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Abstract In the present paper we introduce and investigate an interesting subclass K(k)
s (λ, h) of analytic and

close-to-convex functions in the open unit disk U. For functions belonging to the class K(k)
s (λ, h), we derive

several properties as the inclusion relationships and distortion theorems. The various results presented here
would generalize many known recent results.

Mathematics Subject Classification (2010) 30C45 · 30C80

1 Introduction and preliminaries

Let S denote the class of functions of the form

f (z) = z +
∞∑

n=2

anzn, (1.1)

which are univalent (i.e. analytic and injective) in the open unit disk U = {z ∈ C : |z| < 1}. Let K and S∗
denote the usual subclasses of S whose members are close-to-convex and starlike in U, respectively. We also
denote by S∗(α) the class of starlike functions of order α, 0 ≤ α < 1.
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In many earlier investigations, various interesting subclasses of the classS have been studied from a number
of different view points. In particular, Gao and Zhou [2] introduced the next subclass Ks of analytic functions,
which is indeed a subclass of close-to-convex functions:

Definition 1.1 [2] Let the function f be analytic in U and normalized by the condition (1.1). We say that
f ∈ Ks , if there exists a function g ∈ S∗ ( 1

2

)
such that

Re
−z2 f ′(z)
g(z)g(−z)

> 0, z ∈ U.

In a very recent paper of Şeker [6], it is introduced the following class Kk
s (γ ):

Definition 1.2 [6] Let the function f be analytic in U and normalized by the condition (1.1). We say that
f ∈ K(k)

s (γ )(0 ≤ γ < 1), if there exists a function g ∈ S∗ ( k−1
k

)
(k ∈ N is a fixed integer) such that

Re
zk f ′(z)
gk(z)

> γ, z ∈ U,

where gk is defined by the equality

gk(z) =
k−1∏

ν=0

ε−νg(ενz), where ε = e2π i/k . (1.2)

For k = 2 we get the class Ks(γ ) ≡ K(2)
s (γ ), introduced and studied by Kowalczyk and Leś-Bomba [3].

Also, for k = 2 and γ = 0 we obtain the class K(2)
s (0) ≡ Ks(0) ≡ Ks given in the Definition 1.1.

Definition 1.3 (see, e.g. [5]) For two functions f and g analytic in U, we say that the function f is subordinate
to g, and write f (z) ≺ g(z), if there exists a Schwarz function w, which (by definition) is analytic in U, with
w(0) = 0, and |w(z)| < 1 for all z ∈ U, such that

f (z) = g(w(z)), z ∈ U.

In particular, if the function g is univalent in U, then above subordination is equivalent to

f (0) = g(0) and f (U) ⊂ g(U).

Motivated by the aforementioned works we now introduce the following subclass of analytic functions:

Definition 1.4 Let h : U → C be a convex function such that

h(0) = 1, h(z̄) = h(z), and Re h(z) > 0, z ∈ U. (1.3)

Suppose also that the function h satisfies the following conditions for all r ∈ (0, 1):

min {|h(z)| : |z| = r} = min {h(r), h(−r)},
max {|h(z)| : |z| = r} = max {h(r), h(−r)}. (1.4)

Let the function f be analytic in U and normalized by the condition (1.1). We say that f ∈ K(k)
s (λ, h), if there

exists a function g ∈ S∗ ( k−1
k

)
(k ∈ N is a fixed integer), such that

zk f ′(z) + λzk+1 f ′′(z)
gk(z)

∈ h(U), z ∈ U, where 0 ≤ λ ≤ 1. (1.5)

For λ = 0 and k = 2 we obtain the class Ks(h) ≡ K(2)
s (0, h), recently studied by Xu et al. [11].

Remark 1.1 There are many choices of the function h which would provide interesting subclasses of analytic
functions.
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(i) If we let

h(z) = 1 + Az

1 + Bz
(−1 ≤ B < A ≤ 1), (1.6)

then it is easy to verify that h is a convex function in U, and satisfies the hypothesis of Definition 1.4.
If f ∈ K(k)

s (λ, h), then

zk f ′(z) + λzk+1 f ′′(z)
gk(z)

≺ 1 + Az

1 + Bz
,

where 0 ≤ λ ≤ 1, −1 ≤ B < A ≤ 1, and g ∈ S∗ ( k−1
k

)
(k ∈ N is a fixed integer), and this class will

be denoted by K(k)
s (λ, A, B).

For k = 2 we have the class Ks(λ, A, B) ≡ K(2)
s (λ, A, B), recently studied by Wang and Chen [7].

(ii) For

h(z) = 1 + (1 − 2γ )z

1 − z
(0 ≤ γ < 1)

we get the new class K(k)
s (λ, γ ) ≡ K(k)

s (λ, A, B), which consists of the functions f that are analytic in
U and normalized by the condition (1.1), satisfying

Re
zk f ′(z) + λzk+1 f ′′(z)

gk(z)
> γ, z ∈ U. (1.7)

Also, for γ = 0 we obtain the new class K(k)
s (λ) ≡ K(k)

s (λ, γ ) which consists of the functions f that
are analytic in U and normalized by the condition (1.1), satisfying

Re
zk f ′(z) + λzk+1 f ′′(z)

gk(z)
> 0, z ∈ U.

(iii) Letting λ = 0 in (1.7) we get the class K(k)
s (γ ) given in Definition 1.2.

In this work, by using the principle of subordination, we obtain inclusion theorem and distortion theorems
for functions in the function class K(k)

s (λ, h). Our results unify and extend the corresponding results obtained
by Xu et al. [11], Wang and Chen [7], Wang et al. [8,9], Şeker [6], Kowalczyk and Leś-Bomba [3], and Gao
and Zhou [2].

2 Main results

We assume throughout this section that k ∈ N is a fixed integer.
In order to prove our main results for the functions class K(k)

s (λ, h), we first recall the following lemmas.

Lemma 2.1 ([8, Theorem 2]) If g(z) = z + ∑∞
n=2 bnzn ∈ S∗ ( k−1

k

)
, then

Gk(z) = gk(z)

zk−1 = z +
∞∑

n=2

Bnzn ∈ S∗ ⊂ S. (2.1)

Lemma 2.2 ([4]) If Re γ ≥ 0, then f ∈ K implies

H(z) = 1 + γ

zγ

z∫

0

tγ−1 f (t) d t ∈ K.

We also mention that the above lemma is a special case of Theorem 4 obtained by Wu [10].
We now state and prove the main results of our present investigation:
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Theorem 2.1 Let f be an analytic function in U and normalized by the condition (1.1). Then, f ∈ K(k)
s (λ, h)

if and only if there exists a function g ∈ S∗ ( k−1
k

)
, such that

zk f ′(z) + λzk+1 f ′′(z)
gk(z)

≺ h(z) (0 ≤ λ ≤ 1), (2.2)

where gk is given by (1.2).

Proof This result can be proven fairly easily by using the Definition 1.3 combined with the definition inequality
(1.7).

�
In view of the Remark 1.1, if we set λ = 0 and

h(z) = 1 + (1 − 2γ )z

1 − z
(0 ≤ γ < 1)

in Theorem 2.1, we deduce the following corollary:

Corollary 2.1 Let f be an analytic function inUand normalized by the condition (1.1). Then, f ∈ K(k)
s (γ )(0 ≤

γ < 1) if and only if there exists a function g ∈ S∗ ( k−1
k

)
such that

zk f ′(z)
gk(z)

≺ 1 + (1 − 2γ )z

1 − z
,

where gk is given by (1.2).

Note that Corollary 2.1 was proven by Şeker [6, Theorem 1]. However, by using Theorem 2.1 we are able
to deduce this result as an easy consequence of the theorem.

Theorem 2.2 If 0 ≤ λ ≤ 1, then

K(k)
s (λ, h) ⊂ K ⊂ S∗.

Proof Let f ∈ K(k)
s (λ, h) be an arbitrary function, and let define the corresponding functions F and Gk by

F(z) := (1 − λ) f (z) + λz f ′(z), and Gk(z) := gk(z)

zk−1 .

Then, the condition (2.2) can be written as

zF ′(z)
Gk(z)

≺ h(z).

By Lemma 2.1 we have Gk ∈ S∗, and from the above subordination combined with the fact that Re h(z) > 0
for all z ∈ U, we deduce that

F(z) = (1 − λ) f (z) + λz f ′(z) ∈ K.

Now we will consider the following two cases:
Case 1. If λ = 0, then it is obvious that f = F ∈ K.
Case 2. If 0 < λ ≤ 1, according to the definition of F we have

f (z) = 1

λ
z1− 1

λ

z∫

0

t
1
λ
−2 F(t) d t.

Denoting γ = 1/λ− 1, then Re γ ≥ 0, and by using Lemma 2.2 we conclude that f ∈ K, which complete
the proof of our theorem. �
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Theorem 2.3 Suppose that the convex function h : U → C satisfy the conditions (1.3) and (1.4), and
g ∈ S∗ ( k−1

k

)
, where gk is given by (1.2).

Let f be an analytic function in U of the form (1.1). Then, f ∈ K(k)
s (λ, h) if and only if

1 +
∞∑

n=2

n + λn(n − 1)

1 − h
(
eiθ

) anzn−1 −
∞∑

n=2

h
(
eiθ

)

1 − h
(
eiθ

) Bnzn−1 �= 0, (2.3)

for all z ∈ U and θ ∈ [0, 2π), where the coefficients Bn are given by (2.1).

Proof Since g ∈ S∗ ( k−1
k

)
, then g is univalent in U, hence it follows that gk(z) = ∏k−1

ν=0 ε−νg(ενz) �= 0 for
all z ∈ U \ {0}, that is

gk(z)

zk
�= 0, z ∈ U. (2.4)

(i) First, supposing that f ∈ K(k)
s (λ, h), from (2.2) we have

zk f ′(z) + λzk+1 f ′′(z)
gk(z)

≺ h(z). (2.5)

From here, according to the definition of the subordination of two functions, there exists a function w,
which is analytic in U, with w(0) = 0, and |w(z)| < 1, z ∈ U, such that

zk f ′(z) + λzk+1 f ′′(z)
gk(z)

≺ h (w(z)),

and thus

zk f ′(z) + λzk+1 f ′′(z)
gk(z)

�= h
(

eiθ
)

, z ∈ U, θ ∈ [0, 2π).

According to (2.4) and using the fact that h is univalent in U, the previous subordination is equivalent to

f ′(z) + λz f ′′(z) �= h
(

eiθ
) gk(z)

zk
, z ∈ U, θ ∈ [0, 2π). (2.6)

and according to Lemma 2.1 the above relation leads to (2.3), hence it proves the first part of our result.
(ii) Reversely, since it was previously shown that the assumption (2.3) is equivalent to (2.6), using (2.4)

we obtain that

zk f ′(z) + λzk+1 f ′′(z)
gk(z)

�= h
(

eiθ
)

, z ∈ U, θ ∈ [0, 2π). (2.7)

If we denote

ϕ(z) = zk f ′(z) + λzk+1 f ′′(z)
gk(z)

,

the relation (2.7) shows that ϕ(U) ∩ h(∂U) = ∅. Thus, the simply-connected domain ϕ(U) is included in a
connected component of C\h(∂U). From here, using the fact that ϕ(0) = h(0) together with the univalence of
the function h, it follows that ϕ(z) ≺ h(z), which represents in fact the subordination (2.5), i.e. f ∈ K(k)

s (λ, h).
�

For the special case when the function h is given by (1.6), from Theorem 2.3 we obtain the following result:

Corollary 2.2 Suppose that g ∈ S∗ ( k−1
k

)
, and gk is given by (1.2). If f is an analytic function in U of the

form (1.1), such that

(1 + |B|)
∞∑

n=2

[n + λn(n − 1)] |an| + (1 + |A|)
∞∑

n=2

|Bn| < A − B, (2.8)

where the coefficients Bn are given by (2.1), then f ∈ K(k)
s (λ, A, B).
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Proof For the function h given by (1.6), the above theorem yields that f ∈ K(k)
s (λ, A, B) if and only if

1 +
∞∑

n=2

[n + λn(n − 1)]
(
B + e−iθ

)

B − A
anzn−1 −

∞∑

n=2

A + e−iθ

B − A
Bnzn−1 �= 0, (2.9)

for all z ∈ U and θ ∈ [0, 2π). Now, a simple computation combined with the assumption (2.8) shows that
∣∣∣∣∣1 +

∞∑

n=2

[n + λn(n − 1)]
(
B + e−iθ

)

B − A
anzn−1 −

∞∑

n=2

A + e−iθ

B − A
Bnzn−1

∣∣∣∣∣

≥ 1 −
∣∣∣∣∣

∞∑

n=2

[n + λn(n − 1)]
(
B + e−iθ

)

B − A
anzn−1

∣∣∣∣∣ −
∣∣∣∣∣

∞∑

n=2

A + e−iθ

B − A
Bnzn−1

∣∣∣∣∣

≥ 1 −
∞∑

n=2

[n + λn(n − 1)] (|B| + 1)

A − B
|an| −

∞∑

n=2

|A| + 1

A − B
|Bn| > 0,

for all z ∈ U and θ ∈ [0, 2π), hence (2.9) holds. �
Substituting A = 1 − 2γ (0 ≤ γ < 1) and B = −1 in the above corollary, we obtain the following special

case:

Corollary 2.3 Suppose that g ∈ S∗ ( k−1
k

)
, and gk is given by (1.2). If f is an analytic function in U of the

form (1.1), such that

2
∞∑

n=2

[n + λn(n − 1)] |an| + (1 + |1 − 2γ |)
∞∑

n=2

|Bn| < 2 (1 − γ ) .

where the coefficients Bn are given by (2.1), then f ∈ K(k)
s (λ, γ ).

Remark 2.1 (i) Putting A = β, B = −αβ(0 ≤ α ≤ 1, 0 < β ≤ 1), and λ = 0 in Corollary 2.2, we get a
known result obtained by Wang et al. [8].

(ii) Letting λ = 0 in Corollary 2.3 we obtain the result given by Şeker [6].

Theorem 2.4 If f ∈ K(k)
s (λ, h), then:

(i) if 0 ≤ λ ≤ 1, for |z| ≤ r(0 ≤ r < 1), we have

min{h(r), h(−r)}
(1 + r)2 ≤ ∣∣ f ′(z) + λz f ′′(z)

∣∣ ≤ max{h(r), h(−r)}
(1 − r)2 , (2.10)

(ii) for |z| ≤ r(0 ≤ r < 1), we have

r∫

0

min{h(t), h(−t)}
(1 + t)2 d t ≤ | f (z)| ≤

r∫

0

max{h(t), h(−t)}
(1 − t)2 d t; (2.11)

(iii) if 0 < λ ≤ 1, for |z| ≤ r(0 ≤ r < 1), we have

1

λ
r1− 1

λ

r∫

0

s∫

0

min{h(t), h(−t)}
(1 + t)2 s

1
λ
−2 d s d t ≤ | f (z)|

≤ 1

λ
r1− 1

λ

r∫

0

s∫

0

max{h(t), h(−t)}
(1 − t)2 s

1
λ
−2 d s d t. (2.12)
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Proof Since f ∈ K(k)
s (λ, h), there exists a function g ∈ S∗ ( k−1

k

)
such that (1.5) holds. From Lemma 2.1 it

follows that the function Gk given by (2.1) is starlike, and according to the well-known inequalities [1, p. 70]
we have

r

(1 + r)2 ≤ |Gk(z)| ≤ r

(1 − r)2 , |z| ≤ r (0 ≤ r < 1). (2.13)

From the definition (1.5) combined with (1.4), we deduce that

min{h(r), h(−r)} ≤
∣∣∣∣
z f ′(z) + λz2 f ′′(z)

Gk(z)

∣∣∣∣ ≤ max{h(r), h(−r)}, |z| ≤ r. (2.14)

Letting

F(z) = (1 − λ) f (z) + λz f ′(z), (2.15)

then F ′(z) = f ′(z) + λz f ′′(z), and the inequality (2.14) may be written as

min{h(r), h(−r)} ≤
∣∣∣∣
zF ′(z)
Gk(z)

∣∣∣∣ ≤ max{h(r), h(−r)}, |z| ≤ r. (2.16)

From (2.13) and (2.16) we obtain that

min{h(r), h(−r)}
(1 + r)2 ≤ ∣∣F ′(z)

∣∣ ≤ max{h(r), h(−r)}
(1 − r)2 , |z| ≤ r, (2.17)

which proves (2.10).
If � denotes the closed line-segment that connects the points 0 and z = reiθ (0 ≤ r < 1), i.e. � = [

0, reiθ
]
,

then

|F(z)| =
∣∣∣∣∣∣

∫

�

F ′(ζ ) d ζ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

r∫

0

F ′ (teiθ
)

eiθ d t

∣∣∣∣∣∣
≤

r∫

0

∣∣∣F ′ (teiθ
)∣∣∣ d t,

and from the right-hand side part of (2.17) we deduce that

|F(z)| ≤
r∫

0

max{h(t), h(−t)}
(1 − t)2 d t, |z| = r. (2.18)

Since f ∈ K(k)
s (λ, h), then

zF ′(z)
Gk(z)

≺ h(z),

whereGk ∈ S∗, and Re h(z) > 0 for all z ∈ U. Thus, we deduce that F ∈ K, hence the function F is univalent
in U.

To prove the corresponding left-hand side inequality, let z0 ∈ U with |z0| = r , such that

|F(z0)| = min{|F(z)| : |z| = r},
for some 0 < r < 1. It is sufficient to prove that the left-hand side inequality holds for this point z0, because,
otherwise, we have |F(z)| ≥ |F(z0)| for all |z| = r . Since the function F is univalent in U, the image
of the closed line-segment σ = [0, F(z0)] by F−1 is a simple Jordan curve � included in the closed disk
{z ∈ C : |z| ≤ r}, i.e. � = F−1(σ ) ⊂ {z ∈ C : |z| ≤ r}.
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Let denote z0 = reiθ , and F(z0) = Rei�. If w ∈ σ is an arbitrary point, then w = sei�, where s ∈ [0, R],
hence | d w| = d s. Denoting ζ = F−1(w), then ζ = teiϕ , hence d ζ = eiϕ d t + tieiϕ d ϕ, and thus | d ζ | ≥ d t .
From here and from the left-hand side inequality of (2.17), it follows that

|F(z0)| =
∣∣∣F

(
reiθ

)∣∣∣ =
R∫

0

d s =
∫

σ

| d w| =
∫

�

∣∣F ′(ζ )
∣∣ | d ζ |

≥
r∫

0

∣∣∣F ′ (teiϕ
)∣∣∣ d t ≥

r∫

0

min{h(t), h(−t)}
(1 + t)2 d t,

hence

|F(z)| ≥
r∫

0

min{h(t), h(−t)}
(1 + t)2 d t, |z| = r. (2.19)

Combining the inequalities (2.18) and (2.19), together with the maximum modulus principle, we have

r∫

0

min{h(t), h(−t)}
(1 + t)2 d t ≤ ∣∣(1 − λ) f (z) + λz f ′(z)

∣∣

≤
r∫

0

max{h(t), h(−t)}
(1 − t)2 d t, |z| ≤ r. (2.20)

To complete our proof, we will discuss the following two cases for the parameter λ ∈ [0, 1]:
Case 1. For λ = 0, from (2.20) we easily get (2.11).
Case 2. For 0 < λ ≤ 1, from (2.15) we obtain

f (z) = 1

λ
z1− 1

λ

z∫

0

t
1
λ
−2 F(t) d t,

hence we easily conclude that (2.12) holds. �
Remark 2.2 The results obtained by Xu et al. [11, Theorem 3], Wang and Chen [7, Theorem 5.1], Şeker [6,
Theorem 4], and Kowalczyk and Leś-Bomba [3, Theorem 4] are special cases of our Theorem 2.4.
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