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Abstract In this paper the prediction problem is studied under members of a class �∗ of multivariate distri-
butions, constructed by AL-Hussaini and Ateya (Stat Pap 46:321–338, 2005; J Egypt Math Soc 14(1):45–54,
2006). More attention is given to bivariate compound Rayleigh distribution, which is a member of this class,
as illustrative example.
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1 Introduction

This section deals with a class of continuous distributions � and its multivariate version �∗, and the generation
of a multivariate sample from �∗, and one and two-sample predictions.

Suppose that a class � of distribution functions is of the form

� =
{

F : F ≡ FX |�(x |θ) = 1 − exp[−θδλη(x)],

0 ≤ a < x < b ≤ ∞, (θ, δ > 0, (θ, δ, η) ∈ �)

}
, (1.1)
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where a and b are non-negative real numbers such that a may assume the value zero and b the value infin-
ity, λη(x) is a continuous, monotone increasing, and differentiable function of x such that λη(x) → 0 as
x → a+, λη(x) → ∞ as x → b− and η is a parameter (could be a vector), (θ, δ, η) belongs to a parameter
space �. This class covers some important distributions such as the Weibull, exponential, Rayleigh, compound
Weibull, compound exponential (Lomax), compound Rayleigh, Pareto, power function, beta, Gompertz and
compound Gompertz distributions, among others. The failure rate and survival functions corresponding to
F ∈ � are, respectively, δθλ′

η(x) and e−θδλη(x), so that the probability density function (pdf) is given, for
0 ≤ a < x < b ≤ ∞, by

fX |�(x |θ) = δθλ′
η(x)exp[−θδλη(x)], where λ′

η(x) = d(λη)

dx
. (1.2)

The class � was used by AL-Hussaini and Osman [10], AL-Hussaini [4], Ahmad [1,2], Ahmad and Fawzy
[3], AL-Hussaini and Ahmad [5,6], and Jafar et al. [13].

1.1 A class of multivariate distributions

AL-Hussaini and Ateya [7,8] constructed a class of multivariate distributions by compounding members of
the class � with the gamma distribution. The resulting multivariate distributions form a class �∗, given by

�∗ =
{

F∗ : F∗ ≡ FX (x) =
∫

fX (u)du
}
,

where
∫ ≡ ∫ x1

0 . . .
∫ xk

0 , u = (u1, . . . , uk), du = duk . . . du1 and fX (x) is the pdf of the random vector
X = (X1, . . . , Xk), given by

fX (x) = �(α + k)

�(α)

[
k∏

i=1

ciλ
′
ηi

(xi )

][
1 +

k∑
i=1

ciληi (xi )

]−(α+k)

,

ci = δi/β, 0 ≤ a < xi < b ≤ ∞, i = 1, 2, . . . , k.

(1.3)

It was assumed that � is a positive random variable following the Gamma (α, β) distribution with pdf
g�(θ) given by

g�(θ) = βα

�(α)
θα−1e−βθ , θ > 0, (α > 0, β > 0). (1.4)

The pdf fX (x) in (1.3) may be obtained by writing

fX (x) =
∞∫

0

[
k∏

i=1

fXi |�(xi |θ)

]
g�(θ)dθ.

Maximum likelihood and Bayes estimation of the parameters of members of the class �∗ were obtained by
AL-Hussaini and Ateya [7,8] and particularly when the underlying population distribution is bivariate com-
pound Weibull or bivariate compound Gompertz.

1.2 Generation of a multivariate random sample of size n from the class �∗

Assuming that FXi |�(xi |θ) = 1 − exp[−θδiληi (xi )] and g�(θ) = βαθα−1e−βθ/�(α), an observa-
tion xi j is obtained by first generating θ j from Gamma (α, β), ui from U(0, 1) and then setting xi j =
λ−1

ηi
(−(ln ui )/θ jδi ), j = 1, 2, . . . , n, i = 1, 2, . . . , k. This is repeated until we obtain the required mul-

tivariate random sample.
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1.3 One-sample prediction

Suppose that x1 < x2 < · · · < xr be the informative type II censored sample, representing the first r ordered
lifetimes of a random sample of size n drawn from a population with pdf fX (x), cumulative distribution
function (cdf)FX (x) and reliability function (rf)R(x). In one-sample scheme the Bayesian prediction intervals
(BPI’s) for the remaining unobserved future (n − r) lifetimes are sought based on the first r observed ordered
lifetimes.

For the remaining (n − r) components, let ys = xr+s denote the future lifetime of the sth component to
fail, 1 ≤ s ≤ (n − r). The conditional density function of ys given that the r components had already failed is

g1(ys |θ) ∝ [R(xr ) − R(ys)](s−1)[R(ys)]n−r−s[R(xr )]−(n−r) fX (ys |θ), ys > xr , (1.5)

θ is the vector of parameters.
The predictive density function is given by

g∗
1(ys |x) =

∫
�

g1(ys |θ)π∗(θ |x)dθ , ys > xr , (1.6)

where π∗(θ |x) is the posterior density function of θ given x and x = (x1, . . . , xr ).
A (1 − τ) % BPI for ys is an interval (L , U ) such that

P(Ys > L|x) =
∞∫

L

g∗
1(ys |x)dys = 1 − τ

2
, L > xr , (1.7)

P(Ys > U |x) =
∞∫

U

g∗
1(ys |x)dys = τ

2
, U > xr . (1.8)

By solving Equations (1.7) and (1.8), we get the interval (L , U ).

1.4 Two-sample prediction

Let x1 < x2 < · · · < xr and z1 < z2 < · · · < zm represent informative (type II censored) sample from a
random sample of size n and a future ordered sample of size m, respectively. It is assumed that the two samples
are independent and drawn from a population with pdf fX (x), cdf FX (x) and rf R(x).

Our aim is to obtain the BPI’s for zs, s = 1, 2, . . . , m. The conditional density function of zs , given the
vector of parameters θ , is

g2(zs |θ) ∝ [1 − R(zs)](s−1)[R(zs)]m−s fX (zs |θ), zs > 0, (1.9)

θ is the vector of parameters.
The predictive density function is given by

g∗
2(zs |x) =

∫
�

g2(zs |θ)π∗(θ |x)dθ , zs > 0, (1.10)

π∗(θ |x) is the posterior density function of θ given x and x = (x1, . . . , xr ).
A (1 − τ) % BPI for zs is an interval (L , U ) such that

P(Zs > L|x) =
∞∫

L

g∗
2(zs |x)dzs = 1 − τ

2
, (1.11)

P(Zs > U |x) =
∞∫

U

g∗
2(zs |x)dzs = τ

2
. (1.12)

By solving Equations (1.11) and (1.12), we get the interval (L , U ).
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2 Bayesian prediction intervals for future bivariate observations

The main goal in this section is to study the one-sample and two-sample prediction problems in case of bivariate
informative observations.

While ordering a set of univariate random variables is a clear and straight-forward matter as it can be done
by simply ordering the set of random variables, such ordering is not as clear if we are dealing with a set of
random vectors.

Barnett [11] classified the principles used for ordering multivariate data into four principles: marginal,
reduced (aggregate), partial and conditional (sequential) ordering. An interesting detailed discussion of such
principles with illustrative examples are given in Barnett’s paper.

In our paper, we wish to predict bivariate random vectors. The first components of the predicted random
vectors are based on the ordered first components of the informative sample, as it is done in the univariate
case. To predict the second components, we compute the norms of each vector of the informative sample,
order the norms and then predict the future norms as it is done in the univariate case. The relation between
the components of vectors and norms enables us to obtain the second components of the predicted vectors.
In other words, we obtain the second component of a predicted vector from the knowledge of the values of
the first component and the norm of the vector. Ateya [9] used this point of view to obtain the BPI’s of future
observations from bivariate truncated generalized Cauchy distribution.

2.1 One-sample prediction

Let (x1, y1), . . . , (xr , yr ) be the first r bivariate informative observations from a random sample of size n
of bivariate observations. Suppose that the first components of such informative vectors are ordered, that is
x1 < x2 < · · · < xr and that their norms are given by z1, z2, . . . , zr .

To obtain B P I ′s for the remaining future vectors, denoted by (x∗
1 , y∗

1 ), . . . , (x∗
n−r , y∗

n−r ), where x∗
1 <

x∗
2 < · · · < x∗

n−r and norms z∗
1 < z∗

2 < · · · < z∗
n−r we apply the following steps:

1. based on ordered z1, z2, . . . , zr , denoted by z1:r , z2:r , . . . , zr :r compute the BPI’s for z∗
s , s = 1, 2, . . . , (n−

r), say (L1s, U1s),
2. based on x1 < x2 < · · · < xr compute the BPI’s for x∗

s , s = 1, 2, . . . , (n − r), say (L2s, U2s),
3. from (1) and (2), compute the BPI’s for y∗

s , s = 1, 2, . . . , (n−r) which are ([L2
1s−L2

2s]1/2, [U 2
1s−U 2

2s]1/2).
This is true, since z∗

s = (x∗
s

2 + y∗
s

2)1/2,
4. from (2) and (3), the B P I ′s for (x∗

s , y∗
s ), s = 1, 2, . . . , (n − r) is (L2s, [L2

1s − L2
2s]1/2), (U2s, [U 2

1s −
U 2

2s]1/2).

2.2 Two-sample prediction

In this case the first r bivariate informative observations (x1, y1), . . . , (xr , yr ) from a random sample of size
n is such that x1 < x2 < · · · < xr with norms z1, z2, . . . , zr . An independent future sample of size m is
(x∗

1 , x∗
1 ), . . . , (x∗

m, x∗
m), where x∗

1 < x∗
2 < · · · < x∗

m and norms z∗
1 < z∗

2 < · · · < z∗
m . To obtain the BPI’s of

the future sample, we apply the following steps:

1. based on ordered z1, z2, . . . , zr , denoted by z1:r , z2:r , . . . , zr :r compute the B P I ′s for z∗
s , s = 1, 2, . . . , m,

say (L1s, U1s),
2. based on x1 < x2 < · · · < xr compute the BPI’s for x∗

s , s = 1, 2, . . . , m, say (L2s, U2s),
3. from (1) and (2), compute the BPI’s for y∗

s , s = 1, 2, . . . , m which are ([L2
1s − L2

2s]1/2, [U 2
1s − U 2

2s]1/2).
4. from (2) and (3), the BPI’s for (x∗

s , y∗
s ), s = 1, 2, . . . , m is (L2s, [L2

1s − L2
2s]1/2), (U2s, [U 2

1s − U 2
2s]1/2).

3 One-sample prediction in case of (BVCR) distribution

If, in (1.3), k = 2, λη(x) = x2, λη(y) = y2, δ1 = δ2 = 1 so that c1 = c2 = 1/β = c, then (X, Y ) has a
bivariate compound Rayleigh (BVCR) pdf, given by

fX,Y (x, y) = 4α(α + 1)c2xy[1 + c(x2 + y2)]−(α+2), x > 0, y > 0. (3.1)
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The marginal pdf’s of the random variables X and Y are given, respectively, by

fX (x) = 2αcx[1 + cx2]−(α+1), x > 0, (3.2)

fY (y) = 2αcy[1 + cy2]−(α+1), y > 0. (3.3)

In this section we apply the steps given in Sect. 2.1.

Step 1
The norm Z of the vector (X, Y ) is given by Z = (X2 + Y 2)1/2. In Appendix A the pdf and hence cdf and

rf are derived. Such functions are given by

fZ (z) = 2α(α + 1)c2z3[1 + cz2]−(α+2), z > 0, (3.4)

FZ (z) = 1 − αcz2[1 + cz2]−(α+1) − [1 + cz2]−α, z > 0, (3.5)

R(z) = αcz2[1 + cz2]−(α+1) + [1 + cz2]−α, z > 0. (3.6)

From (3.4) and (3.6), the conditional density of Z∗
s given (c, α) is obtained (see Appendix B), as

g1(z
∗
s |c, α) ∝

∗∑
Bi, j,l,sck3αk4(α + 1)z∗(2(k1− j)+3)

s (1 + cz∗2
s )−αk1−k1+ j−α−2

×z2(k2−l)
r :r (1 + cz2

r :r )−αk2−k2+l , (3.7)

where

∗∑
=

s−1∑
i=0

k1∑
j=0

k2∑
l=0

, Bi, j,l,s = (−1)i
(s−1

i

)(k1

j

)(k2

l

)
,

with k1 = n − r + i − s, k2 = s − i − (n − r) − 1, k3 = 1 − j − l and k4 = − j − l.
Suppose that the prior belief of the experimenter is given by the pdf
π(c, α) = π1(c|α)π2(α), c|α ∼ Gamma(c1, α) and α ∼ Gamma(c2, c3).
So that

π(c, α) ∝ αc1+c2−1cc1−1e−α(c+c3). (3.8)

The likelihood function of (c, α) given Z1:r , . . . , Zr :r is given by

L(c, α|z1:r , . . . , zr :r ) ∝ [R(zr :r )]n−r
r∏

i1=1

f (zi1)

= 2rαr c2r (α + 1)r

⎛
⎝ r∏

i1

zi1

⎞
⎠

3 ⎛
⎝ r∏

i1

(1 + cz2
i1
)

⎞
⎠

−(α+2)
n−r∑

l1

(n−r

l1

)
αn−r−l1cn−r−l1

×z2(n−r−l1)
r :r (1 + cz2

r :r )−α(n−r)−(n−r)+l1 . (3.9)

Since the posterior density π∗(c, α|z1:r , . . . , zr :r ) ∝ π(c, α)L(c, α|z1:r , . . . , zr :r ), it follows, from (3.7) to
(3.9) that

g1(z
∗
s |c, α)π∗(c, α|z1:r , . . . , zr :r ) = A

∗∗∑
B∗

i, j,l,s,l1cn+r+c1− j−l−l1

×αn+c1+c2− j−l−l1−1(α + 1)r+1

⎛
⎝ r∏

i1

zi1

⎞
⎠

3 ⎛
⎝ r∏

i1

(1 + cz2
i1
)

⎞
⎠

−(α+2)

z∗(2(k1− j)+3)
s

×(1 + cz∗2
s )−αk1−k1+ j−α−2z2(s−i−l1−l−1)

r :r (1 + cz2
r :r )−α(s−i−1)−s+i+l1+l+1

× exp[−αc − αc3], (3.10)
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where A is a normalizing constant and

∗∗∑
=

∗∑ n−r∑
l1=0

, B∗
i, j,l,s,l1 = Bi, j,l,s

(n−r

l1

)
.

It then follows, from (1.6) and (3.10) that the predictive density function of Z∗
s is given by

g∗
1(z∗

s |z1:r , . . . , zr :r ) =
∞∫

0

∞∫
0

g1(z
∗
s |c, α)π∗(c, α|z1:r , . . . , zr :r )dc dα. (3.11)

To obtain (1 − τ) % BPI for Z∗
s , say (L1s, U1s), we solve the following two nonlinear equations, numerically,

P(Z∗
s > L1s |z1:r , . . . , zr :r ) =

∞∫
L1s

g∗
1(z∗

s |z1:r , . . . , zr :r )dz∗
s = 1 − τ

2
, L1s > zr :r , (3.12)

P(Z∗
s > U1s |z1:r , . . . , zr :r ) =

∞∫
U1s

g∗
1(z∗

s |z1:r , . . . , zr :r )dz∗
s = τ

2
, U1s > zr :r . (3.13)

Step 2
By using the pdf (3.2) and its cdf, the predictive density function of X∗

s can be written as follows

g∗
1(x∗

s |x1, . . . , xr ) =
∞∫

0

∞∫
0

g1(x∗
s |c, α)π∗(c, α|x1, . . . , xr )dc dα, (3.14)

where

g1(x∗
s |c, α)π∗(c, α|x1, . . . , xr ) = A1

s−1∑
i=0

Bi,scc1+rαc1+c2+r

⎛
⎝ r∏

i1

xi1

⎞
⎠

×
⎛
⎝ r∏

i1

(1 + cx2
i1
)

⎞
⎠

−(α+1)

x∗
s (1 + cx∗2

s )(−α(n−r+i−s+1)−1)(1 + cx2
r )−α(s−i−1)

× exp[−αc − αc3], (3.15)

where A1 is a normalizing constant and Bi,s = (−1)i
(s−1

i

)
.

To obtain (1−τ) % BPI for X∗
s , say (L2s, U2s), we solve the following two nonlinear equations, numerically,

P(X∗
s > L2s |x1, . . . , xr ) =

∞∫
L2s

g∗
1(x∗

s |x1, . . . , xr )dx∗
s = 1 − τ

2
, L2s > xr , (3.16)

P(X∗
s > U2s |x1, . . . , xr ) =

∞∫
U2s

g∗
1(x∗

s |x1, . . . , xr )dx∗
s = τ

2
, U2s > xr . (3.17)

Step 3
From Steps 2 and 3, a (1 − τ) % BPI for Y ∗

s is ([L2
1s − L2

2s]1/2, [U 2
1s − U 2

2s]1/2).
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4 Two-sample prediction in case of (BVCR) distribution

In this case we apply the steps in Sect. 2.2 as follows

Step 1
Substituting from (3.4) and (3.6) in (1.9) and then using (3.8) and (3.9) we can write

g2(z
∗
s |c, α)π∗(c, α|z1:r , . . . , zr :r ) = A

∗∗∑
B∗

i, j,s,mcn+r+c1−l1+k− j+1

×αn+c1+c2+k− j−l1(α + 1)r+1

⎛
⎝ r∏

i1

zi1

⎞
⎠

3 ⎛
⎝ r∏

i1

(1 + cz2
i1
)

⎞
⎠

−(α+2)

z∗(2(k− j)+3)
s

×(1 + cz∗2
s )−αk−k+ j−α−2z2(n−r−l1)

r :r (1 + cz2
r :r )−α(n−r)−(n−r)+l1

× exp[−αc − αc3], (4.1)

where

∗∗∑
=

s−1∑
i=0

k∑
j=0

n−r∑
l1=0

, B∗
i, j,s,m = (−1)i

(s−1

i

)(k

j

)(n−r

l1

)
, k = m − s + i,

and A is a normalizing constant.
It then follows that the predictive density function of Z∗

s is given by

g∗
2(z∗

s |z1:r , . . . , zr :r ) =
∞∫

0

∞∫
0

g1(z
∗
s |c, α)π∗(c, α|z1:r , . . . , zr :r )dc dα. (4.2)

To obtain (1 − τ) % BPI for Z∗
s , say (L1s, U1s), we solve the following two nonlinear equations, numerically,

P(Z∗
s > L1s |z1:r , . . . , zr :r ) =

∞∫
L1s

g∗
2(z∗

s |z1:r , . . . , zr :r )dz∗
s = 1 − τ

2
, L1s > 0, (4.3)

P(Z∗
s > U1s |z1:r , . . . , zr :r ) =

∞∫
U1s

g∗
2(z∗

s |z1:r , . . . , zr :r )dz∗
s = τ

2
, U1s > 0. (4.4)

Step 2
Using the pdf (3.2), its cdf and the same prior as in (3.8) the predictive density function of X∗

s is given by

g∗
2(x∗

s |x1, . . . , xr ) =
∞∫

0

∞∫
0

g2(x∗
s |c, α)π∗(c, α|x1, . . . , xr )dc dα, (4.5)

where

g2(x∗
s |c, α)π∗(c, α|x1, . . . , xr ) = A1

s−1∑
i=0

Bi,scr+c1αc1+c2+r

⎛
⎝ r∏

i1

xi1

⎞
⎠

×
⎛
⎝ r∏

i1

(1 + cx2
i1
)

⎞
⎠

−(α+1)

x∗
s (1 + cx∗2

s )(−α(m+i−s+1)−1)(1 + cx2
r )−α(n−r)

× exp[−αc − αc3], (4.6)
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where A1 is a normalizing constant and

Bi,s = (−1)i
(s−1

i

)
.

To obtain (1 − τ) % BPI for X∗
s , say (L2s, U2s), we solve the following two nonlinear equations, numerically,

P(X∗
s > L2s |x1, . . . , xr ) =

∞∫
L2s

g∗
2(x∗

s |x1, . . . , xr )dx∗
s = 1 − τ

2
, L2s > 0, (4.7)

P(X∗
s > U2s |x1, . . . , xr ) =

∞∫
U2s

g∗
2(x∗

s |x1, . . . , xr )dx∗
s = τ

2
, U2s > 0. (4.8)

Step 3
From Steps 2 and 3, a (1 − τ) % BPI for Y ∗

s is ([L2
1s − L2

2s]1/2, [U 2
1s − U 2

2s]1/2).

5 Numerical example

In this section we follow the steps

Table 1 One-sample prediction 95 % BPI’s for z∗
s , y∗

s and x∗
s , s = 1, 2, 3

r c1, c2, c3 α, c z∗
1 z∗

2 z∗
3

1 9,743 9,865 9,897
10 2 (3.9064, 5.6565) (4.4398, 6.6373) (4.8985, 7.8809)

3 1.7501 2.1975 2.9824
1 9,633 9,742 9,799

20 1, 1.5, 2 0.76, 1.3 2 (3.8761, 5.4953) (4.4523, 6.4451) (4.8723, 7.1942)
3 1.6192 1.9928 2.3219
1 9,580 9,612 9,687

45 2 (3.7670, 4.8779) (4.3687, 6.1819) (4.7585, 6.8615)
3 1.1109 1.8132 2.1030

r c1, c2, c3 α, c x∗
1 x∗

2 x∗
3

1 9,611 9,841 9,884
10 2 (2.4110, 3.0393) (2.7269, 3.7051) (3.1654, 4.4564)

3 0.6283 0.9782 1.2910
1 9,588 9,623 9,716

20 1, 1.5, 2 0.76, 1.3 2 (2.3720, 2.9688) (2.5971, 3.4690) (3.0912, 4.1933)
3 0.5968 0.8719 1.1021
1 9,541 9,592 9,610

45 2 (2.2891, 2.7694) (2.4870, 3.2379) (2.9714, 3.9531)
3 0.4803 0.7509 0.9817

r c1, c2, c3 α, c y∗
1 y∗

2 y∗
3

1 9,740 9,804 9,867
10 2 (3.0736, 4.7706) (3.5036, 5.5069) (3.7389, 6.4999)

3 1.6970 2.0033 2.7610
1 9,689 9,708 9,768

20 1, 1.5, 2 0.76, 1.3 2 (3.0655, 4.6243) (3.6164, 5.4319) (3.7661, 5.8457)
3 1.5588 1.8154 2.0796
1 9,588 9,650 9,712

45 2 (2.9917, 4.0155) (3.5917, 5.2661) (3.7167, 5.6083)
3 1.0238 1.6744 1.8916

1, Number of samples which cover the BPI’s from 10,000 samples; 2, BPI’s for z∗
s , x∗

s , y∗
s ; 3, length of the BPI’s
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Table 2 Two-sample prediction 95 % BPI’s for z∗
s , y∗

s and x∗
s , s = 1, 2, 3

r c1, c2, c3 α, c z∗
1 z∗

2 z∗
3

1 9,698 9,778 9,865
10 2 (1.4319, 2.1823) (2.2627, 3.4651) (3.3804, 5.2912)

3 0.7501 1.2014 1.9108
1 9,579 9,645 9,703

20 1, 1.5, 2 0.76, 1.3 2 (1.4053, 2.0401) (2.2816, 3.1608) (3.2239, 4.5159)
3 0.6348 0.8792 1.2920
1 9,498 9,514 9,639

45 2 (1.7919, 1.9721) (2.2502, 3.0318) (3.1705, 4.1634)
3 0.1801 0.7816 0.9925

r c1, c2, c3 α, c x∗
1 x∗

2 x∗
3

1 9,753 9,799 9,836
10 2 (0.8941, 1.2541) (1.3730, 1.9512) (2.1106, 2.9016)

3 0.3601 0.5782 0.7910
1 9,655 9,698 9,713

20 1, 1.5, 2 0.76, 1.3 2 (0.8714, 1.2152) (1.2537, 1.6696) (2.0943, 2.7255)
3 0.3438 0.4159 0.63111
1 9,581 9,630 9,703

45 2 (0.8680, 0.6083) (1.2301, 1.6013) (2.0805, 2.5665)
3 0.2403 0.3709 0.5861

r c1, c2, c3 α, c y∗
1 y∗

2 y∗
3

1 9,863 9,870 9,949
10 2 (1.1184, 1.7859) (1.7985, 3.2524) (2.6405, 4.4264)

3 0.6676 1.4539 1.7840
1 9,797 9,813 9,901

20 1, 1.5, 2 0.76, 1.3 2 (1.1025, 1.6387) (1.9062, 2.6839) (2.4510, 3.6011)
3 0.5362 0.7776 1.1496
1 9,678 9,690 9,762

45 2 (1.0681, 1.5677) (1.8842, 2.5744) (2.3924, 3.2783)
3 0.4816 0.6902 0.8859

1, Number of samples which cover the BPI’s from 10,000 samples; 2, BPI’s for z∗
s , x∗

s , y∗
s ; 3, length of the BPI’s

One-sample prediction

1. given the set of prior parameters, generate the parameters (c, α),
2. generate θ j from Gamma (α, 1/c) and ui from U(0, 1), j = 1, 2, . . . , n and i = 1, 2,
3. the bivariate sample will be in the form (x j , y j ) = (

√− ln(u1)/θ j ,
√− ln(u2)/θ j ), j = 1, 2, . . . , n,

4. for the first r informative observations from the previous sample, compute the norms, z1, z2, . . . , zr ,
5. based on the first r ordered norms, z1:r , z2:r , . . . , zr :r , compute the BPI’s for z∗

s , s = 1, 2, . . . , n − r , say
(L∗

1s, U∗
1s) as mentioned in step 1 of Sect. 3,

6. based on x1 < x2 < · · · < xr , compute the BPI’s for x∗
s , s = 1, 2, . . . , n − r , say (L∗

2s, U∗
2s) as mentioned

in Step 2 in Sect. 3,
7. from Steps 5 and 6, the BPI for y∗

s , s = 1, 2, . . . , n − r is (L2s, [L2
1s − L2

2s]1/2), (U2s, [U 2
1s − U 2

2s]1/2).

Two-sample prediction
1. based on the first r ordered norms, z1:r , z2:r , . . . , zr :r , compute the BPI’s for z∗

s , s = 1, 2, . . . , m, say
(L∗

1s, U∗
1s) as mentioned in step 1 in Sect. 4,

2. based on x1 < x2 < · · · < xr , compute the BPI’s for x∗
s , s = 1, 2, . . . , m, say (L∗

2s, U∗
2s) as mentioned in

Step 2 in Sect. 4,
3. from Steps 1 and 2, the BPI for y∗

s , s = 1, 2, . . . , m is (L2s, [L2
1s − L2

2s]1/2), (U2s, [U 2
1s − U 2

2s]1/2).
In Tables 1 and 2, a 95 % BPI’s are computed in case of the one- and two-sample predictions, respectively,

with the same parameters c, α, hyperparameters c1, c2, c3 and using informative samples of different sizes, r .

6 Results and discussion

In Tables 1 and 2 we take different sizes for the informative sample, 10, 20 and 45 and predict the first three
future observations.
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In these tables, we observe that

1. the length of the BPI’s and the number of samples which cover these intervals increase by increasing s and
decrease by increasing the informative sample size,

2. the results become better as the informative sample size r gets larger.
3. In all cases, the simulated percentage coverages are at least 95 %.
4. There is no particular reason for choosing the hyperparameters (c1, c2, c3) as (1, 1.5, 2).
5. If the hyperparameters are unknown, they can be estimated by using the empirical Bayes method (see

Maritz and Lwin [14]) or the hierarchical method (see Bernardo and Smith [12]).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Appendix A

Proof of Equations (3.4)–(3.6)

From the joint density function of the random variables X and Y which is given by (3.1) and using the trans-
forms X = Z cos � and Y = Z sin � we get the joint density function of the random variables Z and � in the
form

fZ ,�(z, θ) = 4α(α + 1)c2z3 sin θ cos θ [1 + cz2]−(α+2), z > 0, 0 ≤ θ ≤ π/2. (A.1)

Integrating (A.1) with respect to θ , we get the density function of Z as in (3.4).
The (cdf) of the random variable Z is given by

FZ (z) = 2α(α + 1)c2

z∫
0

u3[1 + cu2]−(α+2)du. (A.2)

The cdf (3.5) is obtained by integrating by parts the integral in (A.2). The rf is then obtained as in (3.6), since
R(z) = 1 − FZ (z).

Appendix B

Proof of Equation (3.7)

From (1.5), (3.4) and (3.6) we have

g1(z
∗
s |c, α) ∝ [R(zr :r ) − R(z∗

s )](s−1)[R(z∗
s )]n−r−s[R(z∗

r :r )]−(n−r) fZ (z∗
s )

=
s−1∑
i=0

(−1)i
(s−1

i

)
[R(z∗

s )]n−r−s+i [R(zr :r )]s−i−(n−r)−1 fZ (z∗
s ), (B.1)

where the reliability function R(z), given by (3.6) yields

k =
k∑

i=0

(k

i

)
ck−iαk−i z2(k−i)(1 + cz2)−αk−k+i . (B.2)

Using (B.2) and (3.4) in (B.1) we get (3.7).
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