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Abstract We discuss three different frameworks for a general theory of factorization in integral domains:
τ -factorization, reduced τ -factorization and �-factorization. Let D be an integral domain, D� the non-zero,
non-units of D, and τ a symmetric relation on D�. For a ∈ D�, a = λa1 · · · an, λ a unit, ai ∈ D�, n ≥ 1, and
aiτa j for i �= j, is called a τ -factorization of a and we say ai is a τ -factor of a. For a, b ∈ D�, a |τ b if a is a
τ -factor of b. Then a ∈ D� is a τ -atom if any τ -factorization of a has n = 1 and a is a τ -prime (resp., |τ -prime)
if a | λa1 · · · an (resp., a |τ λa1 · · · an), λa1 · · · an a τ -factorization, implies a | ai (resp., a |τ ai ) for some
i . The theory of reduced τ -factorization is developed similarly, except here we restrict ourselves to reduced
τ -factorizations, that is, τ -factorizations a1 · · · an where the leading unit is omitted (or is 1). The theory of
�-factorization is as follows. For a ∈ D�, fact(a) (resp., tfact(a)) is the set of (resp., trivial) factorizations
of a, a = λa1 · · · an, λ a unit, n ≥ 1 (resp,. n = 1) and fact(D) = ∪a∈D�fact(a), tfact(D) = ∪a∈D� tfact(a).
Let � ⊆ fact(D) and �(a) = � ∩ fact(a); the set of �-factorizations of a. For a, b ∈ D�, a |� b if some
λa1 · · · an ∈ �(b) has ai = a for some i . We say a is a �-atom if �(a) ⊆ tfact(a) and that a is a �-prime
(resp., |�-prime) if a | λa1 · · · an (resp., a |� λa1 · · · an) where λa1 · · · an ∈ �, then a | ai (resp., a |� ai ) for
some i .
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1 Introduction

The purpose of this paper is to give three different approaches to a general theory of factorization in integral
domains. We isolate four important notions in factorization: a factorization, the related notion of divides, an
atom or irreducible element, and a principal prime element. Let D be an integral domain, U (D) the group
of units of D, and D� = D − ({0} ∪ U (D)), the non-zero, non-units of D. For a ∈ D�, a = a1 · · · an, or
more generally, a = λa1 · · · an, n ≥ 1, λ ∈ U (D), ai ∈ D�, is a factorization of a and we say ai is a factor
of a. For a, b ∈ D�, a | b if a is a factor of b. Then a ∈ D� is irreducible or an atom if for any factoriza-
tion a = λa1 · · · an of a, we have n = 1. Finally, a ∈ D� is prime if whenever a | λa1 · · · an, λa1 · · · an a
factorization, then a | ai for some i .

Now classically, factorization theory considered factorization into atoms or atomic factorization. An inte-
gral domain D is atomic if each element of D� is a product of atoms. One then studies atomic domains with
properties weaker than unique factorization. For example, an atomic domain D is a half-factorial domain
(HFD) if any two atomic factorizations of a ∈ D� have the same length and a (an atomic) domain D is a
bounded factorization domain (BFD) if for each a ∈ D�, there is a natural number N (a) so that for any
(atomic) factorization a1 · · · an of a, we have n ≤ N (a). See [2] and [5] for details. However, one can also
study non-atomic factorization. Instead of studying factorization into atoms, we could study factorization into
primary elements or other distinguished elements. See [1] for details.

Instead of just varying the ai s allowed in a factorization λa1 · · · an, we can restrict the factorizations
allowed. McAdam and Swan [10] did this in their study of comaximal factorization. For a ∈ D�, a comax-
imal factorization a = a1 · · · an of a is a factorization where for i �= j, ai and a j are comaximal, that is,
(ai , a j ) = D. They defined a ∈ D� to be pseudo-irreducible if a has no non-trivial comaximal factorization
a = bc (or equivalently, any comaximal factorization a = λa1 · · · an of a has n = 1). They also defined
a ∈ D� to be pseudo-prime if a | bc where (b, c) = D, then a | b or a | c (equivalently, if a | λa1 · · · an, a
comaximal factorization, then a | ai for some i). They then studied domains called comaximal factorization
domains (CFDs) with the property that every a ∈ D� has a comaximal factorization into pseudo-irreducibles
and CFDs called unique comaximal factorization domains (UCFDs) in which comaximal factorization into
pseudo-irreducibles is unique up to order and associates.

In [3], the first author and A. Frazier introduced a general theory of factorization involving the notion of a
τ -factorization. Let D be an integral domain and τ a symmetric relation on D�. For a ∈ D�, a τ -factorization
of a is a factorization a = λa1 · · · an where aiτa j for i �= j . For a, b ∈ D�, we say that aτ -divides b, denoted
a |τ b, if b has a τ -factorization b = λa1 · · · an where some ai = a. We say that a ∈ D� is a τ -atom or
τ -irreducible if every τ -factorization of a is trivial: a = λ(λ−1a). Finally, a ∈ D� is τ -prime (resp., |τ -prime)
if for any τ -factorization λa1 · · · an with a | λa1 · · · an (resp., a |τ λa1 · · · an), then a | ai (resp., a |τ ai ) for
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some i . For example, if we take τ = D� × D�, we get the ordinary factorization into non-units, while if we
define aτb ⇔ (a, b) = D, we get the comaximal factorization of McAdam and Swan. Section 2 reviews the
theory of τ -factorization.

In the theory of τ -factorization, the leading unit λ in a τ -factorization λa1 · · · an turns out to play an
important role. However, we could have developed the theory of τ -factorizations by taking a τ -factorization of
a ∈ D� to be a = a1 · · · an where aiτa j for i �= j . We call such a τ -factorization a reduced τ -factorization or a

rτ -factorization. An element a ∈ D� is a reduced τ -atom or a rτ -atom if a has only the trivial rτ -factorization
a = a and a is a reduced τ -prime or rτ -prime if a | a1 · · · an, a rτ -factorization, then a | ai for some i .
The notion of reduced τ -divides is more subtle. For a, b ∈ D�, a reduced τ -divides b, denoted a |r τ b, if
b = a1 · · · an, a rτ -factorization, where some ai = a and a weakly reduced τ -divides b, denoted a |wr τ b, if
a |r τ b or a ∼ b. Finally, a ∈ D� is a |r τ -prime (resp., |wr τ -prime) if a |r τ a1 · · · an (resp., a |wr τ a1 · · · an),
a rτ -factorization, implies a |r τ ai (resp., a |wr τ ai ) for some i . The theory of reduced τ -factorization is
developed in Sect. 3. We believe that the results of Sect. 3 bear out that the choice of allowing a unit in the
definition of a τ -factorization is the proper one.

In the final Sect. 4, we introduce the notion of �-factorization. Let D be an integral domain and a ∈ D�. By
a (trivial) factorization of a, we mean a = λa1 · · · an where n ≥ 1(n = 1), λ ∈ U (D), and ai ∈ D� where the
order matters (see Remark 2 of Sect. 4 for a more formal definition). Let fact(a) (resp., tfact(a)) be the set of all
factorizations (resp., trivial factorizations) of a and let fact(D) = ∪a∈D�fact(a). Let � ⊆ fact(D). An element
of � (resp., �(a) := � ∩ fact(a)) is called a �-factorization (resp., �-factorization of a). For a, b ∈ D�, we
say that a�-divides b, written a |� b, if there is a λa1 · · · an ∈ �(b) with some ai = a. Then, a is a �-atom
if �(a) ⊆ tfact(a) and a is a �-prime (resp., |�-prime) if whenever a | λa1 · · · an (resp., a |� λa1 · · · an),
λa1 · · · an ∈ �, then a | ai (resp., a |� ai ) for some i . Suppose that τ is a symmetric relation on D�. If we take
� = �τ (resp., � = �r τ ) to be the set of all τ -factorizations (resp., reduced τ -factorizations), we recover the
notion of τ -factorization (resp., reduced τ -factorization).

2 τ -Factorizations

In this section, we give a brief review of the theory of τ -factorizations. Proofs and examples for claims may
be found in Sect. 2 of [3] unless otherwise noted. Much of the material from [3] comes from [4]. The theory
of τ -factorizations is further investigated in the dissertations [7,9,11] and [12].

Throughout D will be an integral domain with quotient field K . Let D∗ = D − {0}, U (D) the group of
units of D, and D� = D∗ − U (D), the non-zero, non-units of D. Also throughout this section (except in the
following definitions), τ will be a symmetric relation on D�. However, in Sect. 4, we will consider ordered
τ -factorizations, the case where τ need not be symmetric. We next define three important properties that τ
may have. As usual, a ∼ b means that a and b are associates.

Definition 2.1 Let D be an integral domain and τ a relation on D�. We call τ multiplicative (resp., divisive)
if for a, b, c ∈ D� (resp., a, a′, b, b′ ∈ D�), aτb and aτc imply aτbc and bτa and cτa imply bcτa (resp.,
aτb, a′|a and b′|b imply a′τb′). We say that τ is associate preserving if for a, b, b′ ∈ D� with b ∼ b′, aτb
implies aτb′ and bτa implies b′τa.

We next give the fundamental definition of a τ -factorization.

Definition 2.2 For a ∈ D�, D be an integral domain and τ a relation on D�, we define a = λa1 · · · an, n ≥
1, λ ∈ U (D), ai ∈ D�, to be a τ -factorization of a if aiτa j for each i �= j . We say that a is a τ -product of the
ai and that ai is a τ -factor of a. For a, b ∈ D�, we say that aτ -divides b, written a|τ b, if a is a τ -factor of b.
We call a = λ(λ−1a) a trivial τ -factorization of a.

Note that if a = λa1 · · · an is a τ -factorization, then so is each rearrangement a = λaσ(1) · · · aσ(n), σ ∈ Sn .
Also, observe that for a, b ∈ D�, the following conditions are equivalent: (1) aτb, (2) ab is a τ -factorization,
(3) λab is a τ -factorization for all λ ∈ U (D), (4) there is a τ -factorization λa1 · · · an where some ai = a and
a j = b for i �= j .

We pause to give several examples.

Example 2.3 Throughout D will be an integral domain.
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(1) τ = D�× D�. This gives the usual notions of a factorization and divides. Of course, τ is both multiplicative
and divisive.

(2) τ = ∅. Here a ∈ D� has only the trivial τ -factorization and a|τ b ⇔ a ∼ b. Vacuously, τ is both
multiplicative and divisive.

(3) Let S be a non-empty subset of D� and take τ = S × S, so aτb ⇔ a, b ∈ S. Here τ is multiplicative
(divisive) if and only if S is multiplicatively closed (closed under non-unit factors). A non-trivial τ -fac-
torization is up to unit factors just a factorization into elements from S. Thus, if we take S to be the set of
atoms of D, we get the usual factorization of an element into irreducible factors. In this case, every element
of D� is an atom or has a non-trivial τ -factorization if and only if D is atomic. We could also take S to be
the set of prime elements, prime power elements, primary elements, or other distinguished elements such
as rigid elements or t-pure elements. These last examples are examples of non-atomic factorizations. See
[1] for details. We could also replace S by a subset S′ where for each s ∈ S there exists exactly one s′ ∈ S′
with s′ ∼ s. For example, for D = Z, take S to be the set of prime elements and take S′ = {n ∈ N|n
is prime}. Here, τ is not associate preserving. Examples of this type are one of the reasons we chose to
include a unit factor in the definition of a τ -factorization. Sometimes, it is of interest to replace S × S
by S × S − � = {(s, t) ∈ S × S|s �= t}. For example, if P = {pα} is a set of non-associate primes,
take S = {pk

α|pα ∈ P, k ≥ 1}. Then for τ = S × S − �, a non-trivial τ -factorization is just a product
λpk1

α1 · · · pkn
αn where pα1, . . . , pαn are distinct elements of P and each ki ≥ 1.

(4) Let I be an ideal of D and define aτb ⇔ a − b ∈ I . A special case is D = Z and I = (n), so
aτnb ⇔ a ≡ b mod n. Here, τn is multiplicative or associate preserving only for n = 2 and is never
divisive. The relation τn is investigated in [3,4,7] and [11].

(5) Let 	 be a star-operation on D and define aτ	b ⇔ (a, b)	 = D, that is, a and b are 	-coprime or 	-comax-
imal. (Recall that a star operation 	 on D is a closure operation on the set of non-zero fractional ideals of
D that satisfies (x A)	 = x A	 and D	 = D, see [6]). It is easily checked that τ	 is both multiplicative and
divisive. In the case where 	 = d (the d-operation A −→ Ad = A), we have the comaximal factorization
of McAdam and Swan [10]. Also of interest is the case where 	 is the v-operation (A → Av = (A−1)−1).

(6) Related to factorizations into v-coprime elements, we have factorizations into relatively prime elements.
Define for a, b ∈ D�aτ[ ]b ⇔ [a, b] = 1, that is, a and b have no common non-unit factor. While divisive,
τ[ ] need not be multiplicative. The relation τ[ ] is investigated in [11] and [12].

The notion of a τ -factorization on D like that of a topology on a set is very general. But part of the power
of the definition is its generality. Of course, in topology we usually have other axioms such as the separation
axioms. The analogy for τ -factorization is the conditions that τ is associated-preserving, divisive, or multipli-
cative. We have found the divisive condition to be the most useful and is powerful enough to obtain interesting
results such as Theorem 2.12.

Given a factorization, we often want to further factor certain terms or want to combine terms. In general,
neither action preserves τ -factorizations. Our first proposition states that if τ is divisive (resp., multiplicative),
then the refinement of a τ -factorization obtained by τ -factoring one or more terms (resp., combining terms in
a τ -factorization) again gives a τ -factorization. This good behavior was the main reason for introducing the
notions of multiplicative and divisive relations.

Proposition 2.4 Let D be an integral domain and let τ be a relation on D�.

(1) Suppose that τ is divisive. Let a, b, b′ ∈ D� where b ∼ b′. Then aτb ⇔ aτb′. So τ is associate preserving.
Thus a = λa1 · · · an is a τ -factorization of a if and only if a1 · · · (λai ) · · · an is a τ -factorization of a.
Hence, when τ is divisive, or more generally associate preserving, we can dispense with the unit λ.

(2) Suppose that τ is divisive. Let a = a1 · · · an be a τ -factorization of a and let ai = bi1 · · · bimi be a τ -factor-
ization of ai (possibly the trivial factorization ai = bi1). Then a = b11 · · · b1m1b21 · · · b2m2 · · · bn1 · · · bnmn

is a τ -factorization of a, called a τ -refinement of a. Thus when τ is divisive, a τ -refinement of a τ -factor-
ization is a τ -factorization.

(3) Suppose that τ is multiplicative. If {1, 2, . . . , n} = A1∪̇ · · · ∪̇As (disjoint union) with each Ai non-empty
and bi = 
{a j | j ∈ Ai }, then a = λb1 · · · bs is a τ -factorization of a.

We next discuss the relation |τ in more detail. Let D be an integral domain and τ a relation on D�. Let
a, a′, b, b′, c ∈ D�. Certainly, a|τ b ⇒ a|b, but the converse is false. We have (1) a|τ a and (2) a|τ b and
b|τ a ⇔ a ∼ b. If b ∼ b′, then a|τ b ⇔ a|τ b′. If a ∼ a′ and τ is associate preserving, then a|τ b ⇔ a′|τ b.
However, in general a ∼ a′ and a|τ b �⇒ a′|τ b. If τ is divisive, then (3) a|τ b and b|τ c ⇒ a|τ c. However, in
general this is also false. If τ is both multiplicative and divisive, then a|τ b and bτc ⇒ ac|τ bc.
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Definition 2.5 For a ∈ D�, D an integral domain and τ a relation on D�, a is τ -irreducible or a τ -atom if the
only τ -factorizations of a are the trivial ones. Let τ ′ be another relation on D�. By a τ -atomic τ ′-factorization
for a ∈ D�, we mean a τ ′-factorization of a into τ -atoms. We say that D is τ -τ ′ atomic if each a ∈ D� has a
τ -atomic τ ′-factorization. When τ = τ ′, we simply say a τ -atomic factorization or that D is τ -atomic. We say
that a τ -factorization a = λa1 · · · an is τ -unrefineable or τ -complete if it has no proper τ -refinements. And D
is τ -complete if every a ∈ D� has a τ -complete factorization.

Note that an associate of a τ -atom is again a τ -atom. Of course, a τ -atomic factorization is τ -complete.
By Proposition 2.4(2) for τ divisive, a τ -complete factorization is the same thing as a τ -atomic factorization.
This is not true in general. Hence for τ divisive, D is τ -complete if and only if it is τ -atomic.

Definition 2.6 Let τ be a relation on D�, D an integral domain. Then a ∈ D� is τ -prime if whenever
a|λa1 · · · an where λa1 · · · an is a τ -factorization, then a|ai for some i . We call a ∈ D� a |τ -prime if whenever
a|τ λa1 · · · an where λa1 · · · an is a τ -factorization, then a|τ ai for some i .

An associate of a τ -prime element is again τ -prime. If τ is associate preserving, then an associate of
a |τ -prime element is again |τ -prime. However, in general an associate of a |τ -prime element need not be
|τ -prime.

Remark 1 Note that τ -primes and |τ -primes are a special case of what we might call a τ1-τ2-τ3-prime (where
τ1, τ2 and τ3 are relations on D�): whenever a|τ2λa1 · · · an where λa1 · · · an is a τ1-factorization, then a|τ3ai

for some i . For example, a τ -prime is a τ -τ ′-τ ′-prime where τ ′ = D� × D� [Example 2.3(1)] and a |τ -prime
is a τ -τ -τ -prime.

Let D be an integral domain, τ be a relation on D�, and a ∈ D�. Clearly if a is irreducible (resp., prime),
then a is τ -irreducible (resp., τ -prime) and if a is τ -prime or |τ -prime, then a is τ -irreducible. If τ is multipli-
cative and divisive, then aτ -prime implies a is |τ -prime (see Proposition 2.7 below). But in general, a prime
or τ -prime element need not be |τ -prime. Note that in the definitions of τ -irreducible, τ -prime, and |τ -prime,
we did not restrict ourselves to the case of τ -factorizations λa1 · · · an of length n = 2 as is usual. We next note
that if τ is multiplicative, we can restrict ourselves to the case n = 2. In general this is not the case.

Proposition 2.7 Let D be an integral domain and let τ be a relation on D�.

(1) Suppose that τ is multiplicative and let a ∈ D�. Then a is τ -irreducible (resp., τ -prime, |τ -prime) if
and only if a has no τ -factorization a = λa1a2 (resp., for a τ -factorization λa1a2, a|λa1a2 ⇒ a|a1 or
a|a2, a|τ λa1a2 ⇒ a|τ a1 or a|τ a2).

(2) If τ is both multiplicative and divisive, then a τ -prime element is |τ -prime.

Let D be an integral domain. For relations τ1, τ2 on D�, define τ1 ≤ τ2 ⇔ τ1 ⊆ τ2, that is, aτ1b ⇒ aτ2b.
Observe that τ1 ≤ τ2 if and only if each τ1-factorization is a τ2-factorization. Let R be the set of relations
on D�. So R is partially ordered by ≤. Note that ∅ [Example 2.3(2)] is the least element of R and the usual
factorization is given by τ = D� × D� [Example 2.3(1)], the greatest element. Suppose that 	1 and 	2 are two
star-operations on D with 	1 ≤ 	2, that is, A	1 ⊆ A	2 for all A ∈ F(D). Then τ	1 ≤ τ	2 . Suppose that τ1, τ2

are relations on D� with τ1 ≤ τ2. Then a τ1-factorization of a ∈ D� is also a τ2-factorization of a. Thus if a is a
τ2-atom (resp., τ2-prime), then a is a τ1-atom (resp., τ1-prime). Hence, we have the previously mentioned fact
that an atom (resp., prime) of D is a τ -atom (resp., τ -prime). Observe that if τ1 ≤ τ2, then a |τ1 b ⇒ a |τ2 b
for any a, b ∈ D� and the converse is true if τ2 is both multiplicative and associate preserving, but not in
general (define τ1, τ2 on Z

� by aτ1b ⇔ |a| = |b| = 2 and 2τ22, 2τ2 − 2,−2τ22). However, a |τ2 -prime need
not be a |τ1 -prime.

There is a natural extension of the notion of a UFD to τ -factorizations. Let D be an integral domain and
τ a relation on D�. We say that D is a τ -UFD if (1) D is τ -atomic and (2) if λa1 · · · an = μb1 · · · bm are two
τ -atomic factorizations, then n = m and after re-ordering, if necessary, ai ∼ bi for each i . We leave it to the
reader to define a τ -τ ′-UFD using τ -atomic τ ′-factorizations. The following lemma used to prove Theorem 2.9
shows the importance of |τ -primes.

Proposition 2.8 Let D be an integral domain and τ a relation on D�. Suppose that λp1 · · · pn = μq1 · · · qm
are two τ -factorizations where the pi are |τ -prime and the qi are τ -atoms. Then n = m and after re-ordering,
if necessary, pi ∼ qi .
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Theorem 2.9 Let D be an integral domain and τ a relation on D�.

(1) Suppose that every element of D� has a τ -factorization into |τ -primes. Then D is a τ -UFD. Moreover,
a ∈ D� is τ -irreducible if and only if a is an associate of a |τ -prime.

(2) Suppose that τ is divisive and that D is a τ -UFD. Then a τ -irreducible element of D is |τ -prime (and of
course the converse always holds).

(3) For τ divisive, the following are equivalent:
(a) D is a τ -UFD,
(b) every element of D� has a τ -factorization into |τ -primes, and
(c) D is τ -atomic and every τ -irreducible element of D is |τ -prime.

In Theorem 2.9(3) if we replace |τ -prime by τ -prime, we have (a)⇐(b)⇔(c), but (a)�(b). The counterex-
ample for the implication (a)�(b) is given in [9] which contains a thorough investigation of τ -UFDs. However,
a domain D in which every element is a τ -product of associates of |τ -primes need not be a τ -UFD. In a τ -UFD
every element of D need not be a τ -product of τ -primes (resp., |τ -primes).

We can also define the following τ -factorization properties weaker than τ -unique factorization. Let D be
an integral domain and τ a relation on D�. We have already defined τ -atomic. We say that D satisfies τ -ACCP
if for each infinite sequence {an}∞n=1 of elements of D� with an+1|τ an for each n ≥ 1, there is an N (depending
on the sequence) with ak+1 ∼ ak for each k ≥ N . The domain D is a τ -half-factorial domain (τ -HFD) if D
is τ -atomic and whenever λa1 · · · an = μb1 · · · bm are two τ -atomic factorizations, then n = m.

We say that D is a τ -bounded factorization domain (τ -BFD) if D is τ -atomic and for each a ∈ D�, there
is a natural number N (a) so that if a = λa1 · · · an is a τ -atomic factorization of a, then n ≤ N (a). Note that
for τ divisive, D is a τ -BFD if and only if for each a ∈ D�, there is a natural number N (a) so that for any
τ -factorization a = λa1 · · · an, n ≤ N (a). This follows from Proposition 2.4(2) which gives that for τ divisive
a maximal length τ -factorization is a τ -atomic factorization. Thus for τ divisive, a BFD is a τ -BFD.

We say that D is a τ -idf-domain if each a ∈ D� has at most finitely many non-associate τ -factors that are
τ -atoms. D is a τ -finite-factorization domain (τ -FFD) if D is τ -atomic and each a ∈ D� has only finitely
many τ -factorizations (up to order and associates) into τ -irreducibles. Clearly, a τ -FFD is a τ -BFD. Suppose
that τ is divisive. Then a modification of the proof of [2, Theorem 5] gives that the following are equivalent:
(1) D is a τ -FFD, (2) D is a τ -atomic τ -idf-domain, (3) each a ∈ D� has only finitely many τ -factorizations
up to order and associates.

Theorem 2.10 Let D be an integral domain and τ a relation on D�. If D is a τ -UFD, then D is a τ -HFD and
a τ -FFD and either of these conditions implies that D is a τ -BFD. If further τ is divisive, then D a τ -BFD
implies D satisfies τ -ACCP and if D satisfies τ -ACCP, then D is τ -atomic.

Let D be an integral domain and τ a relation on D�. Note that if D satisfies ACCP, then D satisfies τ -ACCP.
Thus for τ divisive, ACCP ⇒ τ -atomic. So for τ divisive, a UFD, FFD, HFD, and BFD are τ -atomic. Thus a
FFD (resp., BFD) is a τ -FFD (resp., τ -BFD) for τ divisive. However, an atomic domain need not be τ -atomic,
even if τ is both multiplicative and divisive. For [8] gives an example of an atomic domain that is not a CFD.

We next note that for τ divisive, a UFD is a τ -UFD. Thus a UFD is a UCFD. The proof uses the following
lemma which states that for τ divisive, a τ -atomic factorization is a mix of atomic factorizations and coprime
factorizations.

Lemma 2.11 Let D be an integral domain and let τ be a divisive relation on D�. Let a1 · · · an be a τ -atomic
factorization. Then for i �= j, either [ai , a j ] = 1 or ai ∼ a j are atoms.

Theorem 2.12 Let D be a UFD and τ a divisive relation on D�. Then D is a τ -UFD.

As the following example shows, D can be a τ -UFD without τ being divisive. This example also shows
that even in a τ -UFD, the τ atoms do not determine |τ .

Example 2.13 Let D be a UFD and define τ on D� by aτb ⇔ a and b are non-zero principal primes. So τ
is divisive. Now clearly D is a τ -UFD with the sets of τ -atoms, τ -primes, |τ -primes, and non-zero principal
primes coinciding. Observe that a |τ b ⇔ a is a prime with a | b or a ∼ b. Suppose that τ ≤ τ ′; so τ ′ need not
be divisive. Then D is still a τ ′-UFD with the set of τ ′-atoms, τ ′-primes, |τ ′-primes, and non-zero principal
primes coinciding. However, |τ ′ may change. For if p and q are primes with p � τ ′λq for any unit λ, then
p |τ pq, but p �τ ′ pq .
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We have based our factorization theory on τ -atomic factorizations. We could have instead used τ -complete
factorizations. Let D be an integral domain. Define D to be a τ -complete HFD (resp., τ -complete UFD) if (1)
D is τ -complete and (2) if a = λa1 · · · an = μb1 · · · bm are two τ -complete factorizations of a ∈ D�, then
n = m (resp., and after re-ordering, if necessary, ai ∼ bi for i = 1, . . . , n). We say that D is a τ -complete FFD
(resp., τ -complete BFD) if for each a ∈ D� there are only finitely many τ -complete factorizations for a up
to units, order, and associates (resp., there is a natural number N (a) so that for each τ -complete factorization
a = λa1 · · · an, n ≤ N (a)).

Now even in a τ -UFD, a τ -factorization cannot necessarily be τ -refined to a τ -atomic factorization. Let
us say that an integral domain D is τ -atomizable (resp., τ -completeable) if each τ -factorization of D can be
τ -refined to a τ -atomic (resp., τ -complete) factorization. We have the following implications:

τ -atomizable ⇒ τ -atomic
⇓ ⇓

τ -ACCP ⇒ τ -completeable ⇒ τ -complete.

Note that for τ divisive, τ -complete ⇒ τ -atomizable, but τ -complete need not imply τ -ACCP since an
atomic domain need not satisfy ACCP. In general, none of the implications can be reversed. The topics in the
previous two paragraphs are discussed in more detail in [9] in the context of �-factorization.

3 Reduced τ -factorization

We maintain the notation from Sect. 2: D is an integral domain and τ a symmetric relation on D�. In a τ -
factorization a = λa1 · · · an for a we allowed a leading unit λ. In this section we consider τ -factorizations
without the unit λ, or equivalently, where λ = 1.

Definition 3.1 Let D be an integral domain and τ, τ1 and τ2 be relations on D�. For a ∈ D�, a reduced
τ -factorization (rτ -factorization) of a is a = a1 · · · an where ai ∈ D� and aiτa j for i �= j . The rτ -factor-
ization a = a is called the trivial rτ -factorization of a. So a ∈ D� is a reduced τ -atom or rτ -atom if a has
only the trivial rτ -factorization. A reduced τ1-atomic reduced τ2-factorization (a rτ1-atomic rτ2-factoriza-
tion) of a is a rτ2-factorization of a into rτ1-atoms. Likewise, we define a rτ1-atomic τ2-factorization and
τ1-atomic rτ2-factorization. A rτ1-atomic rτ1-factorization is a called a rτ1-atomic factorization. We say that
D is rτ1-rτ2-atomic if each a ∈ D� has a rτ1-atomic rτ2-factorization. Likewise, we define rτ1-τ2-atomic and
τ1-rτ2-atomic. We say that D is rτ -atomic if D is rτ -rτ -atomic.

The notion of a reduced τ -factorization was introduced in [7] and investigated more fully in [11]. Much
of this material comes from [11]. The following proposition states some simple facts about reduced τ -factori-
zations and reduced τ -atoms.

Proposition 3.2 Let D be an integral domain and τ, τ1 and τ2 be relations on D�.

(1) A rτ -factorization is a τ -factorization.
(2) A τ -atom is a rτ -atom. So Dτ1-τ2-atomic implies D is rτ1-τ2-atomic.
(3) Suppose that τ is associate preserving. Then a rτ -atom is a τ -atom. So the following are equivalent: (a)

D is τ -atomic, (b) D is rτ -τ -atomic, (c) D is τ -rτ -atomic, and (d) D is rτ -atomic.
(4) For a ∈ D�, a is a τ -atom if and only if every associate of a is a rτ -atom.

Proof (1) Clear. (2) Suppose that a is a τ -atom. Then a has only trivial τ -factorizations and hence only the
trivial rτ -factorization. So a is a rτ -atom. The second statement is clear. (3) Let a be a reduced τ -atom. If a
is not a τ -atom, we have a τ -factorization a = λa1 · · · an where n > 1. But then a = (λa1) · a2 · · · an is a
non-trivial rτ -factorization for a, a contradiction. So a is a τ -atom if and only if it is a rτ -atom. For a ∈ D�,
if a has a τ -atomic factorization a = λa1 · · · an, then a = (λa1) · a2 · · · an is a τ -atomic rτ -factorization
and hence a rτ -atomic rτ -factorization. The equivalence of (a)–(d) easily follows. (4) (⇒) If a is a τ -atom,
then each associate of a is a τ -atom and hence a rτ -atom. (⇐) Suppose that each associate of a is a rτ -atom.
Suppose that is not a τ -atom: so a = λa1 · · · an, a τ -factorization with n > 1. But then λ−1a = a1 · · · an is a
not a rτ -atom; a contradiction. ��

We next give some examples.
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Example 3.3 Throughout, D will be an integral domain.

(1) (An example of a rτ -atom with an associate that is not a rτ -atom and hence not a τ -atom and a τ -atomic
domain that is not rτ -atomic.) Define τ on Z

� by aτb ⇔ a, b ≥ 2, a = 4, b = −4, or a = −4, b = 4.
Now each positive prime of Z is a τ -atom; so Z is τ -atomic. Here −4 is a rτ -atom, but not a τ -atom since
−4 = (−1) · 2 · 2 and the associate 4 of −4 is not a rτ -atom. Now −16 = −4 · 4; so −16 is not a rτ -atom.
But there is no rτ -atomic factorization for −16 (as 4 = 2 · 2). Thus Z is not rτ -atomic and hence not
τ−rτ -atomic.

(2) Define τ on Z
� by ±p τ ± q where p, q are any positive primes and 4τ4. So τ is not associate preserving.

The τ -atoms and rτ -atoms are ±p where p is a prime. Thus Z is τ -atomic and rτ -atomic and each asso-
ciate of a rτ -atom is a rτ -atom; but τ is not associate preserving. Note that Z is a τ -UFD and a rτ -UFD
(defined using rτ -factorizations).

(3) Define τ on Z
� by pτq and −pτ − q where p, q are any positive primes of Z. The τ -atoms are ±p, p

a non-zero prime. Now Z is a τ -UFD. The rτ -atoms of Z are ±p and −p1 · · · p2n where p and pi are
positive primes. Note that Z is still a rτ -UFD. If we add −4τ − 4, then −4 · −4 = 2 · 2 · 2 · 2, so Z is no
longer a rτ -UFD, but is still a τ -UFD.

Recall that a ∈ D� is τ -prime if whenever a | λa1 · · · an, a τ -factorization, then a | ai for some i . We
define a ∈ D� to be rτ -prime if a | a1 · · · an, a rτ -factorization, then a | ai for some i . Unlike the case for
τ -atoms and rτ -atoms, the notions of τ -prime and rτ -prime coincide.

Proposition 3.4 Let D be an integral domain and τ a symmetric relation on D�. Then a ∈ D� is rτ -prime if
and only if it is τ -prime. Hence a rτ -prime is a rτ -atom.

Proof (⇐) This is immediate since a rτ -factorization is a τ -factorization. (⇒) Suppose that a is a rτ -prime.
Suppose that a | λa1 · · · an, a τ -factorization. Then a | a1 · · · an where a1 · · · an is now a rτ -factorization. So
a | ai for some i . Thus a is a τ -prime. ��

We next want to consider “reduced |τ -primes”. To do this, we need to define “reduced τ -divides”. Now
for a, b ∈ D�, the “natural” way to do this is to define a |r τ b if b = a1 · · · ai−1 · a · ai+1 · · · an where
a1 · · · ai−1 · a · ai+1 · · · an is a rτ -factorization. However, as we shall see, there are several problems with this
definition. So we make the following two definitions.

Definition 3.5 Let D be an integral domain and τ a relation on D�. We say that a reduced τ -divides b, denoted
a |r τ b, if b = a1 · · · ai−1 · a · ai+1 · · · an where a1 · · · ai−1 · a · ai+1 · · · an is a rτ -factorization of b. We say
that a weakly reduced τ -divides b, denoted a |wr τ b, if either (1)a |r τ b or (2) a ∼ b.

Our next proposition concerns the relations |τ , |r τ and |wr τ .

Proposition 3.6 Let D be an integral domain and τ a symmetric relation on D�. Let a, b ∈ D�.

(1) a |r τ b ⇒ a |wr τ b ⇒ a |τ b.
(2) The following are equivalent.

(a) a |r τ b ⇔ a |τ b for all a, b ∈ D�,

(b) a |r τ b ⇔ a |wr τ b for all a, b ∈ D�, and
(c) D is a field or U (D) = {1}.

(3) Suppose that τ is associate preserving and that a |τ b, so b = λa1 · · · an−1a = (λa1) · a2 · · · an−1 · a, a
rτ -factorization. If n > 1, a |r τ b and hence a |wr τ b. If n = 1, b = λa, so a |wr τ b, but a |r τ b ⇔ λ = 1.

(4) a |τ b ⇔ a |wr τ b for all a, b ∈ D� if τ is associate preserving. If τ is multiplicative, the converse is true.

Proof (1) Clear. (2) (c) ⇒ (a), (b) Clear. (a) ⇒ (b), (c) Suppose that D is not a field, so there is an a ∈ D�,
and let λ ∈ U (D) − {1}. Thus a |τ λa and a |wr τ λa, but a �r τ λa. (3) Clear. (4) The first statement follows
from (3). Suppose that τ is multiplicative but not associate preserving. So there exist a, b ∈ D� and λ ∈ U (D)
with aτb but a � τ(λb). Now certainly a |τ (λab). But a �wr τ (λab). For a |wr τ (λab) implies a |r τ (λab)
or a ∼ (λab). Now if a |r τ (λab), then λab = a · c where aτc or λab = a. The first case λab = ac gives
c = λb, so aτλb, a contradiction. The second case, λab = a gives that b is a unit, also a contradiction.
Likewise a ∼ λab leads to a contradiction. ��

If τ is not multiplicative the converse of the first statement of (4) does not hold in general. Define τ on Z
�

by ±2τ ± 2,±2τ ± 4,±2τ8,±4τ8, and bτa whenever aτb. Note that τ is neither associate preserving nor
multiplicative, since (2,−8), (2, 16) /∈ τ . However a |τ b ⇔ a |wr τ b for all a, b ∈ Z

�.
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Corollary 3.7 Let D be an integral domain and τ a symmetric relation on D�.

(1) The rτ -factorization theory on D with |r τ coincides with the τ -factorization theory on D if and only if D
is a field or U (D) = {1}.

(2) If D is associate preserving, then the rτ -factorization theory on D with |wr τ coincides with the τ -factor-
ization theory on D. If τ is multiplicative, the converse is true.

Recall that a ∈ D� is a |τ -prime if whenever a |τ λa1 · · · an, λa1 · · · an a τ -factorization, then a|τ ai for
some i .

Definition 3.8 Let D be an integral domain and τ a relation on D�. We define a ∈ D� to be a (weakly)
reduced τ -divides prime, |r τ -prime (|wr τ -prime), if whenever a |r τ a1 · · · an (a |wr τ a1 · · · an), a1 · · · an a
rτ -factorization, then a |r τ ai (a |wr τ ai ) for some i .

It is easily checked that a |wr τ -prime or |r τ -prime is a rτ -atom. In fact, a |wr τ -prime is even a τ -atom. How-
ever, a |τ -prime need not be a |wr τ -prime nor a |r τ -prime. For with the relation τ3 on Z

� defined by aτ3b ⇔ a ≡ b
mod 3 (see Example 2.3(4)), 5 is a |τ3 -prime (Example 3.9), but 5 |wr τ3 5 · (5 · 72) = (5 · 7) · (5 · 7), while
5 �wr τ3 5 · 7 with similar relations holding for |r τ3 . Also, 7 is a |wr τ3 -prime, but not a |r τ3 -prime and its associate
−7 is not a |wr τ3 -prime. A |r τ -prime need not be a |wr τ -prime. For example, define τ on Z

� by aτb ⇔ a, b ≥ 2.
Now −4 is vacuously a |r τ -prime, but −4 is not a |wr τ -prime since −4 |wr τ 4 = 2 · 2, but −4 �wr τ 2. The same
example also shows that a |r τ -prime need not be a |τ -prime nor a τ -atom and that an associate of a |r τ -prime
need not be a |r τ -prime. Finally, a |wr τ -prime need not be a |τ -prime. Define τ on Z

� by 2τ16, 16τ2,−4τ8 and
8τ − 4. Then 16 is a |wr τ -prime but not a |τ -prime as 16 |τ 32 = (−1)(−4)8 but 16 �τ 8,−4. The following
example illustrates the differences between τ -factorizations and rτ -factorizations.

Example 3.9 Let τ3 be the relation on Z
� defined by aτ3b ⇔ a ≡ b mod 3. So τ3 is not associate preserving.

(1) τ3-factorizations
(a) The τ3-atoms are ±p, p a prime and ±3n, n ≥ 2, 3 � n.
(b) The τ3-primes are ±p, p a prime and ±3p, p a prime, p �= 3.
(c) The |τ3 -primes are ±p, p a prime, p �= 3.
(d) Z is τ3-atomic, even a τ3-HFD, but not a τ3-UFD.

(2) rτ3-factorizations
(a) The rτ3-atoms are ±p, p a prime; ±3n, n ≥ 2, 3 � n; pq, p, q primes, p �≡ q mod 3, p, q �=

3;−pq, p, q primes, p ≡ q mod 3, p, q �= 3.
(b) The rτ3-primes are ±p, p a prime and ±3p, p �= 3 a prime.
(c) The |r τ3 -primes: none.

The |wr τ3 -primes are p, a prime, p ≡ 1 mod 3 and −p, p a prime, p ≡ 2 mod 3.
(d) Z is rτ3-atomic, but it is not a rτ3-HFD as (7 · 2) · (7 · 2) · (7 · 2) = (−49) · 2 · 2 · 2 · (−7) are rτ -atomic

factorizations of length 3 and 5.

The fact that there are no |r τ3 -primes is a special case of the following result.

Proposition 3.10 Let D be an integral domain with char(D) �= 2 and let τ be a reflexive, symmetric relation
on D�. Then D has no |r τ -primes. Thus Z has no |r τn -primes for any n ≥ 0.

Proof Let a ∈ D�. Note that a �= −a since char(D) �= 2. Now a |r τ a · a = (−a) · (−a), but a �r τ (−a).
Hence a cannot be a |r τ -prime. ��

All of the material in Sect. 2 concerning τ -factorization has an analog for rτ -factorization (in fact, two
analogs in some cases since we can use either |r τ or |wr τ ). We have seen (Corollary 3.7) that for τ associate
preserving, we can omit the leading unit in a τ -factorization (that is, use rτ -factorization) once we replace
|r τ by |wr τ . This, along with Proposition 3.10, suggests that when working with rτ -factorizations we should
replace |r τ by |wr τ . But this in turn suggests that τ -factorization is preferable over rτ -factorization since we can
use the natural relation |τ . As illustrated in Example 3.9, the theory of τ -factorization is often “cleaner” than
the corresponding theory of rτ -factorization. For example, having an associate of a τ -atom remain a τ -atom is
certainly a desirable property. Finally, the leading unit in a τ -factorization allows the flexibility in constructing
some natural factorizations as pointed out in Example 2.3(3).
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4 �-Factorizations

In this section we give an introduction to �-factorizations. �-factorizations were first studied in [11] and this
investigation is continued in [9]. Many results not stated here are given in [9] and [11] which reveal the power,
generality, and usefulness of the �-factorization framework. Let D be an integral domain with quotient field
K . We maintain the notation from Sects. 2 and 3 with the exception that τ need not be symmetric. For a ∈ D�,
we call a = λa1 · · · an, n ≥ 1, λ ∈ U (D), ai ∈ D� a factorization of a and a reduced factorization of a
is a = a1 · · · an, n ≥ 1, ai ∈ D�. Note that the order of the factors matters. In the case n = 1 we call the
(reduced) factorization a = λ(λ−1a) (a = a) a (reduced) trivial factorization. We will consider a reduced fac-
torization to be a factorization where λ = 1, and conversely. For a ∈ D� let fact(a) (resp., rfact(a)) be the set
of factorizations of a (resp., reduced factorizations of a). And let tfact(a) (resp., trfact(a)) be the set of trivial
factorizations of a (resp., trivial reduced factorizations of a). Finally, fact(D) = ∪a∈D�fact(a), rfact(D) =
∪a∈D�rfact(a), tfact(D) = ∪a∈D� tfact(a) and trfact(D) = ∪a∈D� trfact(a).

Remark 2 We could have more rigorously defined a factorization in D to be the “formal word” (λ, a1, . . . , an,
1, 1, . . .) where λ ∈ U (D), n ≥ 1 and ai ∈ D�. A reduced factorization in D is a factorization (1, a1, . . . , an, 1,
1, . . .). Let fact(D) be the set of these factorizations in D. Define π : f act (D) −→ D� by π((λ, a1, . . . , an, 1,
1, . . .)) = λa1 · · · an . If (λ, a1, . . . , an, 1, 1, . . .) ∈ fact(D) with π((λ, a1, . . . , an, 1, 1, . . .)) = a we call
(λ, a1, . . . , an, 1, 1, . . .) a factorization of a and write a = λa1 · · · an .

Definition 4.1 Let � ⊆ f act (D). An element of � (resp., �(a) := � ∩ f act (a)) is called a �-factorization
(resp., �-factorization of a). Let a, b ∈ D�. We say that a (weakly) �-divides b, written a |� b (a |w� b), if there
exists a �-factorization of b, b = λa1 · · · an, where some ai = a (or a ∼ b). We also say that ai is a �-factor
of b. An element a ∈ D� is �-irreducible or a �-atom if � ∩ fact(a) ⊆ tfact(a). We denote the set of �-atoms
of D by atom(�). A �-atomic factorization of a is a �-factorization a = λa1 · · · an where each ai is a �-atom
and D is said to be �-atomic if each a ∈ D� with �(a) �= ∅ has a �-atomic factorization. An element a ∈ D�

is a �-prime (resp., |�-prime, |w�-prime) if whenever a | λa1 · · · an (resp., a |� λa1 · · · an, a |w� λa1 · · · an),
a �-factorization, then a | ai (resp., a |� ai , a |w� ai ) for some i . A proper ideal I of D is called a �-prime
ideal if whenever λa1 · · · an ∈ I, λa1 · · · an ∈ �, we have ai ∈ I for some i . We denote the set of �-prime
ideals by Spec�(D) and the set of �-prime (resp., |�-prime, |w�-prime) elements of D by pSpec�(D) (resp.,
pSpec|� (D), pSpec|w�

(D)).

Note that according to our definition of a �-atomic domain D, an element of D� need not to be a �-prod-
uct of �-atoms. In fact, if � = ∅, every element of D� is a �-atom, but no element of D� has a �-atomic
factorization. We will give some examples of �-factorizations later. For the moment we content ourselves
with two examples. Let τ be a symmetric relation on D�, D an integral domain. Let �τ (resp., �r τ ) be the
set of all τ -factorizations (resp., reduced τ -factorizations) on D. So a �τ -factorization (resp., �r τ -factoriza-
tion) is just a τ -factorization (resp., reduced τ -factorization). We have a|�τ b ⇔ a|τ b, a|�r τ b ⇔ a|r τ b and
a|w�r τ b ⇔ a|wr τ b. Similar statements hold for τ -prime, rτ -prime, |τ -prime, |r τ -prime and |wr τ -prime.

Observe that a ∈ D� is a �-prime if and only if (a) is a �-prime ideal. Thus an associate of a �-prime
is again a �-prime. This is not true for �-atoms or |�-primes as seen by taking � to be �r τ . The notions of
�-atom, �-prime and |�-prime are all special cases of a �1-�2-�3-prime.

Definition 4.2 Let D be an integral domain. Let �1, �2, �3 ⊆ fact(D). We call a ∈ D� a �1-�2-�3-prime
if for each �1-factorization λa1 · · · an, a |�2 λa1 · · · an implies a |�3 ai for some i . We denote the set of
�1-�2-�3-primes by pSpec�1-�2-�3

(D).

Thus a �-fact(D)-fact(D)-prime is just a �-prime and a �-�-�-prime is a |�-prime. We next note that a
�-atom is just a �-trfact(D)-tfact(D)-prime or �-trfact(D)-fact(D)-prime.

Proposition 4.3 Let D be an integral domain and � ⊆ fact(D).

(0) For a, b ∈ D�, a |� b ⇒ a |w� b ⇒ a | b.
(1) tfact(D) ⊆ � ⇔ a, b ∈ D� with a ∼ b implies a |� b.

(1r) trfact(D) ⊆ � ⇔ a |� a for all a ∈ D�.
(2) � ⊆ tfact(D) ⇔ for a, b ∈ D�, a |� b implies a ∼ b.

(2r) � ⊆ trfact(D) ⇔ for a, b ∈ D�, a |� b implies a = b.
(3) � = tfact(D) ⇔ for a, b ∈ D�, a ∼ b ⇔ a |� b.
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(3r) � = trfact(D) ⇔ for a, b ∈ D�, a = b ⇔ a |� b.
(4) Let a ∈ D�. The following are equivalent:

(a) a is �-irreducible,
(b) a is �-trfact(D)-�3-prime for some �3 ⊆ fact(D),
(c) a is �-trfact(D)-tfact(D)-prime, and
(d) a is �-trfact(D)-�3-prime for every �3 ⊇ tfact(D).

(5) The following are equivalent:
(a) � ⊆ tfact(D),
(b) every element of D� is a �-atom, and
(c) every element of D� is a �-prime.

Proof (0) Clear. (1)(⇒) Suppose a ∼ b; so b = λa for some λ ∈ U (D). But b = λa is a trivial factor-
ization of b and hence a �-factorization of b. So a |� b. (⇐) Let b = λa be a trivial factorization of b.
We need that λa is in �. Now a ∼ b, so a |� b. So b = μa1 · · · an is a �-factorization where say ai = a.
So λa = b = μa1 · · · ai−1 · a · ai+1 · · · an . If n > 1, cancelling a gives λ = μa1 · · · ai−1ai+1 · · · an, a
contradiction. So n = 1 and hence λ = μ, so b = λa is in �. The proof of (1r) is similar.

(2)(⇒) Suppose a |� b; so b = λa1 · · · an a �-factorization. But � ⊆ t f act (D) gives n = 1 so b ∼ a.
(⇐) Let b = λa1 · · · an be a �-factorization. Now a1 |� b, so a1 ∼ b. Hence a1 = μb where μ ∈ U (D). So
b = λ(μb) · a2 · · · an . So n > 1 forces a2, . . . , an to be units, a contradiction. Hence n = 1, so b = λa1 ∈
tfact(D). The proof of (2r) is similar.

(3) This follows from (1) and (2). The proof of (3r) is similar.
(4) (b) ⇒ (a) Suppose that a is �-trfact(D)-�3-prime. Let a = λa1 · · · an be a �-factorization of a.

Then a |trfact(D) λa1 · · · an . So a |�3 ai for some i . Hence a|ai , say ai = ba, b ∈ D∗. So a = λa1 · · · an =
λa1 · · · ai−1 · (ba) · ai+1 · · · an . Hence n = 1; so a is �-irreducible. (a) ⇒ (d) Suppose that a is �-irreduc-
ible. Suppose that a |trfact(D) λa1 · · · an where λa1 · · · an is a �-factorization. By (3r) a |trfact(D) λa1 · · · an
implies a = λa1 · · · an . Now a�-irreducible gives n = 1, so a = λa1. Hence a ∼ a1, so a |�3 a1. So a is a
�-trfact(D)-�3-prime. (d) ⇒ (c) ⇒ (b) Clear.

(5) This follows from the definitions. ��
Our next proposition gives some properties of ∪�α,∩ �α and �2\�1 for �α, �1,

�2 ⊆ fact(D). Its simple proof is left to the reader.

Proposition 4.4 Let D be an integral domain, �1, �2, �α ⊆ fact(D) and a, b ∈ D�.

(1) (∪
α
�α)(a) = ∪

α
�α(a).

(2) (∩
α
�α)(a) = ∩

α
�α(a).

(3) If �1 ⊆ �2, then a |�1 b ⇒ a |�2 b.
(4) (�2\�1)(a) = (�2(a))\(�1(a)).
(5) a |(∪

α
�α) b ⇔ a |�α b for some α.

(6) a |(∩
α

�α) b ⇒ a |�α b for all α.

(7) If a |�2 b and a ��1 b, then a |(�2\�1) b.

Example 4.5 Let D be an integral domain and {Iα} a family of ideals of D. Define aτIα b ⇔ a − b ∈ Iα
(Example 2.3(4)) and let �τIα

be the set of τIα -factorizations. Then ∩
α
�τIα

= �τ∩
α

Iα
In particular, for D = Z

and natural numbers n1, . . . , ns, we have �τn1
∩ · · · ∩ �τns

= �τm (or τn1 ∩ · · · ∩ τns = τm) where m is the
LCM of n1, . . . , ns .

Example 4.6 Let �τn be the set of all τn-factorizations (Example 2.3(4)). Note that 2 |�τ3
14 and 2 |�τ5

14, but
2 ��τ3

∩�τ5
14, or equivalently 2 ��τ15

14, hence the converse of (6) fails in general. The converse of (7) need
not to hold. For example, let �1 = {2 · 2 · 3} and �2 = {4 · 3} and note that 3 |�1 12, 3 |�2 12 and 3 |�2\�1 12.

We next show how the various forms of “prime” elements behave with respect to ∪α�α and ∩α�α .

Theorem 4.7 Let D be an integral domain and let �1, �1
′, �2, �2

′, �3, �3
′, �α be subsets of fact(D). Then

the following hold.

(1) If �1 ⊆ �2, then Spec�2
(D) ⊆ Spec�1

(D).
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(2) Spec∪
α
�α

(D) = ∩
α

Spec�α
(D).

(3) If �1 ⊆ �1
′, then pSpec�1

′-�2-�3
(D) ⊆ pSpec�1-�2-�3

(D).
(4) pSpec(∪

α
�α)-�2-�3

(D) = ∩
α

pSpec�α-�2-�3
(D).

(5) ∪
α

pSpec�α-�2-�3
(D) ⊆ pSpec(∩

α
�α)-�2-�3

(D).

(6) If �2 ⊆ �2
′, pSpec�1-�2

′-�3
(D) ⊆ pSpec�1-�2-�3

(D).
(7) pSpec�1-(∪

α
�α)-�3

(D) = ∩
α

pSpec�1-�α-�3
(D).

(8) ∪
α

pSpec�1-�α-�3
(D) ⊆ pSpec�1-(∩

α
�α)-�3

(D).

(9) If �3 ⊆ �3
′, pSpec�1-�2-�3

(D) ⊆ pSpec�1-�2-�′
3
(D).

(10) ∪
α

pSpec�1-�2-�α
(D) ⊆ pSpec�1-�2-(∪

α
�α)(D).

(11) pSpec�1-�2-(∩
α
�α)(D) ⊆ ∩

α
pSpec�1-�2-�α

(D).

(12) pSpec�2
(D)\pSpec�1

(D) ⊆ pSpec�2\�1
(D).

(13) atom(∪
α
�α) = ∩

α
atom(�α).

(14) ∪
α

atom(�α) ⊆ atom(∩
α
�α).

(15) atom(�2)\atom(�1) ⊆ atom(�2\�1).

Proof (1) Let I ∈ Spec�2
(D) and λa1 · · · an ∈ I ∩�1 ⊆ I ∩�2, then ai ∈ I for some i . Hence I ∈ Spec�1

(D).
(2) (⊆) This follows from (1). (⊇) Let I ∈ ∩

α
Spec�α

(D). Let λa1 · · · an ∈ I ∩(∪
α
�α); so λa1 · · · an ∈ I ∩�α

for some α. Since I is a �α-prime, some ai ∈ I . So I is a ∪
α
�α-prime.

(3) The proof is similar to that of (1).
(4) (⊆) This follows from (3). (⊇) Suppose a ∈ ∩

α
pSpec�α-�2-�3

(D), so a ∈ pSpec�α-�2-�3
(D) for each

α. Let a |�2 λa1 · · · an, a ∪
α
�α-factorization, that is, λa1 · · · an ∈ �α for some α. Hence a |�3 ai for some i .

(5) and (12) follow from (3). The proof of (6) and (9) are similar to that of (3).
(7) (⊆) Follows from (6). (⊇) Suppose a ∈ ∩

α
pSpec�1-�α-�3

(D), then a ∈ pSpec�1-�α-�3
(D) for each α.

Let a |∪
α
�α λa1 · · · an, a �1-factorization, which implies that a |�α0

λa1 · · · an for some α0. Hence a |�3 ai for

some i .
(8) Follows from (6).
(10) and (11) follow from (9).
(13), (14) and (15) follow from (3)–(5) and Proposition 4.3(4). ��

Example 4.8 Let �1 = {(−1)2 · 3} and �2 = {−2 · 3}, both subsets of fact(Z). Then �1 ∩ �2 = ∅, so
atom(�1∩�2) = Z

�. On the other hand, atom(�1)∪atom(�2) = Z
�−{−6}. So the reverse inclusion of (14) (and

hence of (5)) does not hold in general. Now let �1 = �2, then atom(�2\�1) = D�, but atom(�2)\atom(�1) =
∅. So the reverse inclusion of (15) [and hence of (12)] does not hold.

Proposition 4.9 Let D be an integral domain. Let �i , �i
′ ⊆ fact(D) for i = 1, 2, 3 with �1

′ ⊆ �1, �2
′ ⊆ �2

and �3
′ ⊇ �3. Then a �1-�2-�3-prime is a �1

′-�2
′-�3

′-prime.

Proof Suppose a is �1-�2-�3-prime. Suppose that a |�2
′ λa1 · · · an ∈ �1

′ Now λa1 · · · an ∈ �1
′ ⊆ �1 and

a |�2
′ λa1 · · · an and �2

′ ⊆ �2 ⇒ a |�2 λa1 · · · an. So a�1-�2-�3-prime ⇒ a |�3 ai for some i . But then
a |�3

′ ai since �3
′ ⊇ �3. ��

Corollary 4.10 Let D be an integral domain and let τi , τ
′
i , i = 1, 2, 3, be symmetric relations on D�. Suppose

that τ1 ≥ τ1
′, τ2 ≥ τ2

′ and τ3 ≤ τ3
′. If a is a τ1-τ2-τ3-prime, then a is a τ ′

1-τ ′
2-τ ′

3-prime.

Corollary 4.11 Let D be an integral domain and let �1, �2 ⊆ fact(D) with �1 ⊆ �2.

(1) A �2-atom is a �1-atom.
(2) A �2-prime is a �1-prime.
(3) A �1-prime is a �1-atom.

Proof (1), (2) Clear. (3) Let a be a �1-prime. Now a is �1-prime if and only if a is �1-fact(D)-fact(D)-prime.
So a is �1-trfact(D)-fact(D)-prime, or equivalently, a is a �1-atom, by Proposition 4.3.4. ��
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We can define “the” �-gcd [a, b]� for a, b ∈ D�. We say [a, b]� = d if (1) d |� a and d |� b and (2) if
c |� a and c |� b, then c |� d . If there does not exist d ∈ D� with d |� a and d |� b, we write [a, b]� = 1.
This will be pursued in a future paper.

For τ -factorization, we defined three additional conditions that the relation τ may satisfy: associate pre-
serving, divisive, and multiplicative. These conditions on τ lead to desirable factorization properties. We next
give several conditions that � ⊆ fact(D) may satisfy. These properties (along with others) were introduced in
[11] and these properties (along with others) are further studied in [9].

Definition 4.12 Let D be an integral domain and � ⊆ fact(D). Then we say � is

(1) symmetric if for any λa1 · · · an ∈ � and σ ∈ Sn, we have λaσ(1) · · · aσ(n) ∈ �,

(2) reflexive if for any a ∈ D� and n ≥ 1, we have the n-fold product a · · · a ∈ �,
(3) associate preserving if for any λa1 · · · an ∈ �, then μa1 · · · (μi ai ) · · · an is also a �-factorization for any

μ, μi ∈ U (D),
(4) divisive if for any λa1 · · · an ∈ � and a | ai (a ∈ D�) for i ∈ {1, . . . , n}, we have λa1 · · · ai−1 · a ·

ai+1 · · · an ∈ �,
(5) refinable if for any λa1 · · · an ∈ � and bi1 · · · bimi a �-factorization of ai , we have λb11 · · · b1m1 ·

b21 · · · b2m2 · · · bn1 · · · bnmn ∈ �,
(6) combinable if for any λa1 · · · an ∈ � and k ∈ {1, 2, . . . , n −1}, then λa1 · · · ak−1 · (akak+1) ·ak+2 · · · an ∈

�,
(7) unital if whenever λa1 · · · an ∈ �, then μa1 · · · an ∈ � for any unit μ,
(8) divisible if for any λa1 · · · an ∈ �, the subproduct λai1ai2 · · · aik ∈ � for each 1 ≤ i1 < i2 < · · · < ik−1 <

ik ≤ n, and
(9) (reduced) normal if (trfact(D) ⊆ �) tfact(D) ⊆ �.

Let τ be a (symmetric) relation on D�. Then �τ is symmetric, unital, divisible, reduced, and normal. If τ
is reflexive (resp., associate preserving, divisive), then �τ is reflexive (resp., associate preserving, divisive). If
τ is divisive (resp., multiplicative), then �τ is refinable (resp., combinable).

Suppose that � is combinable. Then any a ∈ D� with �(a) �= ∅ which is not a �-atom has a �-factorization
of length 2. If � is divisive and combinable, then it is divisible; and if � is divisive and unital, then it is associate
preserving.

Proposition 4.13 Let D be an integral domain and let � be a unital subset of fact(D). For a ∈ D�, the
following are equivalent:

(1) a is a �-atom,
(2) λa is a �-atom for any λ ∈ U (D),
(3) a is a �-tfact(D)-�3-prime for some �3 ⊆ fact(D), and
(4) λa is a �-tfact(D)-�3-prime for some �3 ⊆ fact(D), for any λ ∈ U (D).

Proposition 4.14 Let D be an integral domain and � ⊆ fact(D). Then the following statements hold.

(1) If � is normal, then μa |� λa for any μ, λ ∈ U (D).
(2) If a |� b and b |� a, then a ∼ b.
(3) Let � be unital. If λ ∈ U (D), a |� b ⇔ a |� λb.
(4) Suppose � is associate preserving. If λ,μ ∈ U (D), then a |� b ⇔ μa |� λb.
(5) Let � be refinable and associate preserving. If a |� b and b |� c, then a |� c.

Proposition 4.15 Let D be an integral domain and �1, �2, �α ⊆ fact(D). The following hold.

(1) If �1 ⊆ �2 and �1 is reflexive (resp., normal, reduced), then �2 is reflexive (resp., normal, reduced).
(2) If each �α is reflexive (resp., symmetric, associate preserving, combinable, divisive, divisible, normal,

reduced, unital), so are ∪
α
�α and ∩

α
�α .

(3) If each �α is refinable, then ∩
α
�α is refinable.

Proof (1) Follows from the definition. (2) If each �α is reflexive, (1) gives ∪
α
�α is reflexive. Now, for any

a ∈ D�, the n-fold product a · · · a ∈ �α . Hence ∩
α
�α is reflexive. The argument for normal or reduced is

similar.
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Suppose �α is symmetric for each α and let λa1 · · · an ∈ ∩
α
�α (resp., in ∪

α
�α), then λa1 · · · an ∈ �α for all

α (resp., for some α). So λaσ(1) · · · aσ(n) ∈ �α for all α (resp., for some α) and λaσ(1) · · · aσ(n) ∈ ∩
α
�α (resp.,

λaσ(1) · · · aσ(n) ∈ �α ⊆ ∪
α
�α). The arguments for the other properties are similar.

(3) Suppose �α is refinable for all α. Let λa1 · · · an ∈ ∩
α
�α and ai = bi1 · · · bimi ∈ ∩

α
�α, then both

∩
α
�α-factorizations are �α-factorizations for each α. Hence λb11 · · · b1m1 · b21 · · · b2m2 · · · bn1 · · · bnmn is a

�α-factorization for each α, that is, λb11 · · · b1m1 · b21 · · · b2m2 · · · bn1 · · · bnmn ∈ ∩
α
�α . ��

The converse of (2) fails in general. For example consider �1 = {(−1)(−6), 2 ·3, (−1) ·(−2) ·(−3), (−1) ·
2 · 3} and �2 = {(−6), 2 · (−3), (−2) · 3, (−1) · 2 · (−3), (−1) · (−2) · 3}. Now, �1 ∩ �2 = ∅ and �1 ∪ �2 =
{(−6), (−1)(−6), 2 · 3, 2 · (−3), (−2) · 3(−1) · 2 · 3, (−1) · (−2) · (−3), (−1) · 2 · (−3), (−1) · (−2) · 3} are
both associate preserving (resp., divisive, unital), but neither �1 nor �2 is associate preserving (resp., divisive,
unital). We can construct similar examples in which the sets are pairwise disjoint by splitting the property
among the sets so the union has the desired property. We next give some examples of �-factorizations.

Example 4.16 Let D be an integral domain.

(1) Let τ be a symmetric relation on D�. �τ = {λa1 · · · an | aiτa j for i �= j} is the set of τ -factorizations
and �r τ = {a1 · · · an | aiτa j for i �= j} is the set of reduced τ -factorizations. So |�τ =|τ and |�r τ =|r τ .

(2) � = fact(D). We have the usual factorization, |�=|, �-atom = atom, and |�-prime = �-prime = princi-
pal prime. Note that � = �τ where τ = D� × D�. Of course � satisfies all of the conditions given in
Definition 4.12.

(3) � = ∅. Here every element of D� is a �-atom and a �-prime. We never have a |� b; so each element is
a |�-prime. Also, [a, b]� = 1. Note that � �= �τ for any relation τ . Here � vacuously satisfies all of the
condition given in Definition 4.12 except (2) and (9).

(4) � = tfact(D). Here every element of D� is a �-atom and a �-prime. Also, a |� b ⇔ a ∼ b. So each
a ∈ D� is also a |�-prime. We have [a, b]� = 1 ⇔ a �∼ b. Note that � = �τ where τ = ∅. Here �
satisfies all the conditions given in Definition 4.12 except (2).

(5) Let τ be a not necessarily symmetric relation on D�. Then λa1 · · · an ∈ f act (D) is an ordered τ -fac-
torization if aiτa j for i < j and a|ord

τ b if b = λa1 · · · an is an ordered τ -factorization where some
ai = a. Take �ord

τ to be the set of all ordered τ -factorizations. So a|ord
τ b ⇔ a |�ord

τ
b. In a similar man-

ner we can define a reduced ordered τ -factorization, |ord
r τ

and |ord
wr τ

. If we let �ord
r τ

be the set of reduced

ordered τ -factorizations, then |ord
r τ

=|�ord
r τ

and |ord
wr τ

=|
w�ord

r τ
. As a concrete example, define τ on D[x]�

by f τg ⇔ deg( f ) ≤ deg(g). Then an ordered τ -factorization is a factorization λ f1 · · · fn where λ is a
unit and fi ∈ D[x]� with deg( f1) ≤ deg( f2) ≤ · · · ≤ deg( fn). Note that �τ is not symmetric, divisive,
refinable, nor combinable, but satisfies the other conditions given in Definition 4.12. As a second example
we could consider factorizations in Z of the form (±1)2n1 · 3n2 · · · pk

nk where pi is the i th prime.
(6) Let S be a non-empty subset of D� and take τ = S × S, so aτb ⇔ a, b ∈ S (Example 2.3(3)). Take

�S = {λa1 · · · an | ai ∈ S, n ≥ 1}. Note that for any unit λ and a ∈ D�, λa ∈ �τ , but λa ∈ �S ⇔ a ∈ S.
In fact, �τ = �S ∪ tfact(D). Suppose a ∼ b. Then a |τ b, but a |�S ⇔ a ∈ S. Here we have c |τ d ⇔
c |w�S d . Note that Spec�τ

(D) = Spec�S
(D), atom(�τ ) = atom(�S), pSpec�τ

(D) = pSpec�S
(D), and

pSpec|�τ
(D) = pSpec|w�S

(D).

We next define the � analogs of τ -UFD, τ -HFD, τ -BFD, τ -FFD and τ -ACCP. Note that these definitions
agree with the τ -factorization definitions in the case where � = �τ .

Definition 4.17 An integral domain D is called a �-unique factorization domain (�-UFD) if D is �-atomic
and whenever λa1 · · · an = μb1 · · · bm are two �-factorizations into �-atoms, then n = m and after reorder-
ing (if necessary) ai ∼ bi . We say D is a �-half-factorial domain (�-HFD) if D is �-atomic and for any
two �-atomic factorizations λa1 · · · an = μb1 · · · bm we have m = n. The domain D is called a �-bounded
factorization domain (�-BFD) if D is �-atomic and for each a ∈ D� there is a positive integer N�(a) so that
for any �-factorization λa1 · · · an of a, n ≤ N�(a). We say that D is a �-finite factorization domain (�-FFD)
if D is �-atomic and each a ∈ D� has only finitely many �-factorizations (up to order and associates) into
�-atoms. We say that D satisfies the �-ascending chain condition on principal ideals (�-ACCP) if for any
infinite sequence {ai }∞i=1 such that ai+1 |� ai there is a positive integer N (depending on the sequence) with
ak+1 ∼ ak for each k > N .
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Note that �-UFD ⇒ �-HFD and �-FFD, and that �-HFD or �-FFD ⇒ �-BFD. If � is divisive, unital
and refinable, we have �-BFD ⇒ �-ACCP ⇒ �-atomic (see Theorem 4.19). We next give a � analog of
Proposition 2.8 that will be used in proving Theorem 4.19(4).

Theorem 4.18 Let D be an integral domain and � ⊆ fact(D) be divisible, divisive and unital. Suppose
p1 · · · pn = q1 · · · qm are two �-factorizations so that each pi is a �-atom and each qi is a �-prime (resp.
|�-prime). Then n = m and after reordering (if necessary) pi ∼ qi . Moreover, if each a ∈ D� has a �-factor-
ization into �-primes (resp. |�-primes), D is a �-UFD.

Proof First, let us assume that each qi is a |�-prime. Without loss of generality, say qm |� pn . So pn =
αa1 · · · qm · · · ak ∈ �. Since pn is a �-atom, k = 0 and pn = αqm . Cancelling gives two �-factorizations
λq1 · · · qm−1 = (μ · α)p1 · · · pn−1 (here we use divisible and unital). By induction, m − 1 = n − 1 and after
reordering (if necessary) qi ∼ pi for each 1 ≤ i < n. Therefore, n = m and after reordering (if necessary)
each pi ∼ qi .

Now suppose that each qi is a �-prime. Then q1 | pi for some i, say pi = ai q1. So p1 · · · pi−1 · (ai q1) ·
pi+1 · · · pn = q1 · · · qm . Cancelling q1 gives p1 · · · pi−1 · ai · pi+1 · · · pn = q2 · · · qm where both sides are
again �-factorizations since � is divisive and divisible. Now either q2 | p j for some j �= i or q2 | ai . In
the first case p j = a j q2 and as before p1 · · · ai · · · a j · · · pn = q3 · · · qm where both are �-factorizations. If
q2 | ai , then ai = ai

′q2 for some ai
′. So pi = ai

′q1q2. In this case p1 · · · pi−1 · ai
′ · pi+1 · · · pn = q3 · · · qm

where both are again � factorizations. Continuing in this manner, we can partition q1, q2, . . . , qm (as an
ordered set) into {qi j } so that pi = ai qi1 · · · qiki (need not be a �-factorization). Hence

∏
qi j = q1 · · · qm .

Thus q1 · · · qm = p1 · · · pn = (a1q11 · · · q1k1) · · · (anqn1 · · · qnkn ) = a1 · · · anq1 · · · qm . Hence each ai is a
unit. Since � is divisive and unital pi = ai qi1 · · · qiki is a �-factorization of the �-atom pi . Hence ki = 1.
Therefore n = m and after reordering (if necessary) pi ∼ qi . ��

We end with the following theorem. Note that Theorem 4.19(4) gives a proof for Theorem 2.12 (which is
much simpler than the proof given in [3]).

Theorem 4.19 Let D be an integral domain and � ⊆ fact(D).

(1) If D has ACCP, then D has �-ACCP.
(2) Suppose � is divisive, unital and refinable. If D satisfies �-ACCP, then D is �-atomic.
(3) Suppose � is divisive, unital and refinable. If D is a �-BFD, then D satisfies �-ACCP.
(4) Suppose � is divisive, divisible, unital and refinable. If D is a UFD, then D is a �-UFD.

Proof (1) If there is an infinite sequence {ai }∞i=1 with ai+1 |� ai that does not stabilize, then the same sequence
contradicts the fact that D has ACCP. Hence, there is a positive integer N such that for each k ≥ N , ak ∼ ak+1
and D has �-ACCP. (2) Let a ∈ D�, and suppose that it is not a �-atom and has no �-atomic factoriza-
tion. So there is a �-factorization, say a = b1 · · · bn, which is not a �-atomic factorization. So some bi ,
say b1, is neither a �-atom nor has a �-atomic factorization. Say that b1 = b11 · · · b1m1 is neither a �-
atom nor a �-atomic factorization of b1. So a = b11 · · · b1m1b2 · · · bn is not a �-atomic factorization of a.
Again, we may suppose that b11 = b21 · · · b2m2 is neither a �-atom nor a �-atomic factorization of b11.
So a = b21 · · · b2m2 · b12 · · · b1m1b2 · · · bn is not a �-atomic factorization of a. Continuing in this fashion,
and we obtain the infinite sequence {b1, b11, b21, b31, . . .} with b11 |� b1 and b(i+1)1 |� bi1 that does not
stabilize. This contradiction shows that every element is either a �-atom or has a �-atomic factorization.
Therefore D is �-atomic. (3) Let D be a �-BFD. Suppose that there is an infinite sequence {ai }∞i=1 with
ai+1 |� ai that does not stabilize. Now a2 |� a1, so a1 = λb1 · · · bi−1 · a2 · bi+1 · · · bn ∈ � where n > 1
since a1 �∼ a2. Since a3 |� a2, we have a2 = μc1 · · · c j−1 · a3 · c j+1 · · · cm ∈ � where m > 1 since
a2 �∼ a3. Since � is divisive and unital, (μc1) · c2 · · · c j−1 · a3 · c j+1 · · · cm ∈ �. Thus � refinable gives
a1 = λb1 · · · bi−1 · (μc1) · c2 · · · c j−1 · a3 · c j+1 · · · cm · bi+1 · · · bn ∈ �. Continuing this process, we get
arbitrarily long �-factorizations for a1. This contradiction gives that D satisfies �-ACCP. (4) Since a UFD has
ACCP, D is �-atomic by (2). Now, we show that each �-atom is a �-prime and by Theorem 4.18 D will be
a �-UFD. Suppose that a ∈ D� is a �-atom and a | b1 · · · bn ∈ �. Since D is a UFD, it is a GCD domain
and so a = a1 · · · an, where each ai ∈ D∗ and ai | bi . Now collect all those ai s that are non-units. Say
ai1, ai2, . . . , aik are non-units and say that the product of the rest of them is α. Then a = αai1ai2 · · · aik is a
�-factorization of a, which implies that k = 1. Hence a | bi1 and a is a �-prime. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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