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Abstract A dynamical system model is presented in this paper for genetic regulatory networks with hybrid
regulatory mechanism. The sufficient conditions for the stability of the proposed model are established based
on the Lyapunov functional method and linear matrix inequality techniques. To test the effectiveness and cor-
rectness of our theoretical results, illustrative examples regarding modified repressilator and modified 5-node
genetic network models are also presented.
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1 Introduction

Synthetic biology is an emerging field that aims to design and synthesize biological networks or devices that
perform a desired function in a predictable manner. Achieving this goal requires a combination of in sil-
ico and in vivo analyses, and combines approaches from the field of biology, engineering, and mathematics
[1,16,23,29,30]. The study of genetic regulatory networks (GRNs) has received a major impetus from the
recent development of experimental techniques allowing the measurement of patterns of gene expression in
a massively parallel way [10], and becomes a fundamental challenge in synthetic biology as it explains the
interactions between genes and proteins to form a complex system that performs complicated biological func-
tions [7,35]. Mathematical models often found in the literature describing GRNs can be roughly divided into
three classes [19], or classified into two types [9,21]. No matter which classification is used, the differential
equation or dynamic system model is similar. Genetic networks are biochemically dynamical systems and it
is natural to model them by using dynamical system models which provide a powerful tool for studying gene
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regulation processes in living organisms [13,20]. The dynamic system model describes the concentrations of
gene products, such as mRNAs and proteins, as continuous values of the gene regulation systems, which are
more accurate and can provide detailed understanding of the nonlinear dynamical behavior exhibited by bio-
logical systems. Terms in differential equations describe how gene expression rates are modified by changes in
the levels of transcription factors (TFs) or other effector molecules. In this paper, we consider the differential
equation model of genetic networks.

Computational models of regulatory networks are expected to provide insights into mechanisms underlying
behaviors of more complex gene networks, affected by many TFs and not amenable to intuitive understanding
[19,35]. In the absence of a time delay, a desired function, for example, toggle switch in [12], oscillationin [11]
and stability in [3,8,19], can be generated by the ordinary differential equation (ODE) model. Taking into the
consideration the slow processes of transcription, translation, and translocation or the finite switching speed
of amplifiers, the study of GRNs model incorporating time delay (transcriptional delay and translational time
[24]) have attracted some attentions [5,6,15,27,28,31,36,37]. In fact, for most genetic regulatory systems,
there are two types of reactions [9]: fast reaction and slow reaction. Fast reaction, such as RNA annealing,
dimerization, binding reactions, and other medical modification reactions, we can assume that this reaction
is immediate and that time delay is reduced to zero. While transcription and translation involve a number of
multi-stage reactions, there is a time lag in the peaks between mRNA molecules and proteins of gene. On the
other side, mRNA and proteins may be synthesized at different locations (i.e., nucleus and cytoplasm, respec-
tively), thus transportation or diffusion of mRNA and proteins between these two locations results in sizeable
delays. The mechanisms of combinational transcription activation are relatively unexplored [4,17]. So it is
reasonable to study the dynamical properties of a general dynamical model for GRNs with some terms incor-
porating transcription delay and some that do not, simultaneously. In this paper, we call the term incorporating
transcription delay as ‘indirect’ regulatory while the opposite one as ‘direct’ regulatory. The GRNs model
with ‘indirect’ and ‘direct’ regulatory term is called here as GRNs with hybrid regulatory mechanism (see
Fig. 1).

Stability has positive meanings in biological science and technologies, and in medicine. For example, it
may have meaning of a disease coming to a rest (or recovering). The applications of GRNs heavily depend on
the dynamic behavior of the equilibrium point. If an equilibrium of a neural network is globally, asymptotically
stable, it means that the domain of attraction of the equilibrium point is the whole space, and convergence is in
real time. Thus, it is of both theoretical and practical importance to study the stability of GRNs. Moreover, the
gene regulation is an intrinsically noisy process; this is always subject to intracellular and extracellular noise
perturbations, which are caused by the random births and deaths of individual molecules, along with extrinsic
noise due to fluctuations in the environment. Due to the fact that such cellular noises undoubtedly affect the
dynamics of networks both quantitatively and qualitatively, it is also important to investigate the stochastic
GRNSs [20,32,36,38-40].

Motivated by the above discussion, we are concerned with the stability of GRNs with hybrid regulatory
mechanism, which is first proposed to be applied to GRNs. By using the Lyapunov functional method and the
linear matrix inequality techniques, stability conditions are established in terms of LIMs that can be readily
solved by using standard numerical software (such as Matlab).

The organization of the paper is as follows: In Sect. 2, we present a model for GRNs with hybrid regulatory
mechanism by introducing a parameter 6 for measuring the relative contribution rate of direct regulatory.
In Sect. 3, we derive the sufficient conditions for the stability of the proposed model without stochastic per-

p(t=t) 1-0
e

(a) (b)

Fig.1 Genetic regulatory networks with hybrid regulatory mechanism for transcription. a Genetic regulatory networks. b Structure
of node i with hybrid regulatory mechanism, where there exists one output but multiple inputs for the ith node or gene
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turbation and with stochastic perturbation, respectively. [llustrative examples are shown to support the theory
results in Sect. 4. The paper is completed with a conclusion in Sect. 5.

Notations: The notations used throughout the paper are fairly standard. AT stands for the transpose of
a matrix A. The notation M > (<)0 is used to define a real symmetric positive definite (negative definite)
matrix. R" denotes the n-dimensional Euclidean space; R"*" denotes the set of all n x m real matrices and
I,, represents n-order identity matrix. In the sequel, if not explicitly stated, matrices are assumed to have
compatible dimensions. Amax (P) denotes the maximal eigenvalue of a square matrix P.

2 Model for GRNs with hybrid regulatory mechanism

We propose a mathematical model for GRNs with hybrid regulatory mechanism by exploiting the structure
of the genome—proteome networks and by representing mRNAs and proteins with different variable. Figure 1
schematically shows our model for GRNs with considering simultaneously the indirect feedback (black line)
effects on transcription and the direct feedback (blue line) of metabolites on transcription, where the latter
feedback effect is ignored in the model proposed in Ref. [6]. Based on the structure of the GRNs (shown in
Fig. 1), the genetic networks containing of n nodes with hybrid regulatory mechanism can be described as
follows:

mi(t) = —aim;(t) +60b;(p1(1), p2(t), ..., pa(t))

+d - 9)51'(1710 - ‘Cpl)v p2(t — sz)» ces Pt — Tp,,)) (1
pi(t) = —cipi(t) +dim;(t — ‘L’mi), i=1,2,...,n

where m; (t), p;i(t) € R are the concentration of mRNA and protein of the ith node, respectively. In (1), a; and ¢;
are the degradation rates of the mRNA and protein, respectively. d; is the rate at which protein i is produced from
mRNA i, and b;, b; are the regulatory functions of the ith gene, which are generally nonlinear functions of the
variables (p1, p2, ..., pn) buthave a form monotonicity with each variable. In this paper, we take the SUM logic
function [201b; (p1 (1), p2(1), ..., pa(0)) = 22}y bij(pj) and bi (p1(t—Tp,), p2(t=Tpy), ..., Pu(t—7p,)) =
>z bij(pj— Tp;), Where 7, indicating the time delay for ith protein. Parameter 6 € [0, 1] is used to measure
the relative contribution of direct effects of gene products to the activation/inactivation of TFs.

Remark 2.1 The genetic networks (1) with hybrid regulatory mechanism is the extension of some previous
GRNs. Two extreme cases are (i) the model investigated in [6,31] when 8 = 0 and (ii) the basic GRNs model
studied in [20] when 6 = 1 and 7,,,;, = O for all i.

The gene activity is tightly controlled in a cell, and gene regulation function b;, b; play a crucial role in the
dynamics [26]. The regulation functions b;; (p; (1)) (b;; (p;(t—1, J ))) are generally expressed by the monotonic
function of the Hill form [20]

0/ LG 2
Ui+(p; /B \ " 1+ =) /BF |

if TF j is an activator of gene i

bij(pj () (bij(pj(t —1p)))) = . )
L) L
+(p; (/B (1+(p,~(trp_,.)/ﬂ>’*) :
if TF j is an repressor of gene i

where H is the Hill coefficient, f is a positive constant, and the bounded constants «;;, &;; are the dimensionless
transcriptional rate of TF j to gene i under direct and indirect feedback, respectively. Note that

1 xH

=1
14+ x2 1+xH
Hence, Equation (1) can be rewritten into the following form:

mi(t) = —aim;(t) +60 2 Gijg(p;j(t) + (1 —0) 2, Gijg(p;(t — Tp;)) +1i
pl(t)Z_Clpl(t)"’_dlml(t_rm,)a i=172""an

3)

where g(x) = (x/B)" /[14(x /)" is amonotonically increasing function. G| = (Gij), G2 = ((_;,-j) e R
are the coupling matrix of genetic network, which is defined as follows:
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0, if there is no connection between i and j
Gij(Gij) = § ajj(@;j), if TF j is an activator of gene i
—a;j(—a;;), if TF j is an repressor of gene i

and /; is the basal rate, which have the similar definition as in [20]. In compact matrix form, (3) can be rewritten
as

m(t) = Am(t) +0G1g(p(1) + (1 —0)Gag(p(t — 1)) +1

p(t) = Cp(t) + Dt — 1) X
where m (1) = (m1 (), ma(t), ..., my()T, p()=(p1(t), p2(1), ..., pa()', A=diag(—ai, —az, ..., —an),
C = diag(—cy, —c2,...,—cp), D = diag(dy, d>, ..., dy),l = (1,0, ..., l,,)T and nonlinear function

g(z() = (g(z1(1)), g(z2(t)), ..., g(zn(t)))T. In this paper, for simplicity, the time delay is assumed to
be same for different nodes. In model (4), delay 7,(¢) > 0 and 7,,(t) > O are time-varying delays satisfied
Tp(t) <dp, < land 7,(t) < dy < L.

Assume that (m, p) is an equilibrium point of (4). Letting x(¢) = m(¢) — m and y(t) = p(t) — p, we can
shift the equilibrium point (m, p) to the origin and have

(1) =Ax@) +0G1 f(y(®) + (1 =0)Ga f (y(t — 7,(1)))

y(t) = Cy(t) + Dx(t — 1, (1)) (5)

where f(y(1)) = g(y(@) + p) — g(p) and f(y(t — 7,(1))) = g(y( — (1)) + p) — g(p). Since g is a
monotonically increasing function with saturation, it satisfies, for all @, b € R witha # b

- gla) — g(b) _
i

0 k

when g is differentiable, the above inequality is equivalent to 0 < dg(a)/da < k. From the relationship of
f () and g(-), we know that f(-) satisfies the following condition:

fla)(f(a) —ka) =0 (6)

Remark 2.2 Equation (5) is derived from GRNs with hybrid regulatory mechanism. In analyzing the stability
of an equilibrium point in (1), it is equivalent to study the stability of origin point in (5). Therefore, we will
study the system (5) directly in the rest of this paper.

Remark 2.3 Parameter 6 € [0, 1] introduced in (5) for reflecting the hybrid regulatory mechanism, intuitively
should have the ability to control its dynamics, which has similar role as that of [14,25]. Further study will
be published elsewhere. We note that one may model another alternative regulatory by using the nonlinear
combination Gf (8(y(¢)) + (1 —0)y(t — 7,(1))) instead of 0G| f(y(1)) + (1 —0)G2 f(y(t — 7, (¢))) in the
equation for x in Equation (5).

3 Stability analysis
In this section, we analyze the stability of GRNs with hybrid regulatory mechanism described by (5) by using

the Lyapunov stability theorem. The sufficient condition for the stability of system (5) and the case with noise
perturbation are given in the following two subsections, respectively.

3.1 Stability conditions of genetic networks

Theorem 3.1 If there exist matrices Py > 0, P13 > 0, P> > 0,0 > 0, R > 0 and a diagonal matrix

A =diag(r1, X2, ..., Ay) > O, such that the following linear matrix inequalities hold:
Py P2
M; <0, P= >0 7
: (P 12 P 22) @
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where
2P1A+ R PpC+ATP) PiD 6P11G (1 —0)P1G,
PLA+CTP), 2P»C PyuD kA+0PLG (1-0)PLG,
M, = DTP} DTP} —(1 —du)R 0 0
0G| P} kA +6GT Pra 0 0 —2A 0
(1-0GyP, (1-0)GIPn» 0 0 —(1—dyQ

Then the origin of the genetic network (5) is the unique equilibrium point, and it is globally, asymptotically
stable.

Proof Consider the following Lyapunov—Krasovskii functional:

Vi, y, )= x0T yo)T) P ())C’Eg)

t t

- / FT ) Of (y(s)ds + / xT(s)Rx(s)ds

t—7,(1) 1=Tp ()
Calculating the time derivative of V (x, y, t) along the solutions to (5), we have,

V(x,y, 1) = 2xT (1) Pr1 Ax (1) + 2x T (1) (AT Pia + P1aC)y(t) 4+ 2x" (1) PlaDx(t — 12))
+20xT (1) P1iG 1 f(y (1)) +2(1 — O)xT (1) PriGa f (y(t — T, (1))
+2yT () P Cy(t) + 2yT (1) P Dx(t — 1 (1)) + 20T (1) PLG1 f (y(1))
+2(1 =)y () PLGLfF(y(t — T,(0))) + fT (1) Qf (v (1))
~(A =t T — 1Nt — T,(1)))
+x PO Rx (1) — (1 — t()x T (t — T (1)) Rx (1 — T (1)) (8)
Noting that #1 (1) < d, < 1, %2(t) < dw < Land =237, A £ i () (f (i (1)) — ky; (£)) > 0, we have,
Vi, y. ) <0t (0OMin() <0

where n(t) = (xT(2), YT (1), xT(t — 1 (1)), fT (@), fT(y(t — 7,())T. It is easy to see that V(1) = 0 if
and only if both x(¢#) = 0 and y(¢) = 0. It follows from the Lyapunov—Krasovskii stability theorem that the
genetic networks (5) with the hybrid regulatory mechanism are globally, asymptotically stable.

Notice that the condition (7) is independent of the equilibrium point, so it is easy to prove the uniqueness
of the equilibrium point by using the contradiction method which is similar to the proof of Theorem 1 in [20].

O
3.2 Stability conditions of genetic networks with noise perturbations
Along the line in [20,21], we consider genetic networks (5) with additive noise perturbations:
X(1) = Ax() +0G1f (y(1) + (1 = 0)Go f (y(t — 7p(1))) + 0 (y(1), y(t — T (1)) (1) )
y(t) = Cy(t) + Dx(t — 1, (1))
where n(t) = [n1(7), ..., nyu()]T with n; (r) as a scalar zero mean Gaussian white noise process, and n; (¢) is

independent of n;(¢) for all i # j. where o (y(¢), y(t — 17,(¢))) € R"*™ is called the noise intensity matrix
and it is estimated by:

trace(o (y (1), y(t — T,(1))a L (y(1), y(t — T,(1))))
< YT Hy(1) + YT (t — 1,(0) Hay(t — 7,(1)) (10)
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where Hi, Hy > 0. Recall that the time derivative of a Wiener process is a white noise process. We have
dw(t) = n(t)dt, where w(t) is an m-dimensional Wiener process. Hence, genetic networks (9) can be rewrit-
ten as the following stochastic differential equations:

dx(t) = (Ax(@) +0G1 f(y()) + (1 = )Ga f (y(t — Tp()))dt + 0 (y(1), y(t — T,(1)))dw(t) (an
dy(t) = (Cy(t) + Dx(t — 1,,(¢)))dt

Then we have the following theorem:

Theorem 3.2 If there exist matrices P;y > 0,P;p > 0,P» > 0,0 > 0O,R > 0,5 > 0,A =

diag(A1, A2, ..., Ay) > 0, and a constant p > 0 such that the following linear matrix inequalities hold:
P11 P2
My, <0, P= >0, P <pl 12
2 (P1T2 Pzz) n=pe (12)
where
2P11A+ R P;,C+ AP, P;2D 0 P11G (1—-0)P1 1G> 0
* 2P»C PuD kA+60PLG, (1-0)PLG, 0
Mo — * * 0 0 0
2= * * * 0 —2A 0 0
* * * * —(1-dp0 0
* * * * * Mg

where Mes = pHy — (1 — dp)S. Then the origin of the genetic network (11) is asymptotically stable in the
mean square.

Proof Consider the same Lyapunov function as one used in the proof of Theorem 3.1. By Ito’s formula [2],
we obtain the following stochastic differential:

dV (e, y, 1) = LV (x, y, 0dt + 26T @ Py + 3T (1) P (y(0), y(t — 7p(1)dw (1)
where L is the diffusion operator, and

LV (x,y,1) =2x" (1) P11 Ax(t) + 2x () AP2y(t) + 20xT (1) P11 G £ (y(1))
+2(1 = O)xT (PG f (y(t — Tp(1))) + 2" (1) PCy (1)
+2yT(0) P Dx(t — 1 (1) + 20y (1) PLG1 f (3 (1))
+2(1 =)y () PLGLf (3t — () + fL () Of (y(1))
— (=4 TG —1,ONOf ((t — T, (1)
+xTORx (1) — (1 = 2(0))x" (t — (1) Qx(t — T (1))
+ trace(o (y(1), y(t — T,(1)) Prio " (y(1), y(t — 1,(1))))

By (10) and (12), we have:
trace(o (y(1), y(t — 1)) P11 (y(1), y(t — (1))

< Amax (P1)trace(o (y(1), y(t — T,(0))a  (y(1), y(t — T,(1))))
< py (H y(t) + py" (t — T,(1)) Hoy(t — T,(1))
and taking —2 Z?:l Aifi))(f(yi(t)) — ky;i(t)) > 0 into account, we have:
LV (x,y, 1) < n"(t)Man(1)
where (1) = (xT(t), yT (1), xT(t — 70 (1)), fT (1)), fT((t —7,(1))))T. Therefore, it follows from M, < 0

that E(dV (¢, x, y)) = E(LV (¢, x, y)dt) < 0, where E is the mathematical expectation operator. Therefore,
the genetic network (11) is asymptotically stable in the mean square. O
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4 Numerical examples

In this section, three illustrative examples are given to demonstrate the effectiveness and correctness of our
theoretical results.

4.1 Example 1

The repressilator is a cyclic negative-feedback loop composed of three repressor genes (lacl, tet R, and cl)
and their promoters, which has been theoretically predicted and experimentally investigated in E. coli [11]. We
consider here the dynamics of the modified repressilator with hybrid regulatory mechanism (Fig. 2a), which
are determined by the following differential equations:

o
i (0) = =mi(0) + 0 ey + (= O gy

pi(t) = —B(pi(6) — mi(t — 1, (1)) (13)
i =lacl,tetR,cl; j=cl,lacl,tetR

where m; and p; are the concentrations of the three mRNAs and repressor-proteins, and 8 > 0 denotes the
ratio of the protein decay rate to the mRNA decay rate. Obviously, when & = 1 and t,, = 0, model (13)
becomes the one in [11]. We select a set of biologically plausible parameters asn = 2, ¢ = 1.4, = 1 and
parameter 6 = 0.5. By calculating, the unique steady state of (13) is m; = p; = 0.8294 for all i, which is
globally, asymptotically stable. We can rewrite the above Equations (13) into vector form (5) by shifting the
equilibrium to the origin point, where A = C = —D = —1I3,] =[1.4, 1.4, 1.4]T,

0 0 —14
Gi=Gr=|-14 0 0
0 —14 0

and f(x) = + ——. Calculating the derivative of f(x), we have max(df (x)) = 3‘[ < k = 0.65. In this
example and the following two examples, we select time-varying delay 7, (t) =1 + 0.1sin(¢) and 7, (t) =
0.5 + 0.1sin(z), then it is easy to check that the conditions d,, < 1 and d,, < 1 are satisfied. According to
Theorem 3.1, the feasible solutions to the linear matrix inequalities (7) can be obtained by using the MAT-
LAB LMI Toolbox, which indicates that the genetic networks with hybrid regulatory mechanism are globally,
asymptotically stable. The simulation result of the trajectories of the protein p; (¢) is shown in Fig. 3.

Remark 4.1 Notice that the linear matrix inequalities (7) is sufficient condition for the stability of genetic
networks (13), but it is too strong. In Example 1, if we take « = 2.5 which is used in [20] and all the other
parameters do not change except for 6, there are no feasible solutions to linear matrix inequalities (7) for any
6 € [0, 1]. Computational simulations found that genetic networks (13) show robust oscillatory behavior when
6 —> 0 while converges to its stable steady-state when &6 — 1. Contraction theory [33,34] may be relevant
for future research aimed at obtaining less conservative conditions for the GRNs (5) with hybrid regulatory
mechanism.

) .»——*.

o

(a) (b)

Fig. 2 Genetic network model with hybrid regulatory mechanism. a Scheme of the modified repressilator and b scheme of the
modified 5-node genetic network model used in [20]. Arrow line represents activation and blunt-ended line represents repres-
sion/inactivation. Black line denotes indirect effect and the green line denotes direct effect on gene products to the TFs
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Fig. 3 Time evolution of the three protein concentrations of the modified repressilator with 6 = 0.5
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0.5

0 5 10 15 20
t

Fig. 4 Time evolution of x(¢) of the modified 5-node genetic networks with hybrid regulatory mechanism, where, 6 = 0.5

4.2 Example 2

For further demonstrating our theoretical results, a modified 5-node genetic network [20] with hybrid regula-
tory mechanism (Fig. 2b) is used in this example. We assume that the dimensionless transcription rates are all
0.5. According to the definition of links in (2), we can obtain the coupling matrix:

0O -1 1 0 O -1 0 0 1 O
-1 0 0 1 1 1 0 0 0 O
G =05x%x]0 1 0 0 0, Go=05%x|] 0 0 0 0 O
1 -1 0 0 O 0 0 0 0 1
0 0 0 1 0 0 1 0 0 O

and = 0.5 x [1,6,0,6,0]T in 4).Let A=C = —Is,D = 0.8l5,0 = 0.5 and f(x) is same as exam-
ple 1. The unique equilibrium point of this network is m = (0.4698, 0.2613, 0.0105, 0.2706, O.()217)T and
p = (0.3758,0.2090, 0.0084, 0.2164, 0.0173)T. We shift the equilibrium point to the origin. According to
Theorem 3.1, if the LMIs linear matrix inequalities (7) hold, then the genetic network is globally, asymptoti-
cally stable. By using the MATLAB LMI Toolbox, we can easily obtain feasible solutions to the linear matrix
inequalities (7). Thus, the network is globally, asymptotically stable. The simulation result of the trajectories
of the variables x (¢) is shown in Fig. 4, which indicates that the network considered in this example is indeed
stable.

Remark 4.2 In this example, node 1 has dual effects on node 2: direct activation and indirect repression (see
Fig. 2b), which have been known to exist in practice. For example, gene tfdS is proposed to activate and repress
the expression of the gene tfdB in the bacterium Alcaligenes eutrophus JMP134 [18], and E2Fs are known to
activate and repress the same gene in different phases [22]. However, previous theoretical research on GRNs
has not adequately considered this phenomenon.
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x(t)

Fig. 5 Time evolution of x () of the modified 5-node genetic networks with stochastic perturbation with hybrid regulatory
mechanism, where 6 = 0.5

4.3 Example 3

We consider the genetic networks in Fig. 2b with additive noise perturbation. All the parameters are same as
example 2 except that D = I5, n(t) is a scalar zero mean Gaussian white noise process, and o (y(t), y(t —
tp)) = (o1 (y (@), o2 (y (), . . ., <75(y(t)))T with o7 (y(¢)) = 0.3 2221 y;(¢) for all i. The unique equilibrium
point of this network without stochastic perturbation is 7 = (0.4578, 0.2681, 0.0168, 0.2768, 0.0346)T and
p = (0.4578,0.2681,0.0168, 0.2768, 0.0346)T. We also shift the equilibrium point to the origin. By using
the MATLAB LMI Toolbox, we can easily find feasible solutions to the linear matrix inequalities (12), which
indicate that the network with stochastic perturbation is asymptotically stable in mean square. We show the
simulation result of the trajectories of the variables x (¢) in Fig. 5, which indicates that the network considered
in this example is indeed stable in the mean square.

Remark 4.3 Since the genetic network (5) and (11) used in the three examples includes the direct and indirect
regulatory functions, the stability derived in [20,31] cannot be applied to Example 2 and 3.

5 Conclusions

In this paper, we modeled a general genetic network with hybrid regulatory mechanism, which includes some
existing as special case, and then analyzed global stability issues of the GRNs. The method combining Lyapu-
nov stability theory and Lur’e system approach was adopted to study these issues. All the sufficient conditions
were given in terms of linear matrix inequalities, which are easy to be verified. Three genetic networks modified
from existing literature [11,20] were also given to show the effectiveness and correctness of our theoretical
results. The parameter & which was adopted to measure relative contribution of direct effects of gene products
to the activation/inactivation of TFs is an important control parameter like in [14,25]. This is probably an
interesting issue for further study in the future. The GRNs with hybrid regulatory mechanism can also be used
for synthetic biological applications when we design or engineer biomolecular regulatory circuits such that
fast and slow reactions are taken into consideration simultaneously.
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