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Abstract In this paper we study the warped product submanifolds of a Lorentzian paracosymplectic manifold
and obtain some nonexistence results. We show that a warped product semi-invariant submanifold in the form
M = M� × f M⊥ of a Lorentzian paracosymplectic manifold such that the characteristic vector field is normal
to M is a usual Riemannian product manifold where totally geodesic and totally umbilical submanifolds of
warped product are invariant and anti-invariant, respectively. We prove that the distributions involved in the
definition of a warped product semi-invariant submanifold are always integrable. A necessary and sufficient
condition for a semi-invariant submanifold of a Lorentzian paracosymplectic manifold to be warped product
semi-invariant submanifold is obtained. We also investigate the existence and nonexistence of warped product
semi-slant and warped product anti-slant submanifolds in a Lorentzian paracosymplectic manifold.
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1 Introduction

Warped product manifolds were introduced by Bishop and O’Neill [7] in 1969 as a generalization of Rie-
mannian product manifolds. Warped products play some important roles in differential geometry as well as
physics.
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The geometry of slant submanifolds has shown an increasing development in the last two decades. The
theory of slant immersions in complex geometry was introduced by Chen [12,13] as a generalization of both
holomorphic and totally real submanifolds. Later slant submanifolds have been studied by many geometers in
various manifolds.

In 1996, Lotta [24] introduced the notion of slant submanifolds of an almost contact metric manifold. In
[10,11] the authors studied and characterized slant submanifolds of K -contact and Sasakian manifolds.

On the other hand, in [5] Bejancu initiated the study of CR-submanifolds of an almost Hermitian manifold
by generalizing invariant and anti-invariant submanifolds. Bejancu and Papaghiuc [6] extended this concept
to submanifolds of almost contact metric manifolds and they called such submanifolds as semi-invariant
submanifolds.

Recently, the study of semi-slant submanifolds was initiated by N. Papaghiuc as a generalization of CR-
submanifolds [30]. In [9] Cabrerizo et al. defined and studied a contact version of semi-slant submanifolds
(see also [1,20,23]).

Chen [14,15] initiated the study of CR-warped product in Kaehlerian manifolds and proved some nonexis-
tence theorems for warped product CR-submanifolds of Kaehlerian manifolds. Hasegawa and Mihai [19] and
Munteanu [26] studied the warped product contact CR-submanifolds in Sasakian manifolds.

As a generalization of warped product CR-submanifolds warped product semi-slant submanifolds are very
important in differential geometry. Since every structure on a manifold may not allow defining warped product
semi-slant submanifolds, the existence and nonexistence of these submanifolds are basic problems to study.
In [33] Sahin proved the nonexistence of semi-slant warped product submanifolds of a Kaehler manifold. In
[21] the authors studied the warped product submanifolds of a cosymplectic manifold which is locally product
of a Kaehler manifold and a one dimensional manifold. Warped product semi-slant submanifolds in locally
Riemannian product manifolds and Kenmotsu manifolds were studied by Atçeken [2,3], respectively.

An almost paracontact structure (ϕ, ξ, η) satisfying ϕ2 = I − η ⊗ ξ and η(ξ) = 1 on a differentiable
manifold, was introduced by Satō [35]. The structure is an analogue of the almost contact structure [8,34]
and is closely related to almost product structure (in contrast to almost contact structure, which is related to
almost complex structure). An almost contact manifold is always odd-dimensional but an almost paracontact
manifold could be even-dimensional as well. In an almost paracontact manifold defined by Satō, the metric is
always a Riemannian metric. In addition, in 1989, Matsumoto [27] replaced the structure vector field ξ by − ξ
in an almost paracontact manifold and associated a Lorentzian metric with the resulting structure and called it a
Lorentzian almost paracontact manifold. Later on several authors studied Lorentzian almost paracontact man-
ifolds, their different classes, such as Lorentzian paracosymplectic manifolds and Lorentzian para-Sasakian
manifolds (see [25,31]) and their submanifolds (see [16,17,22,32,36,37]).

In [4], the author studied the warped product semi-invariant submanifolds in almost paracontact Riemann-
ian manifolds.

In this paper we study warped product submanifolds of a Lorentzian paracosymplectic manifold and obtain
to some nonexistence results. Section 2 is devoted to some basic definitions. In Sect. 3, we show that there
does not exist a proper warped product submanifold in the form M = N1 × f N2 in a Lorentzian paraco-
symplectic manifold such that the characteristic vector field ξ is tangent to N2. In Sect. 4, we study warped
product semi-invariant submanifolds of a Lorentzian paracosymplectic manifold and give an example. We
prove that the distributions involved in the definition of a warped product semi-invariant submanifold are
always integrable. Also we obtain a necessary and sufficient condition for a semi-invariant submanifold of a
Lorentzian paracosymplectic manifold to be warped product semi-invariant submanifold in terms of the shape
operator. In Sect. 5, we show that there exist no proper warped product semi-slant submanifolds in the form
M = N� × f Nθ (resp., M = Nθ × f N�) with ξ belonging to N� (resp., ξ belonging to Nθ ) of a Lorentzian
paracosymplectic manifold where N� is an invariant submanifold and Nθ is a proper slant submanifold of the
ambient manifold. The last section contains some nonexistence results for the proper warped product anti-slant
submanifolds of a Lorentzian paracosymplectic manifold.

2 Preliminaries

Let M be an m-dimensional differentiable manifold equipped with a triple (ϕ, ξ, η), where ϕ is a (1, 1) tensor
field, ξ is a vector field, η is a 1-form on M such that [27]

η(ξ) = −1, (2.1)

ϕ2 = I + η ⊗ ξ, (2.2)
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where I denotes the identity map of Tp M and ⊗ is the tensor product. Equations (2.1) and (2.2) imply that

η ◦ ϕ = 0, ϕξ = 0, rank(ϕ) = m − 1. (2.3)

Then M admits a Lorentzian metric g, such that, for all X, Y ∈ χ(M),

g(ϕX, ϕY ) = g(X, Y ) + η(X)η(Y ), (2.4)

and M is said to admit a Lorentzian almost paracontact structure (ϕ, ξ, η, g). Then we get

g(X, ξ) = η(X), (2.5)

�(X, Y ) = g(X, ϕY ) = g(ϕX, Y ) = �(Y, X), (2.6)

(∇X�)(Y, Z) = g(Y, (∇Xϕ)Z) = (∇X�)(Z , Y ), (2.7)

where ∇ is the covariant differentiation with respect to g. It is clear that Lorentzian metric g makes ξ a timelike
unit vector field, i.e, g(ξ, ξ) = −1. The manifold M equipped with a Lorentzian almost paracontact structure
(ϕ, ξ, η, g) is called a Lorentzian almost paracontact manifold (for short, LAP-manifold) [27,28].

In Equations (2.1) and (2.2) if we replace ξ by −ξ, we obtain an almost paracontact structure on M defined
by Satō [35].

A Lorentzian almost paracontact manifold endowed with the structure (ϕ, ξ, η, g) is called a Lorentzian
paracontact manifold (for short LP-manifold) [27] if

�(X, Y ) = 1

2
((∇Xη)Y + (∇Y η)X). (2.8)

A Lorentzian almost paracontact manifold endowed with the structure (ϕ, ξ, η, g) is called a Lorentzian
para-Sasakian manifold (for short, LP-Sasakian) [27] if

(∇Xϕ)Y = η(Y )X + g(X, Y )ξ + 2η(X)η(Y )ξ. (2.9)

In a Lorentzian para-Sasakian manifold the 1-form η is closed and ∇Xξ = ϕX, for any X ∈ χ(M).
A Lorentzian almost paracontact manifold is called a Lorentzian paracosymplectic manifold [31] if

∇ϕ = 0. (2.10)

A Lorentzian paracosymplectic manifold is locally isometric to the Lorentzian manifold

(M = R × M+ × M−, g = −dt2 + g+ + g−), (2.11)

which is a direct product of the real line and Riemannian manifolds M+ and M−. Moreover, if we put

ξ = ∂t , η = −dt, ϕ = I dT M+ − I dT M−,

then it can be easily shown that the structure (ϕ, ξ, η) is a paracosymplectic structure on the Lorentzian
manifold given by (2.11).

Let M be an isometrically immersed submanifold of a Lorentzian almost paracontact manifold M . We
denote the Levi–Civita connections on M and M by ∇ and ∇, respectively. Then the Gauss and Weingarten
formulae are given by:

∇X Y = ∇X Y + h(X, Y ), (2.12)

∇X N = −AN X + ∇⊥
X N , (2.13)

for any X, Y ∈ 	(T M) and N ∈ 	(T M⊥), where ∇⊥ is the connection in the normal bundle T M⊥, h is the
second fundamental form of M and AN is the shape operator. The second fundamental form h and the shape
operator AN are related by:

g(AN X, Y ) = g(h(X, Y ), N ), (2.14)

where the induced Riemannian metric on M is denoted by the same symbol g.
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Consider that M is an isometrically immersed submanifold of a Lorentzian almost paracontact manifold
M . For any X ∈ 	(T M) and N ∈ 	(T M⊥), we put

ϕX = t X + nX, (2.15)

ϕN = B N + C N , (2.16)

where t X (resp., nX ) is tangential (resp., normal) part of ϕX and B N (resp., C N ) is tangential (resp., nor-
mal) part of ϕN . The submanifold M is called an invariant submanifold if n is identically zero, that is,
ϕX = t X ∈ 	(T M) for any X ∈ 	(T M). On the other hand, M is called an anti-invariant submanifold if t
is identically zero, that is, ϕX = nX ∈ 	(T M⊥) for any X ∈ 	(T M).

From (2.6) and (2.15), one can easily see that

g(X, tY ) = g(t X, Y ), (2.17)

for any X, Y ∈ 	(T M).
Now, assume that M is an isometrically immersed submanifold of a Lorentzian almost paracontact mani-

fold M such that the characteristic vector field ξ belongs to the tangent bundle of the submanifold. Then M is
said to be a semi-invariant submanifold [6] if it is endowed with the pair of orthogonal distribution (D, D⊥)
satisfying the conditions

(i) T M = D ⊕ D⊥ ⊕ 〈ξ〉,
(ii) the distribution D is invariant under ϕ, i.e., ϕ(D) = D,

(iii) the distribution D⊥ is anti-invariant under ϕ, i.e., ϕ(D⊥) ⊂ T M⊥.

Let M be an isometrically immersed submanifold of a Lorentzian almost paracontact manifold
(M, ϕ, ξ, η, g) such that the characteristic vector field ξ is tangent to M. Hence, if we denote by D the
orthogonal distribution to ξ in T M, we can consider the orthogonal direct decomposition T M = D ⊕ 〈ξ〉. In
this case, it is obvious that g(X, X) > 0 for any vector field X �= 0 in D. For each nonzero vector X tangent
to M at the point p ∈ M such that X is not proportional to ξp, we denote by θ(X) the angle between ϕX and
Tp M. Since ϕξ = 0, θ agrees with the angle between ϕX and Dp. Then M is called slant submanifold if the
angle θ(X) is constant, which does not depend on the choice of p ∈ M and X ∈ Tp M − 〈ξp〉. The constant
angle θ is then called the slant angle of M in M . The invariant and anti-invariant submanifolds of a Lorentzian
almost paracontact manifold are slant submanifolds with θ = 0 and θ = π

2 , respectively. A slant submanifold,
which is neither invariant nor anti-invariant is said to be a proper slant submanifold.

A useful characterization of slant submanifolds in a Lorentzian almost paracontact manifold is given in
the following.

Theorem 2.1 Let M be an immersed submanifold of a Lorentzian almost paracontact manifold (M, ϕ, ξ, η, g)
such that ξ ∈ 	(T M). Then M is slant if and only if there exists a constant λ ∈ [0, 1] such that

t2 = λ(I + η ⊗ ξ). (2.18)

Furthermore, in such case, if θ is the slant angle of M, then λ = cos2 θ [22].

As an immediate consequence of Theorem 2.1 and (2.17) we have:

Corollary 2.2 Let M be a slant submanifold of a Lorentzian almost paracontact manifold (M, ϕ, ξ, η, g) with
ξ ∈ 	(T M). Then

g(t X, tY ) = cos2 θ{g(X, Y ) + η(X)η(Y )}, (2.19)

g(nX, nY ) = sin2 θ{g(X, Y ) + η(X)η(Y )}, (2.20)

for all X, Y ∈ 	(T M), where θ is the slant angle [22].

Furthermore, let M be a submanifold of a Lorentzian almost paracontact manifold M such that ξ ∈ 	(T M).
If there exist two differentiable distributions D1 and D2 on M such that T M = D1 ⊕ D2 ⊕ 〈ξ〉, D1 is an
invariant (resp., anti-invariant) distribution and D2 is a slant distribution with the slant angle θ �= 0, then
M is called a semi-slant (resp., anti-slant) submanifold of M [30]. Particularly, if dim D1 = 0 and θ �= π

2
then a semi-slant submanifold reduces to a proper slant submanifold. Thus, semi-slant submanifolds can be
considered as a generalization of slant submanifolds.
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Let M be a semi-slant submanifold of a Lorentzian paracosymplectic manifold. By using Gauss–Weingar-
ten formulae, (2.14) and (2.16) in (2.10) we have:

(∇X t)Y = AnY X + Bh(X, Y ) (2.21)

and

(∇X n)Y = Ch(X, Y ) − h(X, tY ), (2.22)

for all X, Y ∈ 	(T M). Here, the covariant derivatives of t and n are defined by:

(∇X t)Y = ∇X tY − t∇X Y,

(∇X n)Y = ∇⊥
X nY − n∇X Y.

3 Warped and doubly warped submanifolds

The notion of warped product manifolds was introduced by Bishop and O’Neill [7]. Let (B, gB) and (F, gF ) be
two semi-Riemannian manifolds and b : B → (0, ∞) be a smooth function. The warped product M = B ×b F
of B and F is the product manifold B × F with the metric tensor

g = gB ⊕ b2gF ,

given by

g(X, Y ) = gB(dπ(X), dπ(Y )) + (b ◦ π)2gF (dσ(X), dσ(Y )),

where X, Y ∈ 	(T (B × F)) and π : B × F → B and σ : B × F → F are the canonical projections.
For warped product manifolds we have the following proposition [29].

Proposition 3.1 Let M = B ×b F be a warped product manifold. If X, Y ∈ 	(T B) and U, V ∈ 	(T F) then

(i) ∇X Y ∈ 	(T B),
(ii) ∇X U = ∇U X = X (ln b)U,

(iii) ∇U V = ∇′
U V − g(U, V )grad(ln b),

where ∇ and ∇′ denote the Levi–Civita connections on M and F, respectively.

In this case B is totally geodesic in M and F is totally umbilical in M [29].

As a generalization of the warped product of two semi-Riemannian manifolds, doubly warped product
manifolds were introduced by Ehrlich [18]. A doubly warped product of semi-Riemannian manifolds (B, gB)
and (F, gF ) with warping functions b : B → (0,∞) and f : F → (0, ∞) is a product manifold B × F
endowed with a metric tensor

g = f 2gB ⊕ b2gF .

More explicitly, if X, Y ∈ 	(T (B × F)) then

g(X, Y ) = ( f ◦ σ)2gB(dπ(X), dπ(Y )) + (b ◦ π)2gF (dσ(X), dσ(Y )),

where π : B × F → B and σ : B × F → F are the canonical projections. We denote the doubly warped
product of semi-Riemannian manifolds (B, gB) and (F, gF ) by f B ×b F. If either b = 1 or f = 1, but not
both, then f B ×b F becomes a warped product of semi-Riemannian manifolds B and F. If both b = 1 and
f = 1, then we have a product manifold. If neither b nor f is constant, then we have a proper (nontrivial)
doubly warped product manifold (see also [38]).

In this case we have

∇X U = X (ln b)U + U (ln f )X, (3.1)

for any X ∈ 	(T B) and U ∈ 	(T F) [38].
Now, we first give a useful lemma for later use.
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Lemma 3.2 Let M be an immersed submanifold of a Lorentzian paracosymplectic manifold (M, ϕ, ξ, η, g)
such that ξ ∈ 	(T M). Then we have

∇Xξ = 0, (3.2)

h(X, ξ) = 0, (3.3)

for all X ∈ 	(T M).

Proof Since M is a Lorentzian paracontact manifold, by using (2.10) we get

∇Xξ = 0, (3.4)

for any X ∈ 	(T M). From Gauss formula in the last equation we complete the proof. ��
Let us consider a doubly warped product of two semi-Riemannian manifolds N1 and N2 embedded into

a Lorentzian paracosymplectic manifold (M, ϕ, ξ, g) with the characteristic vector field ξ belonging to the
submanifold M = f2 N1 × f1 N2.

Theorem 3.3 Let M = f2 N1 × f1 N2 be a doubly warped product submanifold of a Lorentzian paracosym-
plectic manifold (M, ϕ, ξ, g). Then

(i) f1 is constant if ξ ∈ 	(T N2),
(ii) f2 is constant if ξ ∈ 	(T N1).

Proof (i) Assume that ξ ∈ 	(T N2). Then for any X ∈ 	(T N1) from (3.1) and (3.2) we get

X (ln f1)ξ + ξ(ln f2)X = 0.

This implies that X (ln f1) = 0,∀X ∈ 	(T N1). Hence f1 is constant.
(ii) Similarly, for ξ ∈ 	(T N1) and Z ∈ 	(T N2) we have

ξ(ln f1)Z + Z(ln f2)ξ = 0,

which implies that f2 is constant. This completes the proof. ��
As an immediate consequence of the above theorem we have the following:

Corollary 3.4 There does not exist a proper warped product submanifold M = N1 × f N2 in a Lorentzian
paracosymplectic manifold (M, ϕ, ξ, η, g) such that ξ is tangent to N2.

Let M = N1 × f N2 be a proper warped product submanifold of a Lorentzian paracosymplectic manifold
(M, ϕ, ξ, g) such that ξ ∈ 	(T M). Then we can write

ξ = ξ1 + ξ2, ξ1 ∈ 	(T N1), ξ1 ∈ 	(T N2). (3.5)

From (3.2) we have

∇Xξ = 0, ∀X ∈ 	(T N1), (3.6)

∇Z ξ = 0, ∀Z ∈ 	(T N2). (3.7)

By using (3.5) and Proposition 3.1 in (3.6) we get

X (ln f )ξ2 = 0. (3.8)

Since M is a proper warped product submanifold, (3.8) implies that ξ2 = 0. Similarly, from (3.5), (3.6) and
Proposition 3.1 we get

g(Z , ξ2)grad(ln f ) = 0, ∀Z ∈ 	(T N2). (3.9)

Since grad(ln f ) cannot be zero, then g(Z , ξ2) = 0,∀Z ∈ 	(T N2), which implies that ξ2 = 0.
Thus we have proved the following:
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Corollary 3.5 There does not exist a proper warped product submanifold M = N1 × f N2 in a Lorentzian
paracosymplectic manifold (M, ϕ, ξ, η, g) such that ξ have both T N1 and T N2 components.

Now, to study the warped product submanifolds M = N1× f N2 with the structure vector field ξ ∈ 	(T N1),
we shall give some useful formulae.

Lemma 3.6 Let M = N1 × f N2 be a proper warped product submanifold of a Lorentzian paracosymplectic
manifold (M, ϕ, ξ, η, g) such that ξ ∈ 	(T N1). Then we have

ξ(ln f ) = 0, (3.10)

AnZ X = −Bh(X, Z), (3.11)

g(h(X, Y ), nZ) = −g(h(X, Z), nY ), (3.12)

g(h(X, W ), nZ) = −g(h(X, Z), nW ), (3.13)

for any X, Y ∈ 	(T N1) and Z , W ∈ 	(T N2).

Proof From (3.2) and Proposition 3.1, Equation (3.10) is obvious. By using (2.10) and Proposition 3.1,
we have

X (ln f )t Z + h(X, t Z) − AnZ X + ∇⊥
X nZ = X (ln f )t Z + n∇X Z

+Bh(X, Z) + Ch(X, Z)

and therefore

h(X, t Z) − AnZ X + ∇⊥
X nZ = Bh(X, Z) + Ch(X, Z), (3.14)

for any X∈	(T N1) and Z ∈ 	(T N2). From the tangential parts of (3.14) we get (3.11). By taking the product
in (3.11) by Y ∈ 	(T N1) and W ∈ 	(T N2), we obtain (3.12) and (3.13), respectively. This completes the
proof. ��

4 Warped product semi-invariant submanifolds

Now, we shall investigate the warped product semi-invariant submanifolds of Lorentzian paracosymplectic
manifolds.

Theorem 4.1 Let M = M� × f M⊥ be a warped product semi-invariant submanifold of a Lorentzian par-
acosymplectic manifold (M, ϕ, ξ, g) such that MT is an invariant submanifold, M⊥ is an anti-invariant
submanifold of M and ξ ∈ 	(T M⊥). Then M is an usual Riemannian product manifold.

Proof From Proposition 3.1, Gauss formula and (2.4) we have

g(∇X Z , W ) = g(∇Z X, W ) = g(∇Z X, W ) = g(ϕ∇Z X, ϕW ),

for any X ∈ 	(T M�) and Z , W ∈ 	(T M⊥). Since M is a Lorentzian paracosymplectic manifold, by using
Gauss–Weingarten formulae, (2.14) and Proposition 3.1 in the last equation we get

X (ln f )g(Z , W ) = g(∇ZϕX, ϕW ) = g(h(Z , ϕX), ϕW )

= g(∇ϕX Z , ϕW ) = g(∇ϕXϕZ , W )

= −g(AϕZϕX, W ) = −g(h(ϕX, W ), ϕZ)

= −g(∇W ϕX, ϕZ) = −g(ϕ∇W X, ϕZ)

= −g(∇W X, Z) = −g(∇X W, Z)

= −X (ln f )g(W, Z),

which implies that

X (ln f )g(W, Z) = 0.

This completes the proof. ��
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Theorem 4.2 Let M = M� × f M⊥ be a warped product semi-invariant submanifold of a Lorentzian par-
acosymplectic manifold (M, ϕ, ξ, g) such that M� is an invariant submanifold, M⊥ is an anti-invariant
submanifold of M and ξ ∈ 	(T M⊥). Then M is a Lorentzian product manifold.

Proof Choose X ∈ 	(T M�) and note that ξ ∈ 	(T M⊥). From Proposition 3.1 and (3.2) we have

∇Xξ = ∇ξ X = X (ln f )ξ = 0,

which implies that f is constant. This completes the proof. ��
Now we give an example for a submanifold of a Lorentzian paracontact manifold in the form M =

M⊥ × f M�.

Example 4.3 Let M be the 5-dimensional real number space with a coordinate system (x1, x2, y1, y2, z). If
we define

η = dz, ξ = − ∂

∂z
,

ϕ

(
∂

∂xi

)
= ∂

∂xi
, (1 ≤ i ≤ 2)

ϕ

(
∂

∂y j

)
= − ∂

∂y j
, (1 ≤ j ≤ 2)

ϕ

(
∂

∂z

)
= 0,

g = (dxi )
2 + (dy j )

2 − η ⊗ η,

on M, then (ϕ, ξ, η, g) becomes a Lorentzian almost paracontact structure in M .

Now, assume that M is an immersed submanifold of M given by

(v, θ, β, u) = (v cos θ, v sin θ, v cos β, v sin β,
√

2u).

Then one can easily see that the tangent bundle of M is spanned by the vectors

W1 = (cos θ, sin θ, cos β, sin β, 0),

W2 = (−v sin θ, v cos θ, 0, 0, 0),

W3 = (0, 0,−v sin β, v cos β, 0),

W4 = (0, 0, 0, 0,
√

2).

On the other hand, since

ϕW1 = (cos θ, sin θ, − cos β,− sin β, 0),

ϕW2 = (−v sin θ, v cos θ, 0, 0, 0),

ϕW3 = (0, 0, v sin β, −v cos β, 0),

ϕW4 = (0, 0, 0, 0, 0),

then ϕW1 and ϕW4 are orthogonal to M, ϕW2 and ϕW3 are tangent to M and we can take

D1 = Span{W2, W3} and D2 = Span{W1, W4}.
In this case, D1 is an invariant distribution and D2 is an anti-invariant distribution in M. Thus M becomes a
semi-invariant submanifold. Moreover, the induced metric tensor of M is given by:
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g =
⎡
⎢⎣

2 0 0 0
0 v2 0 0
0 0 v2 0
0 0 0 −2

⎤
⎥⎦ ,

that is,

g = 2(dv2 − du2) + v2(dθ2 + dβ2) = 2gM⊥ + v2gM� .

Thus M is a warped product semi-invariant submanifold of M with warping function f = v2.

Let M = M⊥ × f M� be a warped product semi-invariant submanifold of a Lorentzian almost parac-
osymplectic manifold, where M⊥ is an anti-invariant submanifold and M� is an invariant submanifold of
M.

Now, we investigate the geometric properties of the leaves of the warped product semi-invariant submani-
folds of a Lorentzian paracosymplectic manifold.

Theorem 4.4 Let M = M⊥ × f MT be a warped product semi-invariant submanifold of a Lorentzian parac-
osymplectic manifold (M, ϕ, ξ, g). Then the invariant distribution D1 and the anti-invariant distribution D2
are always integrable.

Proof From (2.10), Gauss formula, (2.15), (2.16) and Proposition 3.1 we have

∇XϕU = ϕ∇X U

∇X tU + h(X, tU ) = t∇X U + n∇X U + Bh(U, X) + Ch(U, X)

X (ln f )tU + h(X, tU ) = X (ln f )tU + Bh(U, X) + Ch(U, X),

(4.1)

for any X ∈ 	(D2), U ∈ 	(D1). By equating the tangential and the normal components of (4.1) we obtain

Bh(X, U ) = 0 (4.2)

and

h(X, tU ) = Ch(X, U ). (4.3)

From (2.21) and (4.2) we have

AnX U = −X (ln f )tU. (4.4)

Since the distribution D2 is totally geodesic in M and it is anti-invariant in M, then from Gauss–Weingarten
formulae we have:

∇XϕY = ϕ∇X Y

∇X nY = ϕ∇X Y + ϕh(X, Y )

−AnY X + ∇⊥
X nY = t∇X Y + n∇X Y + Bh(X, Y ) + Ch(X, Y ),

(4.5)

for any X, Y ∈ 	(D2). By equating the tangential parts of the last equation we get

AnY X = −Bh(X, Y ). (4.6)

By changing the role of X and Y in (4.6) we obtain

AnY X = AnX Y. (4.7)

Furthermore, since A is self-adjoint from Gauss formula and (2.6) we have

g(AnX Y, Z) = g(h(Y, Z), nX)

= g(∇Z Y, ϕX)

= g(∇ZϕY, X)

= −g(AnY Z , X)

= −g(AnY X, Z), (4.8)
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for any X, Y ∈ 	(D2), Z ∈ 	(D1). From (4.6) to (4.8) we obtain

AnX Y = 0 and Bh(X, Y ) = 0. (4.9)

On the other hand for any U, V ∈ 	(D1) we have

∇U ϕV = ϕ∇U V

∇U tV = ϕ∇U V + ϕh(U, V )

h(U, tV ) + ∇U tV = ϕ(∇′
U V − g(U, V )grad(ln f )) + Bh(U, V ) + Ch(U, V )

h(U, tV ) + ∇U tV = t (∇′
U V ) − g(U, V )n(grad(ln f )) + Bh(U, V ) + Ch(U, V ).

By equating the tangential and normal parts of the last equation we get

∇′
U tV − g(tV, U )grad(ln f ) = t (∇′

U V ) + Bh(U, V ) (4.10)

and

h(U, tV ) = −g(U, V )n(grad(ln f )) + Ch(U, V ). (4.11)

(4.11) implies that

h(U, tV ) = h(V, tU ). (4.12)

Finally, from (2.22), (4.12) and the symmetry of h we have

n([V, U ]) = n(∇V U − ∇U V )

= ∇⊥
V nU − (∇V n)U − ∇⊥

U nV + (∇U n)V

= (∇U n)V − (∇V n)U

= Ch(U, V ) − h(U, tV ) − Ch(V, U ) + h(V, tU )

= 0,

which implies that [V, U ] ∈ 	(D1).
By a similar way, from (2.21) and (4.7) we get

t ([X, Y ]) = t (∇X Y − ∇X Y )

= ∇X tY − (∇X t)Y − ∇Y t X + (∇Y t)X

= (∇Y t)X − (∇X t)Y

= AnX Y + Bh(Y, X) − AnY X − Bh(X, Y )

= 0.

Thus [X, Y ] ∈ 	(D2) for any X, Y ∈ 	(D2). This completes the proof. ��
Since the distributions D1 and D2 are always integrable, we denote by M� and M⊥ the integral submani-

folds of D1 and D2, respectively.

Theorem 4.5 Let M be a submanifold of a Lorentzian paracosymplectic manifold (M, ϕ, ξ, g). Then M is a
semi-invariant submanifold if and only if nt = 0.

Proof Let M be a semi-invariant submanifold of a Lorentzian paracosymplectic manifold (M, ϕ, ξ, η, g). We
denote the orthogonal projections on the invariant distribution D1 and the anti-invariant distribution D2 by P1
and P2, respectively. Then we have:

P1 + P2 = I, (P1)
2 = P1, (P2)

2 = P2, P1 P2 = P2 P1 = 0. (4.13)

If the characteristic vector field ξ is tangent to M, then from

X + η(X)ξ = t2 X + BnX

0 = nt X + CnX

0 = t B Z + BC Z

Z = nB Z + C2 Z , (4.14)
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for any X ∈ 	(T M), Z ∈ 	(T M⊥). By using (2.15) we can write:

t X + nX = t P1 X + t P2 X + n P1 X + n P2 X,

for any X ∈ 	(T M). By equating the tangential and normal parts of the last equation we get:

t X = t P1 X + t P2 X,

nX = n P1 X + n P2 X. (4.15)

Since D1 is invariant and D2 is anti-invariant, we get

n P1 = 0 and t P2 = 0.

Thus from (4.15) we have:

t P1 = t and n P2 = n,

which implies that

nt X = n P2t X = n P2t P1 X = 0,

for all X ∈ 	(T M). From the last equation and the second equation of (4.14) we also get

Cn = 0. (4.16)

Conversely, assume that M be a submanifold of a Lorentzian paracosymplectic manifold (M, ϕ, ξ, η, g)
satisfying nt = 0. From (2.4), (2.6) and the second equation in (4.14) we have:

g(X, ϕZ) = g(ϕX, Z)

g(X, B Z) = g(nX, Z)

g(X, ϕB Z) = g(ϕnX, Z)

g(X, t B Z) = g(CnX, Z) = 0,

for all X ∈ 	(T M), Z ∈ 	(T M⊥). It is obvious from the last equation that t B = 0 and so by using (4.14) we
get BC = 0. Moreover, from (4.14) we also have:

t3 = t and C3 = C. (4.17)

By putting

P1 = t2 and P2 = I − t2, (4.18)

we obtain

P1 + P2 = I, (P1)
2 = P1, (P2)

2 = P2, P1 P2 = P2 P1 = 0,

which implies that P1 and P2 are orthogonal complementary projections defining complementary distributions
D1 and D2. Since it is assumed that nt = 0 then from (4.17) and (4.18) we conclude

t P1 = t, t P2 = 0,

P2t P1 = 0, n P1 = 0,

which implies that D1 is an invariant distribution and D2 is an anti-invariant distribution. This completes the
proof. ��
Theorem 4.6 Let M be a semi-invariant submanifold of a Lorentzian paracosymplectic manifold (M, ϕ, ξ, g).
Then M is a warped product semi-invariant submanifold if and only if the shape operator of M satisfies

AϕX U = −X (μ)ϕU, X ∈ 	(D2), U ∈ 	(D1), (4.19)

for some function μ on M such that W (μ) = 0, W ∈ 	(D1).
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Proof Let M = M⊥× f M� be a warped product semi-invariant submanifold of a Lorentzian paracosymplectic
manifold. From (4.4) we have:

AϕX U = −X (ln f )ϕU,

for any X ∈ 	(D2) and U ∈ 	(D1). Since f is a function on M⊥, putting μ = ln f implies that W (μ) = 0,
for all W ∈ 	(D1).

Conversely, let M be a semi-invariant submanifold of M and μ be a function on M satisfying (4.19) such
that W (μ) = 0, for all W ∈ 	(D1). Since M is a Lorentzian paracosymplectic manifold, from (4.9) we have:

g(∇X Y, ϕV ) = g(∇X Y, ϕV ) = g(∇XϕY, V ) = −g(AϕY X, V ) = 0,

for any X, Y ∈ 	(D2) and V ∈ 	(D1). So, the anti-invariant distribution D2 is totally geodesic in M. On the
other hand from (4.4) we have:

g(∇U V, X) = g(∇U V, X) = −g(V, ∇U X)

= −g(ϕV, ∇U ϕX) = −g(ϕV, ∇U wX)

= g(AwX U, ϕV )

= −g(X (μ)ϕU, ϕV )

= −X (μ)g(U, V ),

for any U, V ∈ 	(D1) where μ = ln f. Since the distribution D1 of M is always integrable and W (μ) = 0
for all W ∈ 	(T M�) then the integral submanifold of D1 is a totally umbilical submanifold in M and its
mean curvature vector field is nonzero and parallel. Since a warped product manifold M = M⊥ × f M�
is characterized by the fact that M⊥ and M� are totally geodesic and totally umbilical submanifolds of M,
respectively, we complete the proof. ��

5 Warped product semi-slant submanifolds

Let M be a warped product semi-slant submanifold of a Lorentzian paracosymplectic manifold (M, ϕ, ξ, g).
From Corollary 3.4, there do not exist warped product semi-slant submanifolds N� × f Nθ with ξ ∈ 	(T Nθ )

and Nθ × f N� with ξ ∈ 	(T N�) of M where N� is an invariant submanifold and Nθ is a proper slant
submanifolds of M . Thus we have the following two cases:

(i) M = N� × f Nθ with ξ ∈ 	(T NT ),
(ii) M = Nθ × f N� with ξ ∈ 	(T Nθ ).

Theorem 5.1 There do not exist proper warped product semi-slant submanifolds M = N� × f Nθ of a Lo-
rentzian paracosymplectic manifold (M, ϕ, ξ, η, g) such that N� is an invariant submanifold, Nθ is a proper
slant submanifold of M and ξ ∈ 	(T N�).

Proof Let M = N� × f Nθ be a proper warped product semi-slant submanifold of a Lorentzian paraco-
symplectic manifold (M, ϕ, ξ, η, g) such that ξ ∈ 	(T N�). From (2.10), Gauss formula, (2.15), (2.16) and
Proposition 3.1 we have

t X (ln f )Z + h(Z , t X) = X (ln f )t Z + X (ln f )nZ

+Bh(Z , X) + Ch(Z , X), (5.1)

for any X ∈ 	(T N�) and Z ∈ 	(T Nθ ). Equating the tangential and normal parts of (5.1) we get

t X (ln f )Z = X (ln f )t Z + Bh(Z , X) (5.2)

and

h(Z , t X) = X (ln f )nZ + Ch(Z , X). (5.3)

On the other hand by virtue of (3.13) we have

g(h(X, Z), nZ) = 0, (5.4)
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which implies that

0 = g(h(X, Z), ϕZ) = g(ϕh(X, Z), Z) = g(Bh(X, Z), Z),

for all Z ∈ 	(T Nθ ). Thus we get

Bh(X, Z) ∈ 	(T N�). (5.5)

From (5.2) we can write:

t X (ln f )g(Z , t Z) = X (ln f )g(t Z , t Z) + g(Bh(Z , X), t Z).

By using (2.19) and (5.5) in the last equation above we get

t X (ln f )g(Z , t Z) = (cos2 θ)X (ln f )g(Z , Z). (5.6)

Moreover, from Proposition 3.1 we have

X (ln f )g(Z , Z) = g(∇Z X, Z) = g(∇Z X, Z) = −g(X, ∇Z Z)

= −g(ϕX, ϕ∇Z Z) + η(X)η(∇ Z Z)

= −g(ϕX, ∇ZϕZ)

= −g(ϕX, ∇Z t Z − AnZ Z)

= −g(t X, ∇Z t Z) + g(t X, AnZ Z)

= g(t X, g(Z , t Z)grad(ln f )) + g(h(t X, Z), nZ). (5.7)

Using (5.4) in (5.7) we get

X (ln f )g(Z , Z) = t X (ln f )g(Z , t Z). (5.8)

Thus, making use of (5.6) and (5.8), we get

(sin2 θ)X (ln f )‖Z‖2 = 0,

for all X ∈ 	(T N�) and Z ∈ 	(T Nθ ). The last equation implies that either θ = 0 or f is a constant function
on N�. Since M = N� × f Nθ is assumed to be a proper warped product semi-slant submanifold, f must be
constant on N�. This completes the proof. ��
Theorem 5.2 There do not exist proper warped product semi-slant submanifolds M = Nθ × f N� of a
Lorentzian paracosymplectic manifold (M, ϕ, ξ, η, g) such that Nθ is a proper slant submanifold, N� is an
invariant submanifold of M and ξ ∈ 	(T Nθ ).

Proof Let M = Nθ × f N� be a proper warped product semi-slant submanifold of a Lorentzian paracosym-
plectic manifold (M, ϕ, ξ, η, g) such that ξ ∈ 	(T Nθ ). From Proposition 3.1 we can write

∇Z X = ∇X Z = Z(ln f )X, (5.9)

for any Z ∈ 	(T Nθ ) and X ∈ 	(T N�). Since M is a Lorentzian paracosymplectic manifold from (3.2) we
have

ξ(ln f ) = 0. (5.10)

Making use of g(X, Z) = 0, the Gauss formula and (5.9) it is easy to see that

g(∇X X, Z) = g(∇X X, Z) = −g(X, ∇X Z) = −Z(ln f )g(X, X). (5.11)

From (2.4), Gauss formula and (5.10) we get

g(∇X X, Z) = g(∇X X, Z) = g(ϕ∇X X, ϕZ) − η(∇X X)η(Z)

= g(∇XϕX, t Z) + g(h(X, ϕX), nZ). (5.12)
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Then we have:

g(h(X, f X), nZ) − ( f Z)(ln f )g(X, t X) = −Z(ln f )g(X, X), (5.13)

by virtue of (5.11) and (5.12).
On the other hand, since N� is an invariant submanifold by using (2.10), (2.15), (2.16) and Lemma 3.1 we

obtain

∇ZϕX = ϕ∇Z X

h(Z , t X) = Bh(Z , X) + Ch(Z , X), (5.14)

which implies that

Bh(Z , X) = 0 (5.15)

and

h(Z , t X) = Ch(Z , X). (5.16)

Similarly we have

∇XϕZ = ϕ∇X Z

t Z(ln f )X + h(X, t Z) − AnZ X + ∇⊥
X nZ = Z(ln f )t X

+Bh(Z , X) + Ch(Z , X).

By equating the tangential parts of the last equation and using (5.15) we obtain:

t Z(ln f )X − AnZ X = Z(ln f )t X. (5.17)

Thus from (2.19) and (5.17) we have:

g(h(X, t X), nZ) = t Z(ln f )g(X, t X) − (cos2 θ)Z(ln f )g(X, X). (5.18)

By writing (5.18) in (5.13) we conclude

(sin2 θ)Z(ln f )‖X‖2 = 0,

which implies that either θ = 0 or Z(ln f ) = 0, for all Z ∈ 	(T Nθ ). Since Nθ is a proper semi-slant
submanifold then θ = 0 is impossible. Hence, f must be constant on Nθ . This completes the proof. ��

6 Warped product anti-slant submanifolds

Let M be a warped product anti-slant submanifold of a Lorentzian paracosymplectic manifold (M, ϕ, ξ, g).
From Corollary 3.4, there do not exist warped product anti-slant submanifolds of type N⊥ × f Nθ with ξ ∈
	(T Nθ ) and Nθ × f N⊥ with ξ ∈ 	(T N⊥) of M where N⊥ is an anti-invariant submanifold and Nθ is a proper
slant submanifold of M . Thus we have the following two cases:

(i) M = N⊥ × f Nθ with ξ ∈ 	(T N⊥),
(ii) M = Nθ × f N⊥ with ξ ∈ 	(T Nθ ).

Theorem 6.1 There do not exist proper warped product anti-slant submanifolds M = N⊥ × f Nθ of a
Lorentzian paracosymplectic manifold (M, ϕ, ξ, η, g) such that N⊥ is an anti-invariant submanifold, Nθ

is a proper slant submanifold of M and ξ ∈ 	(T N⊥).
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Proof Let M = N⊥× f Nθ be a proper warped product anti-slant submanifold of a Lorentzian paracosymplectic
manifold (M, ϕ, ξ, η, g) such that ξ is tangent to N⊥ and X ∈ 	(T N⊥), Z ∈ 	(T Nθ ). From Proposition 3.1,
Gauss–Weingarten formulae, (2.4) and (2.10) we get

X (ln f )g(Z , Z) = g(∇Z X, Z) = g(∇Z X, Z)

= −g(X, ∇Z Z)

= −g(ϕX, ϕ∇Z Z) + η(X)η(∇ Z Z)

= −g(ϕX, ∇ZϕZ)

= −g(ϕX, h(Z , t Z) + ∇⊥
Z nZ),

which implies that

X (ln f )g(Z , Z) = −g(nX, h(Z , t Z)) − g(nX, ∇⊥
Z nZ). (6.1)

On the other hand, by using (2.15) and (2.16) we have:

∇ZϕZ = ϕ∇Z Z

∇Z t Z + h(Z , t Z) − AnZ Z + ∇⊥
Z nZ = t∇Nθ

Z Z + n∇Nθ

Z Z

−g(Z , Z)n(grad(ln f ))

+Bh(Z , Z) + Ch(Z , Z), (6.2)

where ∇Nθ denotes the Levi–Civita connection on Nθ . From the normal parts of (6.2) we obtain:

g(∇⊥
Z nZ , nX) = −g(h(Z , t Z), nX) + g(n∇Nθ

Z Z , nX)

−g(Z , Z)g(n(grad(ln f )), nX) + g(Ch(Z , Z), nX),

which implies that

g(∇⊥
Z nZ , nX) = −g(h(Z , t Z), nX) − (sin2 θ)X (ln f )g(Z , Z)

+g(h(Z , Z), X) + η(h(Z , Z))η(X)

= −g(h(Z , t Z), nX) − (sin2 θ)X (ln f )g(Z , Z), (6.3)

by virtue of (2.4) and (2.20). From (6.1) and (6.3) we conclude

(cos2 θ)X (ln f )‖Z‖2 = 0.

Hence, either θ = π
2 or X (ln f ) = 0. Since Nθ is a proper slant submanifold then θ �= π

2 . So X (ln f ) = 0,
for all X ∈ 	(T N⊥), which implies that f is constant on N⊥. The proof is complete. ��
Theorem 6.2 There do not exist proper warped product anti-slant submanifolds M = Nθ × f N⊥ of a Lo-
rentzian paracosymplectic manifold (M, ϕ, ξ, η, g) such that Nθ is a proper slant submanifold, N⊥ is an
anti-invariant submanifold of M and ξ ∈ 	(T Nθ ).

Proof Assume that M = Nθ × f N⊥ is a proper warped product anti-slant submanifold of a Lorentzian
paracosymplectic manifold (M, ϕ, ξ, η, g) with ξ ∈ 	(T Nθ ). Let X ∈ 	(T N⊥), Z ∈ 	(T Nθ ). Then we
have:

∇XϕZ = ϕ∇X Z

t Z(ln f )X + h(X, t Z) − AnZ X + ∇⊥
X nZ = Z(ln f )nX + Bh(Z , X)

+Ch(Z , X). (6.4)

From the normal components of (6.4) we get

h(X, t Z) + ∇⊥
X nZ = Z(ln f )nX + Ch(Z , X), (6.5)

which, by using (3.13), implies that

g(∇⊥
X nZ , nX) = Z(ln f )g(nX, nX) + g(Ch(Z , X), nX). (6.6)
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By a similar way we have:

∇ZϕX = ϕ∇Z X

−AnX Z + ∇⊥
Z nX = Z(ln f )nX + Bh(Z , X) + Ch(Z , X), (6.7)

which gives

∇⊥
Z nX = Z(ln f )nX + Ch(Z , X). (6.8)

Thus, from (3.13), (6.5) and (6.8) we obtain

g(∇⊥
X nZ , nX) = g(∇⊥

Z nX, nX).

Since N⊥ is anti-invariant then by taking into account the Proposition 3.1 we reach

g(∇⊥
X nZ , nX) = g(∇⊥

Z nX, nX) = g(∇Z nX, nX)

= g(∇ZϕX, ϕX)

= Z(ln f )g(X, X). (6.9)

If we write (6.9) in (6.6) and use (2.20 ) we get

Z(ln f )g(X, X) = Z(ln f )g(nX, nX) + g(Ch(Z , X), nX)

= (sin2 θ)Z(ln f )g(X, X) + g(ϕh(Z , X), ϕX)

= (sin2 θ)Z(ln f )g(X, X).

Thus we conclude

(cos2 θ)Z(ln f )‖X‖2 = 0,

which implies that either θ = π
2 or X (ln f ) = 0. Since Nθ is a proper slant submanifold then θ �= π

2 . So f
must be constant on Nθ . The proof is complete. ��
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