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Abstract The t-class semigroup of an integral domain is the semigroup of the isomorphy classes of the t-ideals
with the operation induced by t-multiplication. This paper investigates integral domains with Boolean t-class
semigroup with an emphasis on the GCD and stability conditions. The main results establish t-analogues for
well-known results on Prüfer domains and Bézout domains of finite character.
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1 Introduction

All rings considered in this paper are integral domains (i.e., commutative with identity and without zero-
divisors). The class semigroup of a domain R, denoted S(R), is the semigroup of nonzero fractional ideals
modulo its subsemigroup of nonzero principal ideals [11,40]. The t-class semigroup of R, denoted St (R), is
the semigroup of fractional t-ideals modulo its subsemigroup of nonzero principal ideals, that is, the semigroup
of the isomorphy classes of the t-ideals of R with the operation induced by ideal t-multiplication. Notice that
St (R) is the t-analogue of S(R), as the class group Cl(R) is the t-analogue of the Picard group Pic(R). The
following set-theoretic inclusions always hold: Pic(R) ⊆ Cl(R) ⊆ St(R) ⊆ S(R). Note that the first and third
inclusions turn into equality for Prüfer domains and the second does so for Krull domains. More details on
these objects are provided in the next section.

Divisibility properties of a domain R are often reflected in group or semigroup-theoretic properties of
Cl(R) or S(R). For instance, a Prüfer (resp., Krull, PVMD) domain R is Bézout (resp., UFD, GCD) if and
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only if Cl(R) = 0 [14]. Also if R is a Dedekind domain (resp., PID), then S(R) is a Clifford (resp., Boolean)
semigroup. Recently, we showed that St (R) is a Clifford semigroup for any Krull domain R; and a domain R is
a UFD if and only if R is Krull and St (R) is a Boolean semigroup [29, Proposition 2.2]. Recall for convenience
that a commutative semigroup S is Clifford if every element x of S is (von Neumann) regular, i.e., there exists
a ∈ S such that x2a = x . The importance of a Clifford semigroup S resides in its ability to stand as a disjoint
union of subgroups Ge, where e ranges over the set of idempotent elements of S, and Ge is the largest subgroup
of S with identity equal to e (cf. [25]). The semigroup S is said to be Boolean if for each x ∈ S, x = x2.

A domain R is called a GCD domain if every pair of (nonzero) elements of R has a greatest common
divisor; equivalently, if the t-closure of any nonzero finitely generated fractional ideal of R is principal [2].
UFDs, Bézout domains and polynomial rings over them are GCD domains. Ideal t-multiplication converts
the notion of Bézout (resp., Prüfer) domain of finite character to GCD domain of finite t-character (resp.,
Krull-type domain) [22]. A domain is stable if each nonzero ideal is invertible in its endomorphism ring (see
more details in Section 2). Stability plays a crucial role in the study of class and t-class semigroups. Indeed, a
stable domain has Clifford class semigroup [9, Proposition 2.2] and finite character [37, Theorem 3.3]; and an
integrally closed stable domain is Prüfer [16, Lemma F]. Of particular relevance to our study is Olberding’s
result that an integrally closed domain R is stable if and only if RR is a strongly discrete Prüfer domain of
finite character [35, Theorem 4.6]. An analogue to this result is stated for Bézout domains of finite character
in [27,28, Theorem 3.2].

Recall that a valuation domain has Clifford class semigroup (Bazzoni–Salce [11]); and an integrally closed
domain R has Clifford class semigroup if and only if R is Prüfer of finite character (Bazzoni [8, Theorem
2.14] and [9, Theorem 4.5]). In 2007, we extended these results to PVMDs; namely, a PVMD R has Clifford
t-class semigroup if and only if R is a Krull-type domain [29, Theorem 3.2]; and conjectured that this result
extends to v-domains (definition below). Recently, Halter-Koch solved this conjecture by using the language
of ideal systems on cancellative commutative monoids. He proved that every t-Clifford regular v-domain is
a Krull-type domain [24, Proposition 6.11 and Proposition 6.12]. Finally, recall Zanardo–Zannier’s crucial
result that an integrally closed domain with Clifford class semigroup is necessarily Prüfer [40]. In [27], we
stated a Boolean analogue for this result, that is, an integrally closed domain with Boolean class semigroup
is Bézout. However, in [29, Example 2.8], we showed that an integrally closed domain with Boolean t-class
semigroup need not be a PVMD (a fortiori, nor a GCD). Consequently, the class of v-domains offers a natural
context for studying t-class semigroups.

Recall from [6] that the pseudo-integral closure of a domain R is defined as ˜R = ⋃

(It : It ), where I ranges
over the set of finitely generated ideals of R; and R is said to be a v-domain (or pseudo-integrally closed) if
R = ˜R or, equivalently, if (Iv : Iv) = R for each nonzero finitely generated ideal I of R. A v-domain is called
in Bourbaki’s language regularly integrally closed [12, Chap. VII, Exercise 30]. Notice that R ⊆ ˜R ⊆ R�,
where R and R� are, respectively, the integral closure and the complete integral closure of R; and a PVMD is
a v-domain. For recent developments on v-domains, we refer the reader to [3,18,19,23,24].

This paper studies v-domains with Boolean t-class semigroup with an emphasis on the GCD and stability
conditions. Our aim is to establish Boolean analogues for the aforementioned results on Prüfer and Bézout
domains of finite character. The first main result (Theorem 2.3) asserts that “a v-domain with Boolean t-class
semigroup is GCD with finite t-character.” Then Corollary 2.4 provides a Boolean analogue for (the necessity
part of) Bazzoni’s result mentioned above. The converse does not hold in general even for valuation domains
(Remark 2.5). The second main result (Theorem 2.6) states a correlation between the Boolean property and
stability, i.e., “a v-domain has Boolean t-class semigroup and is strongly t-discrete if and only if it is strongly
t-stable.” The third main result (Theorem 2.11) examines the class of strongly t-discrete domains; namely,
“assume R is a v-domain. Then R is a strongly t-discrete Boole t-regular domain if and only if R is a strongly
t-discrete GCD domain of finite t-character if and only if R is a strongly t-stable domain.” Then Corollary 2.12
recovers and improves [27,28, Theorem 3.2] which provides a Boolean analogue for Olberding’s result [35,
Theorem 4.6] on Prüfer domains. The corollary also may be viewed as an analogue for Bazzoni’s result [9,
Theorem 4.5] in the context of strongly discrete domains. We close with a simple method to build a new family
of integral domains with Boolean t-class semigroup stemming from the class of GCD domains.

2 Main results

Let R be a domain with quotient field K and I a nonzero fractional ideal of R. Let

I −1 := (R : I ) = {x ∈ K | x I ⊆ R}.
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The v- and t-operations of I are defined, respectively, by

Iv := (I −1)−1 and It :=
⋃

Jv

where J ranges over the set of finitely generated subideals of I . The ideal I is called a v-ideal if Iv = I and a
t-ideal if It = I . Under the ideal t-multiplication (I, J ) �→ (I J )t , the set Ft (R) of fractional t-ideals of R is a
semigroup with unit R. The set I nvt (R) of t-invertible fractional t-ideals of R is a group with unit R (cf. [20]).
Let F(R), I nv(R), and P(R) denote the sets of nonzero, invertible, and nonzero principal fractional ideals of
R, respectively. Under this notation, the Picard group [5,7,21], class group [13,14], t-class semigroup [29],
and class semigroup [11,27,28,40] of R are defined as follows:

Pic(R) := I nv(R)

P(R)
; Cl(R) := I nvt (R)

P(R)
; St(R) := Ft(R)

P(R)
; S(R) := F(R)

P(R)
.

Definition 2.1 ([9,10,27,29]) Let R be a domain.

(1) R is Clifford (resp., Boole) regular if S(R) is a Clifford (resp., Boolean) semigroup.
(2) R is Clifford (resp., Boole) t-regular if St (R) is a Clifford (resp., Boolean) semigroup.

A first correlation between regularity and stability conditions can be sought through Lipman stability.
Indeed, R is called an L-stable domain if

⋃

n≥1(I n : I n) = (I : I ) for every nonzero ideal I of R [4]. Lipman
introduced the notion of stability in the specific setting of one-dimensional commutative semi-local Noethe-
rian rings in order to give a characterization of Arf rings; in this context, L-stability coincides with Boole
regularity [34]. A domain R is stable (resp., strongly stable) if each nonzero ideal of R is invertible (resp.,
principal) in its endomorphism ring [4,27]. Sally and Vasconcelos [39] used stability to settle Bass’ conjecture
on one-dimensional Noetherian rings with finite integral closure. Recent developments on this concept, due
to Olberding [35–37], prepared the ground to address the correlation between stability and the theory of class
semigroups. By analogy, we define t-stability as a natural condition that best suits t-regularity:

Definition 2.2 ([31]) Let R be a domain.

(1) R is t-stable if each t-ideal of R is invertible in its endomorphism ring.
(2) R is strongly t-stable if each t-ideal of R is principal in its endomorphism ring.

The main purpose of this work is to correlate Boole t-regularity with the GCD property or strong t-stability
in the class of v-domains, extending known results on Bézout domains and stability. The first main result
of this paper (Theorem 2.3) establishes a correlation between Boole t-regularity and GCD-domains of finite
t-character. Recall that a domain R is of finite t-character if each proper t-ideal of R is contained in only
finitely many t-maximal ideals of R.

Theorem 2.3 Let R be a v-domain. If R is Boole t-regular, then R is a GCD domain of finite t-character.

Proof Let I be a finitely generated ideal of R. Since R is a v-domain, then (It : It ) = R. Since R is Boole t-reg-
ular, there exists 0 �= c ∈ qf(R) such that (I 2)t = cIt . Hence (It : (I 2)t ) = (It : cIt ) = c−1(It : It ) = c−1 R.
On the other hand, (It : (I 2)t ) = (It : (It )

2) = ((It : It ) : It ) = (R : It ) = I −1. Hence I −1 = c−1 R.
Therefore, Iv = cR, and hence R is a GCD domain. Now, R is a PVMD and Clifford t-regular, so R has finite
t-character by [29, Theorem 3.2]. �	

Next, as an application of Theorem 2.3, we provide a Boolean analogue for Bazzoni’s result [9, Theorem
4.5] on Clifford regularity. Here we mean the necessity part of this result, since the sufficiency part [8, Theorem
2.14] does not hold in general for Boole regularity, as shown below.

Corollary 2.4 Let R be an integrally closed domain. If R is Boole regular, then R is a Bézout domain of finite
character.

Proof Recall first that an integrally closed Boole regular domain is Bézout [27, Proposition 2.3]. Now, in a
Bézout domain, the t-operation coincides with the trivial operation. So Theorem 2.3 leads to the conclusion.

�	

123



92 Arab J Math (2012) 1:89–95

Remark 2.5 The converses of Corollary 2.4 and, a fortiori, Theorem 2.3 are not true in general even in the
context of valuation domains. To see this, recall that any rank-one non-discrete valuation domain V with value
group �(V ) � R has necessarily a non-trivial constituent group. So St (V ) is Clifford but not Boolean [11,
Example 3, p. 142].

A domain R is strongly t-discrete if it has no t-idempotent t-prime ideals, i.e., for every t-prime ideal P
of R, (P2)t � P [17,29]. One can easily check that a t-stable domain is t-strongly discrete; and a strongly
t-stable domain is Boole t-regular. The second main result of this paper (Theorem 2.6) shows that the t-strongly
discrete property measures how far a Boole t-regular domain is from being strongly t-stable.

Theorem 2.6 Let R be a v-domain. Then R is Boole t-regular and strongly t-discrete if and only if R is
strongly t-stable.

The proof of this theorem requires the following preparatory lemmas. Throughout, v1 and t1 will denote
the v- and t-operations with respect to an overring T of R. Also recall that T is called a t-linked overring of
R if I −1 = R ⇒ I T invertible in T , for each finitely generated ideal I of R [6,33].

Lemma 2.7 Let R be a GCD domain and T a fractional overring of R which is t-linked over R. Then T is a
GCD domain.

Proof Since R is a PVMD, by [33, Proposition 2.10], T is t-flat over R, i.e., RM = TN for each t-maximal
ideal N of T and M = N ∩ R. Moreover, since T is t-linked over R, then Mt � R [15, Proposition 2.1].
Hence M is a t-prime ideal of R [32, Corollary 2.47]. Let I be a finitely generated ideal of T . Then there exists
a finitely generated ideal J of R such that J T = I . Since R is a GCD domain, then Jt = Jv = cR, for some
c ∈ qf(R) = qf(T ). Let N ∈ Maxt (T ) and M = N ∩ R. By [29, Lemma 3.3], I TN = J RM = Jt RM =
cRM = cTN . We have Iv1 = It1 = ⋂

N∈Maxt (T ) I TN = cT (which forces c to lie in T ). Therefore, T is a GCD
domain. �	
Lemma 2.8 Let R be a domain and let P ⊆ Q be two t-prime ideals of R such that RQ is a valuation domain.
Then P RQ = P RP .

Proof We used this fact within the proof of [30, Lemma 2.3]. We reproduce here its proof for the sake of
completeness. Clearly, P RQ ⊆ P RP . Assume P RQ � P RP and x ∈ P RP\P RQ . Then P RQ ⊂ x RQ since
RQ is a valuation domain. Hence, by [26, Theorem 3.8 and Corollary 3.6], x−1 ∈ (RQ : P RQ) = (P RQ :
P RQ) = (RQ)P RQ = RP , the desired contradiction. �	
Lemma 2.9 A domain R is a strongly t-discrete PVMD if and only if RP is a strongly discrete valuation
domain for every t-prime ideal P of R.

Proof Sufficiency is straightforward. Necessity. Let P be a t-prime ideal of R. Assume there exists a t-prime
ideal Q ⊆ P such that Q2 RP = Q RP . Let M be an arbitrary t-maximal ideal of R containing Q. By
Lemma 2.8, we have Q RM = Q RQ = Q RP = Q2 RP = Q2 RQ = Q2 RM . By [32, Theorem 2.19] or
[1, Theorem 6], (Q2)t = Q, absurd. So RP is a strongly discrete valuation domain. �	
Lemma 2.10 ([30, Lemma 2.8]). Let R be a PVMD and let I be a t-ideal of R. Then:

(1) I is a t-ideal of (I : I ).
(2) If R is Clifford t-regular, then so is (I : I ).

Proof of Theorem 2.6 We need only prove the “only if” assertion. Suppose R is a Boole t-regular and strongly
t-discrete domain and let I be a t-ideal of R. By Theorem 2.3, R is a GCD domain (and hence a PVMD).
Moreover, T := (I : I ) is a fractional t-linked overring of R (cf. [30, p. 1445]). Hence T is a GCD domain by
Lemma 2.7. By Lemma 2.10, I is a t-ideal of T . Suppose by way of contradiction that J := (I (T : I ))t1 � T .

Claim 1 J is a fractional t-ideal of R.

Indeed, clearly J is a fractional ideal of R. Let x ∈ Jt . Then there exists a finitely generated ideal B of
R such that B ⊆ J and x(R : B) ⊆ R. Similar arguments as above yield x ∈ ⋂

N∈Maxt (T ) J TN = Jt1 = J .
Therefore, J = Jt .

123



Arab J Math (2012) 1:89–95 93

Claim 2 (J 2)t1 = cJ for some 0 �= c ∈ qf(R).

Indeed, there exists 0 �= c ∈ qf(R) such that (J 2)t = cJ since R is Boole t-regular. Then (J 2)t1 ⊆
(cJ )t1 = cJ . Conversely, let x ∈ cJ = (J 2)t . Then there exists a finitely generated ideal A of R such
that A ⊆ J 2 and x(R : A) ⊆ R. Similarly as above we get x ∈ ⋂

N∈Maxt (T ) J 2TN = (J 2)t1 . Therefore,
(J 2)t1 = cJ .

Claim 3 J is a t-idempotent t-ideal of T .

Indeed, since J is a trace t-ideal of T and R is a Clifford t-regular domain, we obtain (J : J ) = (T :
J ) = (T : (I (T : I ))t1) = (T : I (T : I )) = ((I : I ) : I (T : I )) = (I : I 2(I : I 2)) = (I :
(I 2(I : I 2)t ) = (I : I ) = T . So (J : (J 2)t1) = (J : J 2) = ((J : J ) : J ) = (T : J ) = T . Also
(J : (J 2)t1) = (J : cJ ) = c−1(J : J ) = c−1T . Therefore, T = c−1T and thus c is a unit of T . Hence
(J 2)t1 = J , as claimed.

Now J is a proper t-ideal of T , then J is contained in a t-maximal ideal N of T . Then M = N ∩ R is a
t-prime ideal of R with TN = RM . By Lemma 2.9, RM = TN is a strongly discrete valuation domain. However,
Claim 3 combined with [29, Lemma 3.3] yields J 2TN = (J 2)t1 TN = J TN . So J TN is an idempotent prime
ideal of TN (since a valuation domain), the desired contradiction.

Consequently, J = T , i.e., I is a t-invertible t-ideal of T . So there exists a finitely generated ideal A of T
such that I = Av1 . Then there exists a ∈ A such that Av1 = aT since T is a GCD domain. Hence I = aT
and therefore I is strongly t-stable, completing the proof of the theorem. �	

The next result shows that all the three notions, involved in Theorems 2.3 and 2.6, collapse in the context
of strongly t-discrete domains.

Theorem 2.11 Let R be a v-domain. The following assertions are equivalent:

(1) R is a strongly t-discrete Boole t-regular domain;
(2) R is a strongly t-discrete GCD domain of finite t-character;
(3) R is a strongly t-stable domain.

Proof In view of Theorems 2.3 and 2.6, we need only prove the implication (2) ⇒ (3). Let I be a t-ideal of
R. Then I is a t-ideal of T by Lemma 2.10. Set T := (I : I ) and J := I (T : I ).

Claim 4 T is strongly t-discrete.

Indeed, let Q be a t-prime ideal of T . Then P = Q ∩ R is a t-prime ideal of R with RP = TQ (see the
proof of Lemma 2.7). Assume by way of contradiction that (Q2)t = Q. Then P2 RP = Q2TQ = (Q2)t TQ =
QTQ = P RP by [29, Lemma 3.3]. Absurd since RP is strongly discrete by Lemma 2.9.

Claim 5 Jt1 = T .

Indeed, since R is a GCD of finite t-character, R is Clifford t-regular by [29, Theorem 3.2]. So, I = (I J )t .
Since J is a trace ideal of T , then T ⊆ (T : J ) = (J : J ) ⊆ (I J : I J ) ⊆ ((I J )t : (I J )t ) = (I : I ) = T ,
hence (T : J ) = T . Assume Jt1 � T . Then J ⊆ N for some t-maximal ideal N of T . Hence T ⊆ (T :
N ) ⊆ (T : J ) = T and so (T : N ) = (N : N ) = T . Then (N 2(N : N 2))t1 = (N 2)t1 . By Lemma 2.10,
T is Clifford t-regular. Therefore, N = (N 2(N : N 2))t1 = (N 2)t1 , absurd since T is strongly t-discrete by
Claim 4. Consequently, Jt1 = T , proving the claim

Now I is a t-invertible t-ideal of T by Claim 5. So I = At1 = Av1 for some finitely generated ideal A of
T . Since T is a GCD domain (Lemma 2.7), then I = Av1 = cT for some c ∈ T , as desired. �	

Next, as an application of the above theorem, we recover and improve [27,28, Theorem 3.2] which provides
a Boolean analogue for Olberding’s result [35, Theorem 4.6] on Prüfer domains. The corollary also may be
viewed as an analogue for Bazzoni’s result [9, Theorem 4.5] in the context of strongly discrete domains.

Corollary 2.12 Let R be an integrally closed domain. The following assertions are equivalent:

(1) R is a strongly discrete Boole regular domain;
(2) R is a strongly discrete Bézout domain of finite character;
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(3) R is a strongly stable domain.

We close this paper with a simple method to build a new family of Boole t-regular domains originating
from the class of GCD domains via Theorem 2.11.

Example 2.13 Let V be a strongly discrete valuation domain with dimension ≥2, n an integer ≥2, and
X1, . . . , Xn−1 indeterminates over V . Then R := V [X1, . . . , Xn−1] is an n-dimensional Boole t-regular
domain.

To prove this, we first establish the following lemma, which is a re-phrasing of Statement (3) in [30, Lemma
3.1] and where we substitute the assumption “integrally closed domain” to “valuation domain”.

Lemma 2.14 Let R be an integrally closed domain and X an indeterminate over R. Then R is strongly
t-discrete if and only if R[X ] is strongly t-discrete.

Proof Necessity. Assume R is strongly t-discrete and P is a t-idempotent t-prime ideal of R[X ] with p :=
P ∩ R. If p = (0) and S := R\{0}, then by [29, Lemma 2.6] S−1 P is an idempotent (nonzero) ideal of
S−1 R = qf(R)[X ], absurd. If p �= (0), then P = p[X ] with p a t-ideal of R (cf. [38]). Hence p[X ] =
((p[X ])2)t = (p2[X ])t = (p2)t [X ], whence p = (p2)t , absurd as desired. Sufficiency is straightforward. �	
Proof of Example 2.13 Clearly, R is an n-dimensional GCD domain (which is not Bézout). Moreover, R has
finite t-character by [29, Proposition 4.2]. Finally, the strongly t-discrete condition is ensured by Lemma 2.14.

�	
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