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Abstract In this paper, two pivotal statistics are introduced to construct prediction intervals for future lifetime
of three parameters Weibull observations based on generalized order statistics, which can be widely applied in
reliability theory and lifetime problems. The probability density functions as well as the explicit form of the dis-
tribution functions of our pivotal statistics are derived. Monte Carlo simulations are performed to demonstrate
the efficiency of the proposed methods and a real data analysis is conducted for illustrative purposes.
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1 Introduction

Prediction of unobserved or censored observations is an interesting topic, especially in the viewpoint of actu-
arial, biological science, physics, medical and engineering sciences. An authoritative review of developments
on prediction problems has been prepared by Kaminsky and Nelson [8]. It is well known that quite often
the survival data come with a special feature called censoring. Censoring occurs in life testing experiments,
when exact survival times are known only for a portion of the individuals or items under study. The experi-
menter may not always be in a position to observe the life times of all the products (or items) were put on test
either intentionally or unintentionally; this may be because of time limitation and/or other restrictions (such
as money, mechanical or experimental difficulties, material resources, etc.); see, for example, Nelson [16] and
Balakrishnan and Cohen [1].

The Weibull distribution is one of the most widely used distributions in reliability and survival analysis.
Because of its various shapes of the probability density function and its convenient representation of the dis-
tribution/survival function, the Weibull distribution has been used very effectively for analyzing lifetime data,
particularly when the data are censored, which is very common in most life testing experiments. Moreover,
Weibull distribution without any doubt is one of the most important models in modern statistics because of its
ability to fit data from various fields, ranging from life data to weather data or observations made in economics
and business administration, in hydrology, in biology or in the engineering sciences. A commonly used model
in reliability theory and lifetime studies is the three-parameter Weibull distribution, which was introduced by
the Swedish statistician Waloddi Weibull for the first time in 1939 in connection with his studies on the strength
of materials (for more details and applications of Weibull distribution see Rinne [17]).

The prediction intervals for future observations from the exponential distribution have been studied by
many authors and among them are Lawless [11,12], Lingappaiah [13–15], Geisser [7], and Barakat et al. [2],
while El-Adll [5] studied the same problem for three-parameter Weibull distribution based on ordinary order
statistics.

Generalized order statistics (gos) have been introduced as a unified distribution theoretical set-up which
contains a variety of models of ordered random variables (rv’s) with different interpretations. Since Kamps [9]
had introduced the unifying model of gos, the use of such model has been steadily growing along the years.
This is due to the fact that such model includes important well-known practical models that had been separately
treated in statistical literature. Examples of such models are the ordinary order statistics, sequential order sta-
tistics, progressive type II censored order statistics, record values, kth record values and Pfeifer’s records. The
rv’s X (1, n, m̃, k), . . . , X (n, n, m̃, k) are called gos based on an absolutely continuous distribution function
(df) F with density function (pdf) f, if their joint density function is given by

f X (1,n,m̃,k),...,X (n,n,m̃,k)(x1, . . . , xn)

= k

⎛
⎝

n−1∏
j=1

γ j,n

⎞
⎠

(
n−1∏
i=1

(1 − F(xi ))
mi f (xi )

)
(1 − F(xn))

k−1 f (xn), (1)

on the cone F−1(0) < x1 ≤ · · · ≤ xn < F−1(1−) of Rn, with parameters n ∈ N, n ≥ 2, k > 0, m̃ =
(m1, . . . , mn−1) ∈ R

n−1, Mr = ∑n−1
j=r m j , such that γr,n = k + n − r + Mr > 0 for all r ∈ {1, . . . , n − 1}.

Moreover, let cr−1,n = ∏r
j=1 γ j,n , r = 1, . . . , n − 1, and γn,n = k. Generalized order statistics based on the

standard uniform distribution are denoted by U (r, n, m̃, k). Choosing the parameters appropriately, models
such as ordinary order statistics (oos) (γi,n = n−i +1, i = 1, . . . , n, i.e. m̃ = (m1, . . . , mn−1) = (0, 0, . . . , 0)
and k = 1), sequential order statistics(sos) (γi,n = (n − i + 1)αi , α1, . . . , αn > 0), progressive type II cen-
sored order statistics(pos) (mi = Ri ∈ N0, m̃ = (m1, . . . , mn−1) �= (0, 0, . . . , 0), k = mn + 1 with
γi,n = n − i + 1 + ∑n

j=i R j , 1 ≤ i ≤ n − 1 and γn,n = k = Rn + 1) and Pfeifer’s record model
(γi,n = βi , β1, . . . , βn > 0) are particular cases (cf. [4,9]). Barakat et al. [3] studied some bootstrap properties
of normalized extreme generalized order statistics.

In a wide subclass of gos which contains most of the important practical models when γ1,n , . . . , γn,n are
assumed to be pairwise different, Kamps and Cramer [10] derived the marginal pdf of the r th gos and the joint
pdf of the r th and the sth gos, which are given by

f X (r,n,m̃,k)(xr ) = cr−1,n f (xr )

r∑
i=1

ai (r)(F(xr ))
γi,n −1

, (2)
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f X (r,n,m̃,k),X (s,n,m̃,k)(xr , xs) = cs−1,n

(
s∑

i=r+1

a(r)
i (s)

(
F(xs)

F(xr )

) γi,n
)(

r∑
i=1

ai (r)(F(xr ))
γi,n

)

× f (xr )

F(xr )

f (xs)

F(xs)
, xr ≤ xs, 1 ≤ r < s ≤ n, (3)

where

ai (r) =
r∏

j=1
j �=i

1

γ j,n − γi,n

, 1 ≤ i ≤ r ≤ n, a(r)
i (s) =

s∏
j=r+1

j �=i

1

γ j,n − γi,n

, r + 1 ≤ i ≤ s and F(x) = 1 − F(x).

A random variable X is said to have three-parameter Weibull distribution, denoted by W (η, ξ, δ), if its
probability density function (pdf) is given by

f (x) =

⎧⎪⎨
⎪⎩

δ

ξ

(
x − η

ξ

)δ−1

exp

[
−

(
x − η

ξ

)δ
]

, x > η,

0, x ≤ η,

(4)

where η ∈ R is a location parameter, ξ > 0 is a scale parameter and δ > 0 is a shape parameter. The
corresponding distribution function (df) is given by

F(x) = 1 − exp

[
−

(
x − η

ξ

)δ
]

, x ≥ η. (5)

In this paper, we modified two pivotal quantities to construct two exact prediction intervals for future obser-
vations from three-parameter Weibull distribution based on generalized order statistics. The rest of the paper
is organized as follows: In Sect. 2 we present the main results. Section 3 include Monte Carlo simulation for
some important models and an application of real lifetime data is given in Sect. 4.

2 The main results

The following lemma is needed in the proof of Theorem 2.3, which expresses an interesting fact that can be
applied for solving other problems.

Lemma 2.1 Suppose that X (1, n, m̃, k), . . . , X (n, n, m̃, k) are the first n gos based on Weibull distribution
with the pdf (4). Then the rv’s

Zi = γi,n

[(
X (i, n, m̃, k) − η

ξ

)δ

−
(

X (i − 1, n, m̃, k) − η

ξ

)δ
]

, i = 1, 2, . . . , n, with X (0, n, m̃, k) ≡ η,

(6)

are independent and identically distributed (iid) according to the standard exponential distribution.

Proof By noting that

(
X (r, n, m̃, k) − η

ξ

)δ

=
r∑

j=1

Z j

γi,n

, r = 1, 2, . . . , n,

the Jacobian J , can be written in the form

J = 1

cn−1

(
ξ

δ

)n n∏
j=1

(
x j − η

ξ

)1−δ

.
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The joint pdf of X (1, n, m̃, k), . . . , X (n, n, m̃, k) based on Weibull distribution with pdf (4) can be written in
the form

f X (1,n,m̃,k),...,X (n,n,m̃,k)(x1, . . . , xn)

= cn−1

(
δ

ξ

)n
(

n∏
i=1

yδ−1
i

)
exp

[
−

n−1∑
i=1

(γi,n − γi+1,n )yδ
i − γn,n yδ

n

]

= cn−1

(
δ

ξ

)n
(

n∏
i=1

yδ−1
i

)
exp

[
−

n∑
i=1

γi,n (yδ
i − yδ

i−1)

]

where yi = (xi − η)/ξ. Therefore, we have the following equation:

fZ1,...,Zn (z1, . . . , zn) = exp

⎡
⎣−

n∑
j=1

z j

⎤
⎦ ,

which by the Factorization Theorem implies the assertion of the lemma. ��
The main goal of this paper is to use the first observed r gos, X (1, n, m̃, k), . . . , X (r, n, m̃, k), to construct

prediction intervals for the sth gos (1 ≤ r < s ≤ n), through the following two modified statistics:

Ur,s = X�
s − X�

r

X�
r

(7)

Vr,s = X�
s − X�

r

T (m̃,k)
r :n

, (8)

where

X�
j =

(
X ( j, n, m̃, k) − η

ξ

)δ

, T (m̃,k)
r :n =

r∑
i=1

γi,n

[(
X (i, n, m̃, k) − η

ξ

)δ

−
(

X (i − 1, n, m̃, k) − η

ξ

)δ
]

,

i = 1, 2, . . . , r and X (0, n, m̃, k) ≡ η.

Theorem 2.2 Assume that X (1, n, m̃, k), . . . , X (r, n, m̃, k), are the first observed r gos based on W (η, ξ, δ)

with pdf (4). Then the df F
(m̃,k)

Ur,s :n of the statistic Ur,s is given by

F
(m̃,k)

Ur,s :n (u) = 1 −
s∑

i=r+1

r∑
j=1

cs−1,na(r)
i (s)a j (r)

[
γi,n (γ j,n + γi,n u)

]−1
, u ≥ 0. (9)

Proof By Equations (3), (4) and (5), the joint pdf for the r th and sth gos takes the form

f X (r,n,m̃,k),X (s,n,m̃,k)(xr , xs) =
(

δ

ξ

)2

cs−1,n

(
xr − η

ξ

)δ−1 (
xs − η

ξ

)δ−1 s∑
i=r+1

r∑
j=1

a(r)
i (s)a j (r)

× exp

{
−

[
γi,n

((
xs − η

ξ

)δ

−
(

xr − η

ξ

)δ
)

+ γ j,n

(
xr − η

ξ

)δ
]}

,

η < xr ≤ xs, 1 ≤ r < s ≤ n. (10)

By standard transformation methods, the joint pdf of the subrange

Wr,s =
(

X (s, n, m̃, k) − η)

ξ

)δ

−
(

X (r, n, m̃, k) − η)

ξ

)δ

and Y =
(

X (r, n, m̃, k) − η)

ξ

)δ

,
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f (m̃,k)
Wr,s ,Y

(w, y), is given by

f (m̃,k)
Wr,s ,Y

(w, y) = cs−1,n

s∑
i=r+1

r∑
j=1

a(r)
i (s)a j (r) exp

{−(γi,n w + γ j,n y)
}
, w > 0, y > 0. (11)

It is not difficult to show that the joint pdf of Ur,s = Wr,s

Y
and Y can be written as

f (m̃,k)
Ur,s ,Y

(u, y) =
s∑

i=r+1

r∑
j=1

cs−1,na(r)
i (s)a j (r) y exp

{−(γ j,n + γi,n u)y
}
, u > 0, y > 0.

Thus, we have

f (m̃,k)
Ur,s :n (u) =

∞∫

0

f (m̃,k)
Ur,s ,Y

(u, y) dy

= cs−1,n

s∑
i=r+1

r∑
j=1

a(r)
i (s)a j (r) (γ j,n + γi,n u)−2, u > 0. (12)

Integrating (12) form 0 to u and simplifying the result, we obtain (9) which proves the theorem. ��
In the following theorem we derive the distribution of the pivotal statistic Vr,s

Theorem 2.3 Suppose that X (1, n, m̃, k), . . . , X (r, n, m̃, k), are the first observed r gos based on three param-
eters Weibull distribution W (η, ξ, δ). Then the df of the statistic Vr,s is given by

F
(m̃,k)

Vr,s :n (v) = 1 − cs−1,n

cr−1,n

s∑
i=r+1

a(r)
i (s)

[
γi,n (1 + γi,n v)r ]−1

, v ≥ 0. (13)

Proof In view of Lemma 2.1, the statistic T (m̃,k)
r :n has a gamma distribution with the pdf

f (m̃,k)

T (m̃,k)
r :n

(t) = 1

	(r)
tr−1e− t , t > 0.

By the independence of Wr,s and T (m̃,k)
r :n , the joint pdf of Wr,s and T (m̃,k)

r :n is given by

f (m̃,k)

T (m̃,k)
r :n ,Wr,s :n

(t, w) = f (m̃,k)

T (m̃,k)
r :n

(t) f (m̃,k)
Wr,s :n (w),

and by Eq. (11), with noting that cr−1
∑r

j=1
a j (r)

γ j,n
= 1, we get

f (m̃,k)
Wr,s :n (w) =

∞∫

0

f (m̃,k)
Wr,s ,Y

(w, y) dy = cs−1,n

cr−1,n

s∑
i=r+1

a(r)
i (s) e− γi,n w

, w > 0.

Therefore, we obtain

f (m̃,k)

T (m̃,k)
r :n ,Wr,s :n

(t, w) = cs−1,n

cr−1,n	(r)

s∑
i=r+1

a(r)
i (s) tr−1e− (t+γi,n w)

, t > 0, w > 0.

Putting Vr,s = Wr,s

T (m̃,k)
r :n

, the joint pdf of T (m̃,k)
r :n and Vr,s, after a routine calculations is given by

f (m̃,k)

T (m̃,k)
r :n ,Vr,s :n

(t, v) = cs−1,n

cr−1,n	(r)

s∑
i=r+1

a(r)
i (s) tr e− (1+γi,n v)t

, t > 0, v > 0.
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Hence, the pdf of the pivotal statistic Vr,s takes the form

f (m̃,k)
Vr,s :n (v) =

∞∫

0

f (m̃,k)
Tr,m̃ ,Vr,s :n(t, v)dt

= rcs−1,n

cr−1,n

s∑
i=r+1

a(r)
i (s)

(
1 + γi,n v

)−(r+1)
, v > 0. (14)

Integrating (14) and simplifying the result we obtain (13). This completes the proof of the theorem. ��
Remark 2.4 The (1−α)100% predictive conference intervals for the future unobserved value of X (s, n, m̃, k),
based on the pivotal statistics Ur,s and Vr,s , respectively, are given by

(
xr , (1 + uα)1/δ(xr − η) + η

)
, (15)

and (
xr ,

[
ξδtrvα + (xr − η)δ

]1/δ + η
)

, (16)

where xr is an observed value of X (r, n, m̃, k), uα can be obtained from Eq. (9) by solving the nonlinear
equation F

(m̃,k)

Ur,s :n (uα) = 1−α, tr is an observed value of T (m̃,k)
r :n and vα can be obtained from Eq. (13) by solving

the nonlinear equation F
(m̃,k)

Vr,s :n (vα) = 1 − α.

3 Simulation study

In this section, Monte Carlo simulations are conducted to investigate the efficiency of the obtained results in the
preceding section. For this purpose an algorithm is constructed. In the simulation study, we generate 100,000
ordered random samples, for any value of s, each sample of size n from three-parameter Weibull distribution
W (η, ξ, δ) for some values of η, ξ and δ. The coverage probability and the average interval width based on
the two statistics Ur,s and Vr,s are computed for three special cases from gos.

Algorithm

Step 1 choose the values of r, s and n,
Step 2 solve the nonlinear equations F

(m̃,k)

Ur,s :n (uα) = 1 − α and F
(m̃,k)

Vr,s :n (vα) = 1 − α, numerically, to obtain the

values of uα and vα at α = 0.05, 0.1, where F
(m̃,k)

Ur,s :n (u) and F
(m̃,k)

Vr,s :n (v) are given by Eqs. (9) and (13),
respectively,

Step 3 generate n generalized order statistics X (1, n, m̃, k), . . . , X (r, n, m̃, k), based on W (η, ξ, δ) for a
given values of η, ξ, δ using the following algorithm which is due to El-Adll [5] (see also Barakat
et al. [2]):

(a) generate r independent Uniform (0, 1) observations W1, . . . , Wr ,

(b) set Vi = W
1

γi,n
i for i = 1, 2, . . . r,

(c) set U (r, n, m̃, k) = 1 − ∏r
i=1 Vi ; thus, in view of Cramer [4], definition 3.1.5, U (r, n, m̃, k) is the r th

uniform gos,
(d) set X (r, n, m̃, k) = F−1(U (r, n, m̃, k)); then X (r, n, m̃, k) for r = 1, 2, . . . n, is the r th gos based on

the df F,
Step 4 determine the lower and the upper bounds of the predictive intervals using steps 2, 3 and relations

Eqs. (15) and (16),
Step 5 define a counter, c, as follows: c = c +1, if X (s, n, m̃, k) lies within the predictive interval; otherwise,

set c = c,
Step 6 repeat steps 3, 4 and 5, 100,000 times,
Step 7 compute the coverage probability (c/100,000) and the average interval width of the predictive confi-

dence interval (PCI) of X (s, n, m̃, k).

Finally, all the computations are prepared by Mathematica 8 (Tables 1, 2, 3).
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Table 1 Coverage probability and average width when n = 20 for W (3.7, 1.1, 2.2) oos model (m1 = · · · = mn−1 = 0 and
k = 1)

r s 90% 95% AWU90% AWU95% 90% 95% AW V90% AW V95%

6 7 0.89904 0.95011 0.1537 0.2044 0.89905 0.95049 0.1536 0.2041
6 8 0.90182 0.95151 0.2597 0.3252 0.90175 0.95122 0.2595 0.3248
6 9 0.89953 0.95022 0.3551 0.4325 0.89961 0.95050 0.3547 0.4319
6 10 0.89924 0.95024 0.4469 0.5351 0.89940 0.94993 0.4464 0.5344
6 11 0.89940 0.95016 0.5378 0.6365 0.90031 0.95013 0.5372 0.6356
6 12 0.90024 0.95026 0.6293 0.7381 0.90026 0.95032 0.6285 0.7370
6 13 0.90072 0.94961 0.7235 0.8426 0.90024 0.94964 0.7226 0.8414
6 14 0.89972 0.94923 0.8226 0.9525 0.90025 0.94917 0.8215 0.9511
6 15 0.90027 0.94992 0.9300 1.0717 0.89971 0.94986 0.9288 1.0701
6 16 0.90028 0.94991 1.0478 1.2023 0.89984 0.94994 1.0464 1.2004
9 10 0.90015 0.95015 0.1441 0.1897 0.90033 0.94981 0.1439 0.1893
9 11 0.90024 0.94914 0.2471 0.3057 0.89990 0.94954 0.2466 0.3047
9 12 0.90126 0.95141 0.3439 0.4133 0.90115 0.95151 0.3430 0.4119
9 13 0.89962 0.94990 0.4400 0.5194 0.89952 0.95005 0.4389 0.5177
9 14 0.90033 0.95052 0.5397 0.6292 0.90054 0.95019 0.5381 0.6269
9 15 0.89913 0.94999 0.6462 0.7462 0.89910 0.94976 0.6445 0.7438
9 16 0.89894 0.94895 0.7624 0.8739 0.89859 0.94870 0.7603 0.8709
12 13 0.90064 0.95018 0.1552 0.2030 0.90043 0.95039 0.1547 0.2022
12 14 0.89869 0.94946 0.2706 0.3323 0.89925 0.94951 0.2695 0.3305
12 15 0.89887 0.94935 0.3848 0.4587 0.89897 0.94856 0.3830 0.4559
12 16 0.90092 0.95061 0.5065 0.5928 0.90070 0.95090 0.5041 0.5892
15 16 0.90022 0.95121 0.1958 0.2548 0.89929 0.95063 0.1946 0.2526

Table 2 Coverage probability and average width when n = 20 for W (3.7, 1.1, 2.2) pos model with censoring scheme
(50, 20, 11, 19∗1) that is N = 50, n = 20, R1 = 11, R2 = R3 = · · · = R20 = 1 (where N is the total items put on a
life test, n is the purposed observed failures and r is the actual observed failures)

r s 90% 95% AWU90% AWU95% 90% 95% AW V90% AW V95%

6 7 0.89756 0.94795 0.1137 0.1512 0.89798 0.94784 0.1135 0.1507
6 8 0.90052 0.95012 0.1920 0.2403 0.90071 0.95046 0.1915 0.2395
6 9 0.89917 0.95002 0.2622 0.3192 0.89899 0.94964 0.2614 0.3180
6 10 0.89995 0.94947 0.3297 0.3947 0.89968 0.94948 0.3287 0.3932
6 11 0.89850 0.94864 0.3961 0.4686 0.89833 0.94862 0.3949 0.4669
6 12 0.90045 0.94994 0.4638 0.5439 0.90013 0.94985 0.4625 0.5420
6 13 0.90090 0.95125 0.5334 0.6211 0.90060 0.95078 0.5319 0.6189
6 14 0.90021 0.95095 0.6061 0.7017 0.90037 0.95058 0.6044 0.6993
6 15 0.89895 0.94942 0.6838 0.7877 0.89886 0.94901 0.6818 0.7850
6 16 0.89995 0.95061 0.7706 0.8841 0.90022 0.95016 0.7683 0.8810
9 10 0.90161 0.95132 0.1062 0.1397 0.90204 0.95106 0.1059 0.1393
9 11 0.90003 0.95024 0.1820 0.2251 0.90014 0.94984 0.1814 0.2241
9 12 0.89808 0.94863 0.2529 0.3039 0.89831 0.94878 0.2520 0.3025
9 13 0.89961 0.94997 0.3237 0.3821 0.89975 0.94996 0.3225 0.3802
9 14 0.89977 0.95035 0.3967 0.4624 0.90006 0.94996 0.3952 0.4602
9 15 0.90018 0.95082 0.4743 0.5477 0.90044 0.95101 0.4724 0.5450
9 16 0.89818 0.94908 0.5596 0.6414 0.89834 0.94924 0.5574 0.6383
12 13 0.89924 0.94928 0.1138 0.1489 0.89918 0.94967 0.1134 0.1481
12 14 0.89904 0.94973 0.1985 0.2438 0.89929 0.95012 0.1975 0.2422
12 15 0.90018 0.95045 0.2823 0.3365 0.90034 0.95017 0.2808 0.3342
12 16 0.90065 0.95076 0.3713 0.4347 0.90039 0.95068 0.3691 0.4314
15 16 0.90022 0.95076 0.1435 0.1868 0.90026 0.95017 0.1426 0.1851

4 An illustrative example

The order random variables play an important role for the lifetime prediction methods because if m items are
put simultaneously in a life test, the weakest component will fail first, followed by the second weakest and
so on until all have failed. For example, in manufacture we are interested in the time to failure after n units
are put in a life test. In such cases, the observations arrive in ascending order of magnitude and do not have
to be ordered after collection of the data. The practical importance of such experiments is evident. Moreover,
the possibility is now open of terminating the experiment before its conclusion by stopping after a given time
(Type I censoring) or after a given number of failures (Type II censoring). It may be of interest to predict
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Table 3 Coverage probability and average width when n = 20, for W (3.7, 1.1, 2.2) sos model with m1 = · · · = mn−1 =
α − 1, k = α that is γi,n = (n − i + 1)αi , αi = α = 2, ∀i = 1, 2, . . . , n

r s 90% 95% AWU90% AWU95% 90% 95% AW V90% AW V95%

6 7 0.90124 0.95111 0.1122 0.1492 0.90156 0.95098 0.1121 0.1490
6 8 0.89947 0.94921 0.1895 0.2372 0.89928 0.94946 0.1893 0.2369
6 9 0.90066 0.95088 0.2591 0.3156 0.90070 0.95070 0.2588 0.3151
6 10 0.89834 0.94906 0.3257 0.3900 0.89817 0.94892 0.3253 0.3895
6 11 0.89964 0.94936 0.3927 0.4648 0.89986 0.94918 0.3922 0.4641
6 12 0.90157 0.95060 0.4595 0.5389 0.90179 0.95026 0.4588 0.5380
6 13 0.89945 0.94939 0.5276 0.6145 0.89945 0.94951 0.5269 0.6136
6 14 0.89980 0.94980 0.6001 0.6949 0.90011 0.94972 0.5993 0.6939
6 15 0.90022 0.95025 0.6786 0.7820 0.90021 0.95013 0.6779 0.7809
6 16 0.89930 0.94940 0.7653 0.8782 0.89910 0.94960 0.7645 0.8770
9 10 0.90116 0.94972 0.1052 0.1385 0.90148 0.94982 0.1050 0.1381
9 11 0.90005 0.95019 0.1803 0.2230 0.89999 0.95018 0.1799 0.2224
9 12 0.90012 0.94941 0.2509 0.3015 0.90048 0.94946 0.2503 0.3006
9 13 0.89975 0.95012 0.3212 0.3791 0.89961 0.95059 0.3203 0.3779
9 14 0.89928 0.94995 0.3941 0.4594 0.89916 0.94990 0.3930 0.4578
9 15 0.90028 0.95059 0.4711 0.5440 0.90009 0.95082 0.4699 0.5422
9 16 0.89901 0.94874 0.5567 0.6381 0.89907 0.94904 0.5551 0.6359
12 13 0.89858 0.94973 0.1131 0.1480 0.89826 0.94967 0.1127 0.1473
12 14 0.90081 0.95081 0.1975 0.2426 0.90004 0.95059 0.1968 0.2413
12 15 0.90082 0.95018 0.2807 0.3346 0.90046 0.94956 0.2793 0.3326
12 16 0.90020 0.95023 0.3696 0.4327 0.90041 0.94989 0.3678 0.4299
15 16 0.90153 0.95164 0.1429 0.1860 0.90143 0.95150 0.1421 0.1844

Table 4 The failure voltages in kilovolts per millimeter for 20 specimens

32.0 35.4 36.2 39.8 41.2 43.3 45.5 46.0 46.2 46.4
46.5 46.8 47.3 47.3 47.6 49.2 50.4 50.9 52.4 56.3

the time at which all the components will have failed or to predict the mean failure time of the unobserved
lifetimes. In these cases, the interval or point predict are of interest.

In this section, an example for real data is presented to demonstrate the importance of results obtained in
Sect. 2. The data were given by Lawless [12, p. 189]. It consists of voltage levels at which failures occurred in
a certain type of electrical cable insulation (Type 1 insulation) when specimens were subjected to an increasing
voltage stress in a laboratory experiment. The test involved 20 specimens and the failure voltages in kilovolts
per millimeter are given in Table 4.

For the purposed data, Gini statistic, (see [6]), as well as the max p value method, are applied to get
the best fitting to Weibull distribution. Moreover, prediction intervals for the unobserved failures, xs, s =
r + 1, r + 2, . . . , n are obtained.

We use Gini statistic and the max p value method to show that c = 9.1973 is very close to optimum value
and the maximum p value = 0.999996, and in this case the maximum Likelihood estimate of b is b = 47.7383
which gives a good fitting to two-parameter Weibull distribution (a = 0.0) see Table 5.

Assume that the first r failures, (r = 9, 12, 15, 18) are observed. Prediction intervals for the unobserved
failures xs, s = r +1, r +2, . . . , 20, based on oos, with α = 0.1, 0.05 are obtained. The results are presented
in Table 6.

5 Discussion and concluding remarks

Two pivotal quantities are modified to predict future observations from three-parameter Weibull distribution.
Numerical results of these pivotal quantities for three different models are presented through simulation studies.
Finally, an example has been given to illustrate the results discussed in this paper.

From the simulation studies (Tables 1, 2, 3) it is clear that

1. In all cases the coverage probability is close to 1 − α, α = 0.1, 0.5.
2. When s is fixed, the AIW of the PCI of X (s, n, m̃, k) decreases, with increasing r as expected, since more

available data improved prediction results.
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Table 5 Values of p value for successive values of c

c p value c p value c p value

9.1965 0.999611 9.1971 0.99990 9.1977 0.999811
9.1966 0.999659 9.1972 0.999948 9.1978 0.999763
9.1967 0.999708 9.1973 0.999996 9.1979 0.999715
9.1968 0.999756 9.1974 0.999956 9.1980 0.999667
9.1969 0.999804 9.1975 0.999907 9.1981 0.999619
9.1970 0.999852 9.1976 0.999859 9.1982 0.999571

Table 6 Lower and upper bounds for xs , s = r + 1, r + 2, . . . , 20, for the data of Table 4 based on oos

r s xs U90% PCI U95% PCI V90% PCI V95% PCI

9 10 46.4 (46.2, 47.9737) (46.2, 48.4933) (46.2, 47.9331) (46.2, 48.4415)
9 11 46.5 (46.2, 49.1232) (46.2, 49.7406) (46.2, 49.0606) (46.2, 49.6658)
9 12 46.8 (46.2, 50.1292) (46.2, 50.8134) (46.2, 50.0498) (46.2, 50.7215)
9 13 47.3 (46.2, 51.0731) (46.2, 51.8108) (46.2, 50.9798) (46.2, 51.7051)
9 14 47.3 (46.2, 51.9937) (46.2, 52.7782) (46.2, 51.8885) (46.2, 52.6605)
9 15 47.6 (46.2, 52.9202) (46.2, 53.7483) (46.2, 52.8043) (46.2, 53.6201)
9 16 49.2 (46.2, 53.8833) (46.2, 54.7546) (46.2, 53.7574) (46.2, 54.6167)
9 17 50.4 (46.2, 54.9245) (46.2, 55.8423) (46.2, 54.7891) (46.2, 55.6949)
9 18 50.9 (46.2, 56.1158) (46.2, 57.0885) (46.2, 55.9709) (46.2, 56.9318)
9 19 52.4 (46.2, 57.6205) (46.2, 58.6708) (46.2, 57.4653) (46.2, 58.5039)
9 20 56.3 (46.2, 60.0267) (46.2, 61.2385) (46.2, 59.8585) (46.2, 61.0587)
12 13 47.3 (46.8, 48.4013) (46.8, 48.8627) (46.8, 48.4915) (46.8, 48.9718)
12 14 47.3 (46.8, 49.4937) (46.8, 50.0471) (46.8, 49.6299) (46.8, 50.2001)
12 15 47.6 (46.8, 50.5031) (46.8, 51.124) (46.8, 50.6745) (46.8, 51.3097)
12 16 49.2 (46.8, 51.5121) (46.8, 52.1918) (46.8, 51.7133) (46.8, 52.405)
12 17 50.4 (46.8, 52.5786) (46.8, 53.3162) (46.8, 52.807) (46.8, 53.5544)
12 18 50.9 (46.8, 53.7812) (46.8, 54.5835) (46.8, 54.0362) (46.8, 54.8463)
12 19 52.4 (46.8, 55.2851) (46.8, 56.1749) (46.8, 55.5691) (46.8, 56.4649)
12 20 56.3 (46.8, 57.674) (46.8, 58.7389) (46.8, 57.9975) (46.8, 59.0675)
15 16 49.2 (47.6, 49.3069) (47.6, 49.7861) (47.6, 49.5596) (47.6, 50.0908)
15 17 50.4 (47.6, 50.5675) (47.6, 51.152) (47.6, 50.9568) (47.6, 51.5877)
15 18 50.9 (47.6, 51.8717) (47.6, 52.5477) (47.6, 52.3741) (47.6, 53.09)
15 19 52.4 (47.6, 53.4379) (47.6, 54.2213) (47.6, 54.0505) (47.6, 54.8673)
15 20 56.3 (47.6, 55.8635) (47.6, 56.8408) (47.6, 56.6112) (47.6, 57.6168)
18 19 52.4 (50.9, 53.5676) (50.9, 54.2618) (50.9, 53.6822) (50.9, 54.3822)
18 20 56.3 (50.9, 56.4137) (50.9, 57.372) (50.9, 56.5927) (50.9, 57.542)

3. In most cases, the AIW of the PCI of X (s, n, m̃, k) based on statistic Ur,s is closer to the AIW of
X (s, n, m̃, k) based on the statistic Vr,s .

4. The AIW of the PCI of X (s, n, m̃, k) decreases, when the sample size increases.
5. The AIW of the PCI of X (s, n, m̃, k) increases, when α decreases.

From Sect. 4, it is noted that the accuracy of prediction intervals of xs, s > r for real data depends on the size
of the actual observations x1, x2, . . . , xr , the difference s −r and the goodness of fitting data to Weibull model
(see Table 6).
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