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Abstract For a monoid M , we introduce M-nil-Armendariz rings, which are generalizations of nil-Armen-
dariz rings and M-Armendariz rings, and we investigate their properties. We show that every N I ring is
M-nil-Armendariz for any unique product monoid M , and if R is a 2-primal and M-Armendariz ring, then R
is M × N -nil-Armendariz, where N is a unique product monoid. Moreover, we study the relationship between
the weak annihilator ideals of a ring R and those of the monoid ring R[M] in case R is M-nil-Armendariz.

Mathematics Subject Classification 16S36 · 16N60

1 Introduction

All rings considered here are associative with identity. Let R be a ring. The prime radical (i.e., the intersection
of all prime ideals) of R and the set of all nilpotent elements in R are denoted by P(R) and nil(R), respectively.
Due to Birkenmeier et al. [4], a ring R is called 2-primal if P(R) = nil(R). A ring R is called an N I ring
if nil(R) forms an ideal, and a ring R is said to be semicommutative if for all a, b ∈ R, ab = 0 implies
a Rb = 0. Let I be an ideal of a ring R, I is called semicommutative if I is considered as a semicommutative
ring without identity.

Rege and Chhawchharia [17] introduced the notion of an Armendariz ring. A ring R is called Armendariz if
whenever polynomials f (x) = ∑m

i=0 ai xi , g(x) = ∑n
j=0 b j x j ∈ R[x] satisfy f (x)g(x) = 0, then ai b j = 0

for each i , j . The name Armendariz ring was chosen because Armendariz [3, Lemma 1] had noted that a
reduced ring (i.e., a ring without nonzero nilpotent elements) satisfies this condition. Properties of Armendariz
rings have been studied in Anderson and Camillo [1], Armendariz [3], Hong et al. [6], Huh et al. [7,8]; Kim
and Lee [9], Lee and Wong [10], Matczuk [12], Moussavi and Hashemi [13] and Rege and Chhawchharia
[17]. In [2], Antoine has studied a generalization of Armendariz rings, which he called nil-Armendariz rings.
A ring R is called nil-Armendariz provided that whenever f (x)g(x) ∈ nil(R)[x] for f (x) = ∑m

i=0 ai xi ,
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g(x) = ∑n
j=0 b j x j in R[x], then ai b j ∈ nil(R) for each i , j . Some properties of nil-Armendariz rings have

been studied in [2].
Let M be a monoid. In the following, e will always stand for the identity of M . Following Liu [11],

a ring R is called an M-Armendariz ring (an Armendariz ring relative to M), if whenever elements α =
a1g1 + a2g2 + · · · + angn , β = b1h1 + b2h2 + · · · + bmhm ∈ R[M] satisfy αβ = 0, then ai b j = 0 for each
i , j . If M = {e}, then every ring is M-Armendariz. If S is a semigroup with multiplication st = 0 for all
s, t ∈ S, and M = S1, then any ring is not M-Armendariz (see [11]). Let M = (N ∪ {0},+). Thus a ring
R is M-Armendariz if and only if R is Armendariz. For more examples and details of M-Armendariz rings,
see [11].

Let U be a subset of R. U [M] means the set {a1g1 +a2g2 +· · ·+angn ∈ R[M] | ai ∈ U, 1 ≤ i ≤ n}, that
is, for any element α = a1g1 +a2g2 +· · ·+angn ∈ R[M], α ∈ U [M] if and only if ai ∈ U for each 1 ≤ i ≤ n.
In particular, nil(R)[M] stands for the set {a1g1 + a2g2 + · · · + angn ∈ R[M] | ai ∈ nil(R), 1 ≤ i ≤ n}. For
an element α = a1g1 + a2g2 + · · · + angn ∈ R[M], we denote by Cα the set comprised of coefficients of α,
that is, Cα = {a1, a2, . . . , an}, and for a subset V ⊆ R[M], we define CV = ⋃

α∈V Cα .
Recall that a monoid M is called a u.p.-monoid (unique product monoid) if for any two nonempty finite

subsets A, B ⊆ M , there exists an element g ∈ M uniquely presented in the form ab where a ∈ A and b ∈ B.
The class of u.p.-monoids is quite large and important (see [5,14,16]). For example, this class includes the right
or left ordered monoids, submonoids of a free group, and torsion-free nilpotent groups. Every u.p.-monoid M
has no nonunity element of finite order.

2 Nil-Armendariz rings relative to a monoid

Definition 2.1 Let M be a monoid and R a ring. We say that R is M-nil-Armendariz (a nil-Armendariz ring
relative to M), if whenever α = a1g1 + a2g2 + · · · + angn , β = b1h1 + b2h2 + · · · + bmhm ∈ R[M] satisfy
αβ ∈ nil(R)[M], then ai b j ∈ nil(R) for each i , j .

If M = {e}, then every ring is M-nil-Armendariz. A subring of an M-nil-Armendariz ring is M-nil-Ar-
mendariz. Let M = (N ∪ {0},+). Then a ring R is M-nil-Armendariz if and only if R is nil-Armendariz. If
R[M] is reduced, then R is M-Armendariz if and only if R is M-nil-Armendariz.

Lemma 2.2 ([11, Proposition 1.6]) Suppose that R is M-Armendariz. If α1, α2, . . ., αn ∈ R[M] are such that
α1α2 · · · αn = 0, then a1a2 · · · an = 0, where ai is a coefficient of αi .

The following results shows that our definition of M-nil-Armendariz ring extends Liu’s definition of
M-Armendariz ring [11].

Theorem 2.3 All M-Armendariz rings are M-nil-Armendariz.

Proof We first show that nil(R)[M] ⊆ nil(R[M]) when R is M-Armendariz. Let α = a1g1 + a2g2 + · · · +
angn ∈ nil(R)[M] and k ≥ 1 be such that ak

i = 0 for all 1 ≤ i ≤ n. In the following, we use essentially the
same method in the proof of [2, Lemma 2.6] to claim that αnk = 0.

The coefficients of αnk can be written as sums of monomials of length nk in the a′
i s. Consider one of such

monomials, ai1ai2 · · · aink where 1 ≤ i j ≤ n. It would contain at least k, a j0 for some 1 ≤ j0 ≤ n. Suppose
air1

= · · · = airk
= a j0 for some 1 ≤ r1 ≤ · · · ≤ rk ≤ nk. For all is �= irt , 1 ≤ t ≤ k, let

α′
is

= 1e − ais g and α′′
is

= 1e + ais g + a2
is

g2 + · · · + ak−1
is

gk−1,

where g ∈ M and e is the identity element of M . Observe that α′
is
α′′

is
= 1e = e and that ais is a product of

coefficients of α′
is

and α′′
is

. Now, we can write the monomial as

ai1ai2 · · · air1−1a j0air1+1 · · · air2−1a j0 · · · airk−1a j0airk+1 · · · aink .

Since ak
j0

= 0, we have

ei1 · ei2 · · · eir1−1 · (a j0 e) · eir1+1 · · · eir2−1(a j0 e) · eir2+1 · · · eirk−1(a j0 e) · eirk+1 · · · eink = 0, (1)

where

ei1 = ei2 = · · · = eir1−1 = eir1+1 = · · · = eirk−1 = eirk+1 = · · · = eink = e.
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By replacing each eis by the product α′
is
α′′

is
, we have that

α′
i1
α′′

i1
· · · α′′

ir1−1(a j0 e)α′
ir1+1 · · ·α′′

irk −1(a j0 e)α′
irk +1 · · · α′′

irnk
= 0. (2)

Now since R is M-Armendariz, by Lemma 2.2, we can choose a coefficient from each of the elements in
Equation (2) and the product will be 0. Hence ai1ai2 · · · aink = 0. Therefore, we have proved that all monomi-
als appearing in the coefficients of αnk are 0. Hence α ∈ nil(R[M]). Therefore nil(R)[M] ⊆ nil(R[M]) is
proved.

We next show that R is M-nil-Armendariz when R is M-Armendariz. Suppose that α = a1g1 + a2g2 +
· · ·+angn and β = b1h1 +b2h2 +· · ·+bmhm ∈ R[M] are such that αβ ∈ nil(R)[M]. Then αβ ∈ nil(R[M]).
Hence there exists some positive integer p such that (αβ)p = 0. Then by Lemma 2.2, we obtain ai b j ∈ nil(R)
for each i , j . Therefore R is M-nil-Armendariz. 	


The converse of Theorem 2.3 need not hold by the following example:

Example 2.4 Let R be an M-Armendariz reduced ring, and M a monoid with |M| ≥ 2 and let

Tn(R) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann

⎞

⎟
⎟
⎠ | ai j ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
.

Then Tn(R) is not M-Armendariz for n ≥ 4 by [11, Remark 1.8]. But Tn(R) is M-nil-Armendariz by Theorem
2.5 below. Hence an M-nil-Armendariz ring is not a trivial extension of an M-Armendariz ring.

The following results will give more examples of M-nil-Armendariz rings:

Theorem 2.5 Let M be a monoid with |M| ≥ 2. Then the following conditions are equivalent:

(1) R is M-nil-Armendariz.
(2) Tn(R) is M-nil-Armendariz.

Proof (1) ⇒ (2) It is easy to see that there exists an isomorphism of rings Tn(R)[M] −→ Tn(R[M]) defined
by

n∑

i=1

⎛

⎜
⎜
⎜
⎝

ai
11 ai

12 · · · ai
1n

0 ai
22 · · · ai

2n
...

...
. . .

...

0 0 · · · ai
nn

⎞

⎟
⎟
⎟
⎠

gi −→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

i=1
ai

11gi

n∑

i=1
ai

12gi · · ·
n∑

i=1
ai

1ngi

0
n∑

i=1
ai

22gi · · ·
n∑

i=1
ai

2ngi

...
...

. . .
...

0 0 · · ·
n∑

i=1
ai

nngi

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Suppose that α = A1g1 + A2g2 + · · · + Angn and β = B1h1 + B2h2 + · · · + Bmhm ∈ Tn(R)[M] are such
that αβ ∈ nil(Tn(R))[M], where Ai , B j ∈ Tn(R). We claim Ai B j ∈ nil(Tn(R)) for each i , j . Assume that

Ai =

⎛

⎜
⎜
⎜
⎝

ai
11 ai

12 · · · ai
1n

0 ai
22 · · · ai

2n
...

...
. . .

...

0 0 · · · ai
nn

⎞

⎟
⎟
⎟
⎠

, B j =

⎛

⎜
⎜
⎜
⎜
⎝

b j
11 b j

12 · · · b j
1n

0 b j
22 · · · b j

2n
...

...
. . .

...

0 0 · · · b j
nn

⎞

⎟
⎟
⎟
⎟
⎠

,

and let αs = ∑n
i=1 ai

ss gi and βs = ∑m
j=1 b j

ssh j ∈ R[M]. By observing that

nil(Tn(R)) =

⎛

⎜
⎜
⎝

nil(R) R · · · R
0 nil(R) · · · R
...

...
. . .

...
0 0 · · · nil(R)

⎞

⎟
⎟
⎠ ,
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we have αsβs ∈ nil(R)[M] for each 1 ≤ s ≤ n. Since R is an M-nil-Armendariz ring, there exists some
positive integer mi js such that (ai

ssb j
ss)

mi js = 0 for any s and any i , j . Let mi j = max{mi js | 1 ≤ s ≤ n}.
Then ((Ai B j )

mi j )n = 0, and so Ai B j ∈ nil(Tn(R)). Therefore, Tn(R) is M-nil-Armendariz.
(2) ⇒ (1) Suppose that Tn(R) is M-nil-Armendariz. Note that R is isomorphic to the subring

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a 0 · · · 0
0 a · · · 0
...

...
. . .

...
0 0 · · · a

⎞

⎟
⎟
⎠ | a ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

of Tn(R). Thus R is M-nil-Armendariz since each subring of an M-nil-Armendariz ring is also M-nil-Armen-
dariz. 	


Let R be a ring and let

Sn(R) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a a12 · · · a1n
0 a · · · a2n
...

...
. . .

...
0 0 · · · a

⎞

⎟
⎟
⎠ | a, ai j ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
,

and

T (R, n) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

a1 a2 · · · an
0 a1 · · · an−1
...

...
. . .

...
0 0 · · · a

⎞

⎟
⎟
⎠ | ai ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

,

and T (R, R) be the trivial extension of R by R. Using the same method in the proof of Theorem 2.5, we have
the following results:

Corollary 2.6 Let M be a monoid with |M| ≥ 2. Then the following conditions are equivalent:

(1) R is M-nil-Armendariz.
(2) Sn(R) is M-nil-Armendariz.
(3) T (R, n) is M-nil-Armendariz.
(4) T (R, R) is M-nil-Armendariz.
(5) R[x]/(xn) is M-nil-Armendariz for each n ≥ 2.

Let M be a monoid with |M| ≥ 2. Then by Theorem 2.5, we deduce that both the 2 × 2 upper trian-

gular matrix ring T2(R) =
{(

a11 a12
0 a22

)

| ai j ∈ R

}

, and the 2 × 2 lower triangular matrix ring L2(R) =
{(

a11 0
a21 a22

)

| ai j ∈ R

}

are M-nil-Armendariz if R is M-nil-Armendariz. Let R be a ring and M a monoid.

Let G3(R) =
⎧
⎨

⎩

⎛

⎝
a11 0 0
a21 a22 a23
0 0 a33

⎞

⎠ | ai j ∈ R

⎫
⎬

⎭
. Then G3(R) is a subring of 3 × 3 full matrix ring M3(R) under

usual addition and multiplication. In fact, G3(R) possesses the similar form of both the ring of all lower trian-
gular matrices and the ring of all upper triangular matrices. A natural problem asks if the M-nil-Armendariz
property of such subrings of Mn(R) coincides with that of R. This inspires us to consider the M-nil-Armendariz
property of G3(R).

Theorem 2.7 Let M be a monoid with |M| ≥ 2. Then the following conditions are equivalent:

(1) R is M-nil-Armendariz.
(2) G3(R) is M-nil-Armendariz.
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Proof (1) ⇒ (2) We first show that nil(G3(R)) =
⎛

⎝
nil(R) 0 0
R nil(R) R
0 0 nil(R)

⎞

⎠. Suppose that

⎛

⎝
a11 0 0
a21 a22 a23
0 0 a33

⎞

⎠∈
⎛

⎝
nil(R) 0 0
R nil(R) R
0 0 nil(R)

⎞

⎠, and k is a positive integer such that ak
11 = ak

22 = ak
33 = 0. Then

⎛

⎝
a11 0 0
a21 a22 a23
0 0 a33

⎞

⎠

2k

= 0. Hence

⎛

⎝
nil(R) 0 0
R nil(R) R
0 0 nil(R)

⎞

⎠ ⊆ nil(G3(R)). Now assume that

⎛

⎝
a11 0 0
a21 a22 a23
0 0 a33

⎞

⎠ ∈

nil(G3(R)). Then there exists some positive integer k such that

⎛

⎝
a11 0 0
a21 a22 a23
0 0 a33

⎞

⎠

k

= 0. Hence ak
11 =

ak
22 = ak

33 = 0, and so

⎛

⎝
a11 0 0
a21 a22 a23
0 0 a33

⎞

⎠ ∈
⎛

⎝
nil(R) 0 0

R nil(R) R
0 0 nil(R)

⎞

⎠. Therefore, nil(G3(R)) =
⎛

⎝
nil(R) 0 0
R nil(R) R
0 0 nil(R)

⎞

⎠. Then by analogy with the proof of Theorem 2.5, we can show that G3(R) is

M-nil-Armendariz.

(2) ⇒ (1) It is trivial. 	

Let M be a monoid with |M| ≥ 2. From Theorem 2.5 and Theorem 2.7, one may suspect that if R is

M-nil-Armendariz, then the n × n full matrix ring Mn(R) is M-nil-Armendariz for n ≥ 2. But the following
example erases the possibility:

Example 2.8 Let M be a monoid with |M| ≥ 2 and R a ring. Let α =
(

1 0
0 0

)

e +
(

1 −1
0 0

)

g and β =
(

0 0
1 0

)

e +
(

1 0
1 0

)

g be two elements in M2(R)[M]. Then αβ = 0. But

(
1 −1
0 0

) (
0 0
1 0

)

=
(−1 0

0 0

)

is not

nilpotent. Thus M2(R) is not M-nil-Armendariz.

Theorem 2.9 Let M be a monoid with |M| ≥ 2. Then the finite direct sum of M-nil-Armendariz rings is
M-nil-Armendariz.

Proof It suffices to show that if R1, R2 are M-nil-Armendariz rings, then so is R1 ⊕ R2. Let α = (a1
1, b1

1)g1 +
(a1

2, b1
2)g2 + · · · + (a1

m, b1
m)gm , and β = (a2

1, b2
1)h1 + (a2

2, b2
2)h2 + · · · + (a2

n, b2
n)hn ∈ (R1 ⊕ R2)[M] be

such that αβ ∈ nil(R1 ⊕ R2)[M]. Write f1 = a1
1 g1 + a1

2 g2 + · · · a1
m gm , g1 = b1

1g1 + b1
2g2 + · · · + b1

m gm ,
f2 = a2

1h1+a2
2h2+· · · a2

nhn , g2 = b2
1h1+b2

2h2+· · ·+b2
nhn . Then f1 f2 ∈ nil(R1)[M] and g1g2 ∈ nil(R2)[M].

So by M-nil-Armendarizness of R1 and R2, a1
i a2

j ∈ nil(R1), b1
i b2

j ∈ nil(R2) for all i , j . Thus for each i , j ,

(a1
i , b1

i )(a
2
j , b2

j ) ∈ nil(R1 ⊕ R2). Therefore, R1 ⊕ R2 is M-nil-Armendariz. 	

Theorem 2.10 Let M be a u.p.-monoid and R an N I ring. Then R is M-nil-Armendariz.

Proof Let α = a1g1 + a2g2 + · · · + angn and β = b1h1 + b2h2 + · · · + bmhm ∈ R[M] be such that
αβ ∈ nil(R)[M]. Then αβ = 0, where α, β are the corresponding elements of α, β in (R/nil(R))[M]. Observe
that R/nil(R) is reduced and hence M-Armendariz by [11, Proposition 1.1]. Then we obtain ai b j ∈ nil(R)
for each i , j . Therefore R is M-nil(R)-Armendariz. 	


Let (M,≤) be an ordered monoid. If for any g, g′, h ∈ M , g < g′ implies that gh < g′h and hg < hg′,
then (M, ≤) is called a strictly ordered monoid.

Corollary 2.11 Let M be a strictly totally ordered monoid and R an N I ring. Then R is M-nil-Armendariz.

Corollary 2.12 Let R be an N I ring. Then R is Z-nil-Armendariz, that is, for any α = a−m x−m +
a−(m−1)x−(m−1) + · · · + apx p, β = b−nx−n + b−(n−1)x−(n−1) + · · · + bq xq ∈ R[x, x−1], if αβ ∈
nil(R)[x, x−1], then ai b j ∈ nil(R) for −m ≤ i ≤ p and −n ≤ j ≤ q.
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Taking M = {N∪{0},+} in Corollary 2.11, it follows that every N I ring is nil-Armendariz. Thus Corollary
2.11 is a generalization of Antoine’s [2, Proposition 2.1].

It was shown in Liu [11, Proposition 1.4], that if M is a strictly totally ordered monoid and I a reduced ideal
of R such that R/I is an M-Armendariz ring, then R is M-Armendariz. The following result is a generalization
of [11, Proposition 1.4].

Theorem 2.13 Let M be a strictly totally ordered monoid and I an ideal of a ring R. If I is semicommutative
and R/I is M-nil-Armendariz, then R is M-nil-Armendariz.

Proof The proof is a simple mutatis mutandis argument using the proof of [11, Proposition 1.4]. 	

Recall that a monoid M is called torsion-free if the following property holds: if g, h ∈ M and k ≥ 1 are

such that gk = hk , then g = h.

Corollary 2.14 Let M be a commutative cancellative and torsion-free monoid. If one of the following condi-
tions holds, then R is M-nil-Armendariz.

(1) R is an N I ring.
(2) R/I is M-nil-Armendariz for some semicommutative ideal I of R.

Proof If M is commutative cancellative and torsion-free, then by Ribenbiom [18], there exists a compatible
strict total order ≤ on M . Now the results follow from Corollary 2.11 and Theorem 2.13. 	


Anderson and Camillo [1, Theorem 2] have shown that a ring is Armendariz if and only if R[x] is Armenda-
riz. For Armendariz rings relative to monoids, Liu [11, Proposition 2.1], have shown that if M is a monoid and
N a u.p. monoid, and R a reduced M-Armendariz ring, then R[M] is N -Armendariz. As to a nil-Armendariz
ring relative to a monoid, we have the following result:

Theorem 2.15 Let M be a monoid and N a u.p.-monoid. If R is an M-Armendariz N I ring, then R[M] is
N-nil-Armendariz.

Proof By Theorem 2.3, we obtain nil(R)[M] ⊆ nil(R[M]) when R is M-Armendariz. Following Lemma
2.2, we get nil(R[M]) ⊆ nil(R)[M]. Hence nil(R)[M] = nil(R[M]). Thus it is easy to see that R[M] is an
N I ring because R is an N I ring. Now the result follows from Theorem 2.10. 	

Corollary 2.16 Let M be a monoid and R an M-Armendariz N I ring. Then R[M] is an N I ring and
nil(R)[M] = nil(R[M]).
Theorem 2.17 Let M be a monoid and N a u.p.-monoid. If R is an M-Armendariz 2-primal ring, then R[N ]
is M-nil-Armendariz.

Proof Since R is an M-Armendariz 2-primal ring, by Corollary 2.16, we obtain nil(R)[M] = nil(R[M]).
Now we show that nil(R)[N ] = nil(R[N ]) when N is a u.p.-monoid and R is a 2-primal ring. Let

α = a1g1 + a2g2 + · · · + angn ∈ nil(R[N ]). There exists some positive integer k such that αk = 0. Consider
β = αk−1. Then αβ = αk = 0 ∈ nil(R)[N ], and hence, since R is N -nil-Armendariz by Theorem 2.10,
a(1)b ∈ nil(R) where a(1) ∈ Cα and b ∈ Cβ . Therefore for all a(1) ∈ Cα ,

a(1)β = a(1)αk−1 = a(1)ααk−2 ∈ nil(R)[N ].
Consider γ = αk−2. Then

a(1)αγ = a(1)β ∈ nil(R)[N ].
Since the coefficients of a(1)α are a(1)a(2) where a(2) is a coefficient of α, and because R is N -nil-Armendariz
by Theorem 2.10, we obtain a(1)a(2)c ∈ nil(R) where a(1), a(2) ∈ Cα and c ∈ Cγ . Therefore, for all a(1) ∈ Cα ,
a(2) ∈ Cα , we obtain

a(1)a(2)γ = a(1)a(2)α · αk−3 ∈ nil(R)[N ].
Repeating the same way as above, we obtain a(1)a(2) · · · a(k) ∈ nil(R) where a(i) ∈ Cα for each 1 ≤ i ≤ k,
and so ai ∈ nil(R) for each 1 ≤ i ≤ n. Thus α ∈ nil(R)[N ], and so nil(R[N ]) ⊆ nil(R)[N ].
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Now we show that nil(R[N ]) ⊇ nil(R)[N ]. Assume that α = a1g1 + a2g2 + · · · + angn ∈ nil(R)[N ].
Consider the finite subset {a1, a2, . . . , an} ⊆ nil(R). Since R is a 2-primal ring, there exists a positive integer
p such that any product of p elements ai1ai2 · · · ai p from {a1, a2, . . . , an} is zero. Hence we obtain α p = 0,
and so nil(R)[N ] ⊆ nil(R[N ]). Therefore, nil(R)[N ] = nil(R[N ]) is proved.

Next we show that R[N ] is M-nil-Armendariz. Note that there exists an isomorphism of rings R[N ][M] ∼=
R[M][N ] defined by

∑

p

(
∑

i

aipni

)

m p −→
∑

i

(
∑

p

aipm p

)

ni .

Now suppose that αi , β j ∈ R[N ] are such that

(
∑

i

αi gi

) ⎛

⎝
∑

j

β j h j

⎞

⎠ ∈ nil(R[N ])[M],

where gi , h j ∈ M . We show that αiβ j ∈ nil(R[N ]) for all i , j . Assume that αi = ∑
p aipn p and β j =

∑
q b jqn′

q where n p, n′
q ∈ N for all p and q . Then

(
∑

i

(
∑

p

aipn p

)

gi

) ⎛

⎝
∑

j

(
∑

q

b jqn′
q

)

h j

⎞

⎠ ∈ nil(R[N ])[M] = nil(R)[N ][M].

Thus in R[M][N ] we have

(
∑

p

(
∑

i

aipgi

)

n p

) ⎛

⎝
∑

q

⎛

⎝
∑

j

b jq h j

⎞

⎠ n′
q

⎞

⎠ ∈ nil(R)[M][N ] = nil(R[M])[N ].

By Theorem 2.15, R[M] is N -nil-Armendariz. Thus

(
∑

i

aipgi

)⎛

⎝
∑

j

b jq h j

⎞

⎠ ∈ nil(R[M]) = nil(R)[M]

for all p, q . So aipb jq ∈ nil(R) for all i , j , p, q , since by Theorem 2.3, M-Armendariz rings are M-nil-Ar-
mendariz. Hence

αiβ j =
(

∑

p

aipn p

) (
∑

q

b jqn′
q

)

∈ nil(R)[N ] = nil(R[N ])

for all i , j . Therefore, R[N ] is M-nil-Armendariz. 	

Corollary 2.18 Let M be a u.p.-monoid and R a 2-primal ring. Then nil(R)[M] = nil(R[M]).
Corollary 2.19 Let M be a monoid and R a 2-primal ring. If R is M-Armendariz, then R[x] and R[x, x−1]
are M-nil-Armendariz.

Proof Note that R[x] ∼= R[N ∪ {0}] and R[x, x−1] ∼= R[Z]. 	

Theorem 2.20 Let M be a monoid and N a u.p.-monoid. If R is an M-Armendariz N I ring, then R is
(M × N )-nil-Armendariz.

Proof By analogy with the proof of [11, Theorem 2.3]. 	
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3 Weak annihilator ideals of M-nil-Armendariz rings

Let R be a ring. For a subset X of a ring R, we define NR(X) = {a ∈ R | xa ∈ nil(R) for all x ∈ X}, which
is called the weak annihilator of X in R. If X is singleton, say X = {r}, we use NR(r) in place of NR({r}).

Obviously, for any subset X of a ring R, NR(X) = {a ∈ R | xa ∈ nil(R) for all x ∈ X} = {b ∈ R | bx ∈
nil(R) for all x ∈ X}, and rR(X) ⊆ NR(X) and lR(X) ⊆ NR(X). If R is reduced, then rR(X) = NR(X) =
lR(X) for any subset X of R. It is easy to see that for any subset X ⊆ R, NR(X) is an ideal of R in case nil(R)
is an ideal.

Given a ring R, we define

N AnnR(2R) = {NR(U ) | U ⊆ R}
and

N AnnR[M](2R[M]) = {NR[M](V ) | V ⊆ R[M]}.
For an element α ∈ R[M], Cα denotes the set consisting of coefficients of α and for a subset V of R[M], CV
denotes the set ∪α∈V Cα .

Theorem 3.1 Let M be a monoid and R an M-Armendariz N I ring. Then

ψ : N AnnR(2R) −→ N AnnR[M](2R[M])

defined by ψ(I ) = I [M] for every I ∈ N AnnR(2R) is bijective.

Proof As usual we shall identity R with the subring R · e ⊆ R[M] and identity M with 1 · M ⊆ R[M].
Let I = NR(U ) ∈ N AnnR(2R) where U ⊆ R. We show that I [M] = NR(U )[M] = NR[M](U ). For any

α = a1g1 + a2g2 + · · · + angn ∈ NR(U )[M] and any u ∈ U , we have uai ∈ nil(R) for all 1 ≤ i ≤ n. Then
uα ∈ nil(R)[M]) and so uα ∈ nil(R[M]) by Corollary 2.16. Hence NR(U )[M] ⊆ NR[M](U ). Conversely,
let α = a1g1 + a2g2 + · · · + angn ∈ NR[M](U ). Then uα = ua1g1 + ua2g2 + · · · + uangn ∈ nil(R[M])
for all u ∈ U . Then by Corollary 2.16, we obtain uai ∈ nil(R) for all 1 ≤ i ≤ n. Thus ai ∈ NR(U ) for all
1 ≤ i ≤ n and so α ∈ NR(U )[M]. Hence NR[M](U ) ⊆ NR(U )[M], and so NR[M](U ) = NR(U )[M] = I [M].
Therefore, ψ is well defined.

Suppose there exist U ⊆ R and U ′ ⊆ R such that I = NR(U ) ∈ N AnnR(2R), and I ′ = NR(U ′) ∈
N AnnR(2R) and I �= I ′. Then it is easy to check that I [M] �= I ′[M]. Hence ψ is injective.

Now it is only necessary to show that ψ is surjective. Let α = a1g1 + a2g2 + · · · + angn ∈ NR[M](V )

with NR[M](V ) ∈ N AnnR[M](2R[M]). Then we have βα ∈ nil(R[M]) = nil(R)[M] for any β = b1h1 +
b2h2 + · · · bmhm ∈ V . Thus bi a j ∈ nil(R) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n since M-Armendariz rings are
M-nil-Armendariz. Hence a j ∈ NR(CV ) for all 1 ≤ j ≤ n, and so α ∈ NR(CV )[M]. Now it is easy to see
that NR[M](V ) = NR(CV )[M] = ψ(NR(CV )). Therefore, ψ is surjective. 	


By [15], a ring R is said to be a nilpotent p.p.-ring if for any element p �∈ nil(R), we have NR(p) is
generated as a right ideal by a nilpotent element.

Theorem 3.2 Let M be a monoid and R an M-Armendariz N I ring. If R is a nilpotent p.p.-ring, then so is
R[M].
Proof By Corollary 2.16, we have nil(R[M]) = nil(R)[M]. Let α = a1g1 +a2g2 +· · ·+angn �∈ nil(R[M]),
and β = b1h1 + b2h2 + · · · + bmhm ∈ NR[M](α). Then αβ ∈ nil(R[M]) = nil(R)[M]. Thus we have
ai b j ∈ nil(R) for each i , j since R is M-nil-Armendariz by Theorem 2.3. Since α �∈ nil(R[M]) = nil(R)[M],
there exists some 1 ≤ i ≤ n such that ai �∈ nil(R). So there exists some c ∈ nil(R) such that NR(ai ) = c · R
because R is a nilpotent p.p.-ring. Now we show that NR[M](α) = ce · R[M]. Since b j ∈ NR(ai ) for
all 1 ≤ j ≤ m, b j = cr j with r j ∈ R. Hence β = ce(r1h1 + r2h2 + · · · + rmhm) ∈ ce · R[M], and so
NR[M](α) ⊆ ce·R[M]. Conversely, for any γ = v1e1+v2e2+· · ·+vpep ∈ R[M], since c ∈ nil(R) and nil(R)
of an N I ring is an ideal, we obtain ai cv j ∈ nil(R) for each i, j , and so α · ce ·γ ∈ nil(R)[M] = nil(R[M]).
Hence we obtain ce · R[M] ⊆ NR[M](α). Therefore, NR[M](α) = ce · R[M] where ce ∈ nil(R[M]). 	

Theorem 3.3 Let M be a monoid and R an M-Armendariz N I ring. If for any nonempty subset X �⊆ nil(R),
NR(X) is generated as a right ideal by a nilpotent element, then for any nonempty subset U �⊆ nil(R[M]),
NR[M](U ) is generated as a right ideal by a nilpotent element.
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Proof Let U be a nonempty subset of R[M] with U �⊆ nil(R[M]). Suppose β = b1h1 +b2h2 +· · ·+bmhm ∈
NR[M](U ). Then αβ ∈ nil(R[M]) = nil(R)[M] for each α = a1g1 + a2g2 + · · · + angn ∈ U . Thus ai b j ∈
nil(R) for each i , j since R is M-nil-Armendariz by Theorem 2.3. Hence b j ∈ NR(CU ) for each 1 ≤ j ≤ m.
If CU ⊆ nil(R), then U ⊆ nil(R)[M] = nil(R[M]), a contradiction. Thus there exists c ∈ nil(R) such that
NR(CU ) = c · R. Now we show that NR[M](U ) = ce · R[M]. Since b j ∈ NR(CU ) = c · R for all 1 ≤ j ≤ m,
there exists r j ∈ R such that b j = cr j for all 1 ≤ j ≤ m. Hence β = ce(r1h1+r2h2+· · ·+rmhm) ∈ ce·R[M],
and so NR[M](U ) ⊆ ce · R[M]. Conversely, for any γ = v1e1 + v2e2 + · · · + vpep ∈ R[M], and any
α = a1g1 + a2g2 + · · · + angn ∈ U , since c ∈ nil(R) and nil(R) of an N I ring is an ideal, we obtain
ai cv j ∈ nil(R) for each i, j , and so α · ce ·γ ∈ nil(R)[M] = nil(R[M]) by Corollary 2.16. Hence we obtain
ce · R[M] ⊆ NR[M](U ). Therefore, NR[M](U ) = ce · R[M] where ce ∈ nil(R[M]). 	


Using the same method in the proof of Theorem 3.2 or Theorem 3.3, we obtain the following result:

Theorem 3.4 Let M be a monoid and R an M-Armendariz N I ring. If for any principally right ideal p · R �⊆
nil(R), NR(p · R) is generated as a right ideal by a nilpotent element, then for any principally right ideal
α · R[M] �⊆ nil(R[M]), NR[M](α · R[M]) is generated as a right ideal by a nilpotent element.

Theorem 3.5 Let M be a u.p.-monoid and R a 2-primal ring. Then we have the following:

(1) If R is a nilpotent p.p.-ring, then so is R[M].
(2) If for any nonempty subset X �⊆ nil(R), NR(X) is generated as a right ideal by a nilpotent element, then

for any nonempty subset U �⊆ nil(R[M]), NR[M](U ) is generated as a right ideal by a nilpotent element.
(3) If for any principally right ideal p · R �⊆ nil(R), NR(p · R) is generated as a right ideal by a nilpotent

element, then for any principally right ideal α · R[M] �⊆ nil(R[M]), NR[M](α · R[M]) is generated as
a right ideal by a nilpotent element.

Proof It is trivial. 	

Corollary 3.6 Let M be a strictly totally ordered-monoid and R a 2-primal ring. Then we have the following:

(1) If R is a nilpotent p.p.-ring, then so is R[M].
(2) If for any nonempty subset X �⊆ nil(R), NR(X) is generated as a right ideal by a nilpotent element, then

for any nonempty subset U �⊆ nil(R[M]), NR[M](U ) is generated as a right ideal by a nilpotent element.
(3) If for any principally right ideal p · R �⊆ nil(R), NR(p · R) is generated as a right ideal by a nilpotent

element, then for any principally right ideal α · R[M] �⊆ nil(R[M]), NR[M](α · R[M]) is generated as
a right ideal by a nilpotent element.
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