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Abstract In this paper, we obtain a new characterization of p-nilpotent groups under the assumption that
some maximal subgroups of Sylow subgroup are F -supplemented. As its applications, we generalize many
known results.

Mathematics Subject Classification 20D10 · 20D20

1 Introduction

This article deals only with finite groups. The notion and terminologies used in this paper are standard. The
reader is referred to the monograph of Guo [6].

A formation F is said to be saturated if it contains every group G with G/�(G) ∈ F . A formation F
is said to be S-closed if every subgroup of G belongs to F whenever G ∈ F . It is well known that the class
of all p-nilpotent groups Np and the class of all supersolvable groups U are S-closed saturated formation.
A chief factor A/B of a group G is called F -central if [A/B](G/CG(A/B)) ∈ F . The symbol ZF∞ (G)
denotes the F -hypercenter of a group G, that is, the product of all such normal subgroups of G whose G-chief
factors are F -central. We say a subgroup H of a group G has an F -supplement T in G if G has a subgroup
T ∈ F such that G = H T .

In the literature, groups with a system of special supplemented subgroups were studied by many authors;
see, for example, [1,2,13,14]. In 2007, Guo [5] introduced the following concept of F -supplemented sub-
groups again, which is also a generalization of c-normal, c-supplemented and Uc-normal subgroups.

Definition 1.1 A subgroup H of a group G is said to be F -supplemented in G if there exists a subgroup T of
G such that G = H T and (H ∩ T )HG/HG is contained in the F -hypercenter ZF∞ (G/HG) of G/HG , where
F is a formation of finite groups.
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In [18], by using some F -supplemented subgroups, Yi et al. have given some conditions under which a
finite group belongs to some saturated formations containing U . The purpose of this paper is to go further into
the influence of F -supplemented subgroups on the structure of finite groups. Some new characterizations of
p-nilpotency are obtained. We not only extend some results in [5] and [18], but also give more simple proofs.

2 Preliminaries

Lemma 2.1 [5, Lemma 2.2] Let G be a group and H ≤ K ≤ G. Then

(1) If H is F -supplemented in G and F is S-closed, then H is F -supplemented in K .
(2) Suppose that H is normal in G. Then K/H is F -supplemented in G/H if and only if K is F -supple-

mented in G.
(3) Suppose that H is normal in G. Then, for everyF -supplemented subgroup E in G satisfying (|H |, |E |) =

1, H E/H is F -supplemented in G/H.

Lemma 2.2 [10, Lemma 2.3] Let G be a group and p a prime such that pn+1 � |G| for some integer n � 1.
If (|G|, (p − 1)(p2 − 1) · · · (pn − 1)) = 1, then G is p-nilpotent.

Lemma 2.3 [16, Lemma 2.8] Let G be a group and p a prime dividing |G| with (|G|, p − 1) = 1. If N is
normal in G of order p, then N lies in Z(G).

Lemma 2.4 Let p be a prime and G a group with (|G|, p − 1) = 1. Suppose that P is a Sylow p-subgroup
of G such that every maximal subgroup of P has a p-nilpotent supplement in G, then G is p-nilpotent.

Proof If p2 � |G|, then G is p-nilpotent by Lemma 2.2. Now we assume that p2||G|. Let P1 be a maximal
subgroup of P . By the hypothesis, P1 has a p-nilpotent supplement K1 in G. Let K1p′ be a normal Hall
p′-subgroup of K1. Then, obviously, K1p′ is a Hall p′-subgroup of G. Hence G = P1 K1 = P1 NG(K1p′).
We claim that K1p′ is normal in G. Indeed, if K1p′ is not normal in G, then P ∩ NG(K1p′) < P . It follows
that P has a maximal subgroup P2 such that P ∩ NG(K1p′) ≤ P2. It is clear P1 �= P2. By the hypothe-
sis, P2 has also a p-nilpotent supplement K2 in G. By repeating the above argument, we can find a Hall
p′-subgroup K2p′ of G such that G = P2 K2 = P2 NG(K2p′). If p = 2, then K1p′ and K2p′ are conjugate
in G by applying a deep result of Gross (see [4, Main Theorem]). If p > 2, then G is a solvable group by
Feit–Thompson Theorem and so K1p′ and K2p′ are conjugate in G. Since K2p′ is normalized by K2, there
exists an element g ∈ P2 such that K g

2p′ = K1p′ . Then G = (P2 NG(K2p′))g = P2 NG(K1p′). This induces
that P = P ∩ G = P ∩ P2 NG(K1p′) = P2(P ∩ NG(K1p′)) = P2. This contradiction completes the proof.

�	
Lemma 2.5 [11, Lemma 2.6] Let H be a solvable normal subgroup of a group G (H �= 1). If every minimal
normal subgroup of G which is contained in H is not contained in �(G), then the Fitting subgroup F(H) of
H is the direct product of minimal normal subgroups of G which are contained in H.

Lemma 2.6 Let F be a saturated formation containing U . If there is a normal subgroup H of a group G
such that G/H ∈ F and every cyclic subgroup of H with prime order or order 4 not having supersolvable
supplement in G is U -supplemented in G, then G ∈ F .

Proof Suppose that the assertion is false and let (G, H) be a counterexample for which |G||H | is minimal. Let
K be any proper subgroup of H . By Lemma 2.1(1), the hypothesis of the theorem still holds for (K , K ). By the
choice of G, K is supersolvable. By [6, Theorem 3.11.9], H is solvable. Since G/H ∈ F , GF ≤ H . Let M
be a maximal subgroup of G such that GF � M (that is, M is an F -abnormal maximal subgroup of G). Then
G = M H . We claim that the hypothesis holds for (M, M ∩ H). In fact, M/M ∩ H ∼= M H/H = G/H ∈ F .
Let 〈x〉 be any cyclic subgroup of M ∩ H with prime order or order 4. It is clear that 〈x〉 is also a cyclic
subgroup of H with prime order or order 4. If 〈x〉 has a supersolvable supplement U in G, then 〈x〉 has a
supersolvable supplement U ∩ M in M . If 〈x〉 is U -supplemented in G, then 〈x〉 is also U -supplemented in
M by Lemma 2.1(1). Therefore, the hypothesis holds for (M, M ∩ H). By the choice of G, M ∈ F . Then,
by [6, Theorem 3.4.2], the following conditions hold: (1) GF is a p-group, where GF is the F -residual
of G; (2) GF /�(GF ) is a chief factor of G and exp(GF ) = p or exp(GF ) = 4 (if p = 2 and GF

is non-abelian). Let L be an arbitrary cyclic subgroup of GF with prime order or order 4. Suppose that L
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has a supersolvable supplement T in G. Clearly, GF = GF ∩ LT = L(GF ∩ T ). Since GF /�(GF ) is
abelian, (GF ∩ T )�(GF )/�(GF ) � G/�(GF ). Notice that GF /�(GF ) is a chief factor of G, we have
GF ∩ T ≤ �(GF ) or GF = (GF ∩ T )�(GF ) = GF ∩ T . If the former holds, then L = GF � G. Since
G/GF ∈ F , G ∈ F by [5, Lemma 2.3], a contradiction. Therefore GF = GF ∩ T , and so T = G is super-
solvable, a contradiction. Hence every cyclic subgroup of H with prime order or order 4 is U -supplemented
in G. Now we can get the final contradiction with the same argument in the proof of [5, Theorem 3.2]. �	
Lemma 2.7 [12, Theorem B] Let F be any formation, and G a group. If H � G and F∗(H) ≤ ZF∞ (G), then
H ≤ ZF∞ (G).

Lemma 2.8 [3, IV, 3.11] If F1 and F2 are two saturated formations such that F1 ⊆ F2, then ZF1∞ (G) ≤
ZF2∞ (G).

3 Main results

Theorem 3.1 Let G be a group and p a prime such that (|G|, (p − 1)(p2 − 1) · · · (pn − 1)) = 1 for some
integer n � 1. If there exists a Sylow p-subgroup P of G such that every n-maximal subgroup (if it exists) of
P not having a p-nilpotent supplement in G is Np-supplemented in G, then G is p-nilpotent.

Proof Suppose that the theorem is false and let G be a counterexample of minimal order.

(1) Op′(G) = 1.
Assume that Op′(G) �= 1. Since P is a Sylow p-subgroup of G, P Op′(G)/Op′(G) is a Sylow p-subgroup
of G/Op′(G). Let M/Op′(G) be an n-maximal subgroup of P Op′(G)/Op′(G). Then M = Pn Op′(G),
where Pn is an n-maximal subgroup of P . If Pn has a p-nilpotent supplement K in G, then M/Op′(G)
has a p-nilpotent supplement K Op′(G)/Op′(G) in G/Op′(G). If Pn is Np-supplemented in G, then
M/Op′(G) is Np-supplemented in G/Op′(G) by Lemma 2.1(3). Therefore G/Op′(G) satisfies the
hypothesis of the theorem. The minimal choice of G yields that G/Op′(G) is p-nilpotent, and so G is
p-nilpotent, a contradiction.

(2) Z
Np∞ (G) = 1.

Suppose that Z
Np∞ (G) �= 1. Then we may take a minimal normal N of G which is contained in Z

Np∞ (G).
By Step (1), N is not a p′-group. Consequently, the order of N is p. By Lemma 2.1(2), G/N satisfies
the hypothesis of the theorem. Thus the minimal choice of G yields that G/N is p-nilpotent. By Lemma
2.3, G/Z(G) is p-nilpotent, which implies that G is p-nilpotent, a contradiction.

(3) Op(G) �= 1.
By Lemma 2.2, pn+1||P| and so there exists a non-identity n-maximal subgroup of P . By Lemma 2.4, P
has an n-maximal subgroup H which has no p-nilpotent supplement in G. Thus by the hypothesis, G has
a non-p-nilpotent subgroup T of G such that G = H T and (H ∩ T )HG/HG is contained in the Np-hy-

percenter Z
Np∞ (G/HG) of G/HG . If Op(G) = 1, then HG = 1. It follows that H ∩ T ≤ Z

Np∞ (G) = 1.
Then |T |p = pn and so T is p-nilpotent by Lemma 2.2, a contradiction. Therefore Op(G) �= 1.

(4) Every n-maximal subgroup of P has a p-nilpotent supplement in G.
Let N be a minimal normal subgroup of G contained in Op(G). Clearly, N is an elementary abelian
p-subgroup. Invoking Lemma 2.1(2) and the minimal choice of G, G/N is p-nilpotent. Since Np is a
saturated formation, we have that N is a unique minimal normal subgroup of G contained in Op(G)
and N � �(G). Hence there exists a maximal subgroup M of G such that G = N � M . It follows
that M ∼= G/N is p-nilpotent. It is easy to see that Op(G) ∩ M is normal in G. Then the uniqueness
of N yields that N = Op(G). Let Pn be an arbitrary n-maximal subgroup of P . We will show Pn has
a p-nilpotent supplement in G. If not, then by the hypothesis, G has a non-p-nilpotent subgroup T of

G such that G = PnT and (Pn ∩ T )(Pn)G/(Pn)G is contained in the Np-hypercenter Z
Np∞ (G/(Pn)G)

of G/(Pn)G . If (Pn)G �= 1, then N ≤ (Pn)G ≤ Pn , and so Pn has a p-nilpotent supplement M in G,

a contradiction. Thus we may assume (Pn)G = 1. Consequently, we have Pn ∩ T ≤ Z
Np∞ (G) = 1. In

view of Lemma 2.2, T is p-nilpotent, a contradiction.
(5) Final contradiction.

By Step (4), every maximal subgroup of P has a p-nilpotent supplement in G, and so G is p-nilpotent
by Lemma 2.4, a contradiction. �	
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Corollary 3.2 Let p be the smallest prime dividing the order of G and P a Sylow p-subgroup of G. If every
maximal subgroup of P not having a p-nilpotent supplement in G is Np-supplemented in G, then G is
p-nilpotent.

Corollary 3.3 [7, Theorem 3.4] Let G be a group and P a Sylow p-subgroup of G, where p is the smallest
prime dividing |G|. If all maximal subgroups of P are c-normal in G, then G is p-nilpotent.

Corollary 3.4 [8, Theorem 3.4] Let G be a group and P a Sylow p-subgroup of G, where p is the smallest
prime dividing |G|. If all maximal subgroups of P are c-supplemented in G, then G is p-nilpotent.

Corollary 3.5 [9, Theorem 3.1] Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G|
with (|G|, p − 1) = 1. If every maximal subgroup of P is c-supplemented in G, then G is p-nilpotent.

Corollary 3.6 [14, Theorem 3.1] Let p be a prime dividing the order of a group G with (|G|, p − 1) = 1.
Suppose that every maximal subgroup of P is c-supplemented in G and G ∈ C p′ , then G/Op(G) is p-nilpotent
and G ∈ Dp′ .

Corollary 3.7 If every maximal subgroup of any noncyclic Sylow subgroup of G not having a supersolvable
supplement in G is U -supplemented in G, then G is a Sylow tower group of supersolvable type.

Proof Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G. If P is cyclic, then G is
p-nilpotent obviously. If P is not cyclic, then G is also p-nilpotent by Corollary 3.2 and Lemma 2.8. Let U
be the normal p-complement of G. By Lemma 2.1(1), U satisfies the hypothesis of the corollary. Therefore,
it follows by induction that U , and so G is a Sylow tower group of supersolvable type. �	
Corollary 3.8 Let p be a prime and G a group with (|G|, (p − 1)(p2 − 1) · · · (pn − 1)) = 1 for some
integer n � 1. Suppose that G has a normal subgroup H such that G/H is p-nilpotent and H has a Sylow
p-subgroup P such that every n-maximal subgroup (if it exists) of P not having a p-nilpotent supplement in
G is Np-supplemented in G. Then G is p-nilpotent.

Proof We distinguish two cases:
Case I. P = H .
Since G/P is p-nilpotent, we can let K/P be the normal p-complement of G/P . By The Schur–Zas-

senhaus Theorem, there exists a Hall p′-subgroup K p′ of K such that K = P K p′ . By Lemma 2.1(1), every
n-maximal subgroup (if it exists) of P not having a p-nilpotent supplement in K is Np-supplemented in K .
Applying Theorem 3.1, we have K is p-nilpotent and so K = H × K p′ . Hence, K p′ is a normal p-complement
of G and G is p-nilpotent.

Case II. P < H .
By Lemma 2.1(1), every n-maximal subgroup (if it exists) of P not having a p-nilpotent supplement in H

is Np-supplemented in H . A new application of Theorem 3.1 yields that H is p-nilpotent. Now, let Hp′ be
the normal p-complement of H . Obviously, Hp′ � G. By Lemma 2.1(3), it is easy to see that every n-maxi-
mal subgroup (if it exists) of P Hp′/Hp′ not having a p-nilpotent supplement in G/Hp′ is Np-supplemented
in G/Hp′ . Thus, G/Hp′ satisfies the hypotheses for the normal subgroup H/Hp′ . By induction G/Hp′ is
p-nilpotent, and so G is p-nilpotent. �	
Theorem 3.9 Let F be a saturated formation containing U . A group G ∈ F if and only if there is a normal
subgroup H of G such that G/H ∈ F and every maximal subgroup of any noncyclic Sylow subgroup of H
not having a supersolvable supplement in G is U -supplemented in G.

Proof The necessity is obvious. We only need to prove the sufficiency. Suppose that the assertion is false and
let G be a counterexample of minimal order.

By Lemma 2.1(1), every maximal subgroup of any noncyclic Sylow subgroup of H not having a supersolv-
able supplement in H is U -supplemented in H . By Corollary 3.7, H is a Sylow tower group of supersolvable
type. Let q be the largest prime divisor of |H | and let Q be a Sylow q-subgroup of H . Then Q is normal in
G. Obviously, (G/Q)/(H/Q) ∼= G/H ∈ F . It is easy to see that every maximal subgroup of any noncyclic
Sylow subgroup of H/Q not having a supersolvable supplement in G/Q is U -supplemented in G/Q by
Lemma 2.1(3). By the minimality of G, we have G/Q ∈ F . If Q is cyclic, then G ∈ F by [5, Lemma
2.3], a contradiction. Hence, we may assume that Q is noncyclic. Let N be a minimal normal subgroup of
G contained in Q. We can also prove G/N ∈ F easily. Since F is a saturated formation, N is the unique
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minimal normal subgroup of G contained in Q and N � �(G). So there exists a maximal subgroup M of
G such that G = N M and N ∩ M = 1. By Lemma 2.5, we have Q = F(Q) = N . Let Mq be a Sylow
q-subgroup of M . Then Gq = N Mq is a Sylow q-subgroup of G. Let N1 = N ∩ Q1, where Q1 is a maximal
subgroup of Gq containing Mq . Then Gq = N Q1, N1 is a maximal subgroup of N and N1 � Gq . Let T be
any supplement of N1 in G, then N1T = G and N = N ∩ N1T = N1(N ∩ T ). This implies that N ∩ T �= 1.
But since N ∩ T is normal in G and N is a minimal normal subgroup of G, N ∩ T = N . So T = G is the
unique supplement of N1 in G. Since G is not supersolvable, N1 is U -supplemented in G. From T = G, we
have N1 ≤ N ∩ ZU∞ (G). By the minimality of N , ZU∞ (G) ∩ N = 1 or N ≤ ZU∞ (G). If the latter holds, then
N1 = 1 and so |N | = q . By [5, Lemma 2.3], G ∈ F , a contradiction. Therefore ZU∞ (G) ∩ N = 1. We have
also |N | = q , the same contradiction as above. �	
Theorem 3.10 Let F be a saturated formation containing U and let G be a group. Then G ∈ F if and only
if there is a normal subgroup H such that G/H ∈ F and every cyclic subgroup of F∗(H) with prime order
or order 4 not having supersolvable supplement in G is U -supplemented in G.

Proof The necessity is obvious. We only need to prove the sufficiency. If some subgroup of F∗(H) has a
supersolvable supplement in G, then G/F∗(H) ∈ F and in this case G ∈ F by Lemma 2.6. Hence we may
assume that every cyclic subgroup of F∗(H) with prime order or order 4 is U -supplemented in G. By Lemma
2.1(1), every cyclic subgroup of F∗(H) with prime order or order 4 is U -supplemented in F∗(H). By [5,
Theorem 3.2], F∗(H) is supersolvable. In particular, F∗(H) is solvable and so F∗(H) = F(H). Now by [18,
Lemma 3.3.3], F∗(H) ≤ ZU∞ (G) and since ZU∞ (G) ≤ ZF∞ (G) by Lemma 2.8, we have F∗(H) ≤ ZF∞ (G).
By Lemma 2.7, H ≤ ZF∞ (G). It follows from G/H ∈ F that G ∈ F . �	
Corollary 3.11 [17, Theorem 3.2] Let F be a saturated formation containing U . Suppose that G is a group
with a normal subgroup H such that G/H ∈ F . If all minimal subgroups and all cyclic subgroups of F∗(H)
are c-normal in G, then G ∈ F .

Corollary 3.12 [15, Theorem 1.2] Let F be a saturated formation containing U . Suppose that G is a group
with a normal subgroup H such that G/H ∈ F . If all minimal subgroups and all cyclic subgroups with order
4 of F∗(H) are c-supplemented in G, then G ∈ F .
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