have little control over the mesh sizes then the
results are promising even for very small coefficient of viscosity (νd = 10−4).

2 Exact solution

Hopf [4] and Cole [1] suggested that (1.1) can be reduced to the linear heat equation

φt = νd

2
φxx (2.1)

by the non-linear transformation ψ = −νd(log φ) and w = ψx . The Fourier series solution to the linearized
heat equation (2.1) is

φ(x, t) = A0 +
∞∑

n=1

An exp

(
−νdn2π2t

2

)
cos nπx (2.2)

with Fourier coefficients as

A0 =
1∫

0

exp

⎛

⎝− 1

νd

x∫

0

w0(ξ)dξ

⎞

⎠ dx

and

An = 2

1∫

0

exp

⎛

⎝− 1

νd

x∫

0

w0(ξ)dξ

⎞

⎠ cos(nπx)dx

where w0(ξ) = w(ξ, 0). Using the Hopf–Cole transformation we have the exact solution

w(x, t) = πνd

∑∞
n=1 An exp

(
− νdn2π2t

2

)
n sin nπx

A0 + ∑∞
n=1 An exp

(
− νdn2π2t

2

)
cos nπx

. (2.3)
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3 Description of the method

The solution domain is discretized into uniform mesh. We divide the interval [0, 1] into N equal sub-intervals
and divide the interval [0, T ] into M equal sub-intervals.

Let h = 1/N be the mess width in space and xi = ih for i = 1, 2, . . . , N . Let k = T/M be the mess
width in time and t j = jk for k = 0, 1, . . . , M .

Du Fort–Frankel discretization [8, p. 102] to linearized heat equation (2.1) is given by

(1 + 2r)φi, j+1 = (1 − 2r)φi, j−1 + 2r(φi−1, j + φi+1, j ) (3.1)

where r = νdk

2h2 is the discrete approximation to φ(xi , t j ) at the point (i, j). The approximate solution of Bur-

gers equation (1.1) in terms of approximate solution of heat equation (2.1) using Hopf–Cole transformation

is given by wi, j (x, t) = −νdφx
φ

∣
∣∣
i, j

= −νd
2

(
φi+1, j −φi−1, j

hφi, j

)
. It is stable for all values of r and has the truncation

error of O
(

k2 + h2 + ( k
h

)2
)

which will tend to zero as (h, k) → (0, 0) provided k
h → 0. Initial data are given

on one-line only; the first row ( j = 1) of values must be calculated by another method. Here we use Schmidt
process φi,1 = rνd

2 (φi+1,0 + φi−1,0) + (1 − rνd)φi,0 to obtain the values at first row ( j = 1).

4 Numerical results and discussion

In this section we demonstrate the accuracy of the present method by solving three test problems and compare
it with the exact solution at different nodal points.The computed results are displayed in Tables 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and Figs. 1, 2, 3, 4, 5, 6 at different nodal points for different values of
viscosity.

4.1 Problem 1

Consider Equation (1.1) with boundary conditions and initial condition as

w(0, t) = w(1, t) = 0, t > 0, (4.1)

w(x, 0) = sin πx . (4.2)

The exact solution of the Burgers equation (1.1) is (2.3) with given Fourier coefficients

A0 =
1∫

0

exp

( −1

πνd
(1 − cos πx)

)
dx, An = 2

1∫

0

exp

( −1

πνd
(1 − cos πx) cos nπx

)
dx .

In Table 2 we have compared our computed numerical solutions with the exact solution for N = 10, k = 0.001
and νd = 2. In Table 3 we compare the numerical solutions with the exact solutions for different values of
νd (0.5, 0.125, 0.03125) and N (20, 40, 80). In Tables 5, 8 and 11 we have displayed the numerical and
analytical solutions for very small νd values 10−2, 10−3 and 10−4. In Table 14 we compare our results with
results of Kutluay et al. [5] for νd = 0.02, h = 0.0125 and k = 0.0001. This comparison shows that Du
Fort–Frankel is giving good results.

4.2 Problem 2

As a second example consider (1.1) with the boundary condition (4.1) and initial condition w(x, 0) = 4x(1 −
x) , 0 < x < 1. The exact solution (2.3) can be obtained in the similar fashion as in Problem 4.1 with the
Fourier coefficients as follows:

A0 =
1∫

0

exp

(−2x2

3νd
(3 − 2x)

)
dx, An = 2

1∫

0

exp

(−2x2

3νd
(3 − 2x)

)
cos(nπx)dx .
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Table 1 Comparison of numerical solutions with the exact solutions at different space points of Problems 4.1, 4.2, 4.3 at T = 0.1,
for νd = 2, h = 0.1 and k = 0.001

x Problem 4.1 Problem 4.2 Problem 4.3

Computed solution Exact solution Computed solution Exact solution Computed solution Exact solution

0.1 0.109517 0.10954 0.112918 0.11289 0.306694 0.307354
0.2 0.209758 0.20979 0.216311 0.21625 0.596984 0.598069
0.3 0.291865 0.2919 0.301055 0.30097 0.852678 0.853758
0.4 0.34791 0.34792 0.358998 0.35886 1.05241 1.05295
0.5 0.371591 0.37158 0.383589 0.38342 1.17139 1.1709
0.6 0.359088 0.35905 0.370858 0.37066 1.18336 1.18163
0.7 0.309965 0.30991 0.320261 0.32007 1.06648 1.0638
0.8 0.227876 0.22782 0.235537 0.23537 0.813219 0.810417
0.9 0.120722 0.12069 0.12481 0.12472 0.441575 0.439768

Table 2 Comparison of numerical solutions with the exact solutions at different space points at T = 0.1 and k = 0.001 for
different values of νd for Problem 4.1

x h = 0.05, νd = 0.5 h = 0.025, νd = 0.125 h = 0.0125, νd = 0.03125

Computed solution Exact solution Computed solution Exact solution Computed solution Exact solution

0.1 0.201986 0.20241 0.228169 0.228675 0.234829 0.235166
0.2 0.392435 0.393201 0.445803 0.446428 0.460554 0.459645
0.3 0.559111 0.560073 0.641386 0.641476 0.666655 0.661882
0.4 0.68847 0.689456 0.801371 0.800237 0.839693 0.828473
0.5 0.765389 0.76625 0.909044 0.906278 0.961708 0.942984
0.6 0.773827 0.774471 0.943621 0.939401 1.00881 0.984667
0.7 0.699498 0.699912 0.880778 0.876009 0.951415 0.928516
0.8 0.535755 0.535983 0.698132 0.694143 0.760721 0.766497
0.9 0.292094 0.292192 0.391534 0.389365 0.428993 0.284701

Table 3 Comparison of numerical solutions with the exact solutions at different space points at T = 0.1 and k = 0.001 for
different values of νd for Problem 4.2

x h = 0.05, νd = 0.5 h = 0.025, νd = 0.125 h = 0.0125, d = 0.03125

Computed solution Exact solution Computed solution Exact solution Computed solution Exact solution

0.1 0.211009 0.211315 0.248593 0.24903 0.263585 0.263835
0.2 0.408366 0.408941 0.477793 0.478258 0.501686 0.500182
0.3 0.578747 0.579501 0.673289 0.673046 0.704549 0.698449
0.4 0.709105 0.709887 0.824944 0.823281 0.86484 0.851921
0.5 0.786093 0.786732 0.92286 0.919457 0.972233 0.952114
0.6 0.795418 0.795784 0.954344 0.949488 1.01244 0.98746
0.7 0.722576 0.722638 0.901529 0.89614 0.966159 0.941272
0.8 0.557692 0.557546 0.738341 0.733728 0.807204 0.783701
0.9 0.306233 0.306075 0.43355 0.430905 0.497518 0.548686

Table 4 Comparison of numerical solutions with the exact solutions at different space points at T = 0.1 and k = 0.001 for
different values of νd for Problem 4.3

x h = 0.05, νd = 0.5 h = 0.025, νd = 0.125 h = 0.0125, νd = 0.03125

Computed solution Exact solution Computed solution Exact solution Computed solution Exact solution

0.1 0.39334 0.394264 0.395957 0.396695 0.396928 Can
0.2 0.785588 0.787021 0.793275 0.793091 0.800338 not
0.3 1.17496 1.17609 1.19301 1.18862 1.21617 be
0.4 1.55788 1.55755 1.59555 1.58211 1.64929 computed
0.5 1.92636 1.92321 2.00002 1.97127 2.10304 using
0.6 2.26047 2.2532 2.4034 2.35182 2.5787 Mathematica
0.7 2.50327 2.49142 2.79839 2.71544 3.07465
0.8 2.48185 2.4675 3.16762 3.04407 3.58445
0.9 1.76276 1.75224 3.42563 3.25473 4.09173
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Table 5 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.1 at T = 10 for
νd = 0.01 and k = 0.01

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.00969751 0.00969206 0.00969306 0.0096873 0.00965798
0.2 0.0194008 0.0193849 0.0193867 0.0193746 0.0193482
0.3 0.0291023 0.0290791 0.0290812 0.0290618 0.0290787
0.4 0.0388169 0.0387738 0.0387761 0.0387478 0.0388117
0.5 0.0485068 0.0484601 0.0484638 0.0484249 0.0484579
0.6 0.0581065 0.058076 0.0580905 0.0580402 0.0579005
0.7 0.0670385 0.0672139 0.0672847 0.067229 0.0669137
0.8 0.0722915 0.0732623 0.0735637 0.0735353 0.073627
0.9 0.0592958 0.0618627 0.0626532 0.0627219 0.0641923

Table 6 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.2 at T = 10 for
νd = 0.01 and k = 0.01

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.0097647 0.00974103 0.00974118 0.0097353 0.00973453
0.2 0.0195351 0.0194827 0.0194828 0.0194723 0.019469
0.3 0.0293001 0.0292253 0.0292254 0.0292125 0.0292031
0.4 0.0390783 0.0389682 0.0389681 0.0389565 0.0389358
0.5 0.0488257 0.0487025 0.0487038 0.048699 0.0486598
0.6 0.0584871 0.0583674 0.05838 0.0583909 0.058324
0.7 0.067481 0.0675619 0.0676319 0.06768 0.0675733
0.8 0.0728243 0.0736923 0.0739968 0.0741447 0.0739831
0.9 0.0598502 0.0623514 0.0631584 0.0634842 0.0632856

Table 7 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.3 at T = 10 for
νd = 0.01 and k = 0.01

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.00993853 0.00986103 0.00985735 0.00985101 0.00984981
0.2 0.0198835 0.0197225 0.0197152 0.0197038 0.0197005
0.3 0.0298153 0.0295845 0.029574 0.0295602 0.0295514
0.4 0.039764 0.0394462 0.0394332 0.0394209 0.0394
0.5 0.0496677 0.0492993 0.0492864 0.0492814 0.0492395
0.6 0.0595009 0.0590865 0.0590844 0.0590962 0.0590263
0.7 0.068669 0.0684217 0.0684784 0.0685293 0.0684243
0.8 0.0742707 0.0747558 0.0750563 0.0752115 0.0750494
0.9 0.0613733 0.0635649 0.0644039 0.0647492 0.064521

Table 8 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.1 at T = 100 for
νd = 0.001 and k = 0.1

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.0010008 0.00100288 0.00100595 0.00099697 0.000993238
0.2 0.00200233 0.00200579 0.00201193 0.00199413 0.00199047
0.3 0.00300231 0.00300874 0.00301794 0.00299165 0.00299277
0.4 0.00400428 0.00401165 0.00402393 0.00398964 0.00399563
0.5 0.0050013 0.00501376 0.00502925 0.0049877 0.00498799
0.6 0.00599212 0.00600971 0.00602928 0.00598162 0.00595643
0.7 0.00691669 0.00696259 0.00699038 0.00693937 0.00688528
0.8 0.00748855 0.00762217 0.00767449 0.00762928 0.00762049
0.9 0.00620309 0.00651922 0.0066196 0.00660351 0.00678091
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Table 9 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.2 at T = 100 for
νd = 0.001 and k = 0.1

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.0010008 0.00100359 0.00101213 0.000998562 0.000997441
0.2 0.00200233 0.0020072 0.00202429 0.00199731 0.00199488
0.3 0.00300231 0.00301087 0.00303651 0.0029964 0.00299231
0.4 0.00400428 0.0040145 0.00404871 0.00399596 0.00398964
0.5 0.0050013 0.00501733 0.0050603 0.00499556 0.00498627
0.6 0.00599212 0.00601404 0.00606661 0.00599101 0.00597782
0.7 0.0069167 0.00696778 0.00703393 0.00695031 0.006932
0.8 0.00748855 0.00762849 0.00772315 0.00764188 0.0076171
0.9 0.00620309 0.00652623 0.0066636 0.00661617 0.00658827

Table 10 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.3 at T = 100 for
νd = 0.001 and k = 0.1

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.0010008 0.00100406 0.0010302 0.00101229 0.000998426
0.2 0.00200233 0.00200815 0.00206047 0.00202471 0.00199695
0.3 0.00300231 0.00301229 0.00309088 0.0030374 0.00299551
0.4 0.00400428 0.0040164 0.00412141 0.0040504 0.00399383
0.5 0.0050013 0.00501973 0.00515148 0.00506327 0.0049913
0.6 0.00599212 0.00601695 0.00617643 0.00607173 0.00598399
0.7 0.0069167 0.00697126 0.00716217 0.00704349 0.00694017
0.8 0.00748855 0.00763274 0.00786613 0.00774459 0.00762715
0.9 0.00620309 0.00653094 0.00679141 0.00670742 0.00659685

Table 11 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.1 at T = 1000
for νd = 0.0001 and k = 0.1

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.000100009 0.000100013 0.000100061 0.000100566 0.000099602
0.2 0.000200018 0.000200026 0.000200121 0.000201132 0.000199612
0.3 0.00030002 0.000300036 0.00030018 0.000301697 0.00030014
0.4 0.000399992 0.000400033 0.00040023 0.000402254 0.000400728
0.5 0.000499781 0.000499937 0.000500206 0.000502743 0.000500245
0.6 0.000598536 0.000599211 0.00059965 0.000602721 0.000597326
0.7 0.000691161 0.000694172 0.000695243 0.000698944 0.000690475
0.8 0.000747855 0.000759866 0.000763432 0.000768091 0.000764653
0.9 0.000619565 0.000649842 0.000658978 0.000664544 0.000681876

Table 12 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.2 at T = 1000
for νd = 0.0001 and k = 0.1

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.000100009 0.000100013 0.000100061 0.000100681 9.99748E-05
0.2 0.000200018 0.000200026 0.000200121 0.000201363 0.000199949
0.3 0.00030002 0.000300036 0.000300181 0.000302044 0.000299923
0.4 0.000399992 0.000400033 0.00040023 0.000402717 0.000399887
0.5 0.000499781 0.000499937 0.000500206 0.000503322 0.000499783
0.6 0.000598536 0.000599211 0.00059965 0.000603416 0.000599177
0.7 0.000691161 0.000694172 0.000695244 0.000699754 0.000694872
0.8 0.000747855 0.000759866 0.000763433 0.000768994 0.000763799
0.9 0.000619565 0.000649842 0.000658979 0.000665357 0.000661322
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Table 13 Comparison of the numerical solutions with the exact solutions at different space points of Problem 4.3 at T = 1000
for νd = 0.0001 and k = 0.1

x Numerical solutions Exact solution

N = 10 N = 20 N = 40 N = 80

0.1 0.000100009 0.000100013 0.000100061 0.00010081 0.000099979
0.2 0.000200018 0.000200026 0.000200121 0.00020162 0.000199969
0.3 0.00030002 0.000300036 0.000300181 0.000302429 0.000299961
0.4 0.000399992 0.000400033 0.00040023 0.000403231 0.00039993
0.5 0.000499781 0.000499937 0.000500206 0.000503966 0.000499814
0.6 0.000598536 0.000599211 0.00059965 0.00060419 0.000599225
0.7 0.000691161 0.000694172 0.000695244 0.000700655 0.000695008
0.8 0.000747855 0.000759866 0.000763433 0.000769998 0.000763953
0.9 0.000619565 0.000649842 0.000658979 0.000666261 0.000661156

Table 14 Comparison of the numerical solutions with the exact solutions at different times of Problem 4.1 for νd = 0.02,
h = 0.0125 and k = 0.0001

x T Numerical solutions

Kutluay et al. [5] Du Fort–Frankel Exact solution

0.25 0.4 0.34244 0.342253 0.34191
0.6 0.26905 0.269002 0.26896
0.8 0.22145 0.221457 0.22148
1 0.18813 0.188159 0.18819
3 0.07509 0.0751073 0.07511

0.5 0.4 0.67152 0.668399 0.66071
0.6 0.53406 0.532218 0.52942
0.8 0.44143 0.440339 0.43914
1 0.37568 0.374999 0.37442
3 0.1502 0.150182 0.15018

0.75 0.4 0.94675 0.939743 0.91026
0.6 0.78474 0.778807 0.76724
0.8 0.65659 0.652555 0.6474
1 0.56135 0.558643 0.55605
3 0.22502 0.224845 0.22481

Table 15 Comparison of the numerical solutions with the exact solutions at different times of Problem 4.2 for νd = 2, h = 0.025
and k = 0.0001

x T Numerical solutions

Kutluay et al. [5] Du Fort–Frankel Exact solution

0.25 0.01 0.65915 0.660037 0.66006
0.05 0.42582 0.426343 0.42629
0.1 0.26121 0.261555 0.26148
0.15 0.16132 0.161552 0.16148
0.25 0.06103 0.0611377 0.06109

0.5 0.01 0.9189 0.919707 0.91972
0.05 0.62745 0.628165 0.62808
0.1 0.38304 0.383542 0.38342
1.15 0.23382 0.234169 0.23406
0.25 0.08715 0.0873058 0.08723

0.75 0.01 0.68304 0.683706 0.68364
0.05 0.46481 0.465329 0.46525
0.1 0.28129 0.281668 0.28157
0.15 0.16957 0.169826 0.16974
0.25 0.06223 0.0623431 0.06229
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Table 16 Comparison of the numerical solutions with the exact solutions at different times of Problem 4.2 for νd = 0.02,
h = 0.0125 and k = 0.001

x T Numerical solutions

Kutluay et al. [5] Du Fort–Frankel Exact solution

0.25 0.4 0.36296 0.363255 0.36226
0.6 0.28217 0.282427 0.28204
0.8 0.23043 0.230651 0.23045
1 0.19463 0.194812 0.19469
3 0.07611 0.0761492 0.07613

0.5 0.4 0.69591 0.693785 0.68368
0.6 0.55351 0.552281 0.54832
0.8 0.45625 0.455572 0.45371
1 0.38705 0.386677 0.38568
3 0.1522 0.152233 0.15218

0.75 0.4 0.95925 0.95431 0.9205
0.6 0.80197 0.797371 0.78299
0.8 0.67267 0.66948 0.66272
1 0.57501 0.572888 0.56932
3 0.22796 0.227869 0.22774

(a) (b)

Fig. 1 Numerical solution at different times for N = 40, νd = 0.125 and k = 0.001 for a Problem 4.1 and b Problem 4.2

(a) (b)

Fig. 2 Numerical solutions of Problem 4.1 at different times for N = 80, νd = 0.03125 and k = 0.001 for a Problem 4.1 and b
Problem 4.2
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(a) (b)

Fig. 3 Numerical solutions of Problem 4.3 at different times for a N = 40, νd = 0.125 and k = 0.001, b N = 80, νd = 0.03125
and k = 0.001

(a) (b)

Fig. 4 Comparison of the absolute error for N = 10, T = 0.1, νd = 2 and k = 0.001 for a Problem 4.1 and b Problem 4.2

(a) (b)

Fig. 5 Comparison of the absolute error for N = 40, T = 0.1, νd = 0.125 and k = 0.001 for a Problem 4.1 and b Problem 4.2

In Table 2 we have compared our computed numerical solutions to the exact solutions for N = 10,
k = 0.001 and νd = 2. In Table 4 we compare the numerical solutions with the exact solutions for different
values of νd (0.5, 0.125, 0.03125) and N (20, 40, 80). In Tables 6, 9 and 12 we have displayed the numerical
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(a) (b)

Fig. 6 Comparison of the absolute error for N = 80, T = 0.1, νd = 0.03125 and k = 0.001 for a Problem 4.1 and b Problem
4.2

and analytical solutions for very small νd values 10−2, 10−3 and 10−4. In Tables 15 and 16 we show that our
results are as good as the results of Kutluay et al. [5] for νd = 2, h = 0.025, k = 0.0001 and νd = 0.02,
h = 0.0125, k = 0.001.

4.3 Problem 3

Consider Equation (1.1) with boundary condition (4.1) and initial condition as w(x, 0) = 2π sin πx
2+cos πx . The exact

solution (2.3) of the equation (1.1) can be obtained in the similar fashion with the Fourier coefficients as follows:

A0 =
1∫

0

(
2 + cos πx

3

) 2
νd

dx, An = 2

1∫

0

(
2 + cos πx

3

) 2
νd

cos nπx dx .

In Table 1 we have compared our computed numerical solutions to the exact solutions for N = 10, k = 0.001
and νd = 2. In Table 4 we compare the numerical solutions with the exact solutions for different values of
νd (0.5, 0.125, 0.03125) and N (20, 40, 80). In Tables 7, 10 and 13 we have displayed the numerical and
analytical solutions for very small values of νd, e.g., 10−2, 10−3 and 10−4.

5 Figures

In this section we describe the physical properties of the solutions using 2D and 3D plots (Figs. 1, 2, 3). In
Figs. 4, 5 and 6 we verify the accuracy of the present method by comparing the absolute error of our result to the
absolute error of Douglas finite difference scheme [7] for different N (10, 40, 80), νd (2, 0.125, 0.03125) and
T = 0.1 for Problems 4.1 and 4.2. The truncation errors of Du Fort–Frankel method is O(h2 + k2 + (k/h)2)
and that of Douglas scheme is O(h4 + k2). Since we have kept values of time step k smaller than h, i.e., k < h
so truncation error is more for Douglas method. This can easily be observed in Fig. 4a, b when h = 0.1 and
k = 0.001. Similar trends can be observed in Figs. 5 and 6. In these two figures for chosen values of h and k
we obtain same accuracy (order of truncation error is O(10−6) for both) so we observe that Du Fort–Frankel
method gives values as accurate as that of Douglas.

6 Conclusions

Since exact solutions fail to converge if νd or T is small. Therefore, while computing numerical solutions for
small values of νd we have kept value of T high so that we can compute exact solutions and thus numerical
solutions are verified. Computed results show that if we can keep the ratio k/h sufficiently small, good results
can be obtained. Since Du Fort–Frankel method does not require matrix inversion, it is easy to program and
takes less time to compute.
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