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Abstract We present a note on the paper by Brown and Wu (J Math Anal Appl 337:1326–1336, 2008). Indeed,
we extend the multiplicity results for a class of semilinear elliptic system to the quasilinear elliptic system of
the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�pu + m(x) |u|p−2u = α
α+β

|u|α−2 u |v|β, x ∈ �,

−�pv + m(x) |v|p−2v = β
α+β

|u|α |v|β−2 v, x ∈ �,

|∇u|p−2 ∂u
∂n = λ a(x)|u|γ−2u, |∇v|p−2 ∂v

∂n = μ b(x)|v|γ−2v, x ∈ ∂�.

Here �p denotes the p-Laplacian operator defined by �pz = div (|∇z|p−2∇z), p > 2,� ⊂ R
N is a bounded

domain with smooth boundary, α > 1, β > 1, 2 < α + β < p < γ < p ∗ (p∗ = pN
N−p if N > p, p∗ = ∞

if N ≤ p), ∂
∂n is the outer normal derivative, (λ, μ) ∈ R

2\{(0, 0)}, the weight m(x) is a positive bounded
function, and a(x), b(x) ∈ C(∂�) are functions which change sign in �.
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1 Introduction

We are concerned with the existence and multiplicity of nontrivial nonnegative solutions to the quasilinear
elliptic system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�pu + m(x) |u|p−2u = α
α+β

|u|α−2 u |v|β, x ∈ �,

−�pv + m(x) |v|p−2v = β
α+β

|u|α |v|β−2 v, x ∈ �,

|∇u|p−2 ∂u
∂n = λ a(x)|u|γ−2u, |∇v|p−2 ∂v

∂n = μ b(x)|u|γ−2v, x ∈ ∂�.

(1)

Here �p denotes the p-Laplacian operator defined by �pz = div (|∇z|p−2∇z), p > 2,� ⊂ R
N is a

bounded domain with smooth boundary, α > 1, β > 1, 2 < α + β < p < γ < p ∗ (p∗ = pN
N−p if

N > p, p∗ = ∞ if N ≤ p), ∂
∂n is the outer normal derivative, (λ, μ) ∈ R

2\{(0, 0)}, the weight m(x) is a
positive bounded function and a(x), b(x) ∈ C(∂�), with a± = max{±a, 0} �≡ 0, and b± = max{±b, 0} �≡ 0.

Problems involving the s-Laplace operator arise in some physical models like the flow of non-Newtonian
fluids: pseudo-plastic fluids correspond to s ∈ (1, 2) while dilatant fluids correspond to s > 2. The case
s = 2 expresses Newtonian fluids [6]. On the other hand, quasilinear elliptic systems like (1) has an extensive
practical background. It can be used to describe the multiplicate chemical reaction catalyzed by the catalyst
grains under constant or variant temperature, it can be used in the theory of quasiregular and quasiconformal
mappings in Riemannian manifolds with boundary (see [18,22]) and can be a simple model of tubular chemi-
cal reaction, more naturally, it can be a correspondence of the stable station of dynamical system determined
by the reaction-diffusion system, see Ladde and Lakshmikantham et al. [19]. More naturally, it can be the
populations of two competing species [16]. So, the study of positive solutions of elliptic systems has more
practical meanings. We refer to [8,15] for additional results on elliptic systems.

We are motivated by the paper of Brown and Wu [13], in which Problem (1) was discussed when m ≡
1, p = 2, and 1 < γ < 2 < α + β < 2∗. They have altogether proved that, there exists C0 > 0 such

that if the parameter λ,μ satisfy 0 < |λ| 2
2−q + |μ| 2

2−q < C0, then Problem (1) for m ≡ 1, p = 2, and
1 < γ < 2 < α + β < 2∗, has at least two solutions (u+

0 , v+
0 ) and (u−

0 , v−
0 ) such that u±

0 ≥ 0, v±
0 ≥ 0 in �

and u±
0 �= 0, v±

0 �= 0. In this paper, the method of [13] is extended for the system (1) but with m �≡ 1, p > 2,
and 2 < α + β < p < γ < p∗. The change in γ completely changes the nature of the solution set of (1).
When p = 2, for a single equation, similar problems (for Dirichlet or Neuman boundary condition) have
been studied by Drabek et al. [7], Ambrosetti et al. [4], Brezis and Nirenberg [10], and Tehrani [20,21] using
variational methods and by Amman and Lopez-Gomez [5] by using global bifurcation theory.

In recent years, several authors have used the Nehari manifold and fibering maps (i.e., maps of the form
t �−→ Jλ(tu) where Jλ is the Euler function associated with the equation) to solve semilinear and quasilinear
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problems (see [1–3,9,11–14,17,23–26]). By the fibering method, Drabek and Pohozaev [17], Bozhkov and
Mitidieri [9] studied, respectively, the existence of multiple solution to a p-Laplacian single equation and
(p, q)-Laplacian system. Brown and Zhang [14] have studied the following subcritical semilinear elliptic
equation with a sign-changing weight function

{−�u(x) = λa(x)u + b(x)|u(x)|γ−2 u(x), x ∈ �,
u(x) = 0, x ∈ ∂�,

where γ > 2. Exploiting the relationship between the Nehari manifold and fibering maps, they gave an inter-
esting explanation of the well-known bifurcation result. In fact, the nature of the Nehari manifold changes as
the parameter λ crosses the bifurcation value. Recently, in [11], the author considered the above problem with
1 < γ < 2. In this work, we give a variational method which is similar to the fibering method (see [17,14]
or [14]) to prove the existence of at least two nontrivial nonnegative solutions of Problem (1). In particular,
by using the method of [13], we do this without the extraction of the Palais–Smale sequences in the Nehari
manifold as in [1,3].

This paper is divided into three sections, organized as follows. In Sect. 2, we give some notation, prelimi-
naries, properties of the Nehari manifold and set up the variational framework of the problem. In Sect. 3, we
give our main results.

2 Variational setting

Let W 1,p
0 = W 1,p

0 (�) denote the usual Sobolev space. In the Banach space W = W 1,p
0 × W 1,p

0 we introduce
the norm

‖(u, v)‖W =
⎛

⎝

∫

�

(|∇u|p + m(x)|u|p)dx +
∫

�

(|∇v|p + m(x)|v|p)dx

⎞

⎠

1
p

which is equivalent to be the standard one. Throughout this paper, we set C1 and C2 be the best Sobolev
and the best Sobolev trace constants for the embedding of W 1,p

0 (�) in Lγ (∂�) and W 1,p
0 (�) in Lα+β(�),

respectively. First, we give the definition of the weak solution of (1).

Definition 2.1 We say that (u, v) ∈ W is a weak solution to (1) if for all (w1, w2) ∈ W we have

∫

�

|∇u|p−2 ∇u .∇w1 dx +
∫

�

m(x) |u|p−2 u w1 dx

= λ

∫

∂�

a(x) |u|γ−2u w1 dx + α

α + β

∫

�

|u|α−2 u |v|β w1 dx,

∫

�

|∇v|p−2 ∇v .∇w2 dx +
∫

�

m(x) |v|p−2 v w2 dx

= μ

∫

∂�

b(x) |v|γ−2v w2 dx + β

α + β

∫

�

|u|α |v|β−2 v w2 dx .

It is clear that Problem (1) has a variational structure. Let Iλ,μ : W → R be the corresponding energy
functional of Problem (1) is defined by

Iλ,μ = 1

p
M(u, v) − 1

γ
N (u, v) − 1

α + β
R(u, v),
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where

M(u, v) =
∫

�

(|∇u|p + m(x)|u|p)dx +
∫

�

(|∇v|p + m(x)|v|p)dx,

N (u, v) = λ

∫

∂�

a(x) |u|γ dx + μ

∫

∂�

b(x) |v|γ dx, and R(u, v) =
∫

�

|u|α |v|β dx .

It is well known that the weak solutions of Eq. (1) are the critical points of the energy functional Iλ,μ. Let
J be the energy functional associated with an elliptic problem on a Banach space X. If J is bounded below and
J has a minimizer on X, then this minimizer is a critical point of J. So, it is a solution of the corresponding
elliptic problem. However, the energy functional Iλ,μ, is not bounded below on the whole space W, but is
bounded on an appropriate subset, and a minimizer on this set (if it exists) gives rise to solution to (1).

Then we introduce the following notation: for any functional f : W −→ R we denote by f ′(u, v) (h1, h2)
the Gateaux derivative of f at (u, v) ∈ W in the direction of (h1, h2) ∈ W, and

f (1)(u, v)h1 = f ′(u + εh1, v) | ε=0, f (2)(u, v)h2 = f ′(u, v + δh2) | δ=0 .

Consider the Nehari minimization problem for (λ, μ) ∈ R
2\{(0, 0)},

α0(λ, μ) = inf {Iλ,μ(u, v) : (u, v) ∈ Sλ,μ},
where Sλ,μ = {(u, v) ∈ W\{(0, 0)} : 〈I ′

λ,μ(u, v), (u, v)〉 = 〈I(1)
λ,μ(u, v)u, I(2)

λ,μ(u, v), v〉 = 0}. It is clear that
all critical points of Iλ,μ must lie on Sλ,μ which is known as the Nehari manifold (see [16]). We will see below
that local minimizers of Iλ,μ on Sλ,μ are usually critical points of Iλ,μ. It is easy to see that (u, v) ∈ Sλ,μ if
and only if

M(u, v) − N (u, v) = R(u, v). (2)

Note that Sλ,μ contains every nonzero solution of Problem (1).
Define

Gλ,μ(u, v) = 〈I ′
λ,μ(u, v), (u, v)〉.

Then for (u, v) ∈ Sλ,μ,

〈G′
λ,μ(u, v), (u, v)〉 = p M(u, v) − γ N (u, v) − (α + β) R(u, v) (3)

= (p − α − β) M(u, v) + (α + β − γ ) N (u, v) (4)

= (p − γ ) M(u, v) + (γ − α − β) R(u, v) (5)

= (p − γ ) N (u, v) + (p − α − β) R(u, v). (6)

Now, we split Sλ,μ into three parts:

S+
λ,μ = {u ∈ Sλ,μ : 〈G′

λ,μ(u, v), (u, v)〉 > 0},

S0
λ,μ = {u ∈ Sλ,μ : 〈G′

λ,μ(u, v), (u, v)〉 = 0},

S−
λ,μ = {u ∈ Sλ,μ : 〈G′

λ,μ(u, v), (u, v)〉 < 0}.
To state our main result, we now present some important properties of S+

λ,μ,S0
λ,μ, and S−

λ,μ.

Lemma 2.2 There exists ζ0 > 0 such that for

0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ0,

we have S0
λ,μ = ∅.
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Proof Suppose otherwise, thus for ζ0 =
[

(p−α−β)

(γ−α−β) Cγ
1

] p
γ−p

[
(γ−p)

(γ−α−β) Cα+β
2

] p
p−α−β

, there exists (λ, μ) with

0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ0 such that S0
λ,μ �= ∅. Then for (u, v) ∈ S0

λ,μ we have

0 = 〈G′
λ,μ(u, v), (u, v)〉 = (p − α − β) M(u, v) + (α + β − γ ) N (u, v) (7)

= (p − γ ) M(u, v) + (γ − α − β) R(u, v). (8)

By the Sobolev trace imbedding theorem,

N (u, v) = λ

∫

∂�

a(x) |u|γ dx + μ

∫

∂�

b(x) |v|γ dx

≤ |λ| ‖a‖∞ ‖u‖γ
γ + |μ| ‖b‖∞ ‖v‖γ

γ

≤ Cγ
1 |λ| ‖a‖∞ ‖u‖γ

1,p + Cγ
1 |μ| ‖b‖∞ ‖v‖γ

1,p

≤ Cγ
1

[
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

] γ−p
p ‖(u, v)‖γ

W , (9)

and

R(u, v) ≤ Cα+β
2 ||(u, v)||α+β

W . (10)

Indeed, by condition α + β <
pN

N−p , we have

pN

α (N − p)
− pN

pN − β(N − p)
> 0.

So, there exists ε0 such that

0 < ε0 <
pN

α (N − p)
− pN

pN − β(N − p)
,

which implies

β (p∗ − α ε0)

p∗ − α (ε0 + 1)
< 2p∗ = pN

N − p
.

Then using the Hölder inequality and the Sobolev inequality, we get

R(u, v) =
∫

�

|u|α |v|β dx

≤
⎛

⎝

∫

�

[(|u|)α] p∗
α

−ε0 dx

⎞

⎠

α
p∗−ε0 α

⎛

⎝

∫

�

[(|v|)β ]
p∗−ε0 α

p∗−(ε0+1) α dx

⎞

⎠

p∗−(ε0+1) α

2∗−ε0 α

≤ Cα+β
2 ||(u, v)||α+β

W .

By using (9)–(10) in (7)–(8) we get

||(u, v)||W ≥
[

(p − α − β)

(γ − α − β) Cγ
1

] 1
γ−p 1

(
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

)1/p ,

and

||(u, v)||W ≤
[

(γ − α − β) Cα+β
2

γ − p

] 1
p−α−β

.
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This implies (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p ≥ ζ0, which is a contradiction. Thus, we can conclude that

there exists ζ0 > 0 such that for 0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ0, we have S0
λ,μ = ∅. ��

By Lemma (2.2), for each (λ, μ) ∈ R
2\{(0, 0)} with 0 < (|λ|‖a‖∞)

p
γ−p + (|μ|‖b‖∞)

p
γ−p < ζ0, we write

Sλ,μ = S+
λ,μ ∪ S−

λ,μ and define

α+
0 (λ, μ) = inf

(u,v)∈S+
λ,μ

Iλ,μ(u, v); α−
0 (λ, μ) = inf

(u,v)∈S−
λ,μ

Iλ,μ(u, v).

Lemma 2.3 We have

(i) If (u, v) ∈ S+
λ,μ, then R(u, v) > 0;

(ii) If (u, v) ∈ S−
λ,μ, then N (u, v) > 0.

Proof (i) We consider the following two cases:
Case (i-a): N (u, v) ≤ 0. We have

R(u, v) = M(u, v) − N (u, v) > 0.

Case (i-b): N (u, v) > 0. Since (u, v) ∈ S+
λ,μ, by (6), we have

(p − γ ) N (u, v) + (p − α − β) R(u, v) > 0,

which implies

R(u, v) >
γ − p

p − α − β
N (u, v) > 0.

(ii) We consider the following two cases:
Case (ii-a): R(u, v) = 0. Since (u, v) ∈ Sλ,μ we have

N (u, v) = M(u, v) > 0.

Case (ii-b): R(u, v) �= 0. Since (u, v) ∈ S−
λ,μ, by (1), we have

(p − α − β) M(u, v) + (α + β − γ ) N (u, v) < 0,

which implies

N (u, v) >
p − α − β

γ − α − β
M(u, v) > 0.

It follows that the conclusion is true. ��
As proved in Binding et al. [7] or in Brown and Zhang [14], we have the following lemma.

Lemma 2.4 Suppose that (u0, v0) is a local minimizer for Iλ,μ on Sλ,μ. If (u0, v0) �∈ S0
λ,μ, then (u0, v0) is a

critical point of Iλ,μ.

Then we have the following result.

Lemma 2.5 Iλ,μ is coercive and bounded below on Sλ,μ.

Proof If (u, v) ∈ Sλ,μ, it follows from (2) and the Sobolev embedding theorem

Iλ,μ (u, v) =
(

1

p
− 1

γ

)

M (u, v) −
(

1

α + β
− 1

γ

)

R (u, v)

≥
(

1

p
− 1

γ

)

M (u, v) −
(

1

α + β
− 1

γ

)

Cα+β
2 ‖ (u, v) ‖α+β

W

=
(

1

p
− 1

γ

)

M (u, v) −
(

1

α + β
− 1

γ

)

Cα+β
2 (M (u, v))(α+β)/p .

Thus Iλ,μ is coercive and bounded below on Sλ,μ. ��
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Lemma 2.6 Let ζ ∗ = (
α+β

p )
p

p−α−β ζ0. Then if 0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ ∗, we have

(i) α+
0 (λ, μ) < 0;

(ii) α−
0 (λ, μ) ≥ k0, for some k0 = k0(α, β, γ, C1, C2, a, b, λ, μ) > 0.

Proof (i) Let (u, v) ∈ S+
λ,μ. By (4)

p − α − β

γ − α − β
M(u, v) > N (u, v),

and so

Iλ,μ(u, v) =
(

1

p
− 1

α + β

)

M(u, v) +
(

1

α + β
− 1

γ

)

QN (u, v)

≤
(

α + β − p

p(α + β)

)

M(u, v) +
(

γ − α − β

γ (α + β)

) [
(p − α − β)

(γ − α − β)
M(u, v)

]

=
[
α + β − p

p(α + β)
+ p − α − β

γ (α + β)

]

M(u, v)

= (γ − p)(α + β − p)

pγ (α + β)
M(u, v) < 0.

Thus α+
0 (λ, μ) < 0.

(ii) Let (u, v) ∈ S−
λ,μ, by (4) and (9) we have

M(u, v) <
γ − α − β

p − α − β
N (u, v)

≤ γ − α − β

p − α − β
Cγ

1

[
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

] γ−p
p ‖(u, v)‖γ

W .

This implies

||(u, v)||W >

(
p − α − β

(γ − α − β) Cγ

) 1
γ−p 1

(
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

)1/p , for all (u, v) ∈ S−
λ,μ. (11)

By the proof of Lemma (2.5) we have

Iλ,μ(u, v) ≥ ||(u, v)||α+β
W

[(
1

p
− 1

γ

)

||(u, v)||p−α−β
W − Cα+β

2

(
1

α + β
− 1

γ

)]

>

(
p − α − β

(γ − α − β) Cγ
1

) α+β
γ−p 1

(
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

) α+β
p

×

⎡

⎢
⎢
⎣

(
γ − p

pγ

)(
p − α − β

(γ − α − β) Cγ
1

) p−α−β
γ−p 1

(
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

) p−α−β
p

− Cα+β
2

(
1

α + β
− 1

γ

)

⎤

⎥
⎥
⎦ .
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Thus, if

0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ ∗,

then

Iλ,μ > k0, for all (u, v) ∈ S−
λ,μ,

for some k0 = k0(α, β, γ, C1, C2, a, b, λ, μ) > 0. This completes the proof. ��
For each (u, v) ∈ W with N (u, v) > 0, we write

tmax =
(

(p − α − β) M(u, v)

(γ − α − β) N (u, v)

)1/(γ−p)

> 0.

Then we have the following lemma.

Lemma 2.7 For each (u, v) ∈ W with N (u, v)) > 0 and

0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ0,

we have

(i) if R(u, v) ≤ 0, then there is a unique t− > tmax such that (t−u, t−v) ∈ S−
λ,μ and

Iλ,μ(t−u, t−v) = sup
t≥0

Iλ,μ(tu, tv);

(ii) if R(u, v) > 0, then there are unique 0 < t+ = t+(u, v) < tmax < t− such that (t+u, t+v) ∈
S+

λ,μ, (t−u, t−v) ∈ S−
λ,μ and

Iλ,μ(t+u, t+v) = inf
0≤t≤tmax

Iλ,μ(tu, tv), Iλ,μ(t−u, t+−v) = sup
t≥0

Iλ,μ(tu, tv).

Proof Fix (u, v) ∈ W with N (u, v) > 0. Let

E(t) = t p−α−β M(u, v) − tγ−α−β N (u, v) for t ≥ 0.

Clearly, E(0) = 0, E(t) → −∞ as t → ∞. Since

E ′(t) = (p − α − β)t p−1−α−β M(u, v) − (γ − α − β)tγ−α−β−1 Nu, v),

we have E ′(t) = 0 at t = tmax, E ′(t) > 0 for t ∈ [0, tmax) and E ′(t) < 0 for t ∈ (tmax, ∞). Then E(t)
achieves its maximum at tmax, increasing for t ∈ [0, tmax) and decreasing for t ∈ (tmax, ∞). Moreover,

E(tmax) =
(

(p − α − β) M(u, v)

(γ − α − β) N (u, v)

) p−α−β
γ−p

M(u, v) −
(

(p − α − β) M(u, v)

(γ − α − β) N (u, v)

) γ−α−β
γ−p

N (u, v)

= ‖(u, v)‖α+β
W

⎡

⎣

(
p − α − β

γ − α − β

) p−α−β
γ−p −

(
p − α − β

γ − α − β

) γ−α−β
γ−p

⎤

⎦

(
‖(u, v)‖γ

W

N (u, v))

) p−α−β
γ−p

≥ ‖(u, v)‖α+β
W

(
γ − p

γ − α − β

)(
p − α − β

γ − α − β
(C1)

−γ

) p−α−β
γ−p

× 1
(
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

) p−α−β
p

. (12)
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(i) R(u, v) ≤ 0 : There is a unique t− > tmax such that E(t−) = R(u, v) and E ′(t−) < 0. Now,

(p − α − β) M(t−u, t−v) − (γ − α − β) N (t−u, t−v)

= (t−)1+α+β
[
(p − α − β)(t−)p−1−α−β M(u, v) − (γ − α − β)(t−)γ−α−β−1 N (u, v)

]

= (t−)1+α+β E ′(t−) < 0,

and

Gλ,μ(t−u, t−v) = (t−)p M(u, v) − (t−)γ N (u, v) − (t−)α+β R(u, v)

= (t−)α+β
[
(t−)p−α−β M(u, v) − (t−)γ−α−β N (u, v) − R(u, v)

]

= (t−)α+β
[
E(t−) − R(u, v)

] = 0.

Thus, (t−u, t−v) ∈ S−
λ,μ. Since for t > tmax, we have

(p − α − β) M(tu, tv) − (γ − α − β) N (tu, tv) < 0,

d2

dt2Jλ,μ(tu, tv) < 0,

and

d

dt
Jλ,μ(tu, tv) = t p−1 M(u, v) − tγ−1 N (u, v) − tα+β−1 R(u, v) = 0 for t = t−.

Thus, Iλ,μ(t−u, t−v) = supt≥0 Iλ,μ(tu, tv).
(ii) R(u, v) > 0. By (12) and

E(0) = 0 < R(u, v)

≤ Cα+β
2 ‖(u, v)‖α+β

W

< ‖(u, v)‖α+β
W

(
γ − p

γ − α − β

)(
p − α − β

γ − α − β
(C1)

−γ

) p−α−β
γ−p

× 1
(
(|λ|‖a‖∞)

p
γ−p + (|μ| ‖b‖∞)

p
γ−p

) p−α−β
p

≤ E(tmax)

for 0 < (|λ|‖a‖∞)
p

γ−p +(|μ| ‖b‖∞)
p

γ−p < ζ0, there are unique t+ and t− such that 0< t+ < tmax < t−,

E(t+) = R(u, v) = E(t−),

E ′(t+) > 0 > E ′(t−).

We have (t+u, t+v) ∈ S+
λ,μ, (t−u, t−v) ∈ S−

λ,μ, and Iλ,μ(t−u, t−v) ≥ Iλ(tu, tv) ≥ Iλ(t+u, t+v) for each
t ∈ [t+, t−] and Iλ(t+u, t+v) ≤ Iλ(tu, tv) for each t ∈ [0, t+]. Thus,

Iλ,μ(t+u, t+v) = inf
0≤t≤tmax

Iλ,μ(tu, tv), Iλ,μ(t−u, t+−v) = sup
t≥0

Iλ,μ(tu, tv).

This completes the proof. ��
For each u ∈ W with R(u, v) > 0, we write

tmax =
(

(γ − α − β) R(u, v)

(γ − p) M(u, v)

)1/(p−α−β)

> 0. (13)

Then we have the following lemma.
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Lemma 2.8 For each u ∈ W with R(u, v) > 0, we have

(i) if N (u, v) ≤ 0, then there is a unique t+ < tmax such that (t+u, t+v) ∈ S+
λ,μ and

Iλ,μ(t+u, t+v) = inf
t≥0

Iλ,μ(tu, tv);

(ii) if N (u, v) > 0, then there are unique 0 < t+ = t+(u) < tmax < t− such that (t+u, t+v) ∈
S+

λ,μ, (t−u, t−v) ∈ S−
λ,μ and

Iλ,μ(t+u, t+v) = inf
0≤t≤tmax

Iλ,μ(tu, tv), Iλ,μ(t−u, t−v) = sup
t≥0

Iλ,μ(tu, tv).

Proof Fix (u, v) ∈ W with R(u, v) > 0. Let

E(t) = t p−γ M(u, v) − tα+β−γ R(u, v) for t > 0. (14)

Clearly, E(t) → −∞ as t → 0+. Since

E
′
(t) = (p − γ ) t p−γ−1 P(u, v) − (α + β − γ ) tα+β−γ−1 R(u, v),

we have E
′
(t) = 0 at t = tmax, E

′
(t) > 0 for t ∈ [0, tmax) and E

′
(t) < 0 for t ∈ (tmax, ∞). Then E(t)

achieves its maximum at tmax, increasing for t ∈ [0, tmax) and decreasing for t ∈ (tmax, ∞). Using the
argument in Lemma (2.7) we can obtain the result of Lemma 2.8 ��

3 Existence of solutions

Now we can state our main results.

Theorem 3.1 If the parameters λ,μ satisfy 0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ ∗, then Problem (1) has
at least two solutions (u+

0 , v+
0 ) and (u−

0 , v−
0 ) such that u±

0 ≥ 0, v±
0 ≥ 0 in � and u±

0 �= 0, v±
0 �= 0.

Theorem 3.2 Suppose that a(x) ≥ 0 (≤ 0), then there exists a positive constant ζ1 such that if λ ≤ 0 (≥ 0)
and μ satisfies 0 < |μ| < ζ1, then Problem (1) has at least two solutions (u+

0 , v+
0 ) and (u−

0 , v−
0 ) such that

u±
0 ≥ 0, v±

0 ≥ 0 in � and u±
0 �= 0, v±

0 �= 0.

The proof of Theorem (3.2) is similar to that of Theorem (3.1) and for this reason, will be omitted here.

Remark 3.3 Our ideas can also be applied to the following elliptic system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�pu + m(x) |u|p−2u = λ a(x)|u|γ−2u, x ∈ �,

−�pv + m(x) |v|p−2v = μ b(x)|v|γ−2v, x ∈ �,

|∇u|p−2 ∂u
∂n = α

α+β
|u|α−2 u |v|β, |∇v|p−2 ∂v

∂n = β
α+β

|u|α |v|β−2 v, x ∈ ∂�,

where p, α, β, γ, m(x), a(x) and b(x) are as before. The results presented here have analogous statements for
the latter problem. The proofs of the multiplicity results are similar to the ones performed for Problem (1) so
we leave the details to the reader.

The proof of the Theorem (3.1) will be a consequence of the next two propositions.

Proposition 3.4 If 0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ ∗, then the functional Iλ,μ has a minimizer
(u+

0 , v+
0 ) in S+

λ,μ and it satisfies

(i) Iλ,μ(u+
0 , v+

0 ) = α+
0 (λ, μ);

(ii) (u+
0 , v+

0 ) is a nontrivial nonnegative solution of Problem (1) such that u+
0 ≥ 0, v+

0 ≥ 0 in � and
u+

0 �= 0, v+
0 �= 0.
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Proof By Lemma (2.5), Iλ,μ is coercive and bounded below on Sλ,μ. Let {(un, vn} ⊆ S+
λ,μ be a minimizing

sequence for Iλ,μ, i.e.,

lim
n→∞ Iλ,μ(un, vn) = inf

u∈S+
λ,μ

Iλ,μ(u, v).

Then by Lemma (2.5) and the Rellich theorem, there exist a subsequence {(un, vn)} and (u+
0 , v+

0 ) ∈ W such
that (u+

0 , v+
0 ) is a solution of Problem (1) and

un ⇀ u+
0 weakly in W 1,p

0 ,

un → u+
0 strongly in Lγ (�) and in Lα+β(�),

vn ⇀ v+
0 weakly in W 1,p

0 ,

vn → v+
0 strongly in Lγ (�) and in Lα+β(�).

This implies

R(un, vn) → R(u+
0 , v+

0 ) as n → ∞,

N (un, vn) → N (u+
0 , v+

0 ) as n → ∞.

Since

Iλ,μ(un, vn) =
(

1

p
− 1

γ

)

M(un, vn) −
(

1

α + β
− 1

γ

)

R(un, vn),

and by Theorem 2.6 (i)

Iλ,μ(un, vn) → α+
0 (λ, μ) < 0 as n → ∞.

Letting n → ∞, we see that R(u0, v0) > 0. In particular u+
0 �= 0, v+

0 �= 0. Now we prove that un → u+
0

strongly in W 1,p
0 , vn → v+

0 strongly in W 1,p
0 . Suppose otherwise, then either

‖u+
0 ‖1,p < lim inf

n→∞ ‖un‖1,p or ‖v+
0 ‖1,p < lim inf

n→∞ ‖vn‖1,p. (15)

Fix (u, v) ∈ W with R(u, v) > 0. Let

K(u,v)(t) = E(t) − N (u, v),

where E(t) is as in (14). Clearly, K(u,v)(t) → −∞ as t → 0+, and

K(u,v)(t) → −N (u, v) as t → ∞.

Since K ′
(u,v)(t) = E

′
(t), by an argument similar to the one in the proof of Lemma (2.8) we have that the func-

tion K(u,v)(t) achieves its maximum at tmax, is increasing for t ∈ (0, tmax) and decreasing for t ∈ (tmax, ∞),
where

tmax =
(

(γ − α − β) R(u, v)

(γ − p) M(u, v)

)1/(p−α−β)

> 0,

is as in (13). Since R(u+
0 , v+

0 ) > 0, by Lemma (2.8) there is unique t+0 < tmax such that (t+0 u+
0 , t+0 v+

0 ) ∈ S+
λ,μ

and

Iλ,μ(t+0 u+
0 , t+0 v+

0 ) = inf
0≤t≤tmax

Iλ,μ(tu+
0 , tv+

0 ).
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Then

K(u+
0 ,v+

0 )(t
+
0 ) = (t+0 )p−γ M(u+

0 , v+
0 ) − (t+0 )α+β−γ R(u+

0 , v+
0 ) − N (u+

0 , v+
0 )

= (t+0 )−γ
(
M(t+0 u+

0 , t+0 v+
0 ) − R(t+0 u+

0 , t+0 v+
0 ) − N (t+0 u+

0 , t+0 v+
0 )

)

= 0. (16)

By (15) and (16) we obtain

K(un ,vn)(t
+
0 ) > 0 for n sufficiently large.

Since (un, vn) ∈ S+
λ,μ, we have tmax(un) > 1. Moreover,

K(un ,vn)(1) = M(un, vn) − R(un, vn) − N (un, vn) = 0,

and K(un ,vn)(t) is increasing for t ∈ (0, tmax(un, vn)). This implies K(un ,vn)(t) < 0 for all t ∈ (0, 1] and n
sufficiently large. We obtain 1 < t+0 ≤ tmax(u0, v0). But (t+0 u+

0 , t+0 v+
0 ) ∈ S+

λ,μ and

Iλ,μ(t+0 u+
0 , t+0 v+

0 ) = inf
0≤t≤tmax(u+

0 ,v+
0 )

Iλ,μ(tu+
0 , tv+

0 ).

This implies

Iλ,μ(t+0 u+
0 , t+0 v+

0 ) < Iλ,μ(u+
0 , v+

0 ) < lim
n→∞ Iλ,μ(un, vn) = α+

0 (λ, μ),

which is a contradiction. Hence

un → u+
0 strongly in W 1,p

0 ,

vn → v+
0 strongly in W 1,p

0 .

This implies

Iλ,μ(un, vn) → Iλ,μ(u+
0 , v+

0 ) = α+
0 (λ, μ) as n → ∞.

Thus (u+
0 , v+

0 ) is a minimizer for Iλ,μ on S+
λ,μ. Since Iλ,μ(u+

0 , v+
0 ) = Iλ,μ(|u+

0 |, |v+
0 |) and (|u+

0 |, |v+
0 |) ∈

S+
λ,μ, by Lemma (2.4) we may assume that (u+

0 , v+
0 ) is a nontrivial nonnegative solution of Equation (1). ��

Next, we establish the existence of a local minimum for Iλ,μ on S−
λ,μ.

Proposition 3.5 If 0 < (|λ|‖a‖∞)
p

γ−p + (|μ|‖b‖∞)
p

γ−p < ζ ∗, then the functional Iλ,μ has a minimizer
(u−

0 , v−
0 ) in S−

λ,μ and it satisfies

(i) Iλ,μ(u−
0 , v−

0 ) = α−
0 (λ, μ);

(ii) (u−
0 , v−

0 ) is a nontrivial nonnegative solution of Problem (1), such that u−
0 ≥ 0, v−

0 ≥ 0 in � and
u−

0 �= 0, v−
0 �= 0.

Proof Let {(un, vn)} be a minimizing sequence for Iλ,μ on S−
λ,μ, i.e.,

lim
n→∞ Iλ,μ(un, vn) = inf

u∈M−
λ,μ

Iλ,μ(u, v).

Then by Lemma (2.5) and the Rellich theorem, there exist a subsequence {(un, vn)} and (u−
0 , v−

0 ) ∈ W such
that (u−

0 , v−
0 ) is a solution of Problem (1) and

un ⇀ u−
0 weakly in W 1,p

0 ,

un → u−
0 strongly in Lγ (�) and in Lα+β(�),

vn ⇀ v−
0 weakly in W 1,p

0 ,

vn → v−
0 strongly in Lγ (�) and in Lα+β(�).
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This implies

R(un, vn) → R(u−
0 , v−

0 ) as n → ∞,

N (un, vn) → N (u−
0 , v−

0 ) as n → ∞.

Moreover, by (4) we obtain

N (un, vn) >
(2 − α − β)

(γ − α − β)
M(un, vn); (17)

By (11) and (17) there exists a positive number η0 such that

N (un, vn) > η0.

This implies

N (u−
0 , v−

0 ) ≥ η0. (18)

In particular u−
0 �= 0, v−

0 �= 0. Arguing by contradiction, we may assume that, v+
0 ≡ 0. Then as u+

0 is a
nonzero solution of

{−�u + m(x) u = 0, x ∈ �,

|∇u|p−2 ∂u
∂n = λ a(x)|u|γ−2u, x ∈ ∂�,

we have

M(u+
0 , 0) = N (u+

0 , 0) > 0.

Since c± = max{±a, 0} �≡ 0, we may choose z ∈ W 1,2\{0} such that

M(z, 0) = N (0, z) > 0,

and

R(u+
0 , z) ≥ 0.

Now

N (u+
0 , z) = N (u+

0 , 0) + N (0, z) > 0,

and so by Lemma (2.8) there is a unique 0 < t+ < tmax such that (t+u+
0 , t+z) ∈ S+

λ,μ. Moreover,

tmax =
(

(γ − α − β) R(u+
0 , z)

(γ − p) M(u+
0 , z)

)1/(p−α−β)

=
(

γ − α − β

γ − p

)1/(p−α−β)

> 1,

and

Iλ,μ(t+u+
0 , t+z) = inf

0≤t≤tmax

Iλ,μ(tu+
0 , t z).

This implies

Iλ,μ(t+u+
0 , t+z) ≤ Iλ,μ(u+

0 , z) < Iλ,μ(u+
0 , 0) = α+

0 (λ, μ),

which is a contradiction and hence u−
0 �= 0, v−

0 �= 0. Now we prove that un → u−
0 strongly in W 1,p

0 , vn → v−
0

strongly in W 1,p
0 . Suppose otherwise, then either

‖u−
0 ‖1,p < lim inf

n→∞ ‖un‖1,p or ‖v−
0 ‖1,p < lim inf

n→∞ ‖vn‖1,p. (19)
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By Lemma (2.7) there is a unique t−0 such that (t−0 u−
0 , t−0 v−

0 ) ∈ S−
λ,μ. Since (un, vn) ∈ S−

λ,μ, Iλ,μ(un, vn) ≥
Iλ,μ(tun, tvn) for all t ≥ 0, we have

Iλ,μ(t−0 u−
0 , t−0 v−

0 ) < lim
n→∞ Iλ,μ(t−0 un, t−0 vn) ≤ lim

n→∞ Iλ,μ(un, vn) = α−
0 (λ, μ),

and this is a contradiction. Hence

un → u−
0 strongly in W 1,p

0 ,

vn → v−
0 strongly in W 1,p

0 .

This implies

Iλ,μ(un, vn) → Iλ,μ(u−
0 , v−

0 ) = α−
0 (λ, μ) as n → ∞.

Thus (u−
0 , v+−

0 ) is a minimizer for Iλ,μ on S−
λ,μ. Since Iλ,μ(u−

0 , v−
0 ) = Iλ,μ(|u−

0 |, |v−
0 |) and (|u−

0 |, |v−
0 |) ∈

S−
λ,μ, by Lemma (2.4) we may assume that (u−

0 , v−
0 ) is a nontrivial nonnegative solution of Equation (1). ��

Proof of Theorem 3.1 By Propositions (3.4), (3.5), we obtain that Equation (1) has two nontrivial nonnegative
solutions (u+

0 , v+
0 ) and (u−

0 , v−
0 ) such that (u+

0 , v+
0 ) ∈ S+

λ,μ and (u−
0 , v−

0 ) ∈ S−
λ,μ. It remains to show that the

solutions found in Propositions (3.4) and (3.5) are distinct. Since S+
λ,μ ∩ S−

λ,μ = ∅, this implies that (u+
0 , v+

0 )

and (u−
0 , v−

0 ) are distinct. This concludes the proof. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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