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Abstract A regular form (linear functional) u is called semiclassical, if there exist two nonzero polynomials
� and � such that (�u)′ + �u = 0 with � monic and deg � > 0. Such a form is said to be of second degree
if there are polynomials B, C and D such that its Stieltjes function S(u) satisfies BS2(u) + C S(u) + D = 0.
Recently, all the symmetric second degree semiclassical forms of class s ≤ 1 were determined. In this paper,
by means of the quadratic decomposition, we determine all the symmetric semiclassical forms of class s = 2,
which are also of second degree when � vanishes at zero. These forms generalize those of class s = 1.

Mathematics Subject Classification (2010) 42C05 · 33C45

1 Introduction and basic background

Second degree forms have been introduced since 1995 [13]. These forms are characterized by the fact that
their formal Stieltjes function S(u) satisfies a quadratic equation BS2(u) + C S(u) + D = 0 where B �= 0
and C are polynomials and D is a polynomial defined in terms of the previous ones. They have been studied
in [7,16] and [17] in the framework of the orthogonality on several intervals. Later on, in [12] and [13] an
algebraic approach to such second degree forms as an extension of the Tchebychev forms is given. Notice that
every second degree form is semiclassical, i.e., there exist two polynomials �(x) and �(x), where �(x) is
monic and deg� > 0, such that (�(x)u)′ + �(x)u = 0 [11,13]. In [3], the authors determine all the classical
forms (i.e., semiclassical of class s = 0) which are of second degree. Hermite, Laguerre and Bessel are not
of second degree. Only Jacobi forms which satisfy a certain condition possess this property. Later on, in [2],
Beghdadi determines all the symmetric second degree semiclassical forms of class s = 1.

The aim of this work is to approach the problem of determining all the symmetric semiclassical forms
of class s = 2 which are of second degree when �(0) = 0. The first section is devoted to the preliminary
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results and notations used in the sequel. In the second section, we prove that a symmetric semiclassical form
u is a second degree if and only if its odd part xσu is also second degree form. Using this result, we give
all the forms which we look for. Three canonical cases for the polynomial � arise: �(x) = x2, �(x) = x4

and �(x) = x2(x2 − 1). As it turned out, we obtained explicitly a family of nonsymmetric second degree
semiclassical forms of class s = 1 which generalize the classical ones.

In the sequel, we will recall some basic definitions and results. The field of complex numbers is denoted by
C. The vector space of polynomials with coefficients in C is represented as P and its dual space is represented
as P ′. We denote by 〈u, f 〉 the effect of u ∈ P ′ on f ∈ P . In particular, we denote by (u)n := 〈u, xn〉, n ≥ 0,
the moments of u. For any linear form u, any polynomial h, let Du = u′ and hu be the forms defined by
duality:

〈u′, f 〉 := −〈u, f ′〉, 〈hu, f 〉 := 〈u, h f 〉, f ∈ P. (1)

We recall the definition of right-multiplication of a form by a polynomial:

(uh)(x) :=
〈
u,

xh(x) − ξh(ξ)

x − ξ

〉
, u ∈ P ′, h ∈ P. (2)

By duality, we obtain the Cauchy’s product of two forms:

〈uv, f 〉 := 〈u, v f 〉, u, v ∈ P ′, f ∈ P. (3)

Consequently,

(uv)n =
∑

i+ j=n

(u)i (v) j , n ≥ 0. (4)

We define [14] the form (x − c)−1u, c ∈ C, through

〈(x − c)−1u, f 〉 := 〈u, θc f 〉 (5)

with
(
θc f

)
(x) = f (x) − f (c)

x − c
, u ∈ P ′, f ∈ P. (6)

From the definitions, it results (uθ0 f )(x) = 〈u,
f (x)− f (ξ)

x−ξ
〉, u ∈ P ′, f ∈ P.

We introduce the operator σ : P −→ P defined by (σ f )(x) = f (x2) for all f ∈ P . By transposition, we
define σu:

〈σu, f 〉 = 〈u, σ f 〉 u ∈ P ′, f ∈ P. (7)

Consequently, (σu)n = (u)2n .
We will also use the so-called formal Stieltjes function associated with u ∈ P ′ that is defined by

S(u)(z) = −
∑
n≥0

(u)n

zn+1 . (8)

The following auxiliary results will be used in the sequel [14,15].

Lemma 1.1 For any f ∈ P and u, v ∈ P ′

( f u)′ = f u′ + f ′u, (9)

(uθ0 f )(x) = (θ0(u f ))(x), (10)

f (x)(σu) = σ( f (x2)u), (11)

σu′ = 2(σ (xu))′, (12)

σ(uv) = (σu)(σv) + x−1(σ (xu)σ (xv)), (13)

S(uv)(z) = −zS(u)(z)S(v)(z). (14)

123



Arab J Math (2012) 1:363–375 365

The form u is called regular if there exists a polynomial sequence {Bn}n≥0, deg Bn = n, such that
〈u, Bn Bm〉 = rnδnm, rn �= 0, n ≥ 0.

In this case {Bn}n≥0 is said to be orthogonal with respect to u. It satisfies the recurrence relation (see, for
instance, the monograph by Chihara [4])

B0(x) = 1, B1(x) = x − β0,

Bn+2(x) = (x − βn+1)Bn+1(x) − γn+1 Bn(x), n ≥ 0. (15)

The regularity of u means that we must have γn+1 �= 0, n ≥ 0.
In this paper, we suppose that the forms are normalized (i.e., (u)0 = 1).

Definition 1.2 [13] The form u is called a second degree form if it is regular and if there exist two polynomials
B and C such that

B(z)S2(u)(z) + C(z)S(u)(z) + D(z) = 0, (16)

where D is a polynomial depending on B, C , and u given by

D(z) = (uθ0C)(z) − (u2θ2
0 B)(z). (17)

The regularity of u means that we must have B �= 0; C2 − 4B D �= 0 and D �= 0.
The following expressions are equivalent to (16), [13]:

B(x)u2 = xC(x)u, 〈u2, θ0 B〉 = 〈u, C〉. (18)

In the sequel, we shall suppose B to be monic.
The polynomials B and C , given in (16) or by (18), are not unique, because B and C can be multiplied by
an arbitrary polynomial. If in (16) the polynomials B , C and D are coprime, then the pair (B, C) is called a
primitive pair. The primitive pair is unique.
Let us recall that a form u is called semiclassical when it is regular and there exist two polynomials � and �,
where �(x) is monic and deg(�) ≥ 1, such that

(�u)′ + �u = 0. (19)

The class of the semiclassical form v is s = max(deg � − 1, deg � − 2) if and only if the following condition
is satisfied

∏
c

(|�′(c) + �(c)| + ∣∣〈u, θc� + θ2
c �

〉∣∣) > 0, (20)

where c goes over the zeros set of � [14].
When s = 0, u is called a classical form.
As a result, if u is a semiclassical form of class s satisfying (19), then the shifted form û = (ha−1 ◦τ−b)u, a ∈

C
∗, b ∈ C is of class s satisfying the equation

(�̂û)′ + �̂û = 0 (21)

with

�̂(x) = a−t�(ax + b), �̂(x) = a1−t�(ax + b), t = deg(�) (22)

where, for each polynomial f

〈τbu, f 〉 := 〈u, τ−b f 〉 := 〈u, f (x + b)〉, 〈hau, f 〉 := 〈u, ha f 〉 := 〈u, f (ax)〉.
A second degree form u is a semiclassical form and satisfies (19), with [13]

k�(x) = B(x)(C2(x) − 4B(x)D(x))

k�(x) = −3

2
B(x)(C2(x) − 4B(x)D(x))′, k �= 0,

(23)

where k is a normalization factor.
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The second degree character is kept by shifting. Indeed, if u is a second degree form satisfying (18), then
û is also second degree form [13]. It satisfies

B̂(x)û2 = xĈ(x)û, 〈û2, θ0 B̂〉 = 〈û, Ĉ〉. (24)

with

B̂(x) = a−r B(ax + b), Ĉ(x) = a1−r C(ax + b), r = deg(B). (25)

Lemma 1.3 [2] Let u be a second degree semiclassical form satisfying (19)–(20). The class of u is s =
deg � − 2 = deg � − 1.

We finish this section by recalling this important result.

Theorem 1.4 [3] Among the classical forms, only the Jacobi forms J (k − 1
2 , l − 1

2 ) are second degree forms,
provided k + l ≥ 0, k, l ∈ Z which satisfy

(
(x2 − 1)J

(
k − 1

2
, l − 1

2

))′
+

(
−(k + l + 1)x + k − l

)
J

(
k − 1

2
, l − 1

2

)
= 0.

2 Symmetric second degree semiclassical forms

2.1 Algebraic properties

We recall that a form u is called symmetric if (u)2n+1 = 0, n ≥ 0. The conditions (u)2n+1 = 0, n ≥ 0,
are equivalent to the fact that the corresponding sequence of monic orthogonal polynomials (MOPS) {Bn}n≥0
satisfies the recurrence relation (15) with βn = 0, n ≥ 0 [4].

In addition, the sequence {Bn}n≥0 has the following quadratic decomposition

B2n(x) = Pn(x2), B2n+1(x) = x Rn(x2), n ≥ 0. (26)

The sequences {Pn}n≥0 and {Rn}n≥0 are respectively orthogonal with respect to σu and xσu. We have for
instance:

Pn+2(x) = (x − β P
n+1)Pn+1(x) − γ P

n+1 Pn(x), n ≥ 0,

P1(x) = x − β P
0 , P0(x) = 1,

(27)

with

β P
0 = γ1, β P

n+1 = γ2n+2 + γ2n+3, γ P
n+1 = γ2n+1γ2n+2, n ≥ 0. (28)

We have the following characterisations.

Proposition 2.1 [2] The even part σu of a symmetric second degree form u is also second degree form.

Proposition 2.2 Let u be a regular and symmetric form. The following statements are equivalent:

(a) u is a second degree form
(b) The odd part xσu of u is a second degree form.

Proof “(a) �⇒ (b)” According to Proposition 2.1 and the fact that the multiplication by a polynomial pre-
serves the quadratic property.

“(b) �⇒ (a)” We denote by v the normalized form defined by γ1v = xσu. We suppose that xσu is a
second degree form. Then there exist two polynomials B1 and C1 such that

B1(z)S2(v)(z) + C1(z)S(v)(z) + D1(z) = 0, (29)

where

D1(z) = (vθ0C1)(z) − (v2θ2
0 B1)(z). (30)
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From (8) and the fact that u is a symmetric form, we have

S
(
v
)
(z2) = γ −1

1 zS
(
u
)
(z) + γ −1

1 . (31)

Make a change of variable z −→ z2 in (29), multiply by γ 2
1 and substitute (31) in the resulting equation, we

get (16) with ⎧⎨
⎩

B(z) = z2 B1(z2),

C(z) = 2zB1(z2) + γ1zC1(z2),

D(z) = B1(z2) + γ1C1(z2) + γ 2
1 D1(z2).

(32)

From (6), we have
(
uθ0(ξC1(ξ

2))
)
(z) = (

uC1(ξ
2)

)
(z). Using (2), we obtain

(
uθ0(ξC1(ξ

2))
)
(z) =

〈
u,

zC1(z2) − ξC1(ξ
2)

z − ξ

〉

=
〈
u, zξ(θz2C1)(ξ

2) + z2C1(z2) − ξ2C1(ξ
2)

z2 − ξ2

〉
.

But 〈u, zξ(θz2C1)(ξ
2)〉 = 0 since u is a symmetric form, then

(
uθ0(ξC1(ξ

2))
)
(z) =

〈
u,

z2C1(z2) − ξ2C1(ξ
2)

z2 − ξ2

〉

=
〈
σu, ξ

C1(z2) − C1(ξ)

z2 − ξ
+ C1(z

2)

〉
,

by virtue of (7). Therefore,
(
uθ0(ξC1(ξ

2))
)
(z) = γ1(vθ0C1)(z

2) + C1(z
2). (33)

Replacing B1 by C1 in (33), we get
(
uθ0(ξ B1(ξ

2))
)
(z) = γ1(vθ0 B1)(z

2) + B1(z
2). (34)

From (6), we have (u2θ2
0 (ξ2 B(ξ2)))(z) = (u2 B(ξ2))(z) and by (13), we have σu2 = (σu)2 because u is a

symmetric form. Then, using the same process described above with (u2, B1) instead of (u, C1), we get

(
u2θ2

0

(
ξ2 B(ξ2)

))
(z) = B1(z

2) +
〈
ξ(σu)2,

B1(z2) − B1(ξ)

z2 − ξ

〉
.

But, from (6), we have

B1(z2) − B1(ξ)

z2 − ξ
= z2(θ0 B1)(z2) − ξ(θ0 B1)(ξ)

z2 − ξ
= (θ0 B1)(z

2) + ξ
(θ0 B1)(z2) − (θ0 B1)(ξ)

z2 − ξ
.

Then, we get

(
u2θ2

0

(
ξ2 B1(ξ

2)
))

(z) = B1(z
2) + 2γ1(θ0 B1)(z

2) +
〈
ξ2(σu)2,

(θ0 B1)(z2) − (θ0 B1)(ξ)

z2 − ξ

〉
, (35)

since 〈(σu)2, ξ〉 = 〈u2, ξ2〉 = 2γ1, by (4) and (15).
Now, using (4) and taking into account xσu = γ1v, we prove that

ξ2(σu)2 = (ξσu)2 + 2ξ2σu = γ 2
1 v2 + 2γ1ξv.

Then, (35) becomes

(u2θ2
0 (ξ2 B(ξ2)))(z) = B1(z

2) + 2γ1(θ0 B1)(z
2) + γ 2

1 (v2θ2
0 B1)(z

2) + 2γ1

〈
v,

ξ(θ0 B1)(z2) − ξ(θ0 B1)(ξ)

z2 − ξ

〉
.
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But,

〈
v,

ξ(θ0 B1)(z2) − ξ(θ0 B1)(ξ)

z2 − ξ

〉
= −(θ0 B1)(z

2) + (vθ0 B1)(z
2).

Therefore, we deduce

(
u2θ2

0 (ξ2 B1(ξ
2))

)
(z) = B1(z

2) + γ 2
1

(
v2θ2

0 B1
)
(z2) + 2γ1 (vθ0 B1) (z2). (36)

Thus, on account of (30), (32)–(34) and (36), we conclude that the polynomials B, C and D given by (32)
verify the relation (17).
Hence u is also a second degree form. ��
Using Proposition 2.1, Beghdadi gives all the symmetric second degree semiclassical forms of class s = 1:

Theorem 2.3 [2] Among the symmetric semiclassical forms of class s = 1, only the forms denoted by I(k −
1
2 , l − 1

2 ) are second degree forms, provided k + l ≥ 0, l �= 0, k, l ∈ Z which satisfy

(
x(x2 − 1)I

(
k − 1

2
, l − 1

2

))′
+

(
−2(k + l + 1)x2 + 2l + 1

)
I

(
k − 1

2
, l − 1

2

)
= 0.

The form I = I(k − 1
2 , l − 1

2 ) possesses the following representation [2]:

〈I, f 〉 = �(k + l + 1)

�
(
k + 1

2

)
�

(
l + 1

2

)
1∫

−1

x2l(1 − x2)k

√
1 − x2

f (x)dx, k ≥ 0, l > 0.

Remark Unfortunately, we are not able to determine all the symmetric second degree semiclassical forms of
class s = 2 by Proposition 2.1, especially because σu is among the second degree semiclassical forms of class
s = 1 which are unknown.

2.2 Symmetric second degree semiclassical forms of class s = 2: case �(0) = 0

Let us begin with an example V among the symmetric forms which is a second degree semiclassical form of
class s = 2 satisfying (19) with �(0) = 0. This example is given in [1]. The form V satisfies (16) with

B(z) = z4(z2 − 1), C(z) = 2z3(z2 − 1), D(z) = z2(z2 − 1) − λ2, (37)

and (19) with

�(x) = x2(x2 − 1), �(x) = −x3. (38)

The corresponding MOPS of V satisfies (15) with

γ1 = λ, γ2n+2 = 1

41− δn,0
2

1 − 2(n + 1)λ

1 − 2nλ
, γ2n+3 = 1

4

1 − 2nλ

1 − 2(n + 1)λ
, n ≥ 0. (39)

Now, we state the following result which is essential for this work.

Proposition 2.4 [2] Let u be a symmetric semiclassical form of class s, satisfying (19). If s is even then � is
even and � is odd. If s is odd then � is odd and � is even.
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In the sequel, we suppose s = 2, u is symmetric, and �(0) = 0. Then, according to the above proposition,
u satisfies (19) with

�(x) = c4x4 + c2x2, �(x) = a3x3 + a1x, |c4| + |a3| �= 0.

Then, using the fact that � is monic and the semiclassical character is kept by shifting, we distinguish three
canonical cases for �: �(x) = x2, �(x) = x4, �(x) = x2(x2 − 1).

First case: �(x) = x2

According to Lemma 1.3, this case is excluded because s = 2 �= deg � − 2.
Second case: �(x) = x4

Let �(x) = a3x3 + a1x . After multiplying (19) by x , applying the operator σ and using (11)–(12), we
obtain

(x2(xσu))′ + 1

2

(
(a3 − 1)x + a1

)
(xσu) = 0.

Then xσu = γ1B(α) where B(α) is the classical Bessel form with a3 = −4α + 1 and a1 = −4. Recall that
the form B(α) satisfies (19) with

�(x) = x2, �(x) = −2(αx + 1), α �= −n

2
, n ∈ N.

Since B(α) is not a second degree form [3], according to Proposition 2.2, we conclude that u is not a second
degree form.

Third case: �(x) = x2(x2 − 1)
This case is mentioned in [6] and [18], when the authors gave all the symmetric semiclassical forms of

class s = 2 with �(x) = x2(x2 − 1). These forms satisfy

(x2(x2 − 1)u)′ + (
(−2α − 2β − 3)x3 + (2β + 1)x

)
u = 0, γ1(α + β + 1) �= β. (40)

Taking into account [18], we have

⎧⎪⎪⎨
⎪⎪⎩

γ1 = λ, γ2n+2 = (n + β + 1)(n + α + β + 1)dn+1(λ)

(2n + α + β + 1)(2n + α + β + 2)dn(λ)
, n ≥ 0,

γ2n+3 = (n + 1)(n + α + 1)dn(λ)

(2n + α + β + 2)(2n + α + β + 3)dn+1(λ)
, n ≥ 0.

(41)

with

dn(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ
�(β + 1)�(α + β + 1)�(n + 1)�(n + α + 1)

�(α + 1)�(n + β + 1)�(n + α + β + 1)
+ β

α + β + 1
− λ, β(α + β + 1) �= 0, n ≥ 0,

1 − λ
∑n−1

k=0
(2k + 1)�(α + k + 1)�(β + 1)

�(α + 1)�(β + k + 2)
, α + β = −1, n ≥ 0,

1

α + 1
− λ

n−1∑
k=0

2k + α + 2

(k + 1)(k + α + 1)
, β = 0, n ≥ 0,

( −1∑
0

= 0

)
.

(42)

The regularity condition is

α �= −n − 1, β �= −n − 1, α + β �= −n − 1, λ �= 0, dn(λ) �= 0 n ∈ N.

In the sequel, we denote by L(α, β, λ) the form u which satisfies (40).
We have V = L(− 1

2 , − 1
2 , λ).

Theorem 2.5 Among the symmetric semiclassical forms of class s = 2 satisfying (19) with �(0) = 0, only
the forms L(p − 1

2 , q − 1
2 , λ) are second degree forms, provided p + q ≥ 0, λ−1 �= 2(p+q)

2q−1 , p, q ∈ Z.
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Proof After multiplying (40) by x , applying the operator σ and using (11)–(12), we obtain

(x(x − 1)(xσu))′ + (−(α + β + 2)x + β + 1)(xσu) = 0. (43)

Let us make the suitable shift for (xσu)

(̂xσu) =
(

h(− 1
2 )−1 ◦ τ− 1

2

)
(xσu).

Using (22), (̂xσu) satisfies (21) with

�̂(x) = x2 − 1, �̂(x) = −(α + β + 2)x + α − β. (44)

Therefore, we have
(

h(− 1
2 )−1 ◦ τ− 1

2

)
(xσL(α, β, λ)) = λJ (α, β)

where J (a, b) is the classical Jacobi form with Pearson equation
(
(x2 − 1)J (a, b)

)′ + (−(a + b + 2)x + a − b
)J (a, b) = 0.

According to Theorem 1.4, Proposition 2.2 and the fact that the shifted form of a second degree form is also
second degree form, we obtain: L(α, β, λ) is a second degree semiclassical form of class s = 2 if and only if

α = p − 1

2
, β = q − 1

2
, λ−1 �= 2(p + q)

2q − 1
, p + q ≥ 0, p, q ∈ Z. ��

Let us now give the polynomial coefficients B, C and D of (16) corresponding to these forms. For this, we
need the following lemmas.

Lemma 2.6 [3] Let u and v be two regular forms satisfying the following relation:

M(x)u = N (x)v, (45)

where M(x) and N (x) are two polynomials.
If u is a second degree form satisfying (16), then v is also a second degree form and satisfies

B̃(z)S2(v)(z) + C̃(z)S(v)(z) + D̃(z) = 0, (46)

with ⎧⎪⎪⎨
⎪⎪⎩

B̃(z) = B(z)N 2(z),
C̃(z) = N (z){2B(z)((vθ0 N )(z) − (uθ0 M)(z)) + M(z)C(z)},
D̃(z) = B(z)((vθ0 N )(z) − (uθ0 M)(z)

)2

+ M(z)C(z)((vθ0 N )(z) − (uθ0 M)(z)) + M2(z)D(z).

(47)

Lemma 2.7 We have

x2L(α, β, λ) = μL(α, β + 1, λ), (48)

(x2 − 1)L(α, β, λ) = μL(α + 1, β, λ), (49)

where μ is the normalization factor.

Proof The form u = L(α, β, λ) satisfies (40). Multiplying by x2, we obtain

(x2(x2 − 1)(x2u))′ + (−(2α + 2β + 5)x3 + (2β + 3)x)(x2u) = 0. (50)

Hence (48). Multiplying (40) by (x2 − 1), we obtain

(x2(x2 − 1)((x2 − 1)u))′ + (−(2α + 2β + 5)x3 + (2β + 1)x)((x2 − 1)u) = 0. (51)

Hence (49). ��
Using Lemma 2.6, Lemma 2.7, and the fact that V = L(− 1

2 , − 1
2 , λ) and satisfies (16) with (37), the

elements B, C and D in (16) are given here in every case:
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Proposition 2.8 Let us consider u = L(p − 1
2 , q − 1

2 , λ), where p and q are integers provided p + q ≥ 0

and λ−1 �= 2(p+q)
2q−1 . Then, we have the following:

(1) For p ≥ 0,

(i) if q ≥ 0,then

u = μ(x2 − 1)px2qV, (52)

⎧⎪⎪⎨
⎪⎪⎩

B(z) = z4(z2 − 1),

C(z) = −2μz4(z2 − 1)X (z) + 2μ(z2 − 1)p+1z2q+3,

D(z) = μ2z4(z2 − 1)X 2(z) − 2μ2(z2 − 1)p+1z2q+3X (z)
+ μ2(z2 − 1)2pz4q(z2(z2 − 1) − λ2),

(53)

where

X (z) = (Vθ0((ξ
2 − 1)pξ2q))(z), μ = (〈V, (x2 − 1)px2q〉)−1.

(ii) if q ≤ −1 and p + q ≥ 0, then

x−2qu = μ(x2 − 1)pV, (54)

⎧⎨
⎩

B(z) = (z2 − 1)z−4q+4,

C(z) = z−2q
{
2z4(z2 − 1)Y(z) + 2μz3(z2 − 1)p+1

}
,

D(z) = z4(z2 − 1)Y2(z) + 2μz3(z2 − 1)p+1Y(z) + μ2(z2 − 1)2p(z2(z2 − 1) − λ2),

(55)

where

Y(z) = (uξ−2q−1)(z) − μ(Vθ0((ξ
2 − 1)p))(z) , μ = 〈u,x−2q 〉

〈V,(x2−1)p〉 .

(2) For p ≤ −1 and q ≥ 1 such that p + q ≥ 0, we have

(x2 − 1)−pu = μx2qV , (56)

⎧⎪⎨
⎪⎩

B(z) = z4(z2 − 1)−2p+1,

C(z) = (z2 − 1)−p
{
2z4(z2 − 1)Z(z) + 2μ(z2 − 1)z2q+3

}
,

D(z) = z4(z2 − 1)Z2(z) + 2μ(z2 − 1)z2q+3Z(z) + μ2z4q
(
z2(z2 − 1) − λ2

)
,

(57)

where

Z(z) = (
uθ0

(
(ξ2 − 1)−p

))
(z) − μ

(Vξ2q−1
)
(z) , μ =

〈
u, (x2 − 1)−p

〉
〈V, x2q

〉 .

Integral representation

The form u = L(α, β, λ) has the following representation [6,15] ( for �(α) > −1 , �(β) > 0)

〈u, f 〉 = λ
�(α + β + 2)

�(α + 1)�(β + 1)

1∫
−1

|x |2β−1(1 − x2)α f (x)dx +
(

1 − λ(α + β + 1)

β

)
f (0). (58)

From Theorem 2.5, we deduce the following:
A symmetric semiclassical form of class s = 2 satisfying (19) with �(0) = 0 is a second degree form and

positive definite if the weight function has the following expression:

w(x) = λ
�(p + q + 1)

�(p + 1
2 )�(q + 1

2 )

x2q−2(1 − x2)pY (1 − x2)√
1 − x2

+
(

1 − 2λ(p + q)

2q − 1

)
δ0,

p ∈ N, q ∈ N
∗, λ ∈

]
0,

2q − 1

2(p + q)

] (59)

where Y is the characteristic function of R
+.
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The case p = 0 and q = 0 is V . This form is not positive definite, and has the integral representation [1]

V = δ0 + λP f
1

π

Y (1 − x2)

x2
√

1 − x2
(see [1]), with the definition

〈
P f

Y (1 − x2)

x2
√

1 − x2
, f

〉
= lim

ε→0

⎛
⎝

−ε∫
−1

f (x)
√

1 − x2

x2 dx +
1∫

ε

f (x)
√

1 − x2

x2 dx

⎞
⎠ .

Particular cases:

(1) If p = q = 1 and λ = 1

8
then u = 1

2δ0 + 1
2U where U is a Tchebychev form of second kind. Let us recall

that its sequence {Bn}n≥0 satisfies (15) with

βn = 0, γ2n+1 = n + 1

4(n + 2)
, γ2n+2 = n + 3

4(n + 2)
, n ≥ 0.

In a very interesting work [5], J. Charris, G. Salas and V. Silva studied this sequence of orthogonal polynomi-
als. This sequence is a particular case of a more general sequence considered in Example 1 presented in [10].
According to Theorem 2.5 we deduce that it is a second degree form.
(2) If λ−1 = 2(p+q)

2q−1 then u = I(p− 1
2 , q − 3

2 ). This means that the second degree forms u = L(p− 1
2 , q − 1

2 , λ)

generalize the symmetric second degree forms of class s = 1.
In fact, from (40), u = L (

p − 1
2 , q − 1

2 , λ
)

satisfies (19) with

�(x) = x2(x2 − 1), �(x) = (−2p − 2q − 1)x3 + 2qx . (60)

We have �′(0) + �(0) = 0 and 〈u, θ0� + θ2
0 �〉 = −2λ(p + q) + 2q − 1.

Then, if −2λ(p + q) + 2q − 1 = 0 we can simplify (19)–(60) by x and we necessarily have p + q �= 0
because λ(2q − 1) �= 0. Therefore, γ1 = λ = 2q−1

2(p+q)
and u verifies (19) with

�(x) = x(x2 − 1), �(x) = −2(p + q)x2 + (2q − 1).

Here, �′(0) + �(0) + 〈
u, θ0� + θ2

0 �
〉 = 2(q − 1).

Hence, for (p, q) = (k, l + 1), we get the statement of Theorem 2.3.

2.3 The study of σL (
p − 1

2 , q − 1
2 , λ

)

In this part, the focus will be put on σu: the even part of u = L(p − 1
2 , q − 1

2 , λ), provided p + q ≥ 0,
p, q ∈ Z.

The linear form u verifies the functional equation

(x2(x2 − 1)u)′ + ((−2p − 2q − 1)x3 + 2qx)u = 0.

Multiplication by x gives

(x3(x2 − 1)u)′ + ((−2p − 2q − 2)x4 + (2q + 1)x2)u = 0.

Applying the operator σ in both hand sides of the above equation and using (11)–(12), we obtain

(
�P(x)σu

)′ + � P(x)σu = 0 (61)

where �P(x) = x2(x − 1), � P(x) = −(p + q + 1)x2 + (q + 1
2 )x .

We have � P(0) + (�P)′(0) = 0 and
〈
σu, θ0�

P + θ2
0 �P

〉 = −(p + q)λ + q − 1
2 .

Then, from Proposition 2.1 and the standard criterion (20), we obtain the following cases:

(i) If 2(p + q)λ �= 2q − 1 then σu is a nonsymmetric second degree form of class s = 1.
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(ii) If λ−1 = 2(p+q)
2q−1 then (h(− 1

2 )−1 ◦τ− 1
2
)σu = J (p− 1

2 , q − 3
2 ) : the classical second degree forms. Indeed,

in this case, we necessarily have p + q �= 0. Then, for (p, q) = (k, l + 1), we obtain the statement of
Theorem 1.4.

From (27) and (28), the coefficients {β P
n , γ P

n+1}n≥0 of {Pn}n≥0 are

β P
0 = γ1, β P

n+1 = γ2n+2 + γ2n+3, γ P
n+1 = γ2n+1γ2n+2,

where γn, n ≥ 1 are given by (41) and (α, β) = (p − 1
2 , q − 1

2 ).

Proposition 2.9 Let u = L(p − 1
2 , q − 1

2 , λ), where p and q are integer numbers with p + q ≥ 0. Then, the
second degree form σu satisfies

B̄(z)S2(σu
)
(z) + C̄(z)S

(
σu

)
(z) + D̄(z) = 0 (62)

with:
(1) For p ≥ 0,

(i) if q ≥ 0,then⎧⎨
⎩

B̄(z) = z3(z − 1),

C̄(z) = −2μz3(z − 1)X̄ (z) + 2μ(z − 1)p+1zq+2,

D̄(z) = μ2z3(z − 1)X̄ 2(z) − 2μ2(z − 1)p+1zq+2X̄ (z) + μ2(z − 1)2pz2q
(
z(z − 1) − λ2

)
,

(63)

where

X̄ (z) = (
(σV)θ0

(
(ξ − 1)pξq))

(z), μ = (〈V, (x2 − 1)px2q 〉)−1
.

(ii) if q ≤ −1 and p + q ≥ 0, then

⎧⎨
⎩

B̄(z) = (z − 1)z−2q+3,

C̄(z) = z1−q
{
2z2(z − 1)Ȳ(z) + 2μz(z − 1)p+1

}
,

D̄(z) = z3(z − 1)Ȳ2(z) + 2μz2(z − 1)p+1Ȳ(z) + μ2(z − 1)2p
(
z(z − 1) − λ2

)
,

(64)

where

Ȳ(z) = (
(σu)ξ−q−1) (z) − μ

(
(σV)θ0

(
(ξ − 1)p)) (z) , μ =

〈
u, x−2q

〉
〈V, (x2 − 1)p

〉 .
(2) For p ≤ −1 and q ≥ 1 such that p + q ≥ 0, we have⎧⎪⎨

⎪⎩
B̄(z) = z3(z − 1)−2p+1,

C̄(z) = z(z − 1)−p
{
2z2(z − 1)Z̄(z) + 2μ(z − 1)zq+1

}
,

D̄(z) = z3(z − 1)Z̄2(z) + 2μ(z − 1)zq+2Z̄(z) + μ2z2q
(
z(z − 1) − λ2

)
,

(65)

where

Z̄(z) = (
(σu)θ0

(
(ξ − 1)−p)) (z) − μ

(
(σV)ξq−1) (z), μ =

〈
u, (x2 − 1)−p

〉
〈V, x2q

〉 .

Proof From Proposition 2.8, we notice that the polynomial coefficients of the second degree equation (16)
satisfied by u = L(p − 1

2 , q − 1
2 , λ) are such that B and D are even and C is odd. Then, there exist Be, Co

and De such that

B(z) = Be(z2), C(z) = zCo(z2), D(z) = De(z2). (66)

From (8) and the fact that u is a symmetric form, we have

S(u)(z) = zS(σu)(z2). (67)
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Substituting (66) and (67) in (16) and making a change of variable z2 −→ z, we get (62) with,

⎧⎨
⎩

B̄(z) = zBe(z),
C̄(z) = zCo(z),
D̄(z) = De(z).

(68)

From (2), (6) and (11), we easily prove that for a symmetric form w, we have

(
wθ0 f (ξ2)

)
(z) = z ((σw)θ0 f ) (z2), f ∈ P. (69)

Hence, the desired result is obtained by using (69) and the expressions of B, C and D given in the three
different cases of Proposition 2.8. ��
Integral representation

From (58)–(59), we get

〈σu, f (x)〉 = 〈u, f (x2)〉

=
(

1 − 2λ(p + q)

2q − 1

)
f (0) + 2λ

�(p + q + 1)

�(p + 1
2 )�(q + 1

2 )

+1∫
0

x2q−2(1 − x2)p

√
1 − x2

f (x2)dx .

Then, we obtain after a change of variables

〈σu, f 〉 =
(

1 − 2λ(p + q)

2q − 1

)
f (0) + λ

�(p + q + 1)

�(p + 1
2 )�(q + 1

2 )

+1∫
0

xq−1(1 − x)p

√
x(1 − x)

f (x)dx, p, q ∈ N, q �= 0.

(70)

Notice that this form is a particular case of the so-called Koornwinder linear functionals (see [8]).

Remark Thanks to Proposition 2.2, we carry out the complete description of the symmetric second degree
semiclassical forms of class s = 2 when �(0) = 0. Unfortunately, the case when �(0) �= 0 is not covered by
this Proposition and the description of these forms remains open.

Notice that this last set is not empty. Indeed, let us define the normalized form W by W = U + λδ1 +
λδ−1, λ ∈ C − {0} where U is a Tchebychev form of second kind. This form is symmetric and semiclassical
of class s = 2 satisfying (19) with �(x) = (x2 − 1)2 and �(x) = −5x(x2 − 1). It is a particular case of the
so-called Koornwinder linear functionals (see [6,8] and [9] for more information).

Moreover, it is well known that U is a second degree form verifying the quadratic equation (see [11])

S2(U)
(z) + 4zS

(U)
(z) + 4 = 0. (71)

From (W)2n = (U)2n + 2λ, (W)2n+1 = 0, n ≥ 0, we get S(U)(z) = S(W)(z) + 2λz
z2−1

. Then, substituting in

(71), we obtain after multiplying by (z2 − 1)2

(z2 − 1)2S2(W)(z) + 4z(z2 − 1)(z2 + λ − 1)S(W)(z) + 4(2λ + 1)z4 + 4(λ2 − 2λ − 2))z2 + 4 = 0.

Hence, W is a symmetric second degree semiclassical form of class s = 2 satisfying (19) with �(0) �= 0.
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