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Abstract This paper aims to show that the “going-down ring” and the “divided ring” properties ascend along
flat morphisms whose co-diagonal morphisms are flat, the so-called absolutely flat morphisms introduced by
Olivier. But unibranchedness hypotheses are necessary as any henselization morphism shows. As a by-product,
we get that the “unibranched divided ring” property is preserved by the formation of factor domains and by
localization with respect to prime ideals. Moreover, we exhibit some ascent results for the “going-down ring”
and “divided ring” properties along integral extensions.

Mathematics Subject Classification 13B24 · 13G05 · 13C15 · 14A05 · 13B40 · 13A15

1 Introduction and notation

All rings considered below are commutative with 1. In this paper, a ring is local if it has a unique maximal
ideal and is irreducible if it has a unique minimal prime ideal. A ring is called primary provided that its
zero-divisors are nilpotent and is called a weak Baer ring if the annihilator of each of its elements is generated
by an idempotent.

We are primarily interested in the ascent of the “divided ring” and “going-down ring” properties by
absolutely flat ring morphisms. We first give some background and definitions that are needed in the paper.
Olivier introduced absolutely flat ring morphisms that are flat ring morphisms R → S such that S

⊗
R S → S

is flat (see [26,27]). Examples are (strict) henselizations and étale morphisms
Dobbs introduced and explored in numerous papers going-down rings and divided integral domains. An

integral domain D is called a (universally) going-down domain if each of its overrings C defines a (universally)
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going-down morphism of rings D → C [7,8,12]. Then an arbitrary ring is called (universally) going-down
if each of its factor domains is (universally) going-down. Following Badawi, a prime ideal P of a ring R is
called a divided prime ideal if P is comparable under inclusion to each (principal) ideal of R [1]. Then a ring
R is called divided if each of its prime ideals is divided. A divided ring is local and irreducible. Hence the
reduced ring Rred of a divided ring R is an integral domain. This last property is crucial in the sequel because
we will consider (geometrically) unibranched rings whose definitions follow.

A local ring R with integral closure R′ is unibranched if Rred is an integral domain and R′ is a local
ring. Clearly, a unibranched local ring is irreducible. Moreover, a unibranched local ring R is geometrically
unibranched if the residual extension at the maximal ideals of R and R′ is purely inseparable (see [36, Chapter
IX]). Then a local ring R is unibranched (geometrically unibranched), amounts to saying that its henselization
Rh (strict henselization Rsh) is irreducible [36, Definitions 1 & 2, p. 100].

We present now our main results. Our motivation comes from some papers by Cinquegrani [4–6]. She
mainly considers ascent by henselization of the “divided domain” property and, as a corollary, by integral
extensions. A recent paper by Badawi and Dobbs gives criteria that characterize a going-down ring R in terms
of some divided extension S of R, within the universe of either primary rings or reduced rings [2]. Moreover,
we established that the “universally going-down ring” property is ascended by étale morphisms within the
context of weak Baer rings [35]. Primary rings and weak Baer rings share a common property; they have
a zero-dimensional total quotient ring and their classes contain integral domains. Thus our first task is the
generalization of Cinquegrani’s results to absolutely flat morphisms within the above contexts. Our second
aim consists in giving ascent results for the “going-down ring” property by using the results of Badawi and
Dobbs. As a by-product, we get new results about the ascent of the “going-down ring” property by integral
extensions. But all our results are established under either a unibranchedness hypothesis or at least, an irre-
ducibility condition. That the consideration of unibranchedness is necessary is clear, because for instance, if
Rh is divided, then R is unibranched and R → Rh is absolutely flat.

In Sect. 1, we develop some material about absolutely flat morphisms. Ascent of the primary property by
absolutely flat morphisms is considered.

Section 2 begins with a crucial result that is used in the rest of the paper. If R → S is an injective ring
morphism, Spec(S) → Spec(R) is a homeomorphism and S is (locally) primary, then S is (locally) divided if
R is. It follows that an absolutely flat ring morphism, whose spectral map is a homeomorphism, ascends the
“weak Baer locally divided ring” property.

We establish that the “divided unibranched ring” property is sufficiently strong to be preserved by the
formation of factor domains and localization with respect to prime ideals. These two results are essential
to proving ascent of the “divided ring” property. Our first ascent result is as follows: If R → S is a local
absolutely flat ring morphism and S is unibranched, then R is a primary divided ring if and only if S is a
primary divided ring. In this case, Spec(S) → Spec(R) is a homeomorphism. This result applies to (strict)
henselizations and is globalized. Moreover, in the above result, we can replace the unibranched hypothesis on
S by R is geometrically unibranched. As a matter of fact, this property is preserved by absolute flatness. An
immediate consequence is that the “locally divided ring” property ascends along absolutely flat morphisms
whose domains are normal.

These results combine to yield that if R is a divided unibranched primary ring, then so is its integral closure.
Since a weak Baer ring is locally primary, there naturally exists a version for weak Baer rings. We call a ring
morphism a min morphism if minimal prime ideals of the target contract to minimal prime ideals. Then one
of our main results is the following. Let R be a divided unibranched ring and R → S a min integral extension
where S is unibranched. If S is either primary or Nil(S) is divided, then S is a divided ring.

Then Sect. 2 ends with some transfer results for properties like the PVD property and the “i-domain”
property.

Section 3 is devoted to the ascent of the “(universally) going-down ring” property along absolutely flat
morphisms. We prove two versions in the “weak Baer ring” context. Let R be a universally going-down weak
Baer ring and an absolutely flat ring morphism f : R → S. Then S is a universally going-down weak Baer
ring. McAdam proved a result (see [23]) that gives in our context an ascent criterion: if R → S is an absolutely
flat ring morphism between weak Baer rings and R is a going-down ring, then S is a going-down ring if
and only if S is treed. We deduce from this criterion the next result. Let R → S be an absolutely flat ring
morphism between weak Baer rings. If R is going-down and S is locally unibranched (for instance, if R is
locally geometrically unibranched), then S is going-down.

Next we look at the primary context and get a stronger result than Badawi and Dobbs obtained because
we add a unibranchedness hypothesis [2, Theorem 3.3]. Let R be a local primary ring, such that Nil(R) is a
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divided prime ideal. Then R is a unibranched going-down ring if and only if its integral closure R′ is a divided
ring. We deduce from this last theorem the following ascent result: Let R be a local unibranched going-down
primary ring, such that Nil(R) is a divided prime ideal. If R → S is a local absolutely flat ring morphism,
such that S is unibranched, then S is a going-down primary ring, such that Nil(S) is a divided prime ideal.

We now describe notational conventions. For a ring R, we denote, respectively, by Z(R), Tot(R), Rred,
R′, Nil(R), Min(R) and Spec(R) the set of all its zero-divisors, its total quotient ring, its reduced ring, its
integral closure in Tot(R), its nilradical, its set of all minimal prime ideals and its set of all prime ideals
endowed with the Zariski topology. The residue field RP/P RP � Tot(R/P) of R at P ∈ Spec(R) is denoted
by k(P). Let f : R → S be a ring morphism with spectral map af : Spec(S) → Spec(R), then k(P)

⊗
R S

is the fiber ring at P of f and its spectrum is homeomorphic to af −1({P}).
We now introduce some useful material.
To begin with, the reader is referred to [26,27] which state the following results that are used in this paper.

Absolute flatness is universal (preserved in any base change), stable under composition and preserved by direct
limits. Moreover, f : R → S is absolutely flat if and only if RP → SQ is absolutely flat for each Q ∈ Spec(S)

and P := f −1(Q).
If R is a local ring, a local-étale R-algebra is a local ring morphism R → SP where R → S is étale and

P a prime ideal of S. A direct limit of local-étale R-algebras with local transition morphisms is called a local
ind-étale algebra. For instance, Rh and Rsh are local ind-étales over R (see [36, Chapter VIII]).

(Local) ind-étale morphisms, flat epimorphisms are absolutely flat. Absolutely flat morphisms and ind-
étale morphisms are closely related as the next lemma shows. Some results already known are recalled for the
reader’s convenience.

Lemma 1.1 Let R → S be an absolutely flat ring morphism.

(1) If R is reduced (respectively, absolutely flat), so is S.
(2) R → S is universally incomparable and Nil(S) = Nil(R)S so that Sred = S

⊗
R Rred. It follows that

S is zero-dimensional if R is.
(3) If R and S are local with respective maximal ideals M and N and M S �= S, then N = M S and R → S

is local.
(4) The residual extensions of R → S are algebraic and separable.
(5) If R → S is local and S is henselian, then R → S is local ind-étale. Moreover, there is a factorization

R → Rh → S where Rh → S is faithfully flat and local.
(6) If R → S is local, there is a factorization R → S → Rsh where S → Rsh is faithfully flat and local.
(7) If R → S is local, then R is geometrically unibranched if and only if S is geometrically unibranched.

Proof (1) is [27, Corollary 2, p. 51]. (2) Let Q ⊆ Q′ be two prime ideals of S both lying over P in R.
The fiber k(P)

⊗
R S is absolutely flat because so is k(P) and moreover, k(P) → k(P)

⊗
R S is absolutely

flat. Therefore, each prime ideal of the fiber is maximal. As af −1(P) is homeomorphic to Spec(k(P)
⊗

R S),
we get Q = Q′. Then Nil(S) = Nil(R)S is a consequence of (1) applied to the absolutely flat morphism
R/Nil(R) → S/Nil(R)S. To complete the proof, first observe that a ring A is zero-dimensional if and only if
Ared is absolutely flat and then use (1).

We prove (3). Observe that R/M → S/M S is absolutely flat. An appeal to (1) shows that S/M S is
absolutely flat. As this ring is local, it is a field and M S is a maximal ideal.

Statement (4) is a consequence of [26, Proposition 3.1 (iii)] because each residual extension of R → S
identifies with a residual extension of k(P) → k(P)

⊗
R S for some P ∈ Spec(R).

(5) Assume that R → S is local where S is henselian and R and S have respective maximal ideals M and
N . There is a factorization R → Rh → S into local morphisms. In view of (3), S/M S is a field and N = M S.
Thus R/M → S/M S is a separable algebraic extension of fields by (4). Therefore, Rh/M Rh → S/M S is
separable algebraic. Write the field S/M S as a direct limit of finite separable field extensions ki of Rh/M Rh . In
view of [36, Corollaire, p. 84], we get a direct system of local-étale finite Rh algebras Ti such that Ti/MTi = ki .
Let T be the direct limit of the algebras Ti . Then Rh → T is faithfully flat and local and T/MT � S/M S. It
follows from [36, Proposition 1, p. 81] that T � S. Thus R → S is local ind-étale.

Now (6) is [27, Corollary, p. 58] and (7) is [26, Corollaire 2.8]. �	
Badawi and Dobbs observed that divided rings R verifying the condition Z(R) = Nil(R) have the same

behavior as divided domains [2]. This condition is clearly equivalent to (0) is a primary ideal of R. For this
reason, rings verifying this condition are called primary by Bowman, O’Carroll and Qureshi in [3,24] where
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it is proved that the tensor product of finitely many fields over a common subfield is locally primary. The
reader is warned that this terminology we adopt is different from the usual. A primary ring R is irreduc-
ible and if Min(R) = {m}, then Tot(R) = Rm, a zero-dimensional ring. Moreover, there is a factorization
R → RP → Tot(R) into injective morphisms for each P ∈ Spec(R). An overring of a primary ring is primary
[2, Lemma 2.6]. Clearly, injective ring morphisms descend the primary property.

Then a primary ring R is divided if and only if P RP = P for each P ∈ Spec(R). This statement makes
sense since we can consider that RP ⊆ Tot(R). Besides, P is divided if and only if R is the pullback P(P)
defined by RP → k(P) and R/P → k(P) [2, Proposition 2.5 (c)].

In this paper, we consider another class of rings whose total quotient rings are zero-dimensional. A ring is
called a weak Baer ring if the annihilator of each of its elements is generated by an idempotent. Then R is a
weak Baer ring amounts to saying that its total quotient ring is absolutely flat and its local rings are integral
domains (see for instance, [35, Definition 1.4 ff ]). An overring S of a weak Baer ring R is a weak Baer ring.
To see this, let x = a/s and y = b/t be elements of S where s and t are regular elements of R and such
that xy = 0. If e is the idempotent of R such that 0 :R a = Re, then b = be so that y ∈ Se. It follows that
0 :S x = Se.

Let R be a ring such that Tot(R) is absolutely flat and let R → S be an absolutely flat morphism. Then
Tot(S) is absolutely flat and identifies to Tot(R)

⊗
R S [33, Lemme 2.5]. This result can be generalized

to rings whose total quotient rings are zero-dimensional and thus applies to primary rings and weak Baer
rings.

Proposition 1.2 Let R → S be an absolutely flat ring morphism, where Tot(R) is zero-dimensional
(respectively, absolutely flat). Then Tot(S) is zero-dimensional (respectively, absolutely flat), Tot(S) =
S

⊗
R Tot(R), S

⊗
R B is an overring of S for each overring B of R and the integral closures of R and

S are related by S′ = S
⊗

R R′. In particular, we have Tot(RP) = (Tot(R))P and (R′)P = (RP)′ for each
P ∈ Spec(R).

Proof In view of Lemma 1.1(2), S
⊗

R Tot(R) is zero-dimensional. As R → S is flat, there is a ring mor-
phism Tot(R) → Tot(S) inducing R → S. Since S

⊗
R Tot(R) is a pushout, there is a factorization S →

S
⊗

R Tot(R) → Tot(S). Observe that S
⊗

R Tot(R) → Tot(S) is an epimorphism because so is S →
Tot(S). As the reduced ring of S

⊗
R Tot(R) is absolutely flat, S

⊗
R Tot(R) → Tot(S) is surjective [25,

Proposition 2]. Moreover, this map is injective because the flat epimorphism S → S
⊗

R Tot(R) is essential
[22, Proposition 2.1, p.111] and the composite S → S

⊗
R Tot(R) → Tot(S) is injective. Hence, we get that

Tot(S) = S
⊗

R Tot(R). The statement about overrings is clear because R → S is flat while the statement
about integral closure is a consequence of [27, Theorem 5.1], because Tot(S) = Tot(R)

⊗
R S. To complete

the proof, observe that R → RP is absolutely flat. �	
We first look at the ascent of the “primary ring” property by absolutely flat morphisms. Recall that an

attached prime ideal P of an R-module M is a prime ideal P of R such that for each finitely generated ideal
I ⊆ P there is some x ∈ M such that I ⊆ 0 :R x ⊆ P . We denote by Att(R) the set of all attached prime
ideals of the R-module R. Then we have Z(R) = ∪ [P | P ∈ Att(R)] while Nil(R) = ∩ [P | P ∈ Att(R)].
For these definitions and further results, see [14,20,32]. Hence, a ring R is primary if and only if Att(R)
has only one element m. In this case, m is the unique minimal prime ideal of R. If Q ∈ Spec(R), then
Att(RQ) = {P RQ | P ⊆ Q and P ∈ Att(R)} [14, p.407]. It follows that the “primary ring” property localizes
(see also [2, Lemma 2.6]).

Proposition 1.3 Let f : R → S be an absolutely flat ring morphism where R is primary with Min(R) = {m}
and S is irreducible with Min(S) = {n}.
(1) Tot(S) = Sm = Sn, Z(S) = Nil(S) = n and n = mS. Hence, S is primary and Tot(S) = Tot(R)

⊗
R S.

(2) If A is an overring of R, then A
⊗

R S is an overring of S. Moreover, if R′ is the integral closure of R,
then R′ ⊗

R S is the integral closure of S.
(3) If m is divided, so is n.

Proof Since Tot(R) is zero-dimensional, we can use Proposition 1.2 from which it follows that Tot(S) = Sm.
Now an element Q of Att(S) verifies f −1(Q) ⊆ m since it can be lifted up to Tot(S). We thus get

f −1(Q) = m. But n is contained in Q and f −1(n) = m by flatness of f . We deduce from Lemma 1.1(2) that
Q = n. It follows then that Z(S) = n = Nil(S) and Sm = Sn. Since Nil(S) = Nil(R)S by Lemma 1.1(2), we
get that n = mS.

123



Arab J Math (2012) 1:113–126 117

Then (2) is a consequence of Proposition 1.2.
Assume that m is divided. We can write nSn = nSm = mRmS = mS = n. �	

Remark 1.4 As in Proposition 1.3, we will have to consider absolutely flat morphisms f : R → S where
S is irreducible. It would have been pleasant to have a transfer result for irreducibility, at least when R is
unibranched and f is local. But this is definitely wrong. It is enough to consider a unibranched ring R which
is not geometrically unibranched because R → Rsh is absolutely flat and Rsh is not irreducible. Part (7) of
these remarks provides a stronger argument. Here are some positive/negative results.

(1) When R is unibranched, Rh is irreducible. Moreover, Lemma 1.1(7) shows that S is irreducible when R
is geometrically unibranched. Assume that f : R → S is a flat epimorphism and that R is irreducible
with minimal prime ideal m. As f satisfies going-down, each minimal prime of S contracts to m. Since
Spec(S) → Spec(R) is injective by [22, Proposition 1.9, p. 109], S is irreducible.

(2) Suppose that R is irreducible and R → S is absolutely flat, then Nil(S) = mS where m is the minimal
prime ideal of R. Then S is irreducible if and only if mS is a prime ideal. As R → S is going-down, the
preceding condition amounts to the irreducibility of Sm. To see this, use Nil(S) = mS and the fact that
f −1(n) = m for n ∈ Min(S).

(3) Now consider an absolutely flat ring morphism R → S where R is an integral domain and S is irreducible;
then S is an integral domain because S is reduced.

(4) Let R be a normal ring that is, each localization at a prime ideal is an integrally closed domain. If R → S
is absolutely flat, then S is normal whence locally irreducible (apply [27, Corollary, p. 57] to each local
morphism RP → SQ).

(5) Let f : R → S be an absolutely flat morphism such that R is a weak Baer ring and S is locally irreducible;
then S is a weak Baer ring. It is enough to remark that Tot(S) is absolutely flat and that SQ is an integral
domain for each Q ∈ Spec(S). This last fact follows from the absolute flatness of RP → SQ where
P := f −1(Q) and (3).

(6) Let R be a local ring. Then R is (geometrically) unibranched if and only if the integral domain Rred is
(geometrically ) unibranched. Denote by S either Rh or Rsh and consider the absolutely flat morphism
R → S. We can read in Lemma 1.1(2) that Sred = S

⊗
R Rred. The result follows because Sred is either

(Rred)
h or (Rred)

sh [17, Section 18].
(7) It does not hold in general that irreducibility ascends along absolutely flat morphisms. Assume the con-

trary and consider an absolutely flat integral extension R ⊂ S where R is an integral domain (for instance,
an étale covering of R). In view of (3), S is an integral domain. Because S → S

⊗
R S is an absolutely

flat integral extension, S
⊗

R S is also an integral domain. Since this integral extension is essential by
[35, Proposition 1.1] and S → S

⊗
R S → S is injective, we find that S

⊗
R S → S is bijective. This last

property is a characterization of an epimorphism [22, Lemme 1.0, p. 108]. It follows then that R → S is
a faithfully flat epimorphism whence an isomorphism [22, Lemme 1.2, p. 109], a contradiction.

Remark 1.5 Recall that a ring morphism R → S is called submersive if Spec(S) → Spec(R) is a surjective
map and the Zariski topology on Spec(R) is the quotient topology. It is easy to show that if R → S is submer-
sive with an injective spectral map, then Spec(S) → Spec(R) is actually a homeomorphism. This will be used
in next sections for either injective integral morphisms or going-down morphisms whose spectral maps are
surjective (for instance, faithfully flat morphisms). Indeed, such morphisms are submersive (see for instance
[31]).

The following remark will also be useful. Let f : R → S be a ring morphism. If af : Spec(S) → Spec(R)

is a homeomorphism, then Q = √
P S for each Q ∈ Spec(S) and P := f −1(Q). Indeed, the relations

af −1(V(P)) = V(P S) and af (V(Q)) = V(P) hold because af is a continuous closed map (see [18, I, Section
1.2]).

2 Ascent of the divided property

Our goal in this section is the extension of some Cinquegrani’s results to rings which may not be integral
domains and absolutely flat morphisms. Moreover, we will exhibit new results. In this paper a ring morphism
R → S is called an i-morphism (respectively, unibranched, h-morphism) if the map Spec(S) → Spec(R)
is injective (respectively, bijective, a homeomorphism). Recall that an h-morphism R → S induces an order
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isomorphism Spec(S) → Spec(R). Also, an overring B of a ring A is called a unibranched overring if A → B
is unibranched (this does not mean that the overring is a unibranched ring!)

We give here a useful result which is outside of the absolutely flat context.

Proposition 2.1 Let f : R → S be an injective h-morphism of rings (for instance, if R → S is unibranched
and either has the going-down property or is integral).

(1) SQ = SP for each Q ∈ Spec(S) and P := Q ∩ R so that RP → SQ is injective.
(2) If S is (locally) primary and R is (locally) divided, then S is (locally) divided.
(3) If S is a weak Baer ring and R is locally divided, then S is locally divided.

Proof We prove (1). As Spec(S) → Spec(R) is a homeomorphism, we get that Q = √
P S by Remark 1.5.

Consider the multiplicative subset f (R \ P) and its saturated associated multiplicative subset T . Then S \ T
is the union of all prime ideals q of S such that f −1(q) ⊆ P . But f −1(q) ⊆ P implies that q is contained in
Q because q = √

f −1(q)S in view of Remark 1.5. From Q ⊆ S \ T, we deduce T = S \ Q and SQ = SP .
Assume that R is divided and S is primary. Let Q ∈ Spec(S) lying over P ∈ Spec(R). It follows that

P RP = P because R is primary. Let x ∈ QSQ . From SQ = SP and Q = √
P S, we deduce that there is

some integer n such that xn ∈ P RP S = P S so that x ∈ Q. Therefore, QSQ = Q for each Q implies that S
is divided.

Now the local statement follows easily because RP → SQ is injective.
To get (3), we can reduce to the local case of (2) because SQ is an integral domain for Q ∈ Spec(S). �	

Corollary 2.2 Let f : R → S be an h-morphism. If R is a weak Baer locally divided ring and f is absolutely
flat, then S is a weak Baer locally divided ring.

Proof From Remark 1.4(5), we deduce that S is a weak Baer ring because the homeomorphism Spec(S) →
Spec(R) forces S to be locally irreducible. Then we can use Proposition 2.1(2), because each local morphism
RP → SQ, associated with Q ∈ Spec(S) and P := f −1(Q), is faithfully flat whence injective and SQ is an
integral domain. �	

We next outline a generalization to arbitrary rings of [6, Proposizione 2.1] because it exhibits an interesting
morphism and gives Proposition 2.3 when S = Rh . Actually this result is crucial to proving [5, Proposizione
1.1] in the integral domain case used in Proposition 2.4. Moreover, this result has its own interest.

Proposition 2.3 If R is a divided (geometrically) unibranched ring, then so is each factor domain of R. More-
over, for each P ∈ Spec(R), there is a factorization of the natural map R/P → (R/P)′ → R′/P R′ into
injective integral morphisms.

Proof We mimic with suitable changes [6, Proposizione 2.1], using Badawi’s definition of divided rings. Let R
be a unibranched divided ring. The integral closure R′ of R is a local ring and so is R′/P R′ for P ∈ Spec(R).
Then we can exhibit an injective ring morphism ϕ : (R/P)′ → R′/P R′ by setting ϕ(r̄/s̄) = r̂/s, where r̄/s̄ is
an element of the quotient field k(P) of R/P and r̂/s is the class of r/s in R′/P R′. To build the ring morphism
ϕ, copy the proof of [6, Proposizione 2.1], taking into account that if an element s ∈ R does not belong to P then
P ⊆ Rsn for each integer n. Then ϕ is injective because R → R′ is injective integral from which it follows that
P R′ ∩ R = P since R → R′ has lying-over. Next observe that R/P → (R/P)′ → R′/P R′ � (R/P)

⊗
R R′

is the natural map and is therefore integral and injective. It follows that (R/P)′ → R′/P R′ is integral and
hence (R/P)′ is a local integral domain. Thus R/P is divided and unibranched. Assume that R is geomet-
rically unibranched and denote by M and M ′ the respective maximal ideals of R and R′. Then M ′/P R′ is
above the unique maximal ideal M of (R/P)′ lying over M/P . As R/M → R′/M ′ is purely inseparable, so
is (R/P)/(M/P) → (R/P)′/M, showing that R/P is geometrically unibranched. �	
Proposition 2.4 Let f : R → S be a local absolutely flat ring morphism where R is a divided ring and S is
a henselian irreducible ring. Then R/P is unibranched for each P ∈ Spec(R) and the following statements
hold:

(1) P S is a prime ideal of S for each P ∈ Spec(R).
(2) R → S is an h-morphism whose set-theoretic inverse is given by P �→ P S for P ∈ Spec(R). In

particular, Spec(S) is linearly ordered.
(3) SQ = SP for each Q ∈ Spec(S) and P := f −1(Q).
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Proof There is a factorization R → Rh → S where the second morphism is faithfully flat by Lemma 1.1(5).
It follows that Rh is irreducible and R is therefore unibranched. We can assume that R → S is local ind-étale
by Lemma 1.1(5). Let P ∈ Spec(R), then R/P is unibranched by Proposition 2.3. Let m be the minimal prime
ideal of R. In view of Lemma 1.1(2), mS is the nilradical of S so that mS = n, the minimal prime ideal of S.
Then A := R/m is a divided domain and B := S/mS is local ind-étale over A and an integral domain. As
S is henselian, so is B because n is the nilradical of S [36, Remarque p. 5]. We are now in position to apply
a result of Cinquegrani: S/P S is an integral domain for each P ∈ Spec(R) [5, Proposizione 1.1]. Then (1)
follows easily.

Next suppose that Q, Q′ ∈ Spec(S) both contract to P in R; then by incomparability we get that Q =
P S = Q′. Hence Spec(S) → Spec(R) is injective and surjective, because R → S is faithfully flat. Now
R → S has the going-down property. It follows from Remark 1.5 that Spec(R) → Spec(S) is a homeomor-
phism because R → S is a submersive morphism.

Then (3) is a consequence of (2) and Proposition 2.1. �	
Next Lemma clarifies Lemma 1.3 under the conditions of Proposition 2.4.

Lemma 2.5 There is a bijective map Att(S) → Att(R) under the hypotheses of Proposition 2.4. It follows
that S is primary if R is primary.

Proof The following fact is known: af (Att(B)) = Att(A) for a faithfully flat ring morphism f : A → B [20,
Theorem 2.2]. Now if m is the minimal prime ideal of R, then mS = n, the unique minimal prime ideal of S.
Then observe that R is primary if and only if P = m for each P ∈ Att(R) and use Proposition 2.4. �	

We are now ready for our first transfer result.

Theorem 2.6 Let f : R → S be an absolutely flat local ring morphism where S is unibranched. Then R is a
primary divided ring if and only if S is a primary divided ring. In this case, R → S is an h-morphism.

Proof A faithfully flat ring morphism f : A → B descends the “divided ring” property because f −1(I B) = I
for each ideal I of A. Moreover, absolute flatness is stable under composition. Thus to establish the proof, we
can as well assume that S is an irreducible henselian ring by considering R → S → Sh . The “primary ring”
property is also descended by faithful flatness (actually, by injectivity).

First assume that R is divided and primary. Then S is primary by Lemma 2.5. In order to check that S is
divided, it is enough to show that S is the pullback P(Q) for each Q ∈ Spec(S). Now set P := f −1(Q);
we know that SQ = SP by Proposition 2.4(3) while S/Q = S/P S by Proposition 2.4(2). Then tensor the
pullback P(P) over R by S. As R → S is flat, we get a new pullback defined by the ring morphisms
SP = SQ → k(P)

⊗
R S and S/P S = S/Q → k(P)

⊗
R S. Since R → S is absolutely flat, so is k(P) →

k(P)
⊗

R S. It follows that k(P)
⊗

R S is an absolutely flat ring by [27, Theorem 2.2]. But k(P)
⊗

R S is
the fiber ring at P and is therefore a field because Spec(S) → Spec(R) is injective. There is a factorization
S → k(P)

⊗
R S → k(Q) by definition of a pushout. The composite being an epimorphism of rings so is the

last morphism. As its range is a field, k(P)
⊗

R S → k(Q) is actually bijective [22, Corollaire 1.3 p.109]. We
have thus proved that S is the pullback P(Q) so that Q is divided.

The converse is straightforward because f : R → S is faithfully flat. �	
Remark We may also use Proposition 2.1 to prove the previous theorem once we know that Spec(S) →
Spec(R) is a homeomorphism and S is primary.

Corollary 2.7 Let R → S be an absolutely flat ring morphism. If R is locally primary (for instance, if R is a
weak Baer ring), S is locally unibranched and R is locally divided, then S is locally divided.

Proof Let Q be a prime ideal of S lying over P ∈ Spec(R). Then RP → SQ is absolutely flat and local. �	
Corollary 2.8 Let R be a ring. If R is unibranched (respectively, geometrically unibranched), then Rh (respec-
tively, Rsh) is a primary divided ring if and only if R is a primary divided ring. In this case, R → Rh

(respectively, R → Rsh) is an h-morphism.

Theorem 2.9 Let R → S be a local absolutely flat morphism. Then R is divided, geometrically unibranched
and primary if and only if S is divided, geometrically unibranched and primary. In this case R → S is an
h-morphism.
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Proof First assume that the conditions hold for R and let R → T be a strict henselization of R. There is a
factorization R → S → T where the last morphism is local and faithfully flat by Lemma 1.1(6). Then T
and S are geometrically unibranched by [26, Corollaire 2.8]. Moreover, T is divided and primary thanks to
Theorem 2.6. These two properties are descended by local faithfully flat morphisms. This has been shown at
the beginning of the proof of Theorem 2.6. Hence, the conditions hold for S. Now R → T is unibranched by
Theorem 2.6. As S → T has lying-over, R → S is unibranched.

Conversely, assume that the conditions hold for S; then R is primary and divided by faithful flatness of
R → S. It follows from the proof of a theorem by Paxia [30, Theorem 3, p. 404], that R and S have isomorphic
strict henselizations. Therefore, R is geometrically unibranched (we can also use [26, Corollaire 2.8]). �	

A ring is called normal if each of its localizations at a prime ideal is an integrally closed domain. Such a
ring is evidently locally geometrically unibranched.

Proposition 2.10 Let R → S be an absolutely flat morphism where R is a normal ring. If R is locally divided,
so is S.

Proof We can assume that R → S is local. In this case, R is geometrically unibranched and primary and then
Theorem 2.9 is available. �	

Our previous results enable us to get ascent results for integral morphisms. As a first result, we show that
seminormalization ascends the locally divided property, at least in the case where the base ring R is a weak
Baer ring (see Sect. 1). As the total quotient ring of a weak Baer ring R is absolutely flat, its seminormaliza-
tion Rs is the seminormalization of R in its total quotient ring (see [37]). Let P be a prime ideal of R; then
Proposition 1.2 ensures that Tot(RP) = Tot(R)P so that (RP )s = (Rs)P . Moreover, Rs is a weak Baer ring
because an overring of R.

Proposition 2.11 Let R be a weak Baer ring. If R is locally divided, so is Rs.

Proof It is well-known that Spec(Rs) → Spec(R) is a homeomorphism. Then we can use Proposition 2.1(3)
since Rs is a weak Baer ring. �	

We now consider ascent of the divided property through integral extensions. We need a property of henselian
pullbacks.

Proposition 2.12 Let R be a divided ring and P ∈ Spec(R). The following statements are equivalent:

(1) R is henselian.
(2) RP and R/P are henselian.

Proof We may mimic the proof of Cinquegrani [4, Teorema 2.6]. We can also use the fact that a local ring
is henselian if and only if its reduced ring is henselian [36, Remarque, p. 5]. As R is divided, this ring has
only one minimal prime ideal n and the reduced rings of R, RP , R/P are, respectively, R/n, (R/n)P/n and
(R/n)/(P/n). Moreover, R/n is a divided domain. Therefore, we can assume that R is an integral domain and
then apply the above-quoted result. �	
Lemma 2.13 Let R be a unibranched divided primary ring and let P ∈ Spec(R). Then (RP)h is isomorphic
to (Rh)P . It follows that RP is a divided unibranched primary ring.

Proof The first remark is that Rh is a divided ring and that R → Rh is an h-morphism by Corollary 2.8. In
view of Proposition 2.4, (Rh)P = (Rh)Q where Q is the unique prime ideal of Rh such that P := R ∩ Q.
Therefore, (Rh)P is henselian by Proposition 2.12. To complete the proof, it is enough to use the universal
properties of henselization and localization (details can be seen in the proof of [5, Lemma 2.2]).

In view of Corollary 2.8, Rh is a divided primary ring. Hence, Rh is irreducible and so is (Rh)P for each
P ∈ Spec(R). From the first part of the proof, we infer that (RP)h has a unique minimal prime ideal. It follows
that RP is unibranched. �	
Proposition 2.14 Let R be a unibranched divided ring. Then the rings RP are unibranched and divided for
each P ∈ Spec(R). If in addition Tot(R) is zero-dimensional, then R → R′ is an h-morphism.
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Proof Let P be a prime ideal of R, then Nil(RP) is the unique minimal prime ideal of RP and contracts to the
unique minimal prime ideal m of R. We have therefore Nil(RP) = mP . Now observe that R/m is a divided
unibranched integral domain by Proposition 2.3 if R is divided and unibranched. Then Lemma 2.13 asserts
that T := (R/m)(P/m) is divided and unibranched. But T is isomorphic to RP/mP = (RP )red. Then observe
that for a local ring A, we have that (Ah)red = (Ared)

h so that A is unibranched when Ared is. It follows that
RP is unibranched and evidently, divided.

Assume that Tot(R) is zero-dimensional. Then (R′)P = (RP)′ is a consequence of Proposition 1.2. Because
RP is unibranched, R′

P is a local ring. It follows easily that R → R′ is unibranched whence an h-morphism.
�	

Theorem 2.15 Let R be a unibranched divided primary ring. Then its integral closure R′ is a divided ring
and R → R′ is an h-morphism.

Proof Since R is primary, so is its overring R′. We deduce from Proposition 2.1 that R′ is divided because
R → R′ is an h-morphism by Proposition 2.14. �	
Theorem 2.16 Let R be a locally unibranched and divided weak Baer ring. Then its integral closure R′ is a
locally divided ring.

Proof We know that R′ is a weak Baer ring. Let Q ∈ Spec(R′) and P := Q ∩ R. Since RP is primary,
we get that (RP)′ is a divided ring and that RP → (RP )′ is an h-morphism by Theorem 2.15. As Tot(R) is
zero-dimensional, we have (RP)′ = (R′)P . These facts combine to yield that (R′)P is local and in fact is equal
to R′

Q . Therefore, R′ is locally divided. �	

We studied 1-split rings in [35]. A ring morphism f is called essential if for any ring morphism g such
that g ◦ f exists and is injective, then g is injective. Then a ring R is called 1-split if each integral essential
extension of R is unibranched.

Recall that a ring morphism f : R → S is called a min morphism if af (Min(S)) ⊆ Min(R) [13]. If R → S
is an essential injective morphism where Tot(R) is absolutely flat, then R → S is a min morphism. It is enough
to reconsider the proof of [35, Lemma 1.6].

Lemma 2.17 Let R be a divided henselian ring with minimal prime ideal m.

(1) R/m is a 1-split ring.
(2) Let R → S be a min integral extension where S is irreducible, then R → S is an h-morphism.

Proof Proposition 2.12 states that the divided domain R/m is locally henselian. To conclude for (1), apply
[35, Theorem 4.4].

Now let R → S be a min integral extension such that Min(S) = {n}, the unique minimal prime ideal of
S. Then n contracts to m in R and R/m → S/n is an integral extension between two integral domains. Such
an extension is essential by [35, Proposition 1.1]. Since R/m is 1-split [35, Theorem 4.4], R/m → S/n is
unibranched so that Spec(S) → Spec(R) is a homeomorphism. �	

Next theorem generalizes a result of Cinquegrani [5, Teorema 2.5].

Theorem 2.18 Let R be a divided unibranched ring and R → S a min integral extension where S is uni-
branched. If S is either primary or Nil(S) is divided, then R → S is an h-morphism and S is a divided
ring.

Proof First assume that S is primary so that R is also primary. Consider a min integral extension R → S
where S is unibranched. Set A := Rh and B := A

⊗
R S. The natural map A → B is an integral extension

because R → A is flat. This extension is also a min morphism. Indeed, a minimal prime ideal n of B contracts
to m, the unique minimal prime ideal of R because S → B is flat and R → S is a min morphism. As R → A
has incomparability, n contracts to an element of Min(A). Then observe that B is the henselization of S [17,
Proposition 18.6.8]. It follows that B has a unique minimal prime ideal. Moreover, A is divided by Corol-
lary 2.8. Therefore, R → S is unibranched thanks to Lemma 2.17(2) because injectivity of spectral maps is
descended by surjective spectral maps. To conclude, use Proposition 2.1 since S is primary. Now in the general
case, Rred and Sred are integral domains since R and S are unibranched. Moreover, Nil(R) and Nil(S) are the
unique minimal prime ideals of R and S so that Nil(S) contracts to Nil(R). To conclude, it is enough to use
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the primary case since R/Nil(R) is a divided unibranched integral domain by Proposition 1.3 and S/Nil(S) is
unibranched. �	

Now we intend to establish transfer results for some classes of (locally) divided domains. They concern
(global) pseudo-valuation integral domains. We will get other transfer results which are an introduction for
the next section about going-down rings.

Next results are consequences of two ascent properties. A ring is called semi-hereditary if each of its
finitely generated ideals is projective. Then the “semi-hereditary ring” property is ascended by absolutely flat
morphisms [27, Definition, p. 54 ff ]. It follows that the transfer of the “valuation domain” property holds for
local absolutely flat morphisms [27, Consequence, p. 55; 29, Teorema 1].

Proposition 2.19 Let R → S be an absolutely flat ring morphism between integral domains. If R is a Prüfer
domain, so is S.

Proof For an integral domain R, the following properties are identical: R is semi-hereditary, R is a Prüfer
domain [21, Corollary 3]. To conclude, it is enough to use the ascent of the “semi-hereditary ring” property.

�	
If we consider an absolutely flat morphism R → S such that R is a Prüfer domain and S is connected, then

S is an integral domain because R is an integrally closed domain [27, Corollary, p. 57]. Hence, S is a Prüfer
domain by the previous proposition.

Global pseudo-valuation domains (GPVD) were defined by Dobbs and Fontana [11]. An integral domain
R is called a GPVD if R is a subring of a Prüfer domain T such that R → T is unibranched and there is a
common nonzero radical ideal I of R and T, such that R/I and T/I are zero-dimensional. Hypotheses on I
are equivalent to I is a common ideal of R and T and R/I and T/I are absolutely flat.

Recall that a ring morphism R → S is radiciel if Spec(S) → Spec(R) is injective and its residual exten-
sions are purely inseparable, or equivalently, R → S is universally an i-morphism [18, I, Section 3.7]. Hence,
in view of Lemma 1.1(4), the residual extensions of an absolutely flat radiciel ring morphism are isomorphic.
In the two following results we have not been able to show that the radiciel hypothesis is superfluous, but
we suspect that these results are not valid without a kindred hypothesis. Indeed, since the beginning, spectral
injectivity under various forms is a necessary condition.

Theorem 2.20 Let R → S be an absolutely flat radiciel ring morphism (for instance, a flat epimorphism)
between integral domains. If R is a GPVD, so is S.

Proof Using the above notation for R, we set U := T
⊗

R S. Then U is a Prüfer domain and S → U is
injective by flatness of R → S. We also set J := I S. Then J is nonzero because a flat morphism whose
domain is an integral domain is injective [29, Proposizione 3, p. 109]. If K is the quotient field of T , then
L := U

⊗
T K is the quotient field of U by absolute flatness of T → U (see Proposition 1.2). Then U can be

identified with its image W := T S in L . It follows that J W = I ST = I T S = J . Hence J is a common ideal
of S and U . As R/I → S/I S and T/I → U/I S are absolutely flat, S/J and W/J are absolutely flat rings.

Now let Q1 and Q2 be two prime ideals of U both contracting to the same prime ideal in S. As Spec(T ) →
Spec(R) is injective and Spec(U ) → Spec(T ) is injective, we get Q1 = Q2 and S → U is an i-morphism.
Finally, because spectral surjectivity is universal, we get that Spec(U ) → Spec(S) is bijective. This completes
the proof. �	

We use the following definition of a pseudo-valuation domain (PVD): a local domain (R, M) is a PVD if
there is a (unique) valuation overring V of R whose maximal ideal is M [19, Theorem 2.7]. This implies that
Spec(R) = Spec(V ). Next corollary can be considered as a companion result of [19, Theorem 1.7]: if R is a
PVD and T is an overring such that R → T satisfies incomparability, then T is also a PVD. Indeed, absolutely
flat morphisms have the incomparability property.

Corollary 2.21 Let R → S be an absolutely flat radiciel local ring morphism between integral domains. If
R is a PVD, then S is a PVD.

Proof As observed in [11], a PVD is nothing but a local GPVD. �	
Remark 2.22 It follows easily that the locally pseudo-valuation domain (LPVD) property is transferred by
absolutely flat radiciel morphisms between integral domains since for such a ring morphism R → S, we have
that RP → SQ is absolutely flat and radiciel for each Q ∈ Spec(S) lying over P ∈ Spec(R).
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Recall that an integral domain R is called quasi-Prüfer if for each P ∈ Spec(R) and each Q ∈ Spec(R[X ])
such that Q ⊆ P[X ], then Q = (Q ∩ R)[X ]. An equivalent condition is that the integral closure of R is a
Prüfer domain [16, Corollary 6.5.14]. As integral closure is preserved by absolutely flat morphisms between
integral domains (see Proposition 1.3), the “quasi-Prüfer domain” property is ascended by absolutely flat ring
morphisms between integral domains.

In view of Corollary 2.21, it may be asked whether a geometrically unibranched divided domain is a PVD.
The answer is negative since there exists an integrally closed divided domain which is not a PVD [9, Remark
4.10 (b)]

An i-domain is an integral domain R such that R → T is an i-morphism for each of its overrings T [28].
Then R is an i-domain amounts to saying that its integral closure R′ is Prüfer and R → R′ is an i-morphism
[28, Proposition 2.14].

Proposition 2.23 Let R → S be a local absolutely flat morphism between integral domains. If R is an
i-domain and S is unibranched, then S is an i-domain.

Proof Since R is quasi-Prüfer, so is S. As S is unibranched, its integral closure S′ = S
⊗

R R′ is local whence
a valuation domain. Since Spec(S′) is linearly ordered and R′ → S′ is incomparable, Spec(S′) → Spec(S) is
injective because so is Spec(R′) → Spec(R). �	

3 Ascent of the going-down property

Ascent of the “going-down ring” property by absolutely flat morphisms has only been considered in our paper
[35] where we proved that if R → S is an étale morphism and R is a universally going-down weak Baer ring,
then S is a universally going-down weak Baer ring [35, Theorem 3.3]. Moreover, the local rings of a universally
going-down weak Baer ring are geometrically unibranched [35, Theorem 3.4]. In this section we extend the
above result to absolutely flat morphisms. Besides, it was natural to look at the ascent of the “going-down
ring” property by absolutely flat morphisms. An additional motivation is provided by the following result of
McAdam. Let R ⊆ S be an extension of domains satisfying incomparability and such that R is going-down.
Then S is going-down if and only if S is treed [23, Lemma A]. Since absolutely flat morphisms have the
incomparability property, McAdam’s result applies to absolutely flat extension of integral domains.

In a joint paper with Dobbs, we studied weak Baer (universally) going-down rings [13]. If R is a weak
Baer ring, then R is (universally) going-down amounts to saying that each overring S (in Tot(R)) defines a
(universally) going-down ring morphism R → S. In the primary rings context this statement holds also for
the going-down property [10, Corollary 2.6]. Hence, the “going-down ring” property admits in both contexts
the same overrings characterization as in the integral domain context.

Our main tools are the two following results of Badawi and Dobbs:

Proposition 3.1 Let R be a ring.

(1) [2, Theorem 3.3] If R is primary and Nil(R) is a divided prime ideal, then R is a local going-down ring
if and only if R has a divided integral (unibranched) overring.

(2) [2, Theorem 3.4] If R is reduced, then R is a treed going-down ring if and only if its seminormalization
Rs is a locally divided ring.

Note that the parenthetical statement (unibranched) in (1) is superfluous because the spectrum of a divided
ring S is linearly ordered. Hence, an integral extension R → S is unibranched by incomparability.

We begin our study within the weak Baer rings context.

Proposition 3.2 Let there be a going-down weak Baer ring R and let f : R → S be an absolutely flat ring
morphism, Q a prime ideal of S and P := f −1(Q). If the integral domain RP is geometrically unibranched,
then SQ is going-down and geometrically unibranched, RP → SQ is an h-morphism and SQ is an integral
domain.

Proof The ring morphism RP → SQ is absolutely flat and local. It follows from Proposition 1.2 that
Tot(SQ) = Tot(RP )

⊗
RP

SQ and Tot(SQ) is absolutely flat. Now observe that the seminormalization of
a ring A, whose total quotient ring is absolutely flat, is the seminormalization of A in Tot(A) [37, Proposition
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4.2] because an absolutely flat ring is seminormal [34, Lemme 2.2]. Then the seminormalization of SQ iden-
tifies to (RP )s ⊗

RP
SQ by [34, Corollaire 2.8] so that (RP)s → (SQ)s is absolutely flat. This morphism is

also local because RP → (RP )s and SQ → (SQ)s are h-morphisms. Since RP is a treed going-down domain,
(RP )s is a divided integral domain by Proposition 3.1(2). Observe that (RP)s is geometrically unibranched
because so is RP . It follows that (SQ)s is geometrically unibranched and divided by Theorem 2.9 whence
locally divided. Moreover, (RP)s → (SQ)s is an h-morphism. Using again Proposition 3.1(2), we find that SQ
is going-down and RP → SQ is an h-morphism. It follows that SQ is irreducible, whence an integral domain
by Remark 1.4(3). �	
Theorem 3.3 Let R be a locally geometrically unibranched going-down weak Baer ring and f : R → S an
absolutely flat ring morphism. Then S is a locally geometrically unibranched going-down weak Baer ring and
R → S is locally an h-morphism.

Proof The “going-down ring” property is local [10, Proposition 2.1]. Hence, taking into account Proposi-
tion 3.2, it is enough to show that S is a weak Baer ring. We know that Tot(S) is absolutely flat. Besides, each
SQ is an integral domain for Q ∈ Spec(S). It follows that S is a weak Baer ring. �	

Now we can complete our result [35, Theorem 3.3].

Theorem 3.4 Let R be a universally going-down weak Baer ring and an absolutely flat ring morphism f :
R → S. Then S is a universally going-down weak Baer ring.

Proof Because a universally going-down weak Baer ring is locally geometrically unibranched [35, Theorem
3.4], S is a weak Baer ring by Theorem 3.3. Let (P) be the universally going-down integral domain property.
Then (P) is stable under direct limits [13, Proposition 3.13] and hence is ascended by strict henselizations
by [35, Theorem 3.3] because a strict henselization is local ind-étale. Moreover, (P) is descended by faithfull
flatness [13, Remark 3.14 (b)]. Now consider Q ∈ Spec(S) and P := f −1(Q). We get an absolutely flat local
ring morphism RP → SQ and a factorization RP → SQ → (RP)sh where the second morphism is faithfully
flat by Lemma 1.1. Hence, SQ is a universally going-down integral domain for each Q ∈ Spec(S). Therefore,
S is universally going-down by [13, Proposition 3.2]. �	

Next we give a version of McAdam’s result quoted at the beginning of the section.

Proposition 3.5 Let R → S be an absolutely flat ring morphism between weak Baer rings. If R is a going-down
ring, then S is a going-down ring if and only if S is treed.

Proof We can reduce to the case of a local morphism between integral domains. Then it is enough to apply
[23, Lemma A] to the incomparable injective morphism R → S. �	

Fontana proved that for an integral domain R, the statement “Spec(R) is linearly ordered” is logically
equivalent to “there exists a unibranched (overring) extension R ⊆ S where S is a divided integral domain”
[15, Théorème 2.14]. This allows us to give a slightly different version of Theorem 3.3.

Theorem 3.6 Let R → S be an absolutely flat ring morphism between weak Baer rings. If R is going-down
and S is locally unibranched (for instance, if R is locally geometrically unibranched), then S is going-down.

Proof We can assume that R → S is an absolutely flat local extension between integral domains and that
S is unibranched. We first show that S has a unibranched extension S → U where U is divided. There is a
unibranched integral overring R → T where T is divided by Proposition 3.1(1). Then U := S

⊗
R T is an

integral overring of S by Proposition 1.3 and T → U is absolutely flat. Since S → U is integral, we have
S′ = U ′ so that U is unibranched. It follows that T → U is local. We infer from Theorem 2.6 that U is
a divided domain and T → U is unibranched. Hence, R → S → U is unibranched. As S → U satisfies
lying-over, S → U is unibranched. By the above-quoted Fontana’s result, Spec(S) is linearly ordered. In short,
S is treed and the proof is complete by Proposition 3.5. �	

The preceding results are deduced from the going-down criterion of Proposition 3.1(2) working in the
universe of reduced rings. Our goal is now to use the criterion of Proposition 3.1(1) on primary rings.

Theorem 3.7 Let R be a local going-down unibranched primary ring, such that Nil(R) is divided. Then Rh

is a local going-down primary ring, such that Nil(Rh) is divided.
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Proof There exists a divided integral overring S of R by Proposition 3.1(1). As R and S have the same integral
closure, S is unibranched. Moreover, S is primary by [2, Lemma 2.6]. From [17, Proposition 18.6.8], we deduce
that Sh = Rh ⊗

R S because R ⊆ S is an integral extension and S is local. Hence Rh → Sh is an integral
extension. By Corollary 2.7, Sh is divided and primary and Rh → Sh is unibranched. Now Sh = S

⊗
R Rh

is an overring of Rh by Proposition 1.3(2) because S is an overring of R. Moreover, Z(Rh) = Nil(Rh) is a
divided prime ideal by Proposition 1.3(3) since Rh is irreducible. Another application of Proposition 3.1(1)
shows that Rh is a going-down local ring. �	
Theorem 3.8 Let R be a local primary ring, such that Nil(R) is a divided prime ideal. Then R is a unibranched
going-down ring if and only if its integral closure R′ is a divided ring.

Proof Assume that R is a unibranched going-down primary ring. We deduce from Proposition 3.1(1) that R
has a divided integral overring S such that R → S is unibranched. As R′ = S′, we find that S is unibranched.
Besides, S is divided and primary. Thus R′ = S′ is divided by Theorem 2.15. The converse is clear in view of
Proposition 3.1(1). �	
Theorem 3.9 Let R be a local unibranched going-down primary ring, such that Nil(R) is a divided prime
ideal. If R → S is a local absolutely flat ring morphism such that S is unibranched, then S is a going-down
primary ring, such that Nil(S) is a divided prime ideal.

Proof Thanks to Proposition 1.3(1) and (3), S is primary and Nil(S) is a divided prime ideal since S is irre-
ducible. In view of Proposition 1.3(2), the integral closure of S is S′ = R′ ⊗

R S so that R′ → S′ is absolutely
flat. Moreover, S′ is local and hence, R′ → S′ is local. Then Theorem 2.9 applies since R′ is geometrically
unibranched, primary as an overring of a primary ring and is divided by Theorem 3.8. Hence S′ is divided and
the conclusion follows from Theorem 3.8. �	
Corollary 3.10 Let R be a local geometrically unibranched going-down primary ring, such that Nil(R) is a
divided prime ideal. If R → S is a local absolutely flat ring morphism, then S is a geometrically unibranched
going-down primary ring, such that Nil(S) is a divided prime ideal.

Proof Use Theorem 3.9 and [26, Corollaire 2.8] which states that S is geometrically unibranched. �	

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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