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Abstract It is known that a Prüfer domain either with dimension 1 or with finite character has the stacked bases
property. Following Brewer and Klinger, some rings of integer-valued polynomials provide, for every n ≥ 2,
examples of n-dimensional Prüfer domains without finite character which have the stacked bases property. But,
the following question is still open: does the two-dimensional Prüfer domain Int(Z) = { f ∈ Q[X ] | f (Z) ⊆ Z}
have the stacked bases property? By means of the UCS-property, we reduce the question to the search for some
2 × 2 matrices with coefficients in Int(Z).

Mathematics Subject Classification 13F20 · 13C10 · 13F05

1 The stacked bases property

If you cannot solve the proposed problem, try to solve
first some related problem. Could you imagine a more
accessible related problem? ... G. Pólya [8]

The following result is well known. It is itself a generalization of the structure theorem for the finitely
generated abelian groups.

Proposition 1.1 Let D be a principal ideal domain. If M is a free D-module with finite rank m, then every
submodule N of M is also a free D-module with rank n ≤ m. Moreover, there exists a basis (e1, . . . , em) of
M and elements a1, . . . , an of D such that (a1e1, . . . , anen) is a basis of N . We still may ask that a j divides
a j+1 for 1 ≤ j ≤ n − 1.
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Such a result has been generalized to Dedekind domains D. Since a submodule of a free D-module is not
necessarily a free module (for instance, the non-zero ideals of D are only rank-one projective modules), the
previous proposition may be generalized only in the following way:

Proposition 1.2 Let D be a Dedekind domain. If M is a free D-module with finite rank m, then every submod-
ule N of M is a projective D-module with rank n ≤ m. Moreover, there exist stacked bases decompositions of
M and N:

M = P1 ⊕ · · · ⊕ Pm and N = I1 P1 ⊕ · · · ⊕ In Pn

where the Pi ’s are rank-one projective modules and the I j ’s are non-zero ideals of D. We still may ask that
I j divides I j+1 for 1 ≤ j ≤ n − 1.

If we want to extend such a result to the non-noetherian case by replacing the Dedekind domain by a Prüfer
domain, we notice that a submodule of a free module with finite rank is not necessarily finitely generated,
so that we have to assume it. On the other hand, we know that every finitely generated submodule of a free
module on a Prüfer domain is a projective module with finite rank. So that the generalization to Prüfer domains
would be given by the answer to the following question: do Prüfer domains have the stacked bases property
(property that we recall now)?

Definition 1.3 [6, § V.4] A domain D is said to have the stacked bases property if, for every free D-module
M with finite rank m and every finitely generated submodule N of M with rank n ≤ m there exist rank-one
projective D-modules P1, . . . , Pm and non-zero ideals I1, . . . , In of D such that:

M = P1 ⊕ · · · ⊕ Pm, N = I1 P1 ⊕ · · · ⊕ In Pn

and

I j+1 ⊆ I j for 1 ≤ j ≤ n − 1.

Clearly, in the previous definition, we may replace the hypothesis that M is a free module with finite rank
m either by M is a projective module with finite rank m, or by M is equal to Dm .

As said, we are interested in Prüfer domains which have the stacked bases property. In fact, we will replace
the stacked bases property by an equivalent one for Prüfer domains, namely the UCS-property. The following
study is based on a paper by Brewer and Klinger [3]. We first recall results concerning the UCS-property in
Sect. 2, then results on rings of integer-valued polynomials in Sect. 3. Our own contribution is in Sect. 4.

2 The UCS-property

We first recall the notion of content:

Definition 2.1 Let R be a ring, m and n be positive integers.

(1) The content cR(A), or briefly c(A), of a matrix A ∈ Mm×n(R) is the ideal of R generated by the coefficients
of A.

(2) The content cR(N ), or briefly c(N ), of a finitely generated sub-R-module N of a free R-module M of
finite rank is the content of the matrix formed by the components of any system of generators of N with
respect to any basis of M .

(3) The submodule N of M is said to have unit content when c(N ) = R.

Assume that the domain D has the stacked bases property and consider a finitely generated submodule N
of Dm . Then, with notation of Definition 1.3, c(N ) = I1. If N has unit content, then I1 = D, and hence, the
rank-one projective module P1 is a submodule of N which is a summand of Dm . Let us introduce this property
as a definition:

Definition 2.2 [6, § V.4] The ring R is said to have the unit content summand property, or briefly, the UCS-
property if, for every m, every finitely generated submodule N of Rm with unit content contains a rank-one
projective submodule which is a summand of Rm .
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Instead of UCS-property, some authors speak of BCS-property (see for instance [3]).We have just said that
the stacked bases property implies the UCS-property. The converse holds for Prüfer domains:

Proposition 2.3 [1] (see also [6, Thm 4.8]) A Prüfer domain has the stacked bases property if and only if it
has the UCS-property.

Thus, we are led to study the UCS-property. The following proposition gives an equivalent way to consider
the UCS-property.

Proposition 2.4 [7] A ring R has the UCS-property if and only if, for every matrix B ∈ Mm×n(R) with unit
content, there exists a matrix C ∈ Mn×r (R) such that the matrix BC has unit content and all 2 × 2 minors
of BC are zero.

Recall also:

Definition 2.5 [6, § V.4]

(1) A ring R is said to be local-global when whatever n ≥ 1 and whatever f ∈ R[X1, . . . , Xn] if, for
every maximal ideal m of R, there exist x1, . . . , xn ∈ R such that f (x1, . . . , xn) /∈ m, then there exist
y1, . . . , yn ∈ R such that f (y1, . . . , yn) is a unit in R.

(2) A ring R is said to be almost local-global if all its proper factor rings are local-global.

Proposition 2.6 [2] (see also [6, Thm 4.7]) Every almost local-global ring has the UCS property

Since every one-dimensional integral domain and every domain with finite character (that is, such that
every non-zero element is contained in at most finitely many maximal ideals) are almost local-global (see [6,
Example 4.3]), we have:

Corollary 2.7 A Prüfer domain which is either of dimension one or of finite character has the stacked bases
property.

It is then interesting to consider Prüfer domains with Krull dimension ≥2 which are not of finite character.
Rings of integer-valued polynomials provide such examples.

3 Rings of integer-valued polynomials

Recall that, for every domain D with quotient field K and for every subset E of D, the ring of integer-valued
polynomials on E with respect to D is the ring:

Int(E, D) = { f ∈ K [X ] | f (x) ∈ D ∀x ∈ E}.
This ring is well known when D is assumed to be a valuation domain:

Proposition 3.1 [5] If V is a valuation domain with finite residue field and finite dimension n and if E is a
precompact subset of V , then Int(E, V ) is a Prüfer domain with dimension n + 1.

Moreover, the prime ideals of Int(E, V ) lying over the maximal ideal m of V are the following distinct
maximal ideals:

mx = { f ∈ Int(E, D) | f (x) ∈ m̂} (x ∈ ̂E)

where m̂ and ̂E denote, respectively, the completion of m and E . As a consequence, as soon as E is infinite,
Int(E, V ) is not of finite character.

Proposition 3.2 [3, Thm 5] If V is a valuation domain with finite residue field and finite dimension n and if
E is a precompact subset of V , then the n + 1-dimensional Prüfer domain Int(E, V ) is almost local-global,
and hence, has the stacked bases property.

So that, the ring Int(E, V ) is a natural example of Prüfer domain of any dimension, without the finite
character property and which has the stacked bases property. But, do all these rings (when they are Prüfer)
have the stacked bases property. By globalisation we easily have:
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Proposition 3.3 [4, §§ V.2 and VI.1] Let D be a Dedekind domain with finite residue fields and let E be any
subset of D. Then, the ring Int(E, D) is a two-dimensional Prüfer domain. Moreover, the prime ideals of
Int(E, D) which contain non-zero elements of D are the following distinct maximal ideals:

mx = { f ∈ Int(E, D) | f (x) ∈ m̂}
where m is any maximal ideal of D and x is any element of ̂E (m̂ and ̂E denote the completions of m and E
with respect to the m-adic topology).

But, already in the easiest and most natural case where E = D = Z, we cannot conclude in the same way
because the ring

Int(Z) = Int(Z,Z) = { f ∈ Q[X ] | f (Z) ⊆ Z}
is a two-dimensional Prüfer domain which is not almost local-global: the factor ring Int(Z)/(X2 + 14) is not
local-global [3, Example 7].

4 Does Int(Z) have the stacked bases property?

We are then interested in the question to know whether Int(Z) has the stacked bases property. This question
raised by Brewer and Klinger [3] at the end of their paper is interesting whatever the answer: either Int(Z) has
the stacked bases property, and this is interesting because Int(Z) is an interesting natural ring; or Int(Z) does not
have the property and this is still more interesting because it would provide an example of a two-dimensional
Prüfer domain which has not the stacked bases property.

Since the almost local-global property is too strong for our example, we consider another property which
implies also the UCS-property:

Definition 4.1 A ring R has the BCU-property if, for every m ≥ 1, every finitely generated submodule of Rm

with unit content contains a vector x such that c(Rx) = R.

Equivalently, a ring R has the BCU-property if, for every matrix B ∈ Mm×n(R) with unit content, there
exists a column-matrix X such that the column-matrix B X has unit content. The BCU-property implies the
UCS-property since, for every vector x of Rm such that c(Rx) = R, Rx is a rank-one projective module which
is a summand of Rm . Thus, we have the following implications:

R is local-global ⇒ R has the BCU property
⇓ ⇓
R is almost local-global ⇒ R has the UCS property

Example 4.2 [3]

(1) A principal ideal domain has the BCU-property.
(2) The ring Int(Z)/(X2 + 14) does not have the BCU-property.

With respect to this BCU property, we now prove the following technical proposition:

Proposition 4.3 Let R be a ring and S be a multiplicative subset of R which does not contain zero divisors.
We assume that:

(1) the ring S−1 R has the BCU-property,
(2) for every non-zero finitely generated ideal I of R such that I∩ S �= ∅, the ring R/I has the BCU-property.

Then, for every m ∈ N:

(1) every submodule of Rm which is finitely generated with unit content contains a submodule with unit content
which may be generated by two elements,

(2) every submodule of Rm which is a rank-one projective module and a summand of Rm may be generated
by two elements.

Proof Let m ≥ 1.
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(1) Let N be a finitely generated sub-R-module of Rm with unit content. Then, S−1 N is a finitely generated
sub-S−1 R-module of (S−1 R)m with unit content. Since S−1 R has the BCU-property, there exists a vector
z ∈ S−1 N such that cS−1 R(S

−1 Rz) = S−1 R. Let z = s−1x where x ∈ N and s ∈ S, and let I = cR(Rx).
Then, S−1I = S−1 R, in other words, I∩ S �= ∅. If I = R, cR(Rx) = R and we are done. Else, R = R/I
has the BCU-property by hypothesis. Consequently, since the R-module N = N/IN is finitely generated
with unit content, there exists an element y ∈ N such that cR(Ry) = R. If y ∈ N is a representative of y,
then one has cR(Ry)+ I = R. Thus, the R-module < x, y > generated by x and y is a sub-R-module of
N such that cR(Rx) + cR(Ry) = R.
Moreover, note that cR(Rx) ∩ S �= ∅.

(2) Let P be a rank-one projective R-module which is a summand of Rm . Then, P may be generated by m
elements. Moreover, P has unit content. Indeed, for each m ∈ Max(R), Pm is a free Rm-module which
is a summand of Rm

m, and hence, cR(P)Rm = Rm. The first part of the proof shows that P contains a
submodule Q with unit content which may be generated by two elements. Then, for every maximal ideal
m of R, Pm is a free Rm-module with rank one which contains an Rm-module Qm with unit content.
Necessarily, by definition of the content, Pm = Qm for every m, and hence, P = Q. �

Corollary 4.4 Let R be a ring and S be a multiplicative subset of R without zero divisors which satisfy the
hypotheses of Proposition 4.3. Then, R has the UCS-property if and only if, for every matrix B ∈ Mm×2(R)
with unit content, there exists a matrix C ∈ M2×2(R) such that BC has unit content and all 2 × 2 minors of
BC are zero.

Proof Analogously to Proposition 2.4, let us translate the UCS property in terms of matrices. Assume that R
has the UCS property and let B ∈ Mm×2(R) be a matrix with unit content. The submodule N of Rm generated
by the columns of B has unit content. By Definition 2.2, N contains a rank-one projective submodule P which
is a summand of Rm . By Proposition 4.3, P is generated by two elements. Let D ∈ Mm×2(R) be the matrix
formed by the components of these two generators. Then, D has unit content and all 2 × 2 minors of D are
zero: we may verify these properties locally and we know that, for every maximal ideal m of R, Pm is a
rank-one free module which is a summand of Rm

m. Finally, if C ∈ M2×2(R) denotes any matrix formed by
the (non-unique) coefficients of the two generators of P written as linear combinations of the two generators
of N , then D = BC .

Conversely, assume that R satisfies the property concerning the matrices and let N be any submodule
of Rm with unit content. It follows from Proposition 4.3 that, to prove the UCS property for the module
N , we may assume that N is generated by two elements. Then, the matrix B ∈ Mm×2(R) formed by the
components of two generators of N has unit content. By hypothesis, there exists C ∈ M2×2(R) such that
D = BC ∈ Mm×2(R) has unit content and the 2 × 2 minors of D are zero. Let P be the submodule of Rm

generated by the two columns of D. The fact that D = BC shows that P is a submodule of N . Let us prove
that the properties of the matrix D imply that P is a rank-one projective summand of Rm . Fix any maximal
ideal m of R. Since D has unit content, there a column of D with a coefficient which is invertible in Rm. The
corresponding vector z of P may be chosen as an element of a basis of the Rm-module Rm

m. The condition on
the 2 × 2 minors of D implies that Pm = z Rm, and hence, (Rm/P)m = Rm

m/Pm is a free Rm-module with
rank m − 1. Consequently, Rm/P is a projective R-module with rank m − 1, Rm/P is a summand of Rm and
P is a rank-one projective summand of Rm . �

Application to the ring R = Int(Z).

We may apply the previous proposition and its corollary to the ring R = Int(Z) by considering the multipli-
cative subset S = Z \ {0}. Indeed, on the one hand, S−1Int(Z) = Q[X ] is a principal ideal domain, thus it has
the BCU-property. On the other hand, following Proposition 3.3, for every ideal I of Int(Z) which contains
non-zero elements of Z, the ring Int(Z)/I is zero dimensional, thus, is local-global and, in particular, has the
BCU-property. So that:

Theorem 4.5 The ring R = Int(Z) = { f ∈ Q[X ] | f (Z) ⊆ Z}, which is a two-dimensional Prüfer domain,
has the stacked bases property if and only if, for every matrix B ∈ Mm×2(R) with unit content, there exists a
matrix C ∈ M2×2(R) such that BC has unit content and all 2 × 2 minors of BC are zero.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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