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Tomasz Brzeziński · Zhengming Jiao

R-smash products of Hopf quasigroups

Received: 6 July 2010 / Accepted: 5 October 2010 / Published online: 24 March 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The theory of R-smash products for Hopf quasigroups is developed.
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1 Introduction

Hopf quasigroups and Hopf coquasigroups were introduced in [4]. These are non-associative (or non-coasso-
ciative) generalisations of Hopf algebras, in which the antipode provides one with a certain level of control
over the non-associativity. In particular, Hopf quasigroups are examples of unital coassociative H -bialgebras
introduced in [5, Section 2]. They can be understood as linearisations of loops [1]. Also in [4], smash products
of Hopf quasigroups were studied. It has been shown in [2] that a standard form of a smash product forces
one to replace the conventional associativity of action (assumed in [4] from the onset) by a similar condition
involving the antipode. In this note, which is a sequel to [2], we look at R-smash products [3] of Hopf quasi-
groups and, briefly, at W -smash coproducts of Hopf coquasigroups. This analysis reveals that some of the
conventional requirements on the twisting map R need be replaced by similar conditions in which the antipode
plays a prominent role (see Theorem 2.3 and Definition 2.1 for details).

All algebras and coalgebras are over a field k and they are assumed to be unital and counital, respectively,
but are not assumed to be associative or coassociative unless stated otherwise. Unadorned tensor product sym-
bol represents the tensor product of k-vector spaces. We use the standard Sweedler notation for coproducts
�(h) = h(1)⊗h(2) (summation understood) even if the coproduct � is not assumed to be associative.
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2 R-Smash products of Hopf quasigroups

We begin by introducing the terminology used in this note.

Definition 2.1 Let H be an algebra with product μH and unit 1H and a coalgebra with coproduct �H and
counit εH that are algebra morphisms. Similarly, let A be an algebra with product μA and unit 1A and a
coalgebra with coproduct �A and counit εA that are algebra morphisms. Consider linear maps SH : H → H
and R : H⊗A → A⊗H . The map R is said to be:

• left normal (resp. right normal) if

R ◦ (idH ⊗1A) = 1A⊗idH , (resp. R ◦ (1H ⊗idA) = idA⊗1H ),

and it is said to be normal if it is both left and right normal;
• left multiplicative if

R ◦ (idH ⊗μA) = (μA⊗idH ) ◦ (idA⊗R) ◦ (R⊗idA);
• right SH -multiplicative if

R ◦ (μH ⊗idA) ◦ (idH ⊗SH ⊗idA) = (A⊗μH ) ◦ (R⊗idH ) ◦ (idH ⊗R) ◦ (idH ⊗SH ⊗idA);
• right SH -normal if

R ◦ (SH ⊗idA) ◦ flip ◦ R ◦ (1H ⊗idA) = 1H ⊗idA.

Dually, the map R is said to be:

• left conormal (resp. right conormal) if

(εA⊗idH ) ◦ R = idH ⊗εA, (resp. (idA⊗εH ) ◦ R = εH ⊗idA),

and it is said to be conormal if it is both left and right conormal;
• left comultiplicative if

(�A⊗idH ) ◦ R = (idA⊗R) ◦ (R⊗idA) ◦ (idH ⊗�A);
• right SH -comultiplicative if

(idA⊗SH ⊗idH ) ◦ (idA⊗�H ) ◦ R = (idA⊗SH ⊗idH ) ◦ (R⊗idH ) ◦ (idH ⊗R) ◦ (�H ⊗A);
• right SH -conormal if

(idA⊗εH ) ◦ R ◦ flip ◦ (idA⊗SH ) ◦ R = εH ⊗idA.

The action of R on elements is denoted by

R(h⊗a) =
∑

R

aR⊗h R =
∑

r

ar⊗hr , etc.,

for all h ∈ H and a ∈ A. The reader is encouraged to write down all the above requirements on R in terms of
this notation. For example, R is left multiplicative if

∑

R

(ab)R⊗h R =
∑

R,r

aRbr⊗h Rr , (2.1)

and is right SH -multiplicative if
∑

R

aR⊗(gSH (h))R =
∑

R,r

aRr⊗gr SH (h)R, (2.2)

for all a, b ∈ A and g, h ∈ H , etc.
We are particularly interested in the case in which H and A are Hopf quasigroups or Hopf coquasigroups,

and SH is the antipode of H . We will concentrate on the former case, as the latter can be treated dually. Recall
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from [4] that (H, μH , 1H , �H , εH , SH ) as in Definition 2.1 is called a Hopf quasigroup provided �H is
coassociative and the following Hopf quasigroup identities are fulfilled

SH (h(1))(h(2)g) = gε(h) = h(1)(SH (h(2))g), (2.3)

(gh(1))SH (h(2)) = gε(h) = (gSH (h(1)))h(2), (2.4)

for all g, h ∈ H . The identities (2.3)–(2.4) ensure that a Hopf quasigroup is an H-bialgebra with left division
h\g = SH (h)g and right division g/h = gSH (h) (see [5, Definition 2]). It is proven in [4] that the antipode SH
is antimultiplicative and anticomultiplicative and it immediately follows from the Hopf quasigroup identities
that SH enjoys the standard antipode property.

Definition 2.2 Let H and A be Hopf quasigroups, R : H⊗A → A⊗H a k-linear map. An R-smash product
of H and A is a Hopf quasigroup A >�R H equal to A⊗H as a vector space, with tensor product coproduct,
unit and counit, and the multiplication

μ = (μA⊗μH ) ◦ (idA⊗R⊗idH ) (2.5)

and antipode

S = R ◦ (SH ⊗SA) ◦ flip . (2.6)

The aim of this note is to determine necessary and sufficient conditions for R to produce an R-smash
product of Hopf quasigroups. These are listed in the following theorem, which is a Hopf quasigroup version
of [3, Corollary 4.6]

Theorem 2.3 Let H, A be Hopf quasigroups, R : H⊗A → A⊗H a k-linear map. If R is left multiplicative
and left conormal, then the following statements are equivalent:

(1) A>�R H is an R-smash product Hopf quasigroup for H and A;
(2) The map R is a coalgebra map that is normal, right SH -multiplicative and right SH -conormal.

Before the proof of Theorem 2.3 is given, we state and prove three lemmata.

Lemma 2.4 Let H, A be Hopf quasigroups, R : H⊗A → A⊗H a k-linear map. If R is a left conormal
coalgebra map, then, for all h ∈ H, a ∈ A,

∑

R

aR⊗h R
(1)⊗h R

(2) =
∑

R

aR⊗h(1)
R⊗h(2) =

∑

R

aR⊗h(1)⊗h(2)
R, (2.7)

hence

R(h⊗a) =
∑

R

aRεH (h(1)
R)⊗h(2) =

∑

R

aR⊗h(1)εH (h(2)
R). (2.8)

Furthermore, R is left comultiplicative.

Proof Equations (2.7) follow by applying idA⊗idH ⊗εA⊗idH or εA⊗idH ⊗idA⊗idH to the formula expressing
the comultiplicativity of R, i.e. to

∑

R

aR (1)⊗h R
(1)⊗aR (2)⊗h R

(2) =
∑

R,r

a(1)R⊗h(1)
R⊗a(2)r⊗h(2)

r , (2.9)

and by using the left conormality of R. Equations (2.8) then follow from (2.7) by applying idA⊗εH ⊗idH and
idA⊗idH ⊗εH .

Finally, apply idA⊗εH ⊗idA⊗idH to (2.9) and use (2.8) to compute
∑

R

aR (1)⊗aR (2)⊗h R =
∑

R,r

a(1)RεH (h(1)
R)⊗a(2)r⊗h(2)

r =
∑

R,r

= a(1)R⊗a(2)r⊗h Rr .

Thus, R is left comultiplicative as required. ��
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Lemma 2.5 Let H, A be Hopf quasigroups, R : H⊗A → A⊗H a k-linear map. If R is a left conormal
coalgebra map, then:

(1) R is right SH -multiplicative if and only if, for all a ∈ A, g, h ∈ H,
∑

R,r

aRrεH (gr SH (h)R) =
∑

R

aRεH ((gSH (h))R). (2.10)

(2) For all a ∈ A, h ∈ H, the conditions
∑

R,r

aRrεH (SH (h(1))
r h(2)

R) = εH (h)a =
∑

R,r

aRrεH (h(1)
r SH (h(2))

R) (2.11)

are equivalent to
∑

R,r

aRr⊗SH (h(1))
r h(2)

R = a⊗h =
∑

R,r

aRr⊗h(1)
r SH (h(2))

R .

(3) If R is right normal, then R is right SH -multiplicative and right SH -conormal if and only if it satisfies
(2.10) and (2.11).

Proof (1) Obviously, the right SH -multiplicativity of R implies (2.10). Conversely, the right SH -multiplic-
ativity of R can be inferred from (2.10) by repetitive use of Equations (2.8) in Lemma 2.4:

∑

R

aR⊗(gSH (h))R (2.8)=
∑

R

aRεH ((gSH (h))(1)
R)⊗(gSH (h))(2)

=
∑

R

aRεH ((g(1)SH (h(2)))
R)⊗g(2)SH (h(1))

(2.10)=
∑

R,r

aRrεH (g(1)
r )εH (SH (h(2))

R)⊗g(2)SH (h(1))

(2.8)=
∑

R,r

aRrεH (g(1)
r )⊗g(2)SH (h)R (2.8)=

∑

R,r

aRr⊗gr SH (h)R,

as required.
The second statement is proven by a similar repetitive use of Equations (2.8) in Lemma 2.4, and the proof

is left to the reader. To prove (3), if R is right normal and right SH -multiplicative, then
∑

R,r

aRrεH (h(1)
r SH (h(2))

R)
(2.10)=

∑

R

aRεH ((h(1)SH (h(2)))
R)

=
∑

R

aRεH (h)εH (1H
R) = aεH (h),

so the second of Equations (2.11) is automatically satisfied. Now, we need to use the multiplicativity of the
counit and (2.8) in Lemma 2.4 to compute

∑

R,r

aRrεH (SH (h(1))
r h(2)

R) =
∑

R,r

aRrεH (h(2)
R)εH (SH (h(1))

r ) =
∑

R,r

aRrεH (SH (h R)r ).

Hence, the first of Equations (2.11) is equivalent to right SH -conormality of R. ��
Lemma 2.6 Let H and A be Hopf quasigroups, R : H⊗A → A⊗H a left normal and left multiplicative
map. If R is also a coalgebra map and is left conormal, then

R ◦ (idH ⊗SA) = (SA⊗idH ) ◦ R. (2.12)

Furthermore, the first of equalities (2.11) implies that

R ◦ flip ◦ (SA⊗SH ) ◦ R ◦ flip = SA⊗SH . (2.13)
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Proof Take any a ∈ A and h ∈ H . Then, using the left multiplicativity and left conormality of R to make a
start and to finish, we can compute

∑

R

SA(aR)⊗h R =
∑

R,R̄,r

SA(a(1)R)(a(2) R̄ SA(a(3))r )⊗h R R̄r

(2.9)=
∑

R,r

SA(a(1)R (1))(a(1)R (2)SA(a(2))r )⊗h Rr (2.3)=
∑

r

SA(a)r⊗hr .

This proves equality (2.12).
The second assertion is proven by the following calculation, for all a ∈ A, h ∈ H,

∑

R,r

SA(aR)r⊗SH (h R)r (2.12)=
∑

R,r

SA(aRr )⊗SH (h R)r

(2.8)=
∑

R,r

SA(aRr )εH (SH (h(1))(1)
r h(2)

R)⊗SH (h(1))(2)

=
∑

R,r

SA(aRr )εH (SH (h(2))
r h(3)

R)⊗SH (h(1))
(2.11)= SA(a)⊗SH (h).

Thus, the equality (2.13) holds as required. ��
Proof of Theorem 2.3 (2) ⇒ (1) The normality of R immediately implies that 1A⊗1H is the unit of A>�R H .
The left counitality of R together with the fact that a counit of a Hopf quasigroup is an algebra map imply that
also the counit εA⊗εH of A >�R H is an algebra homomorphism. The coproduct � of A >�R H is obviously
unital, and it is multiplicative since R is a coalgebra morphism. This part of the proof is not different from the
standard Hopf algebra case (see [3]). It remains to check the Hopf quasigroup identities (2.3) and (2.4), which
is done by explicit calculations.

For all a, b ∈ A and g, h ∈ H,

S((a⊗h)(1))((a⊗h)(2)(b⊗g))
(2.6),(2.5)=

∑

R̄,R,r

SA(a(1))R(a(2)br )R̄⊗SH (h(1))
R R̄(h(2)

r g)

(2.1)=
∑

R,r

(SA(a(1))(a(2)br ))R⊗SH (h(1))
R(h(2)

r g)

(2.3)=
∑

R,r

εA(a)br R⊗SH (h(1))
R(h(2)

r g)

(2.8)=
∑

R,r

εA(a)br RεH (SH (h(2))
Rh(3)

r )⊗SH (h(1))(h(4)g)

(2.11)= εA(a)b⊗SH (h(1))(h(2)g)
(2.3)= εA(a)εH (h)b⊗g.

This proves the first of Equations (2.3). Next

(a⊗h)(1)(S((a⊗h)(2))(b⊗g))
(2.6),(2.1)=

∑

R,r,R̄

a(1)(SA(a(2))Rbr )R̄⊗h(1)
R̄(SH (h(2))

Rr g)

(2.1)=
∑

R,R̄

a(1)(SA(a(2))b)R R̄⊗h(1)
R̄(SH (h(2))

Rg)

(2.8)=
∑

R,R̄

a(1)(SA(a(2))b)R R̄εH (h(1)
R̄(SH (h(4))

R)⊗h(2)(SH (h(3))g)

(2.3)=
∑

R,R̄

a(1)(SA(a(2))b)R R̄εH (h(1)
R̄(SH (h(2))

R)⊗g

(2.11)= εH (h)a(1)(SA(a(2))b)⊗g
(2.3)= εA(a)εH (h)b⊗g,
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where also the normality was used to derive the penultimate equality. This proves the second of relations (2.3).
It is the proof of (2.4) where the right SH -multiplicativity of R, (2.2), is used. The first of identities (2.4) is
proven by the following calculation

((b⊗g)(a⊗h)(1))S((a⊗h)(2))
(2.5),(2.6)=

∑

R,r,R̄

(ba(1)R)SA(a(2))r R̄⊗(gRh(1))
R̄ SH (h(2))

r

(2.2)=
∑

R,r

(ba(1)R)SA(a(2))r⊗((gRh(1))SH (h(2)))
r

(2.4)=
∑

R,r

εH (h)(ba(1)R)SA(a(2))r⊗gRr

(2.12)=
∑

R,r

εH (h)(ba(1)R)SA(a(2)r )⊗gRr

=
∑

R

εH (h)(baR(1))SA(aR (2))⊗gR (2.4)= εA(a)εH (h)b⊗g.

The penultimate equality is a consequence of left comultiplicativity of R, which is asserted by Lemma 2.4. In
derivation of the last equality, the left conormality of R was also used. Finally, and again using Lemma 2.4 in
the penultimate equality and left conormality of R in the last one, we compute

((b⊗g)S((a⊗h)(1)))(a⊗h)(2)
(2.6),(2.5)=

∑

R,r,R̄

(bSA(a(1))Rr )a(2) R̄⊗(gr SH (h(1))
R)R̄h(2)

(2.2)=
∑

R,R̄

(bSA(a(1))R)a(2) R̄⊗(gSH (h(1)))
R R̄h(2)

(2.12)=
∑

R,R̄

(bSA(a(1)R))a(2) R̄⊗(gSH (h(1)))
R R̄h(2)

=
∑

R

(bSA(aR (1)))aR (2)⊗(gSH (h(1)))
Rh(2)

(2.4)= εA(a)εH (h)b⊗g.

This completes the proof that A>�R H is a Hopf quasigroup as required.
(1) ⇒ (2) The fact that 1A⊗1H is the unit of the R-smash product Hopf quasigroup A>�R H immediately

implies the normality of R. The equalities, for all a ∈ A, h ∈ H ,

�((1A⊗h)(a⊗1H )) = �(1A⊗h)�(a⊗1H ), ε((1A⊗h)(a⊗1H )) = ε(1A⊗h)ε(a⊗1H ),

resulting from the multiplicativity of coproduct and counit imply that R is a coalgebra map. This is no different
from the standard Hopf algebra case.

Developing the second of the Hopf quasigroup conditions (2.4) for A>�R H as in the first part of the proof
of the theorem, and using Lemma 2.6 and (2.8) repeatedly, we arrive at the following equality:

∑

R,r,R̄

(bSA(a(1)Rr ))a(2) R̄εH (g(1)
r SH (h(1))(1)

R)⊗(g(2)SH (h(1))(2))
R̄h(2) = εA(a)εH (h)b⊗g.

Apply idA⊗εH to both sides of this equation, set b = ∑
R̂,r̂ a(1) R̂r̂εH (g(1)

r̂ SH (h)(1))
R̂), and shift Sweedler’s

indices as required to obtain:

∑

R,r,R̄,R̂,r̂

(a(1) R̂r̂εH (g(1)
r̂ SH (h)(1)

R̂)SA(a(2)Rr ))a(3) R̄εH (g(2)
r SH (h)(2)

R)εH ((g(3)SH (h)(3))
R̄)

=
∑

R̂,r̂

aR̂r̂εH (gr̂ SH (h))R̂).
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The fact that R is a coalgebra map, Equatuion (2.9), implies

∑

R,r,R̄

(a(1)Rr (1)SA(a(1)Rr (2)))a(2) R̄εH (g(1)
r SH (h)(1)

R)εH ((g(2)SH (h)(2))
R̄)

=
∑

R̂,r̂

aR̂r̂εH (gr̂ SH (h))R̂).

Finally, the antipode property combined with the left conormality of R yield equation (2.10). Therefore, R is
right SH -multiplicative by Lemma 2.5.

Finally, making the same steps in the proof of the first Hopf quasigroup identity for A>�R H as in the first
part of the proof of the theorem, we conclude that the first of conditions (2.3) implies

∑

R,r

εA(a)br RεH (SH (h(2))
Rh(3)

r )⊗SH (h(1))(h(4)g) = εA(a)εH (h)b⊗g.

Applying idA⊗εH and evaluating this identity at a = 1A and g = 1H , one immediately obtains the first of
Equations (2.11). In view of Lemma 2.5, this is tantamount to right SH -conormality of R. ��
Remark 2.7 In [3, Corollary 4.6], which is a predecessor of Theorem 2.3, it is assumed that the R is compat-
ible with the antipodes so that the equality (2.13) is satisfied. As explained in Lemma 2.6 this follows from
other hypotheses made in Theorem 2.3, most notably from right SH - and left conormality of R, which are not
assumed in [3].

Example 2.8 Let H and A be Hopf quasigroups. Recall from [2] that A is a left H-quasimodule Hopf quasi-
group, if

(a) A is a left H -quasimodule, i.e. there exists a k-linear map H⊗M → M, h⊗m 
→ h ·m, such that, for all
a ∈ M and h ∈ H ,

1H ·m = m, h(1) ·(SH (h(2))·m) = εH (h)m = SH (h(1))·(h(2) ·m);

(b) the H -action satisfies the following compatibility conditions:

(h(1) ·a)(h(2) ·b) = h ·(ab), h ·1A = εH (h)1A,

�A(h ·a) = h(1) ·a(1)⊗h(2) ·a(2), εA(h ·a) = εH (h)εA(a),

for all h ∈ H, a, b ∈ A.

Let A be a left H -quasimodule Hopf quasigroup such that, for all g, h ∈ H and a ∈ A,

h(1)⊗h(2) ·a = h(2)⊗h(1) ·a, g ·(SH (h)·a) = (gSH (h))·a. (2.14)

Then the map

R : H⊗A → H⊗A, h⊗a 
→ h(1) ·a⊗h(2),

is a coalgebra map which is left multiplicative, normal, left conormal, right SH -multiplicative and right
SH -conormal. Consequently, there is an R-smash product Hopf quasigroup for H and A, A >�R H. A >�R H
coincides with the smash product A>�H described in [2].

That R satisfies all assumptions of Theorem 2.3 can be checked by straightforward calculations which are
left to the reader. We only mention in passing that for the right SH -conormality of R both Equations (2.14) are
needed.
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Dually to a Hopf quasigroup, an algebra and coalgebra H with coproduct and counit that are algebra maps
is called a Hopf coquasigroup provided the product is associative and there exists a linear map SH : H → H
such that, for all h ∈ H ,

SH (h(1))h(2)(1)⊗h(2)(2) = 1H ⊗h = h(1)SH (h(2)(1))⊗h(2)(2)

and

h(1)(1)⊗h(1)(2)SH (h(2)) = h⊗1H = h(1)(1)⊗SH (h(1)(2))h(2).

When written in terms of commutative diagrams, the definitions of a Hopf quasigroup and Hopf coquasigroup
are formally dual to each other in the sense that one is obtained by reversing all the arrows in the definition
of the other. Thus the theory of R-smash coproducts for Hopf coquasigroups can be obtained by dualising the
theory of R-smash products for Hopf quasigroups. By this means one can first state

Definition 2.9 Let H and A be Hopf coquasigroups and let W : H⊗A → A⊗H be a k-linear map. By a
W -smash coproduct of H and A we mean a Hopf coquasigroup H W �< A that is equal to H⊗A as a vector
space with tensor product unit, multiplication and counit, and with comultiplication and antipode

� = (idH ⊗W⊗idA) ◦ (�H ⊗�A), S = flip ◦ (SA⊗SH ) ◦ W.

Then, dualising Theorem 2.3, we obtain the following Hopf coquasigroup version of [3, Corollary 4.8]

Theorem 2.10 Let H, A be Hopf coquasigroups, W : H⊗A → A⊗H a k-linear map. If W is left comulti-
plicative and left normal, then the following statements are equivalent:

(1) HW�< A is a W -smash coproduct Hopf coquasigroup of H and A;
(2) The map W is an algebra map that is conormal, right SH -comultiplicative and right SH -normal.
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