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Abstract In this paper, we investigate commutativity of rings with involution in which derivations satisfy
certain algebraic identities on Jordan ideals. Moreover, we extend some results for derivations of prime rings
to Jordan ideals. Furthermore, an example is given to prove that the ∗-primeness hypothesis is not superfluous.
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1 Introduction

Throughout this paper, R will denote an associative ring with center Z(R). We will write for all x, y ∈ R,
[x, y] = xy − yx and x ◦ y = xy + yx for the Lie product and Jordan product, respectively. R is 2-torsion
free if whenever 2x = 0, with x ∈ R, then x = 0. R is prime if a Rb = 0 implies a = 0 or b = 0. If R admits
an involution ∗, then R is ∗-prime and if a Rb = a Rb∗ = 0 yields a = 0 or b = 0. Note that every prime ring
having an involution ∗ is ∗-prime but the converse is in general not true. Indeed, if Ro denotes the opposite ring
of a prime ring R, then R × Ro equipped with the exchange involution ∗ex , defined by ∗ex (x, y) = (y, x),
is ∗ex -prime but not prime. This example shows that every prime ring can be injected in a ∗-prime ring and
from this point of view ∗-prime rings constitute a more general class of prime rings.

An additive subgroup J of R is said to be a Jordan ideal of R if u ◦ r ∈ J , for all u ∈ J and r ∈ R. A
Jordan ideal J which satisfies J ∗ = J is called a ∗-Jordan ideal. An additive mapping d : R → R is said to
be a derivation if d(xy) = d(x)y + xd(y) for all x, y in R.

Recently, many authors have studied commutativity of prime and semi-prime rings admitting suitably
constrained derivations. Moreover, many of the obtained results extend other ones proven previously just for
the action of derivations on the whole ring to actions of derivations on ideals. So, it is natural to ask what can
we say about the commutativity of rings in which derivations satisfy certain identities on Jordan ideals?
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2 Main results

Throughout, (R, ∗) will be a 2-torsion-free ring with involution and Sa∗(R) := {r ∈ R|r∗ = ±r} the
set of symmetric and skew symmetric elements of R. We shall use without explicit mention the fact that
if J is a nonzero Jordan ideal of a ring R, then 2[R, R]J ⊆ J and 2J [R, R] ⊆ J [9, Lemma 2.4].
Moreover, from the proof of Lemma 3 of [1], we have 4 j2 R ⊂ J and 4R j2 ⊂ J for all j ∈ J. Since
4 jr j = 2{ j ( jr + r j) + ( jr + r j) j} − {2 j2r + r2 j2}, it follows that 4 j R j ⊂ J for all j ∈ J (see the proof of
Theorem 2.12 of [1]). We will make use of the following basic commutator identities: [x, yz] = y[x, z]+[x, y]z
and [xy, z] = x[y, z] + [x, z]y.

We begin with the following facts which will be used in the sequel.

Fact 2.1 Every ∗-prime ring is semiprime. Indeed, if a Ra = 0 then a Ra Ra∗ = 0 so that a = 0 or a Ra∗ = 0.
But a Ra∗ = 0 together with a Ra = 0 and force a = 0.

Fact 2.2 If R is a semiprime ring and x ∈ Z(R) is such that x2 = 0, then x = 0.

Fact 2.3 If R is a semiprime ring and x ∈ R is such that [[R, R], x] = 0, then x ∈ Z(R). Indeed, from
[[r x, s], x] = 0 it follows that [r, x][x, s] = 0. Replacing s by tr in the last equality, we find that [r, x]t[x, r ] =
0 and thus [x, r ]R[x, r ] = 0 for all r ∈ R. Using semiprimeness of R we conclude that x ∈ Z(R).

In order to prove our main theorem, we shall need the following lemmas.

Lemma 2.4 ([7, Theorem 3.3]) Let R be a 2-torsion free ∗-prime ring and let d be a nonzero derivation of
R. If a ∈ Sa∗(R) is such that d([R, a]) = 0, then a ∈ Z(R). In particular, if d([x, y]) = 0 for all x, y ∈ R,
then R is commutative.

Lemma 2.5 Let R be a 2-torsion-free ∗-prime ring and J a nonzero ∗-Jordan ideal of R.

(a) ([5, Lemma 2]) If a Jb = a∗ Jb = 0, then a = 0 or b = 0.

(b) ([5, Lemma 3]) If [J, J ] = 0, then J ⊆ Z(R).

(c) ([5, Lemma 4]) If d is a derivation of R such that d(J ) = 0, then d = 0 or J ⊆ Z(R).

(d) ([4, Lemma 3]) If J ⊆ Z(R), then R is commutative.

(e) ([8, Lemma 8]) If d is a nonzero derivation of R such that d(x2) = 0 for all x ∈ J, then R is commutative.

Theorem 2.6 Let R be a 2-torsion-free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If R admits a
nonzero derivation d such that d([x, y]) = 0 for all x, y ∈ J, then R is commutative.

Proof Assume that d([x, y]) = 0 for all x, y ∈ J. Let us consider δ : R −→ R defined by δ(x) =
d(x) + (∗ ◦ d ◦ ∗)(x). Obviously, δ is a derivation which commutes with ∗ and δ([x, y]) = 0 for all x, y ∈ J.
Hence

[δ(x), y] = [δ(y), x] for all x, y ∈ J. (1)

Replacing y by 2[y, u]v in Equation (1), because of δ([y, u]) = 0, we find that

[δ(x), [y, u]]v = [[y, u], x]δ(v) for all u, v, x, y ∈ J. (2)

Substituting 2v[r, s] for v in Equation (2), where r, s ∈ R, and using Equation (2) we obtain
[[y, u], x]vδ([r, s]) = 0 for all u, v, x, y ∈ J and r, s ∈ R in such a way that

[[y, u], x]Jδ([r, s]) = 0 for all u, x, y ∈ J, r, s ∈ R. (3)

Since δ commutes with ∗, in view of Equation (3), it then follows that

[[y, u], x]J (δ([r, s]))∗ = 0 for all u, x, y ∈ J, r, s ∈ R. (4)

Using Lemma 2.4, Equations (3) and (4) assure that δ([r, s]) = 0 for all r, s ∈ R or [[y, u], x] = 0 for all
u, x, y ∈ J.
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If δ([r, s]) = 0 for all r, s ∈ R, then [7, Theorem 3.3] assures the commutativity of R.
Now assume that

[[y, u], x] = 0 for all u, x, y ∈ J. (5)

Substituting yu + uy for y in Equation (5) we find that

[y, u][u, x] + [u, x][y, u] = 0 for all u, x, y ∈ J. (6)

Since [[y, u], [u, x]] = 0 by Equation (5), then Equation (6) together with 2-torsion freeness yield

[y, u][u, x] = 0 for all u, x, y ∈ J. (7)

Replacing y by 2[r, s]y in Equation (7), where r, s ∈ R, we obtain [[r, s], u]y[u, x] = 0 for all u, x, y ∈ J
and r, s ∈ R so that

[[r, s], u]J [u, x] = 0 for all u, x ∈ J, r, s ∈ R. (8)

Let u ∈ J ∩ Sa∗(R), from (8) it follows that

[[r, s], u]J [u, x]∗ = 0 for all x ∈ J, r, s ∈ R. (9)

Using Equations (8) and (9), Lemma 2.4 forces [u, J ] = 0 or [[r, s], u] = 0 for all r, s ∈ R.
Assume that [[R, R], u] = 0; since a ∗-prime ring is semiprime then Fact 2.3 forces u ∈ Z(R) and,

therefore, [u, J ] = 0. Therefore, in both cases we find that

[u, J ] = 0 for all u ∈ J ∩ Sa∗(R). (10)

Let x ∈ J ; as x − x∗ ∈ J ∩ Sa∗(R) and x + x∗ ∈ J ∩ Sa∗(R), then Equation (10) leads to

[x − x∗, j] = 0 and [x + x∗, j] = 0 for all j ∈ J. (11)

In the light of 2-torsion freeness, Equation (11) yields [x, j] = 0. Therefore, we conclude that

[x, j] = 0 for all x, j ∈ J. (12)

In view of Lemma 2.5, Equation (12) forces J ⊆ Z(R). Once again using Lemma 2.5, we conclude that R is
commutative. 	


The following example proves that the ∗-primeness hypothesis in Theorem 2.6 is not superfluous.

Example 2.7 Let R =
{(

x y
0 z

)
|x, y, z ∈ ZZ

}
where ZZ is the ring of integers. Let us consider d

(
x y
0 z

)
=(

0 y
0 0

)
and

(
x y
0 z

)∗
=

(
z −y
0 x

)
. Note that R is not ∗-prime for

(
0 1
0 0

)
R

(
0 1
0 0

)∗
= 0. Moreover, if we

set J =
{(

0 y
0 0

)
|y ∈ ZZ

}
, then J is a ∗-Jordan ideal and d([x, y]) = 0 for all x, y ∈ J , but d �= 0 and R is

noncommutative. Hence in Theorem 2.6 the hypothesis of ∗-primeness is crucial.

Corollary 2.8 ([6, Theorem 1.3]) Let R be a 2-torsion free ∗-prime ring and I a nonzero ∗-ideal of R. If R
admits a nonzero derivation d such that d([x, y]) = 0 for all x, y ∈ I, then R is commutative.

Corollary 2.9 ([7, Theorem 3.3]) Let R be a 2-torsion free ∗-prime ring. If R admits a nonzero derivation d
such that d([x, y]) = 0 for all x, y ∈ R, then R is commutative.

Bell and Daif [2, Theorem 3] showed that, if a prime ring R admits a nonzero derivation d satisfying
d([x, y]) = 0 for all x, y in a nonzero ideal I of R, then R is commutative. As an application of Theorem 2.6,
the following theorem extends the result of [2] to Jordan ideals, but only with further assumption that the ring
R be 2-torsion free.

Theorem 2.10 Let R be a 2-torsion-free prime ring and J a nonzero Jordan ideal of R. If R admits a nonzero
derivation d satisfying d([x, y]) = 0 for all x, y ∈ J, then R is commutative.
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Proof Assume that d is a nonzero derivation of R such that d([x, y]) = 0 for all x, y ∈ J. LetD be the additive
mapping defined on R = R × R0 by D(x, y) = (d(x), 0). Clearly, D is a nonzero derivation of R. Moreover,
if we set J = J × J, then J is a ∗ex-Jordan ideal of R and D([x, y]) = 0 for all x, y ∈ J . Since R is a
∗ex-prime ring, in view of Theorem 2.6 we deduce that R is commutative and a fortiori R is commutative. 	

Corollary 2.11 Let R be a 2-torsion free prime ring and I a nonzero ideal of R. If R admits a nonzero
derivation d such that d([x, y]) = 0 for all x, y ∈ I, then R is commutative.

Daif and Bell [3, Theorem 2.10 and Theorem 2.6] showed that, if a semiprime (resp., prime) ring R admits
a derivation d satisfying d[x, y] = ±[x, y] for all x, y in R (resp., some nonzero ideal K of R), then R is
commutative. The following theorem generalizes Theorems 2.6 and 2.10 of [3] for 2-torsion-free rings.

Theorem 2.12 Let R be a 2-torsion-free ∗-prime ring and J a nonzero ∗-Jordan ideal of R. If R admits a
nonzero derivation d such that d([x, y]) = [x, y] for all x, y ∈ J ; then R is commutative.

Proof Assume that

d([x, y]) = [x, y] for all x, y ∈ J. (13)

Suppose that Z(R) ∩ J = 0; replacing x by 4xy2 in Equation (13) we get

[x, y]d(y2) = 0 for all x, y ∈ J. (14)

Writing 2[r, s]x instead of x in Equation (14) we find that [[r, s], y]xd(y2) = 0 and thus

[[r, s], y]Jd(y2) = 0 for all y ∈ J and r, s ∈ R. (15)

For y ∈ J ∩ Sa∗(R), in view of (15), Lemma 2.4 yields [[r, s], y] = 0 or d(y2) = 0.
Assume

[[r, s], y] = 0 for all r, s ∈ R. (16)

In the light of semiprimeness, Equation (16) together with Fact 3 force y ∈ Z(R). Hence y = 0 and, therefore,
d(y2) = 0 for all y ∈ J ∩ Sa∗(R).

Let y ∈ J . Since y + y∗, y − y∗ ∈ J ∩ Sa∗(R), then d((y + y∗)2) = 0 and d((y − y∗)2) = 0, which
forces d(y2) = −d((y∗)2).

Replacing y by y∗ in Equation (21) we arrive at

([[r, s], y])∗ Jd(y2) = 0 for all y ∈ J and r, s ∈ R. (17)

Using Equation (15) together with Equation (17), Lemma 2.4 forces

d(y2) = 0 for all y ∈ J.

According to [8, Lemma 3], the last equality implies that R is commutative. But J ∩ Z(R) = 0 forces
J = 0; which contradicts our hypothesis. Hence,

J ∩ Z(R) �= 0

Suppose that d(u) = 0 for all u ∈ J ∩ Z(R). Substituting 4u2r for x in Equation (19) where r ∈ R we
get u2(d([r, y]) − [r, y]) = 0 and, therefore,

u2 R(d([r, y]) − [r, y]) = 0 for all y ∈ J and r ∈ R. (18)

Since u∗ ∈ J ∩ Z(R), similarly we then obtain

(u2)∗ R(d([r, y]) − [r, y]) = 0 for all y ∈ J and r ∈ R. (19)

Combining Equations (18) and (19), the ∗-primeness forces

d([r, y]) = [r, y] for all y ∈ J and r ∈ R. (20)
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Replacing r by ry in Equation (20) we obtain

[r, y]d(y) = 0 for all y ∈ J and r ∈ R. (21)

Substituting rs for r in Equation (21), we find that [r, y]sd(y) = 0 so that

[r, y]Rd(y) = 0 for all y ∈ J and r ∈ R. (22)

For y ∈ J ∩ Sa∗(R), Equation (22) yields d(y) = 0 or y ∈ Z(R).
Let y ∈ J ; since y − y∗ ∈ J ∩ Sa∗(R), then y − y∗ ∈ Z(R) or d(y − y∗) = 0.
If y − y∗ ∈ Z(R), then [r, y] = [r, y∗] for all r ∈ R. Hence, Equation (22) becomes [r, y∗]Rd(y) = 0

so that

[r, y]∗ Rd(y) = 0 for all y ∈ J and r ∈ R. (23)

Using Equation (22) together with Equation (23), we conclude that either y ∈ Z(R) or d(y) = 0.
If d(y − y∗) = 0, then d(y) = d(y∗) and replacing y by y∗ in Equation (22) we obtain [r, y]∗ Rd(y) = 0

which combined with Equation (22) leads to d(y) = 0 or y ∈ Z(R). Accordingly, in all the cases we find that
d(y) = 0 or y ∈ Z(R) for all y ∈ J. Let J1 = {x ∈ J |x ∈ Z(R)} and J2 = {x ∈ J |d(x) = 0}. Clearly each
of J1 and J2 is additive subgroup of J such that J = J1 ∪ J2. But, a group can not be the set-theoretic union
of its two proper subgroups. Hence J = J1 or J = J2; that is, J ⊆ Z(R) or d(J ) = 0, and, in the second
case, [5, Lemma 4] assures that J ⊆ Z(R) as well. Thus R is commutative by [4, Lemma 3].

Now suppose there exists u ∈ J ∩ Z(R) such that d(u) �= 0. Replacing x by 4x2u in Equation (19) we
obtain [x2, y]d(u) = 0 which, in the light of d(u) ∈ Z(R), forces

[x2, y]Rd(u) = 0 for all x, y ∈ J. (24)

Since J is a ∗-ideal, then Equation (24) leads to

[x2, y]∗ Rd(u) = 0 for all x, y ∈ J. (25)

Combining Equation (24) and Equation (25) we conclude that

[x2, y] = 0 for all x, y ∈ J. (26)

Replacing y by 4ry2 in Equation (26) we obtain

[x2, r ]y2 = 0 for all x, y ∈ J and r ∈ R. (27)

Substituting r t for r in Equation (27) we find that [x2, r ]t y2 = 0 and thus

[x2, r ]Ry2 = 0 and [x2, r ]∗ Ry2 = 0 for all x, y ∈ J and r ∈ R. (28)

Since R is ∗-prime, then Equation (28) yields x2 ∈ Z(R) for all x ∈ J or y2 = 0 for all y ∈ J. Hence, in
both the cases we have x2 ∈ Z(R) for all x ∈ J. Therefore, xy + yx ∈ Z(R) and replacing x by 2x2, 2-torsion
freeness forces x2 y ∈ Z(R) for all x, y ∈ J. Accordingly,

x2[y, r ] = 0 for all x, y ∈ J and r ∈ R.

Since x2 ∈ Z(R), then we get

x2 R[y, r ] = 0 and x2 R[y, r ]∗ = 0 for all x, y ∈ J and r ∈ R. (29)

Once again using the ∗-primeness, from Equation (29) either J ⊆ Z(R), in which case [4, Lemma 3]
assures the commutativity of R, or x2 = 0 for all x ∈ J. But the last case forces d(x2) = 0 for all x ∈ J and
in view of [8, Lemma 3] this yields that R is commutative. 	
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