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Abstract
Weconstruct the unitary analogue of orthogonal calculus developed byWeiss, utilising
model categories to give a clear description of the intricacies in the equivariance and
homotopy theory involved. The subtle differences between real and complex geom-
etry lead to subtle differences between orthogonal and unitary calculus. To address
these differences we construct unitary spectra—a variation of orthogonal spectra—as
a model for the stable homotopy category. We show through a zig-zag of Quillen
equivalences that unitary spectra with an action of the n-th unitary group models the
homogeneous part of unitary calculus. We address the issue of convergence of the
Taylor tower by introducing weakly polynomial functors, which are similar to weakly
analytic functors of Goodwillie but more computationally tractable.

Keywords Functor calculus · Orthogonal calculus · Unitary calculus

1 Introduction

Functor calculus was originally developed by Goodwillie [18–20] to systematically
study the algebraic K -theory of spaces. The theory developed from the study of homo-
topy preserving endofunctors on Top∗ to a more varied settings, such as, functors
Top∗ −→ Sp, and Sp −→ Sp. Biedermann, Chorny and Röndigs [10] and Bieder-
mann andRöndigs [11] provided amodel category framework forGoodwillie calculus,
with Kuhn [28] developing the theory for abstract model categories. The theory has
been extended to the study of functors on suitable (∞, 1)-categories by Lurie [30].

As these developments of Goodwillie calculus were taking place, the general theory
of a “calculus of functors”was developing for functors withmore structure. One exam-
ple of this is the orthogonal calculus ofWeiss [37]. This calculus gives a framework for
the systematic study of functors indexed on real inner product spaces. Key examples
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include BO(−) : V �−→ BO(V ) and BDiffb(M × −) : V �−→ BDiffb(M × V ) where
BDiffb(M×V ) is the classifying space of the group of bounded diffeomorphisms from
M × V to itself, for M a fixed manifold. Other examples of functor calculus include
the additive functor calculus developed by Johnson and McCarthy [25–27] and the
manifold calculus of Goodwillie and Weiss [12, 21, 39].

Unitary calculus is the extension of orthogonal calculus to the study of functors
from the category of complex inner product spaces to topological spaces. The orthog-
onal calculus relies heavily on the real geometry of the vector spaces, and hence the
unitary calculus relies on the complex geometry involved. The subtle differences in
the geometry lead to subtle differences in the calculi.

The theory of orthogonal calculus has been developed extensively in the literature,
for example in [9, 31, 37] and [7]. Contrastingly, the unitary version does not have
solid foundations in the literature despite being known to the experts. For example, in
[37, Example 10.3] Weiss calculates the first derivative of BU(−) : V �−→ BU(V ).
These calculations have been taken further in [5], where Arone studies the calculus
of the functor BU(−) in great detail, giving a closed formula for the derivatives [5,
Theorems 2 and 3], and calculates homology approximations of the layers of the
associated Taylor tower [5, §4]. Other examples where unitary calculus has been
employed in the literature include [2–4] and [8].

Since orthogonal calculus is built from real vector spaces, and unitary calculus is
built from complex vector spaces, there should exist interesting comparisons between
the calculi similar to the comparisons between K -theory, KU, and real K -theory, KO
induced by the complexification—realification adjunction between real and complex
inner product spaces. For these comparisons to be possible, a firm grasp of the unitary
calculus is essential.

Moreover, the complex vector spaces considered in unitary calculus come with a
complex conjugation, which induces a C2 Top∗-enrichment on the category of input
functors. This leads to the notion of “unitary calculus with reality”, a version of
unitary calculus which takes into account this C2-action. Furthermore, it should then
be possible to compare all three calculi allowing for the movement of computations
between the calculi. The comparisons should be similar to those between K -theory,
real K -theory and the K -theorywith reality ofAtiyah [6]. It is precisely these questions
which the author will address in future work, utilising the solid foundations laid out
in this paper.

2 Main results and summary of unitary calculus

We give themain results of the paper and a summary of the calculus for easy reference.

Themachinery

The orthogonal and unitary calculi are similar in that given a functor F of the appro-
priate type, the calculus assigns a sequence of functors {TnF}n∈N to F . These functors
are “polynomial” in the sense that they assemble into a Taylor tower, the layers (dif-

123



Unitary calculus: model categories and... 421

ferences between successive polynomial approximations) of which are determined by
spectra with an action of an appropriate group; an orthogonal group for orthogonal cal-
culus, and a unitary group for unitary calculus. For the unitary calculus case, we have
the following result, which is Theorem 8.1. Note that a functor F is n-homogeneous
if it is both n-polynomial and Tn−1F vanishes, see Definition 3.12.

Theorem A Let F ∈ E0 be n-homogeneous for some n > 0. Then F is levelwise
weakly equivalent to the functor defined as

U �−→ �∞[(SnU ∧ �n
F )hU(n)],

where �n
F is a spectrum with an action of U(n) formed by the n-th derivative of F ,

and SnU is the one-point compactification of Cn ⊗ U with the induced U(n)-action
via the regular representation action on Cn .

For the most part, these functor calculi sit in quite strong analogy with Taylor’s
Theorem from differential calculus. We construct an n-th polynomial approximation
functor Tn in Sect. 3, which sits an analogy with the Taylor polynomial pn(x) from
differential calculus.Moreover the n-th polynomial approximation of an n-polynomial
functor recovers the original functor, as is the case for differential calculus, see Propo-
sition 3.7.

Given a functor F , the first derivative, F (1) (see Definition 4.4) of F , F (1), has
structure maps

S2 ∧ F (1)(U ) −→ F (1)(U ⊕ V ),

and the second derivative has structure maps

S4 ∧ F (2)(U ) −→ F (2)(U ⊕ V ).

In general, the n-th derivative has structure maps,

S2n ∧ F (n)(U ) −→ F (n)(U ⊕ V ).

In Proposition 4.5 we show that adjoint structure maps give a method of calculating
the n-th derivative from the (n − 1)-st derivative.

Proposition B Let n be a non-negative integer. There is a homotopy fibre sequence

F (n)(U ) −→ F (n−1)(U ) −→ �2(n−1)F (n−1)(U ⊕ C),

for all U ∈ Jn .
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We further show in Proposition 4.7 that the derivative of a functor is a measure of
how far a functor is from being polynomial.

Proposition C Let n be a non-negative integer and let F ∈ E0. There is a homotopy
fibre sequence

F (n+1)(U ) −→ F(U ) −→ τn F(U ),

for all U ∈ J0.
There is a map from the n-th polynomial approximation to the (n − 1)-st polyno-

mial approximation, the homotopy fibre of which is n-homogeneous, hence there is a
homotopy fibre sequence

�∞[(SnU ∧ �n
F )hU(n)] −→ TnF(U ) −→ Tn−1F(U ).

These homotopy fibre sequences assemble into a Taylor tower approximating the
functor F ,

.

.

.

rn+1

Tn F(U )

rn

�∞[(SnU ∧ �n
F )hU(n)]

Tn−1F(U )

rn−1

�∞[(S(n−1)U ∧ �n−1
F )hU(n−1)]

.

.

.

r2

T1F(U )

r1

�∞[(SU ∧ �1
F )hU(1)]

F(U ) F(C∞).

Model categories for unitary calculus

In [9] Barnes and Oman rewrote the homotopy theory originally developed by Weiss
in [37] into the language of model categories. This is advantageous as it removed the
need for “up to homotopy” statements and provided a clearer understanding of the
equivariance in the picture. In this paper we construct the theory of unitary calculus
in terms of model categories. These model categories will enable clear comparisons
between the versions of the calculi.
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We start with a construction of an n-polynomial model structure, which contains
the homotopy theory of n-polynomial functors. In particular weak equivalences in this
model structure are detected by the n-th polynomial approximation functor, and more-
over the n-th polynomial approximation functor is a model for a fibrant replacement
functor in this model structure.

In particular we can construct a model structure, the n-homogeneous model struc-
ture, which contains the homotopy theory of n-homogeneous functors. Here, the
cofibrant–fibrant objects are precisely the n-homogeneous functors and weak equiva-
lences are detected by the n-th layer of their respective towers.

Using the characterisation of the n-homogeneous functors of TheoremAwe further
characterise the n-homogeneous model structure, similarly to [9, Theorem 10.1]. We
give an alternative description of the weak equivalences as those detected by the
homotopy fibre of the map TnF −→ Tn−1F rather than equivalences detected by
the derivative, and further characterise the acyclic fibrations and cofibrations. These
characterisations allow for the theory of localisations to be used computationally in
the theory.

The n-homogeneous model structure is zig-zag Quillen equivalent to spectra
with an action of U(n). The zig-zag equivalence moves through an intermedi-
ate category, U(n)En . This category behaves like spectra, but with structure maps
S2n ∧ Xk −→ Xk+1, and is the natural home for the n-th derivative of a unitary
functor. It comes with a stable model structure, called the n-stable model structure,
which is an alteration of the stable model structure on spectra to take into account the
unusual structure maps. The zig-zag Quillen equivalence is proved in two steps. The
first, which appears as Theorem 6.8, demonstrates a Quillen equivalence between the
intermediate category and the category of unitary spectra with an action of U(n).

Theorem D Let n be a non-negative integer. There is an adjoint pair

(αn)! : U(n)En SpU [U(n)] : (αn)
∗ ,

which is a Quillen equivalence.
The second proves that the n-homogeneous model structure, n –homog– E0, is

Quillen equivalent to the intermediate category, U(n)En . This is Theorem 7.5 in the
text.

Theorem E Let n be a non-negative integer. There is an adjoint pair

resn0 /U(n) : U(n)En n –homog– E0 : indn0 ε∗ ,

which is a Quillen equivalence.
Moreover, we exhibit a Quillen equivalence between unitary spectra with an action

of U(n) and orthogonal spectra with an action of U(n), via a Quillen equivalence
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between orthogonal and unitary spectra. We prove these results as Theorem 6.4 and
Corollary 6.5.

Theorem F The adjoint pairs

r! : SpU SpO : r∗ and r! : SpU [U (n)] SpO [U (n)] : r∗

are Quillen equivalences.
This gives a complete picture of the model categories for unitary calculus and their

relations.

n –homog– E0
indn0 ε∗

U(n)En
resn0 /U(n) (αn)!

SpU [U(n)]
(αn)

∗

r!
SpO [U(n)].

r∗

The added complexity in dealing with complex inner product spaces results in an
extra adjunction than in the orthogonal case [9, Proposition 8.3, Theorem 10.1 ].

Convergence

One gap in the literature with regards to both orthogonal and unitary calculus is the
notion of agreement and analyticity. These notions are central to convergence and
play an important role in Goodwillie calculus [19, 20]. We define the notion of weak
polynomiality, Definition 9.11, in this context and show that when a functor is weakly
polynomial its Taylor tower converges, that is, weakly polynomial functors are weakly
analytic and they allow for more straightforward computations.

We generalise a result of Barnes and Eldred [8, Theorem 4.1] to the setting of weak
polynomial functors. This is provided as Theorem 9.14 in the text.

Theorem G Let E, F ∈ E0 are such that there be a homotopy fibre sequence

E(U ) −→ F(U ) −→ F(U ⊕ V )

for U , V ∈ J . Then

(1) If F is weakly polynomial, then E is weakly polynomial; and
(2) If E is weakly polynomial and F(U ) is 1-connected whenever dim(U ) ≥ ρ, then

F is weakly polynomial.

With this Theorem we prove that the functor BU(−) : V �−→ BU(V ) converges
to BU(V ) for V with dim(V ) ≥ 1. In Theorem 9.17 we show that any representable
functor is weakly polynomial, and hence its associated Taylor tower converges.

Theorem H Representable functors are weakly polynomial, that is, for all V ∈ J ,
the functor J (V ,−) is weakly polynomial.
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Organisation

In Sect. 3 we define polynomial functors, construct the polynomial approximation
functor and show how this data assembles into a Taylor tower.

Section 4 concerns the derivatives of unitary functors. We also construct the n-
homogeneous model structure. An initial step toward the zig-zag Quillen equivalence
is complete in Sect. 5 where we define the intermediate category for unitary cal-
culus and prove a Quillen equivalence between the intermediate category and the
n-homogeneous model structure.

We give a description of homotopy theory of the derivatives through a Quillen
equivalence between the intermediate category and spectra with an action of U(n) in
Sect. 6. In Sect. 7 we prove that the differentiation functor is a right Quillen functor
as part of a Quillen equivalence.

In Sect. 8 we give a classification of n-homogeneous functors in terms of spectra
with an action of U(n). We also give further characterisations of the n-homogeneous
weak equivalences, acyclic fibrations and cofibrations. This section ends with a short
discussion on the complete Taylor tower.

The final section, Sect. 9, is an initial step toward understanding convergence of
the Taylor tower in unitary calculus.

Conventions and notation

Throughout this paper the category of based compactly generated weak Hausdorff
topological spaces will be denoted Top∗. We endow Top∗ with the Quillen model
structure, this is cofibrantly generated with the set of generating cofibrations denoted
I and generating acyclic cofibrations J .

In this paper we make strong use of the theory of model categories and Bousfield
localisations. These provide us with the tools to make precise the “up to homotopy”
results of Weiss. We refer the unfamiliar reader to [16, 24] and [22] for the details of
the theory.

3 Polynomial functors and the Taylor tower

Aswith differential calculus, the building blocks of functor calculus are the polynomial
functors. In particular the polynomial approximations are the pieces that fit together
into the Taylor tower, and in some cases converge to the original input functor. In
this section we give the constructions of polynomial functors and polynomial approx-
imations. We highlight the strong analogy between unitary calculus and differential
calculus and how this machinery produces a Taylor tower.

3.1 The input functors

We start with a discussion on the input functors. Let J be the category of finite-
dimensional complex inner product subspaces of C∞, with morphism the complex
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linear isometries. This category is Top∗-enriched, the space of morphisms J (U , V )

is the Stiefel manifold of dim(U )-frames in V . Let J0 be the category with the same
objects as J and morphism space given by J0(U , V ) = J (U , V )+. We denote the
category of Top∗-enriched functors from J0 to Top∗ by E0. This is the input category
for unitary calculus.

Examples of such functors are abound. These include;

(1) BU(−) : V �−→ BU(V ), where BU(V ) is the classifying space of the unitary group
associated to V ;

(2) BTOP(−) : V �−→ BTOP(V ), where BTOP(V ) is the classifying space of the
group of homeomorphisms on V ; and

(3) BG(S(−)) : V �−→ BG(SV ), where BG(SV ) is the classifying space of the group-
like monoid of homotopy equivalences between SV and itself.

These examples all have orthogonal counterparts, see [37]. This indicates a strong
relationship between the orthogonal and unitary calculi, induced by the strong rela-
tionship between functors of this type and their orthogonal versions. A deeper
understanding of the unitary calculus framework will lead to a better understanding
of this relationship.

The category E0 is a diagram category in the sense of Mandell, May, Schwede
and Shipley [33] and hence comes equipped with a projective model structure, where
the weak equivalences and fibrations are defined to be the levelwise weak homotopy
equivalences and levelwise Serre fibrations respectively. This a cellular proper topo-
logical model category with generating (acyclic) cofibrations of the formJ0(V ,−)∧i
with i a generating (acyclic) cofibration of Top∗, see [33, Theorem 6.5].

3.2 Polynomial functors

In differential calculus, polynomial functions are used to approximate a given function.
These polynomial functions may be used to gain insight about the original function
and can be combined in such a way to give a complete approximation of the function.
Polynomial functors are a categorification of this idea. We begin with the definition.

Definition 3.1 Let n be a non-negative integer. A functor F in E0 is polynomial of
degree less than or equal to n or equivalently n-polynomial if the canonical map

ρ : F(V ) −→ holim
0 �=U⊆Cn+1

F(V ⊕U ) =: τn F(V ),

is a weak homotopy equivalences of spaces.

The poset of non-zero complex subspaces of Cn+1 is a category object in spaces,
specifically, a category internal toTop∗. The space of objects is topologised as a disjoint
union of complex Grassmannian manifolds, and the space of morphisms topologised
as the space of complex flag manifolds of length two (or equivalently the space of
2-simplices in the nerve of the poset). As such, the homotopy limit of Definition 3.1
must take into account the topology of the poset. The details may be found in [37, 38]
for the orthogonal case. The unitary case follows similar. Hollender and Vogt [23] and
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Fig. 1 Poset schematics for
linear functors in orthogonal and
Goodwillie calculus

Lind [29] give constructions for homotopy limits and colimits indexed on categories
internal to spaces.

Remark 3.2 In comparison to Goodwillie calculus, F : C −→ C (where C is some
appropriate (∞, 1)-category, for instance C = Top∗) is 1-excisive (linear) it if takes
(homotopy) pushouts to (homotopy) pullbacks, [1, Definition 1.2]. In this situation
the homotopy limit is indexed on the poset of subsets of the set of two elements, [1,
Definition 1.1]. Our situation is significantly more complicated due to the topology
involved in the indexing poset {0 �= U ⊆ C

2} where there is an CP1 (∼= S2) worth of
one-dimensional complex subspaces. More generally the higher dimensional cubes of
Goodwillie translate to a disjoint union ofGrassmannianmanifolds in our setting. Note
this is also true for orthogonal calculus, where there is an RP1 ∼= S1 worth of one-
dimensional subspaces. Figure 1 illustrates the poset for linear functors in orthogonal
calculus (on the left) and for Goodwillie calculus (on the right).

Example 3.3 Afunctor F is polynomial of degree zero if and only if F is homotopically
constant. Indeed, if F is 0-polynomial then, F(V ) � F(U ⊕ C) for all U ∈ J0.
Iterating this, we see that if F is 0-polynomial then, F(U ) � F(U ⊕ V ) for all
U , V ∈ J0. For the converse, if F is homotopically constant, F(U ) � F(U ⊕C) and
hence the condition of Definition 3.1 is satisfied.

3.3 Polynomial approximation

If E is n-polynomial then the canonical map ρ : E −→ τn E is a levelwise weak
equivalence, and hence all the morphisms in the diagram

E
ρ

τn E
ρ · · · ρ

τ kn E
ρ · · ·

are levelwise weak equivalences. Moreover by construction, the k-th iterate τ kn of the
functor τn is determined by its behaviour on vector spaces of dimension at least k,
since

τ kn F(0) = holim
0 �=U1,...,Uk⊆Cn+1

F(U1 ⊕ · · ·Uk).

Polynomial functors are said to be “determined by their behaviour at infinity”. This
property motivates the following definition.
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Definition 3.4 Let n be a non-negative integer. Define the n-th polynomial approxima-
tion, TnF , of a unitary functor F to be the homotopy colimit of the filtered diagram

F
ρ

τn F
ρ

τ 2n F
ρ

τ 3n F
ρ · · · .

Remark 3.5 Equivalently we could have defined TnF to be the homotopy colimit of
the filtered diagram

F
ρ

τn F
τn(ρ)

τ 2n F
τ 2n (ρ)

τ 3n F
τ 3n (ρ) · · · .

The direct systems are weakly equivalent and hence define isomorphic homotopy
colimits.

Example 3.6 The zeroth polynomial approximation of a unitary functor F is F(C∞).
Indeed, it is clear that

T0F(V ) = hocolimk τ k0 F(V ) = hocolimk F(V ⊕ C
k) � F(C∞).

In particular, we see that the zeroth polynomial approximation of the sphere functor
S : V �−→ SV is S∞ � ∗, the zeroth polynomial approximation of BU(−) is the space
BU, and the zeroth polynomial approximation of U(−) : V �−→ U(V ) is the infinite
unitary group U.

The Taylor polynomials pn(x) of a function f : R −→ R are in some ways the
closest polynomial functions to f . In particular if f is n-polynomial, then f (x) =
pn(x). This result has a categorification in that if F is n-polynomial then F � TnF .

Proposition 3.7 Let n be a non-negative integer. If F is n-polynomial, then the canon-
ical map η : F −→ TnF is a levelwise weak homotopy equivalence.

Proof Since F is n-polynomial,ρ : F −→ τn F is a levelwiseweak equivalence. Since
finite homotopy limits (particularly thosedefining τn F) commute, τn F isn-polynomial
when F is. It follows by the properties of homotopy colimits that η : F −→ TnF is a
levelwise weak equivalence. ��

The n-th polynomial approximation is the closest n-polynomial functor to F , that
is, if ν : F −→ E is a map in E0, and E is n-polynomial, then ν factors (up to
homotopy) through the map η : F −→ TnF . Possibly the most straightforward way
to see that TnF is the closest n-polynomial functor to F is the construction of a model
structure of which TnF is a model for the fibrant replacement of F . The construction
of such a model structure is similar to that of Barnes and Oman [9, Proposition 6.5,
Proposition 6.6] in the orthogonal calculus case. The first step is showing that TnF is
always n-polynomial, which follows readily from a unitary version of [38].

Lemma 3.8 Let n be a non-negative integer. If F ∈ E0, then TnF is n-polynomial.

We now give the n-polynomial model structure.
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Proposition 3.9 Let n be a non-negative integer. There is a cellular proper topological
model structure on E0 where a map f : E −→ F is a weak equivalence if Tn f :
TnE −→ TnF is a levelwise weak equivalence, the cofibrations are the cofibrations
of the projective model structure and the fibrations are levelwise fibrations such that

E
f

ηX

F

ηY

TnE Tn f
Tn F

is a homotopy pullback square. The fibrant objects of this model structure are precisely
the n-polynomial functors and Tn is a fibrant replacement functor. We call this the n-
polynomial model structure and it is denoted n –poly– E0.
Proof The Bousfield–Friedlander localisation [13, 15] of the projective model struc-
ture at the endofunctor Tn : E0 −→ E0 yields the statedmodel structure. Note however,
that the Bousfield–Friedlander localisation only results in a proper topological model
structure. An alternative description as the left Bousfield localisation of the projective
model structure at the set of maps

Sn = {Sγn+1(V ,−)+ −→ J0(V ,−) : V ∈ J0},

yields the cellular requirement. These two descriptions agree since both localisation
techniques do not alter the cofibrations and a Tn-equivalence in the sense of [13, 15]
is precisely a Sn-local equivalence in the sense of [22, Definition 3.1.4]. ��

Polynomial functors share many properties with polynomial functions. One such
property is that an n-polynomial functor is (n + 1)-polynomial.

Proposition 3.10 Let n be a non-negative integer. If a functor F is n-polynomial, then
it is (n + 1)-polynomial.

Proof This is the unitary version of [37, Proposition 5.4]. The properties of real vector
bundles used byWeiss transfer to complex vector bundles, and hence so does the result.

��
We will return to further properties of n-polynomial functors once we have intro-

duced the notion of the derivative of a functor.

3.4 The Taylor tower

With the theory of polynomial functors and polynomial approximations in place, we
can construct the Taylor tower approximating F ∈ E0. This tower is a categorification
of the Taylor series associated to a function f : R −→ R. The differential Taylor’s
series is a sequence of polynomial approximations which converges to the function
f . In this case, we get a tower of polynomial approximations, the limit of which—in
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nice cases—recovers the input functor. We return to the question of convergence in
Sect. 9.

There is an inclusion functor from the poset of non-zero subspaces of Cn−1 to the
poset of non-zero subspaces of Cn . For a functor F ∈ E0, precomposition with the
inclusion defines a map

τn F(V ) = holim
0 �=U⊆Cn

F(U ⊕ V ) −→ holim
0 �=U⊆Cn−1

F(U ⊕ V ) = τn−1F(V ).

Iteration constructs a map τ kn F −→ τ kn−1F . The construction is coherent in that the
diagram

holim
0 �=U1,...,Uk⊆Cn

F(U1⊕· · · ⊕Uk ⊕ V )

ρ

holim
0 �=U1,...,Uk⊆Cn−1

F(U1⊕· · ·⊕Uk ⊕ V )

ρ

holim
0 �=U1,...,Uk+1⊆Cn

F(U1 ⊕ · · · ⊕Uk+1 ⊕ V ) holim
250 �=U1,...,Uk+1⊆Cn−1

F(U1⊕· · ·⊕Uk+1 ⊕ V )

commutes. As such, we get a map of homotopy colimits, rn : TnF −→ Tn−1F .
Moreover rnηn = ηn−1, where ηn : F −→ TnF . The result is a Taylor tower of the
following form.

F

· · · Tn+1F rn+1
TnF rn

· · · r2
T1F r1

F(C∞)

3.5 Homogeneous functors

The n-th layer of the Taylor tower is given by the homotopy fiber of

rn : TnF −→ Tn−1F .

This functor is both n-polynomial and its (n − 1)-st polynomial approximation is
trivial.

Example 3.11 The homotopy fibre DnF = hofibre[TnF −→ Tn−1F] is n-polynomial
and Tn−1DnF is trivial. First note that by using the fact that homotopy limits commute,
the long exact sequence of a fibration and the Five Lemma, that the homotopy fibre of
a map between n-polynomial functors is n-polynomial. Since an (n − 1)-polynomial
object is n-polynomial and the homotopy fibre of a map between n-polynomial objects
is n-polynomial, DnF is n-polynomial. Moreover, the (n − 1)-st polynomial approx-
imation of DnF is trivial since

Tn−1DnF = Tn−1 hofibre[TnF −→ Tn−1F] � hofibre[Tn−1TnF −→ T 2
n−1F]

� hofibre[TnTn−1F −→ Tn−1F] � hofibre[Tn−1F −→ Tn−1F] � ∗.
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Functors with these properties are a special subclass of n-polynomial functors,
called n-homogeneous functors. One should think of these homogeneous functors
as monomial functions, representing the terms in the Taylor series from differential
calculus.

Definition 3.12 Let n be a non-negative integer. A unitary F is said to be n-
homogeneous or equivalently homogeneous of degree less than or equal n if F is
n-polynomial and Tn−1F is levelwise weakly contractible. We will refer to a functor
with trivial (n − 1)-st polynomial approximation as being n-reduced.

4 The derivative of a functor

An important concept in any theory of calculus is that of derivative. In the differential
setting, the derivatives are used in calculating the terms of the polynomial approxima-
tions. The same remains true in the unitary calculus setting, where the derivatives (or
more precisely the spectrum formed by the derivatives) are used to characterise the
layers of the Taylor tower.

The construction of the derivative is completely analogous to that of Weiss [37] for
the derivative of an orthogonal functor. In particular, the n-th derivative of a unitary
functor determines a unitary spectrum with an action of U(n).

4.1 Derivatives

From the derivatives of a unitary functor we can construct a unitary spectrum, and
hence an orthogonal spectrum.We first define the derivative of a functor, and highlight
the justification for this construction being called a derivative, specifically, homo-
topically constant functors have trivial derivative, and the (n + 1)-st derivative of
an n-polynomial functor is trivial. The starting point is the construction of “higher”
versions of J1, specifically, categories Jn for all n. Sitting over the space of linear
isometries J (U , V ) is the n-th complement vector bundle, with total space

γn(U , V ) = {( f , x) : f ∈ J (U , V ), x ∈ C
n ⊗ f (U )⊥},

where f (U )⊥ denotes the orthogonal complement of f (U ) in V .
The vector bundle γn(U , V ) comes with a sphere bundle Sγn(U , V ) given by

the one-point compactification of the fibres. In [37, Theorem 4.1, Proposition 4.2]
Weiss constructs a homeomorphism between the sphere bundle and a particular homo-
topy colimit. To prove the equivalence between the intermediate category and the
n-homogeneous model structure we need a similar result, which we give here. For the
proof, we will denote by C the poset of non-zero subspaces of Cn+1.

Theorem 4.1 Let n be a non-negative integer. There is a natural homeomorphism,

hocolim
0 �=U⊂Cn+1

J (U ⊕ V ,W ) −→ Sγn+1(V ,W )
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for every V ,W ∈ J
Proof The goal is to construct a homeomorphism

� : Jn+1(V ,W )\J (V ,W )+ (0,∞) × hocolimU J (U ⊕ V ,W ),

and use the identification, Jn+1(V ,W )\J (V ,W )+ ∼= (0,∞) × Sγn+1(V ,W ), to
yield a homeomorphism

hocolim
0 �=U⊂Cn+1

J (U ⊕ V ,W ) −→ Sγn+1(V ,W ).

Take ( f , x) ∈ Jn+1(V ,W )\J (V ,W )+, that is f ∈ J (V ,W ) and 0 �= x ∈
(n+1) · ( f (V )⊥). Since f (V )⊥ andCn+1 are finite dimensional inner product spaces
we have

C
n+1 ⊗ ( f (V )⊥) ∼= (Cn+1)∗ ⊗ ( f (U )⊥) = Hom(Cn+1,C) ⊗ f (U )⊥

∼= Hom(Cn+1, f (U )⊥),

where (Cn+1)∗ is the dual space of Cn+1.
Thus we can think of x ∈ Hom(Cn+1, f (V )⊥). Moreover, x has an adjoint

x∗ : f (V )⊥ −→ C
n+1.

By the properties of the dual transformation it follows that

(x∗x)∗ = x∗(x∗)∗ = x∗x,

that is, x∗x : C
n+1 −→ C

n+1 s a self adjoint map, hence normal, in particular,
(x∗x)∗(x∗x) = (x∗x)(x∗x)∗. By the Spectral Theorem, see for instance Friedberg,
Insel, and Spence [17, Theorem 6.24], Cn+1 can be written as the direct sum of the
eigenspaces corresponding to the distinct eigenvalues of x∗x , that is,

C
n+1 = ker(x∗x) ⊕ E(λ0) ⊕ · · · ⊕ E(λk)‘

where 0 < λ0 < λ1 < · · · < λk are the eigenvalues, and

E(λi ) = {r ∈ C
n+1 : (x∗x − λi id)(r) = 0}.

is the eigenspaces corresponding the eigenvalue λi . Note that all the eigenvalues are
real by [17, Lemma pg.329], and by the Spectral Theorem [17, Theorem 6.24] we
really mean the eigenspace, and not the generalised eigenspace.

Hence, given ( f , x) ∈ Jn+1(V ,W )\J (V ,W )+ as above, define

(1) a functor G : [k] −→ C given by

r �−→ E(λ0) ⊕ · · · ⊕ E(λk−r )

123



Unitary calculus: model categories and... 433

(2) a linear isometry z ∈ J (G(0) ⊕ V ,W ) given by

z =
{
f on V

λ
−1/2
i · x on E(λi )

Note that z is clearly an isometry on V , and z is also an isometry on each E(λi ).
Indeed, let v,w ∈ E(λi ). Then

〈z(v), z(w)〉 = 〈(λi )−1/2x(v), (λi )
−1/2x(w)〉

= (λi )
−1〈x(v), x(w)〉

= (λi )
−1〈v, x∗x(w)〉

= (λi )
−1〈v, λiw〉

= 〈v,w〉.

(3) a point p ∈ �k given by the barycentric coordinates

λ−1
k · (λ0, λ1 − λ0, λ2 − λ1, . . . , λk − λk−1)

(4) t = λk > 0.

By construction (see [14, §VIII.2.6]), hocolimU J (U ⊕ V ,W ) (or more specifically,
the geometric realisation of the bar construction) is a quotient of

∐
k≥0

∐
G:[k]−→C

J (G(0) ⊕ V ,W ) × �k

under the identifications involving the respective face and degeneracy maps for

∐
G:[k]−→C

J (G(0) ⊕ V ,W )

and �k respectively, again, see [14, §VIII.2.6] for the details. It follows that the triple
(G, z, p) defines a point in hocolimU J (U ⊕ V ,W ).

Define a map

� : Jn+1(V ,W )\J (V ,W )+ −→ (0,∞) × hocolimU J (U ⊕ V ,W )

( f , x) �−→ (t,G, z, p)

This map is well defined since (G, z, p) defines a point in hocolimU J (U ⊕ V ,W ).

�is injective: Let ( f , x), (g, y) ∈ Jn+1(V ,W )\J (V ,W )+ be such that

�( f , x) = (t,G, z, p) = (t ′,G ′, z′, p′) = �(g, x).
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Since t = t ′, x∗x and y∗y must have the same largest eigenvalue, and p = p′
together with x∗x and y∗y having the same largest eigenvalue implies that x∗x and
y∗y have the same set of non-zero eigenvalues λ0 < λ1 < · · · < λk . Combining this
with the fact that G = G ′, we have that x∗x and y∗y must have the same eigenspaces.
Moreover, since z = z′, z|V = Z ′|V , and hence, f = g. Moreover z|G(0) = z′|G(0).
It follows that z|E(λi ) = z′|E(λi ), for every i , and by definition, we see that x = y and
hence that ( f , x) = (g, y) as required.

�is onto : Here there are two cases to consider. If k ≥ n + 1 we are in the degenerate
case. Otherwise pick t > 0 and let λk = t . Now choose a point in the interior of �k+.
If we were to choose a point in the boundary of �k+, we would be choosing a point
in a face of �k+, and faces are given by �k−1+ and smaller. Thus choice of a point
determines

λ0 < λ1 < · · · < λk ∈ C.

Choose orthogonal eigenspaces for each λi , and define G : [k] −→ � as above, using
these chosen eigenspaces.

Next choose any z ∈ J (G(0)⊕V ,W ). Then define f = z|V and x = (λi )
1/2z|E(λi)

on E(λi ). Then x : Cn+1 −→ f (V )⊥, and �( f , x) = (t,G, z, p) as required.

�is continuous : This is clear from the construction of � and from the fact that poly-
nomials are continuous. Note that the functor G depends continuously on ( f , x) as
the eigenvalues and hence eigenspaces depend continuously on x .

�is a homeomorphism : The reverse of the construction used to show� is onto, gives
the inverse to �. For the same reasons as � is continuous, this inverse is continuous.

We thus have

� : Jn+1(V ,W )\J (V ,W )+
∼=−−→ (0,∞) × hocolimU J (U ⊕ V ,W )

Notice that

Jn+1(V ,W )\J (V ,W )+ ∼= (0,∞) × Sγn+1(V ,W ),

and hence

(0,∞) × hocolimU J (U ⊕ V ,W ) ∼= (0,∞) × Sγn+1(V ,W ).

It follows by composing with the inclusion

{1} × hocolimU J (U ⊕ V ,W ) −→ (0,∞) × hocolimU J (U ⊕ V ,W ),

and projecting to Sγn+1(V ,W ) that

hocolimU J (U ⊕ V ,W ) ∼= Sγn+1(V ,W ).

��
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Theorem 4.1 is arguably the most important result in unitary calculus. It firstly
allows us to convert the notion of n-polynomial into geometric terms, as in [37,
Proposition 5.2], and secondly it allows us to argue that the sphere bundle Sγn(U , V )+
is cofibrant in E0.
Remark 4.2 Although Theorem 4.1 looks similar to [37, Proposition 4.2] there are
subtle differences from the differences between complex and real linear algebra. One
such difference is the results used to exhibit real eigenvalues.

Definition 4.3 Let n be a non-negative integer. The n-th jet categoryJn is the category
with the same objects as J and with morphism space Jn(U , V ) the Thom space,
Th(γn(U , V )), of the vector bundle γn(U , V ).

For 0 ≤ m < n, the inclusion of Cm into C
n onto the first m-components induces

a functor inm : Jm −→ Jn . Precomposition with such determines a functor which
restricts from En to Em .
Definition 4.4 Let 0 ≤ m < n. Define the restriction functor resnm : En −→ Em by
precomposition with inm , and define the induction functor ind

n
m : Em −→ En to be the

right Kan extension along inm . Given a functor F ∈ E0 we will call indn0 F its n-th
derivative and denote this by F (n).

Using the properties of the adjunction

resnm : En Em : indnm ,

and the Yoneda Lemmawe see that indnm F(U ) ∼= Em(Jn(V ,−), F). For the purposes
of calculations there is a more useful description.

Proposition 4.5 (Proposition B) Let n be a non-negative integer. There is a homotopy
fibre sequence

resn+1
n indn+1

n F(U ) −→ F(U ) −→ �2n F(U ⊕ C),

for all F ∈ En and all U ∈ J0.

Proof Due to the strong similarities between complex and real linear algebra, [37,
Proposition 1.2] extends to the unitary setting. The result is a cofibre sequence

Jn(U ⊕ C, ) − ∧S2n −→ Jn(U ,−) −→ Jn+1(U ,−)

where we have identified the one-point compactification of Cn with the 2n-sphere.
Applying the corepresentable functor En(−, F) yields a homotopy fibre sequence

En(Jn+1(U ,−), F) −→ En(Jn(U ,−), F) −→ En(Jn(U ⊕ C,−) ∧ S2n, F).

Combining this with the definition of the induction functor, the Yoneda Lemma and
(
,�)-adjunction yields the result. ��
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Right Kan extensions can be constructed iteratively, particularly,

indn0 = indnn−1 ind
n−1
n−2 · · · ind10

hence Proposition 4.5 gives a means to iteratively calculate the derivatives.
The category E1 is equivalent to the category of spectra, see Sects. 5 and 6, hence

the first derivative of a functor may be given in terms of a spectrum.

Example 4.6 The first derivative of BU(−) is the shifted unitary sphere spectrum S
1

with trivial U (1) action. The homotopy fibre sequence identifying the derivative,
Proposition 4.5, is precisely the homotopy fibre sequence


SV −→ BU(V ) −→ BU(V ⊕ C).

Hence,

BU(1)(V ) � S2 dim V+1,

and thus

BU(1) � S
1.

In differential calculus one may use the derivative of a function to determine how
far a function is from being polynomial. In particular, the (n + 1)-st derivative of an
polynomial function of degree n is zero. In functor calculus, it is also possible to use
the derivative to measure the failure of a functor from being polynomial.

Proposition 4.7 (Proposition C) Let n be a non-negative integer and let F ∈ E0. There
is a homotopy fibre sequence

F (n+1)(U ) −→ F(U )
ρ−−→ τn F(U ),

for all U ∈ J0.

Proof This is the unitary version of [37, Proposition 5.3]. The proof works in the
exact same fashion. For an alternative perspective—which also transfers easily to the
unitary case—see [9, Lemma 5.5]. ��

As a corollary we see that the (n + 1)-st derivative of an n-polynomial functor is
trivial.

Corollary 4.8 Let n be a non-negative integer. If F is n-polynomial, then F (n+1) is
trivial.

Remark 4.9 The condition of Corollary 4.8 is necessary for a functor F to be n-
polynomial, but not sufficient. Consider the functor F ∈ E0 defined by

F(U ) =
{
S0 whenever dimU > 5
∗ otherwise.
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and for f ∈ J0(U , V ), F( f ) is the identity. The first derivative of F atU is given by

F (1)(U ) = hofibre[F(U ) −→ F(U ⊕ C)]

which is always contractible. So the first derivative of F vanishes. However for f :
C
5 −→ C

6, F( f ) is not a weak homotopy equivalence as ∗ �� S0, hence F is not
0-polynomial.

A useful result for showing an object is n-polynomial is the following result relating
n-polynomial objects and their homotopy fibre. The proof of which is an application
of the Five Lemma.

Lemma 4.10 Let n be a non-negative integer and let E ∈ E0 be an n-polynomial,
g : E −→ F a morphism in E0 and suppose that the (n + 1)-st derivative of F is
levelwise weakly contractible. Then the functor given by

U �−→ hofibre[E(U )
gV−→ F(U )],

is an n-polynomial.

We achieve the following corollary.

Corollary 4.11 Let n be a non-negative integer and let F ∈ E0. If F (n+1) is trivial,
then the functor given by U �−→ �F(U ) is n-polynomial.

An important example from orthogonal calculus [37, Example 5.7] is that the
functor given by

V �−→ �∞[(SRn⊗V ∧ �)hO(n)],

is n-polynomial, where � is a spectrum with an action of O(n). This result hold true
for unitary calculus, with a completely analogous proof.

Example 4.12 Let n be a non-negative integer. If � is a spectrum with an action of
U(n), then the functor F given by

U �−→ �∞[(SCn⊗U ∧ �)hU(n)],

is n-polynomial.

Proof Since F has a delooping, by Corollary 4.11, it suffices to show that F (n+1) is
levelwise weakly contractible. From Proposition 4.5, the (n + 1)-th derivative is the
homotopy fibre of

F (n)(U ) −→ �2n F (n)(U ⊕ C).

Iterating this process gives a sequence of derivatives in E0

F (n) −→ F (n−1) −→ . . . −→ F (i) −→ . . . −→ F (1) −→ F .
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We follow Weiss [37], and aim to identify this sequence with a sequence

F[n] −→ F[n − 1] −→ . . . −→ F[i] −→ . . . −→ F[1] −→ F,

where F[i](U ) = �∞[(SnU ∧ �)hU(n−i)], and U(n − i) fixes the first i coordinates.
Each F[i] comes with canonical inclusion maps

SiU ∧ �∞[(SnV ∧ �)hU(n−i)] ↪→ �∞[SiU ∧ (SnV ∧ �)hU(n−i)]
= �∞[(SiU ∧ SnV ∧ �)hU(n−i)]
↪→ �∞[(SnU ∧ SnV ∧ �)hU(n−i)]
→ �∞[(Sn(U⊕V ) ∧ �)hU(n−i)]

where the equality holds since U(n − i) fixes the first i-coordinates, hence fixes Ci .
This series of inclusions defines a structure map σ : SiU ∧F[i](V ) −→ F[i](U⊕V ),
hence F[i] ∈ Ei .

Moreover F[n] is an n�-spectrum (seeDefinition 5.5) in En , compare [37, Example
2.3]. We show that F[i + 1] is levelwise weakly equivalent to F[i](1), and since F[n]
is an n�-spectrum, F[n](1) will vanish, and hence so too will the (n+ 1)-st derivative
of F . We inductively calculate F[i](1).

F[i](1)(U ) = hofibre
[
F[i](U ) −→ �2i F[i](C ⊕U )

]

= hofibre
[
�∞[(SnU ∧ �)hU(n−i)] −→ �2i�∞[(Sn(C⊕U ) ∧ �)hU(n−i)]

]

= �∞ hofibre
[
(SnU ∧ �)hU(n−i) −→ �2i (Sn(C⊕U ) ∧ �)hU(n−i)

]

� �∞ hofibre
[
(SnU ∧ �)hU(n−i) −→ �2i (S2n ∧ SnU ∧ �)hU(n−i)

]

� �∞ hofibre
[
(SnU ∧ �)hU(n−i) −→ �2i (S2i ∧ S2(n−i) ∧ SnU ∧ �)hU(n−i)

]

� �∞ hofibre
[
(SnU ∧ �)hU(n−i) −→ �2i
2i (S2(n−i) ∧ SnU ∧ �)hU(n−i)

]

� �∞ hofibre
[
(SnU ∧ �)hU(n−i) −→ (S2(n−i) ∧ SnU ∧ �)hU(n−i)

]

Now consider the map, SnU ∧ � −→ S2(n−i) ∧ SnU ∧ �. This map is

S0 ∧ SnU ∧ �
ι∧id∧ id−−−−−→ S2(n−i) ∧ SnU ∧ �,

where ι : S0 −→ S2(n−i) is the canonical inclusion. The map ι has stable homotopy
fibre S2(n−i)−1. Hence ι ∧ id∧ id has homotopy fibre S2(n−i)−1 ∧ SnU ∧ �, where
U(n − i) acts on S2(n−i)−1 by identifying S2(n−i)−1 with the unit sphere S(Cn−i ) of
C
n−i . Taking homotopy orbits commutes with homotopy fibres, so the map

(SnU ∧ �)hU(n−i) −→ (S2(n−i) ∧ SnU ∧ �)hU(n−i),
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has homotopy fibre,

(S2(n−i)−1 ∧ SnU ∧ �)hU(n−i).

It follows that

F[i](1)(U ) � �∞[(S2(n−i)−1 ∧ SnU ∧ �)hU(n−i)] � �∞[(SnU ∧ �)hU(n−i−1)]
= F[i + 1](U ).

The last weak equivalence follows sincewemay identify S2n−1 withU(n)/U(n−1),
and

(S(Cn)+ ∧ X)hU(n) = EU(n)+ ∧U(n) (U(n)/U(n − 1)+ ∧ X) = EU(n)+ ∧U(n−1) X

� EU(n − 1)+ ∧U(n−1) X � XhU(n−1).

��

4.2 The n-homogeneousmodel structure

The n-th derivative allows for us to equip E0 with a model structure which captures the
homotopy theory of both polynomial and homogeneous functors of degree less than
or equal n. This model structure is a right Bousfield localisation (or a cellularization)
of the n-polynomial model structure.

Proposition 4.13 Let n be a non-negative integer. There is a topological model struc-
ture on E0 where the weak equivalences are those maps f such that indn0 Tn f is a weak
equivalence in E0, the fibrations are the fibrations of the n-polynomial model struc-
ture and the cofibrations are those maps with the left lifting property with respect to
the acyclic fibrations. The fibrant objects are n-polynomial and the cofibrant–fibrant
objects are the projectively cofibrant n-homogeneous functors.

Proof Right Bousfield localising n –poly– E0 at the set of objects,

Kn = {Th(γn(U ,−)) : U ∈ J },

we achieve the stated model structure. ��
We call this the n-homogeneous model structure and denote this model structure

by n –homog– E0. This is the unitary version of the model structure given by Barnes
and Oman [9, Proposition 6.9]. We further characterise the n-homogeneous model
structure in Sect. 8 once we have a classification of the n-homogeneous functors.

5 An intermediate category

In [37], Weiss gives a (zig-zag) equivalence up to homotopy between the categories
of n-homogeneous functors and orthogonal spectra with an action of O(n). Barnes
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and Oman give a more concrete description of this equivalence in [9] via the use of
model categories. They construct an intermediate model category which is the natural
home for the n-th derivatives of orthogonal functors. They proceed to show that the
intermediate category is both Quillen equivalent to the category of orthogonal spectra
with an action of O(n), and the n-homogeneous model structure. Their use of model
structures formalises the “up to homotopy” approach of Weiss.

We start by giving the definition of the unitary intermediate category, U(n)En ,
and extending the restriction-induction adjunction into an adjunction between these
intermediate categories. From this we construct Quillen equivalences analogous to
those constructed by Barnes and Oman.

The categoryJn isU(n) Top∗-enriched via the induced action ofU(n) onJn(U , V )

by the regular representation action of U(n) on Cn .

Definition 5.1 Let n be a non-negative integer. The intermediate category U (n)En is
the category of U(n) Top∗-enriched functors from Jn to U(n) Top∗.

Define nS : Jn −→ Top∗ to be the functor given by U �−→ SnU . Note that
nS(U ) = Jn(0,U ). Using the standard Day convolution product, one can verify that
nS is a commutativemonoid in I- spaces, where I is the category of finite-dimensional
complex inner product spaces with linear isometric isomorphisms. Moreover, this
multiplication is U(n)-equivariant and hence nS is also a commutative monoid in
U(n)I Top∗, the category of U(n)-equivariant I-spaces.

Proposition 5.2 Let n be a non-negative integer. The category En is equivalent to the
category of nS-modules in I-spaces, and the category U(n)En is equivalent to the
category of nS-modules in U(n)-equivariant I-spaces.

Proof By [33], the category of nS-modules is a diagram category indexed on Jn ,
whereJn is the category with the same objects as Jn and morphism spaces given by
the enriched coend

Jn(V ,W ) ∼=
∫ U∈I

I(U ⊕ V ,W ) ∧ SnU .

It is then straightforward to check that the map specified by

I(U ⊕ V ,W ) ∧ SnU −→ Jn(V ,W ), ( f , u) �−→ ( f |V , (Cn ⊗ f )(u)),

is a suitably U(n)-equivariant isomorphism. ��

5.1 The n-stable model structure

This description as a category of modules allows for a stable model structure to be
placed on U(n)En similar to the stable model structure on spectra. For this we define
the weak equivalences and fibrant objects. The constructions are as in [33]. The model
structure is a left Bousfield localisation of the projective model structure given below.
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Lemma 5.3 Let n be a non-negative integer. There is a cellular, proper, topological
model structure on the category U(n)En with weak equivalences and fibrations defined
as levelwise weak homotopy equivalences and Serre fibrations respectively. The gen-
erating (acyclic) cofibrations are of the form

Jn(U ,−) ∧U (n)+ ∧ i,

for U ∈ Jn and i a generating (acyclic) cofibration.

Proof This is essentially [33, Theorem 6.5] but the diagrams are in U (n) Top∗ rather
than Top∗. ��

The weak equivalences are an alternation of the π∗-isomorphisms of spectra to take
into account the structure maps S2 ∧ Xk −→ Xk+1.

Definition 5.4 For X ∈ U(n)En define the n-homotopy groups of X as

nπk X = colim
q

π2nq+k X(Cq).

for all k ∈ Z. A map f : X −→ Y in U (n)En is a nπ∗-isomorphism if it induces an
isomorphism on all n-homotopy groups.

The fibrant objects will be similar to �-spectra but take into account the structure
maps of nS-modules.

Definition 5.5 An object X ∈ U(n)En is an n�-spectrum if the adjoint structure maps

X(V ) −→ �nW X(V ⊕ W ),

are weak homotopy equivalences for all V ,W ∈ Jn .

Denote the restricted composition map by

λnU ,V : Jn(U ⊕ V ,−) ∧ SnV −→ Jn(U ,−).

We factor λnU ,V into a cofibration

knU ,V : Jn(U ⊕ V ,−) ∧ SnV −→ MλnU ,V ,

where MλnU ,V is the mapping cylinder of λnU ,V , and a deformation retraction

rnU ,V : MλnU ,V −→ Jn(U ,−).

Denote by knU ,V�i the pushout product

knU ,V�i : Jn(U ⊕ V , −)∧SnV ∧ B)∪Jn(U⊕V ,−)∧SnV ∧A)(MλnU ,V ∧ A)−→MλnU ,V ∧ B

of the map knU ,V : Jn(U ⊕ V ,−) ∧ SnV −→ MλnU ,V with i : A −→ B.
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Proposition 5.6 ([33, Theorem 9.2]) Let n be a non-negative integer. There is a cofi-
brantly generated, proper, stable, topological model structure on the category U(n)En,
where the weak equivalences are the nπ∗-isomorphisms, the cofibrations are the q-
cofibrations and the fibrations are those maps which satisfy the right lifting property
with respect to the acyclic q-cofibrations. The generating cofibrations are those of the
projective model structure and the generating acyclic cofibrations are the union of the
projective generating acyclic cofibrations together with the set

K n
V ,W�IU(n) Top∗ := {knV ,W�i : i ∈ IU(n) Top∗ , V ,W ∈ I},

where IU(n) Top∗ is the set of generating cofibrations for the underlying model structure
on U(n) Top∗.

We call this the n-stable model structure. It is homotopically compactly generated
by U(n)+ ∧ nS.

The derivatives of n-polynomial objects are well behaved with respect to the n-
stable model structure, in that they are n�-spectra. Since n�-spectra are the fibrant
objects in the n-stable model structure, the following result indicates that the n-stable
model structure gives homotopical control over the derivatives. The orthogonal version
of this may be found in [9, Proposition 5.12] or [37, Proposition 5.12].

Lemma 5.7 Let n be a non-negative integer. If E is an n-polynomial in E0, then for
any V ∈ J0, the map

E (n)(V ) −→ �2n E (n)(V ⊕ C),

is a weak homotopy equivalence.

6 The intermediate category as a category of spectra

The intermediate category, U(n)En is Quillen equivalent to spectra with an action of
U(n). We digress from discussing the Taylor tower to discuss this equivalence. It will
allow us to reduce the proof of the equivalence between the intermediate category and
the n-homogeneous model structure to the consideration of spectra, see Theorem 7.5.
We start with a discussion of unitary spectra, which is a version of the diagram spectra
of Mandell et al. [33].

6.1 Unitary spectra

Let I be the category with the same objects as J and morphisms the complex linear
isometric isomorphisms. The category of unitary spectra is the category of diagram
spectra over I, [33, Definition 1.9]. That is, a unitary spectrum X is an S-module in
the category of I-spaces, where S is the sphere functor which sends a complex inner
product space to its one-point compactification.Wewill denote the category of unitary
spectra as SpU .

123



Unitary calculus: model categories and... 443

Remark 6.1 Unitary spectra appear in the literature [35, §§7.2] under the guise of a
sequence of spaces {Xn}n∈N such that U(n) acts on Xn , together with structure maps

Xn ∧ S2 −→ Xn+1

such that the iterated structure maps

Xn ∧ S2m −→ Xn+m

are (U(n) × U(m))-equivariant.

Using the vector bundle construction of spectra, we can think of unitary spectra as
the category of Top∗ enriched functors from J1 to Top∗, see [36, Remark 2.7], where
Schwede gives an equivalence of categories between orthogonal G-spectra defined
similar to unitary spectra in Remark 6.1 and the definition of orthogonal G-spectra
used by Mandell and May [32].

Denote evaluation at U ∈ J1 by EvU : SpU −→ Top∗, and its left adjoint by FU .
The category I satisfies all the required properties of a diagram category from [33].
We can thus talk about diagram spectra indexed on I or diagram spaces indexed on
J1. These categories are isomorphic by [33, Theorem 2.2].

We now give it a stable model structure. Similarly to [33, Definition 8.4] define a
map

λU ,V : FU⊕V S
V −→ FU S0,

to be the map adjoint to the canonical inclusion

SV −→ (FU S0)(U ⊕ V ) � U(U ⊕ V )+ ∧U(V ) S
W , w �−→ e ∧ w,

where e ∈ U(U ⊕ V ) is the identity element, and the equivalence follows from the
unitary version of [33, Example 4.4].

Definition 6.2 Let MλU ,V be the mapping cylinder of λU ,V . Then λU ,V factors as the
composite of a q-cofibration

kU ,V : FU⊕V S
V −→ MλU ,V ,

and a deformation retraction rU ,V : MλU ,V −→ FU S0. Let KU ,V�I be the set of
maps of the form kU ,V�i for i ∈ I . Define K to the union of the generating acyclic
cofibrations of the projective model structure

F J = {FU j : j ∈ J , U ∈ I},

with the sets KU ,V�I .
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The π∗-isomorphisms for unitary spectra have to take into account the suspension
coordinate S2 of the structure maps. Hence for a unitary spectrum X and k ∈ Z, the
k-th homotopy group of X is defined as:

πk X = colim
q

π2q+k X(Cq).

Proposition 6.3 ([33, Theorem 9.2]) The category SpU of unitary spectra is a
cofibrantly generated stable model category with respect to the π∗-isomorphisms q-
fibrations and q-cofibrations. The set of generating q-cofibrations is the set

F I = {FU i : i ∈ I , U ∈ I}

and set of generating acyclic q-cofibrations is the set K defined above.

Let J O be the category of finite-dimensional real inner product subspaces of R∞
with morphisms real linear isometries. There is a realification (decomplexification)
functor r : J −→ J O given by forgetting the complex structure, that is, r(Ck) =
R
2k . Precomposition with r gives a functor r∗ : SpO −→ SpU , which we call pre-

realification.
Pre-realification has a left adjoint r! : SpU −→ SpO given by the leftKan extension

along r , that is,

r!(X)(V ) =
∫ U∈J

J O
1 (r(U ), V ) ∧ X(U ).

Theorem 6.4 (Theorem F) The adjoint pair

r! : SpU SpO : r∗ ,

is a Quillen equivalence.

Proof The right adjoint preserves acyclic fibrations (which are levelwise acyclic fibra-
tions of based spaces, see [33, Proposition 9.9]) and fibrant objects. Moreover a
standard cofinality argument shows that the right adjoint is homotopically conser-
vative, that is, reflects weak equivalences. It is left to show that the derived unit of
the adjunction is an isomorphism. Note that the left adjoint preserves coproducts.
Then, since the stable model structure on unitary spectra is homotopically compactly
generated by the unitary sphere spectrum S and both SpU and SpO are stable model
categories, it suffices to show that the unit is an equivalence on the generator S. Apply-
ing the left adjoint r! to the sphere S, is equivalent to the functor V �→ S(c(V )), where
c is the complexification functor, and the unit of the adjunction is equivalent to the
map S → r∗c∗

S = (c ◦ r)∗S, which is readily seen to be a stable equivalence. ��
Corollary 6.5 The adjoint pair

r! : SpU [U(n)] SpO [U(n)] : r∗ ,
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is a Quillen equivalence.

Remark 6.6 This relation between orthogonal and unitary spectra hints at a bigger rela-
tion between the two calculi. The pre-realification functor defines a functor between
the orthogonal calculus input category and the unitary calculus input category. In
future work we will examine how the pre-realification functor behaves with respect to
n-polynomial and n-homogeneous functors.

6.2 The Quillen equivalence

The intermediate category is Quillen equivalent to the stable model structure on the
category of orthogonal spectrawith an action ofU(n). To construct the required adjunc-
tion we first construct a U(n) Top∗-enriched functor αn : Jn −→ ε∗J1, where ε∗J1
is the 1-st jet category equipped with the trivial U(n)-action via the inclusion of the
trivial subgroup ε : {e} → U (n). On objects, define αn(V ) = C

n ⊗V = nV . On mor-
phisms, define αn( f , x) = (Cn ⊗ f , x). This defines a U(n) Top∗-enriched functor
αn : Jn −→ ε∗J1. The adjunction is given as follows.

Proposition 6.7 Let n be a non-negative integer. There is an adjoint pair

(αn)! : U(n)En SpU [U(n)] : (αn)
∗ ,

with α∗
n�(V ) = �(nV ), and (αn)! is the left Kan extension along αn.

Proof Precomposition with αn defines a functor

(αn)
∗ : SpU [U (n)] −→ U(n)En,

whereU (n)-acts on (αn)
∗�(V ) = �(nV ) by composition of the internal U(n)-action

via the regular representation of U(n) on C
n ⊗ V and the external U(n)-action of

�(nV ) ∈ U(n) Top∗. By definition of X these actions commute. Checking that this
action gives a well defined object of U(n)En follows as for the orthogonal version [9,
§8].

The left Kan extension along αn , denoted (αn)!, may be written as the coend

(αn)!Y (V ) =
∫ U∈Jn

Y (U ) ∧ J1(nU , V ),

which is suitably enriched since J1 acts on the left of J1(nU , V ) by the composition

J1(V ,W ) ∧ J1(nU , V ) −→ J1(nU ,W ),

and Jn acts on the right via the composition

J1(nU , V ) ∧ Jn(W ,U ) −→ J1(nU , V ) ∧ J1(nW , nU ) −→ J1(nW , V )

((g, y), ( f , x)) �−→ ((g, y), (Cn ⊗ f , x))
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�−→ (g ◦ (Cn ⊗ f ), y + (idCn ⊗g)(x)).

The adjunction then follows by a straightforward calculus of coends argument. ��
Theorem 6.8 (Theorem D) Let n be a non-negative integer. The adjoint pair

(αn)! : U(n)En SpU [U(n)] : (αn)
∗ ,

is a Quillen equivalence.

Proof As it is defined by precomposition, the right adjoint preserves acyclic fibra-
tions and fibrant objects. Suppose f : � −→ � is a map of spectra such that
(αn)

∗ f : (αn)
∗� −→ (αn)

∗� is a nπ∗-isomorphism. Then

πk� = colim
q

π2q+k�(Cq ) ∼= colim
q

π2nq+k�(Cnq ) ∼= colim
q

π2q+k�(nCq ) = nπk(αn)
∗�.

A similar calculation shows that πk� ∼= nπk(αn)
∗�, and hence the right adjoint is

homotopically conservative.
Since both model categories are stable and the left adjoint commutes with coprod-

ucts, it suffices to show that the (derived) unit is an isomorphism on the homotopical
compact generator U(n)+ ∧ nS of U (n)En . This is similar to Theorem 6.4, where we
write the left adjoint as a coend and work through the definitions. ��
Corollary 6.9 Let n be a non-negative integer. The adjoint pair

(αn ◦ r)! : U(n)En SpO [U(n)] : (αn ◦ r)∗ ,

is a Quillen equivalence.

Proof This is Theorems 6.8 and 6.4, together with the fact that composition of left
(resp. right) Quillen functors is a left (resp. right) Quillen functor. ��

7 Differentiation as a Quillen functor

We construct a Quillen equivalence between the intermediate category and the
n-homogeneous model structure on E0, which allows for a slicker proof of the char-
acterisation of n-homogeneous functors than the orthogonal version of Weiss [37,
Theorem 7.3].

There is an adjunction

resn0 : En E0 : indn0 ,

which we want to extend to an adjunction between U (n)En and E0. To do this, we
combine the restriction-induction adjunction with the change of group adjunctions
from [32].
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Definition 7.1 Let 0 ≤ m < n. Define the restriction-orbit functor

resmn /U(n − m) : U(n)En −→ U(m)Em,

as X −→ (X ◦ inm)/U(n − m), where ((X ◦ inm)/U(n − m))(V ) = X(V )/U(n − m).

The U(n − m)-orbits functor (−)/U(n − m) : U(n) Top∗ −→ U(m) Top∗ has a
right adjoint. Let A be aU (m)-space, then A is a (U(m)×U(n−m))-space by letting
U(n − m) act trivially. To distinguish we denote the (U(m) × U(n − m))-space A by
ε∗A. Letting F(−,−) denote the internal function object in (U(m)×U(n−m))-spaces,
we define the inflation of A as

CInm A = FU(m)×U(n−m)(U(n)+, ε∗A),

where U(m) ⊂ U(n) acts on the first m-coordinates and U(n − m) acts on the latter
(n − m)-coordinates.

Definition 7.2 Define the inflation-induction functor indnm CI : U(m)Em −→ U(n)En
to be

(indnm CI(X))(V ) = U(m)Em(Jn(V ,−),CInm X).

In particular, there is an adjunction

resn0 /U(n) : U(n)En E0 : indn0 ε∗ ,

where ε is the inclusion of the trivial subgroup into U(n). This adjunction is a Quillen
adjunction.

Proposition 7.3 Let n be a non-negative integer. The adjoint pair

resn0 /U(n) : U(n)En n –homog– E0 : indn0 ε∗

is a Quillen adjunction when U(n)En is equipped with the n-stable model structure.

Proof The projective model structure on U(n)En is cofibrantly generated, hence by
[24, Lemma 2.1.20] it suffices to show that the left adjoint preserves the generating
(acyclic) cofibrations. Restriction-orbits applied to a generating (acyclic) cofibration
yields Jn(V ,−) ∧ i where i is a generating (acyclic) cofibration of Top∗.

Since the projective model structure on E0 is cofibrantly generated, J0(V ,−) is
cofibrant. The sphere bundle Sγn(V ,−)+ is homeomorphic to the homotopy colimit

hocolim
0 �=U⊂Cn+1

J0(U ⊕ V ,−),

and hence Sγn(V ,−)+ is cofibrant by [22, Theorem 18.5.2(1)]. Since Sγn(V ,−)+
and J0(V ,−) are both cofibrant, and the mapping cone of a map between cofibrant
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objects are cofibrant, it follows that Jn+1(V ,−) is cofibrant, as the mapping cone of
Sγn(V ,−)+ −→ J0(V ,−). Hence, Jn(V ,−) ∧ i is an (acyclic) cofibration in E0,
and there is a Quillen adjunction

resn0 /U(n) : U(n)En E0 : indn0 ε∗ ,

when U(n)En is equipped with the projective model structure.
Composition of left (resp. right) Quillen functors is well behaved, see [24, §1.3.1],

hence the Quillen adjunction between projective model structures extends through the
Quillen adjunction

1 : E0 n –poly– E0 : 1 ,

to a Quillen adjunction

resn0 /U(n) : U(n)En n –poly– E0 : indn0 ε∗.

The n-stable model structure is a left Bousfield localisation ofU(n)En , hence to extend
to a Quillen adjunction on the n-stable model structure it suffices by [22, Theorem
3.1.6, Proposition 3.3.18] to show that indn0 ε∗ sends fibrant objects in n –poly– E0
to fibrant objects in U(n)En . By Proposition 3.9 and Proposition 5.6, this reduces to
showing that inflation-induction sends an n-polynomial object to a n�-spectrum. This
is precisely the content of Lemma 5.7.

We now extend to the n-homogeneous model structure—which is a right Bousfield
localisation of n –poly– E0—using [22, Proposition 3.3.18]. Suppose f : E −→ F is
a Kn-cellular equivalence between fibrant (n-polynomial) objects, then

indn0 ε∗E(V ) = E0(Jn(V ,−), E) −→ E0(Jn(V ,−), F) = indn0 ε∗F(V ),

is a weak homotopy equivalence. It follows by definition that that indn0 ε∗ f is a
levelwise weak equivalence hence a n-stable equivalence. An application of [22,
Proposition 3.3.18] yields the result. ��

We now give the desired Quillen equivalence. We give a different proof to that of
Barnes and Oman [9, Theorem 10.1] for the orthogonal calculus case. We begin with
an example which will be useful. The proof of which may be found in [37, Example
6.4].

Example 7.4 Let � be a spectrum with U(n)-action. The functors E and F , given by
the formulae

E(U ) = [�∞(SnU ∧ �)]hU(n)

F(U ) = �∞[(SnU ∧ �)hU(n)]

are weakly equivalent in n –poly– E0, that is TnE −→ TnF is a levelwise weak
equivalence.
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Recall thatwe denote cofibrant replacement by Q and fibrant replacement by R. The
model structures in which we are carrying our the respective (co)fibrant replacements
should be clear from context.

Theorem 7.5 (Theorem E) Let n be a non-negative integer. The adjoint pair

resn0 /U(n) : U(n)En n –homog– E0 : indn0 ε∗ ,

is a Quillen equivalence.

Proof We use [24, Corollary 1.3.16]. The right adjoint reflects weak equivalen-
ces between fibrant objects. Indeed, let f : E −→ F be a map in E0 such that
indn0 ε∗ f : indn0 ε∗E −→ indn0 ε∗F is an nπ∗-isomorphism. Without loss in general-
ity we may assume that both E and F are n-polynomial. It follows that

indn0 ε∗Tn f : indn0 ε∗TnE −→ indn0 ε∗TnF,

is a levelwise weak equivalence.
It is left to show that the derived unit of the adjunction is an equivalence on cofibrant

objects X ∈ U(n)En . Denote by � the derived image of X under the Quillen equiva-
lence between the intermediate category and the category of spectra with an action of
U(n), i.e., � = (αn ◦ r)!X . It follows that X is n-stably equivalent to (αn ◦ r)∗R�.
It suffices to show that the derived until is an equivalence on objects of U(n)En of the
form (αn ◦ r)∗� with � a bifibrant spectrum with an action of U(n). The derived unit
map in question is given by is given by

Q(αn ◦ r)∗� −→ indn0 ε∗Tn resn0(Q(αn ◦ r)∗�)/U(n).

The codomain of the unit map is levelwise weakly equivalent to the functor

indn0 ε∗Tn(EU(n)+ ∧U(n) res
n
0((αn ◦ r)∗�)/U(n),

since by the unitary calculus version of [9, Lemma 9.3], we can up to levelwise weak
equivalence identify the left derived functor or the restriction-orbits functor with the
functor

EU(n)+ ∧U(n) res
n
0 .

At U ∈ J , there is an identification

(αn ◦ r)∗�(U ) = �(r(nU )) � �∞(SnU ∧ �),

hence resn0(Q(αn ◦r)∗�)/U(n) is levelwise weakly equivalent to the functor given by

U �−→ EU(n)+ ∧U(n) [�∞(SnU ∧ �)] = [�∞(SnU ∧ �)]hU(n).
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By Example 7.4 this last is Tn-equivalent to the functor given by

U �−→ [�∞(SnU ∧ �)hU(n)].

Example 4.12 calculates the n-th derivative of this functor as the functor given by

U �−→ �∞(SnU ∧ �),

which in turn is levelwise weakly equivalent to (αn ◦ r)∗�, and the result follows. ��

8 The classification of homogeneous functors

We return now to discussing the Taylor tower. We have seen that the layers of the
tower are homogeneous. We now show that n-homogeneous functors (in particular
the layers of the tower) are completely determined by spectra with an action of U(n).
This result is an extension of [37, Theorem 7.3]. Here,Weiss shows that an orthogonal
n-homogeneous functor E is levelwise weakly equivalent to the functor

V �−→ �∞[(SRn⊗V ∧ �n
E )hO(n)].

8.1 Classification of homogeneous functors

The above Quillen equivalence gives an equivalence between the homotopy category
of the n-homogeneous model structure and the homotopy category of the n-stable
model structure. It follows that for an object F ∈ E0, inflation-induction and the
left adjoint to (αn ◦ r)∗ determine a spectrum �n

F with an action of U(n). That is,
�n

F = (αn ◦ r)! indn0 ε∗F .
With this we can classify n-homogeneous functors, analogous to Weiss [37,

Theorem 7.3] and Barnes–Oman [9, Theorem 10.3]. The proof here—aided by the
language of model categories and localisations—is significantly more straightforward
that than of [37, Theorem 7.3], yet still rather technical.

Theorem 8.1 (Theorem A) Let F ∈ E0 be n-homogeneous for some n > 0. Then F is
levelwise weakly equivalent to the functor defined as

U �−→ �∞[(SnU ∧ �n
F )hU(n)].

Proof Let F be n-homogeneous and define a new functor E to be E(U ) =
(indn0 ε∗F(U ))hU(n). This functor is Tn-equivalent to the functor G defined as

G(U ) = �∞[(SnU ∧ �n
F )hU(n)],

which is n-polynomial by Example 4.12. Indeed, the Tn-equivalence follows since

E(U ) = (indn0 ε∗F(U ))hU(n) = (�n
F (r(nU )))hU(n) � [�∞(SnU ∧ �n

F )]hU(n).
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ByExample 7.4, the functor E (through the above equivalence) is in turn Tn-equivalent
to the functor G

U �−→ �∞[(SnU ∧ �n
F )hU(n)].

SinceG is levelwise weakly equivalent to TnG, it follows that TnE is levelwise weakly
equivalent to G.

Since indn0 ε∗ is a right Quillen functor, indn0 ε∗TnE is levelwise weakly equivalent
to indn0 ε∗G. By Example 4.12, we may identify the n-th derivative of G, indn0 ε∗G,
with the functor G[n], given by

U �−→ �∞(SnU ∧ �n
F ).

This last is levelwise weakly equivalent to indn0 ε∗F , since the above functor is
n-stably equivalent to indn0 ε∗F and both are fibrant in U(n)En .

Since G is levelwise weakly equivalent to TnE , it follows that indn0 ε∗TnE is level-
wise weakly equivalent to indn0 ε∗TnF . A double application ofWhiteheads’ Theorem
[22, Theorem 3.2.13], for right and left Bousfield localisations respectively yields the
result. ��

8.2 Characterising the n-homogeneousmodel structure

With this classification result we can further characterise the weak equivalences and
cofibrations of the n-homogeneous model structure. This new characterisation is also
true in the orthogonal calculus setting. These results are similar to those for Goodwillie
calculus [11] since the construction of the model categories are similar. However there
are substantial differences, for example the (homotopy) cross effect functor plays an
important role in Goodwillie calculus, and the model structures of [11], but has no
natural analogue in our theory.

We start with the weak equivalences. The construction of the derivative is quite
complex, hence detecting weak equivalences via indn0 Tn can be laborious. We show,
using the classification theorem for n-homogeneous functors, Theorem 8.1, that weak
equivalences are detected by Dn , where

DnF = hofibre[TnF −→ Tn−1F].

Proposition 8.2 Let n be a non-negative integer. A map f : E −→ F is an indn0
Tn-equivalence if and only if Dn f : DnE −→ DnF is a levelwise weak equivalence.

Proof Suppose that Dn f is a levelwise weak equivalence. Since indn0 preserves lev-
elwise weak equivalences, indn0 Dn f is a levelwise weak equivalence. Moreover as
the n-th derivative of an (n − 1)-polynomial object is levelwise weakly contractible,
indn0 Tn−1E and indn0 Tn−1F are both levelwise weakly contractible and hence lev-
elwise weakly equivalent. The following diagram made from the homotopy fibre
sequences defining DnE and DnF together with an application of the Five Lemma
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implies that indn0 Tn f is a levelwise weak equivalence.

indn0 DnE

indn0 Dn f

indn0 TnE

indn0 Tn f

indn0 Tn−1E

indn0 Tn−1 f

indn0 DnF indn0 TnF indn0 Tn−1F

Conversely suppose that indn0 Tn f is a levelwise weak equivalence. Then the spec-
tra �n

E and �n
F are stably equivalent. As such the spectra (SnV ∧ �n

E )hU(n) and
(SnV ∧ �n

F )hU(n) are stably equivalent for every V ∈ J . Since for any spectrum
�, πn� = πn�

∞�, we have that �∞[(SnV ∧ �n
E )hU(n)] and �∞[(SnV ∧ �n

F )hU(n)]
are weakly homotopy equivalent. By the classification of n-homogeneous functors it
follows that DnE and DnF are levelwise weakly equivalent. ��

It is also possible to characterise the acyclic fibrations.

Proposition 8.3 Let n be a non-negative integer. A map f : E −→ F is an acyclic
fibration in the n-homogeneous model structure if and only if it is a fibration in the
(n − 1)-polynomial model structure and an indn0 Tn-equivalence.

Proof A map is a fibration in the (n − 1)-polynomial model structure if and only if it
is a levelwise fibration and the square

E

f

Tn−1E

Tn−1 f

F Tn−1F

is a homotopy pullback square. Consider the diagram

E

f

TnE

Tn f

Tn−1E

Tn−1 f

F TnF Tn−1F .

If f : E −→ F is an acyclic fibration in the n-homogeneous model structure, then
it is an indn0 Tn-equivalence and a fibration in in n-polynomial model structure, since
n –homog– E0 is a right Bousfield localisation of n –poly– E0. It follows that the left
hand square is a homotopy pullback. The right hand square in the above diagram is also
homotopy pullback since the horizontal (homotopy) fibres are levelwise equivalent, see
[34, Proposition 3.3.18]. By the Pasting Lemma [22, Proposition 13.3.15], the outer
rectangle is a homotopy pullback and hence f is a fibration in the (n− 1)-polynomial
model structure.

Conversely if f is a fibration in the (n − 1)-polynomial model structure then the
outer rectangle in the above diagram is a homotopy pullback. Moreover, f being an
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indn0 Tn-equivalence yields the right hand square as a homotopy pullback, again by
[34, Proposition 3.3.18]. Another application of the Pasting Lemma yields that the
left hand square is a homotopy pullback and hence f is a fibration in the n-polynomial
model structure, and hence a fibration in the n-homogeneous model structure. ��

This allows us to characterise the acyclic fibrations between fibrant objects.

Corollary 8.4 Let n be a non-negative integer. A map f : E −→ F between
n-polynomial objects is an acyclic fibration in the n-homogeneous model structure
if and only if it is a fibration in the (n − 1)-polynomial model structure.

Proof By Proposition 8.3 it suffices to show that a fibration in (n − 1) –poly– E0
between n-polynomial objects is an n-homogeneous equivalence. Let f : E −→ F
be a fibration in (n−1) –poly– E0 and E and F , n-polynomial. Thenwe have a diagram

E

f

TnE

Tn f

Tn−1E

Tn−1 f

F TnF Tn−1F .

as in Proposition 8.3. The outer square of this diagram is a homotopy pullback since
f : E −→ F is a fibration in (n − 1) –poly– E0. Since E and F are n-polynomial,
the left-hand horizontal maps are levelwise equivalences and the right-hand square is
a homotopy pullback. The result then follows by [34, Proposition 3.3.18] and Propo-
sition 8.2. ��

We now turn our attention to the cofibrations.

Lemma 8.5 Let n be a non-negative integer. A map f : X −→ Y is a cofibration in
the n-homogeneous model structure if and only if it is a projective cofibration and an
(n − 1)-polynomial equivalence.

Proof By definition, f : X −→ Y is a n-homogeneous cofibration if and only if
it has the left lifting property with respect to n-homogeneous acyclic fibrations. By
right properness of n –homog– E0 and [22, Proposition 13.2.1], this is equivalent to
f : X −→ Y having the left lifting property with respect to acyclic fibrations between
fibrant objects. By Lemma 8.4 this is equivalent to having the left lifting property
with respect to fibrations in the (n − 1)-polynomial model structure. It follows that
f : X −→ Y is a cofibration in n –homog– E0 if and only if it is an acyclic cofibration
in (n − 1) –poly– E0, that is, if and only if it is a projective cofibration and an (n − 1)-
polynomial equivalence. ��
Corollary 8.6 Let n be a non-negative integer. The cofibrant objects of the
n-homogeneous model structure are precisely those n-reduced projectively cofibrant
objects.

Proof Let E be cofibrant in n –homog– E0 and apply Lemma 8.5 to the map ∗ −→ E .
��
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8.3 The complete Taylor tower

The description of the n-homogeneous functors in particular gives a description of the
layers of the Taylor tower. Hence at U ∈ J0, the Taylor tower of F ∈ E0 is

.

.

.

rn+1

Tn F(U )

rn

�∞[(SnU ∧ �n
F )hU(n)]

Tn−1F(U )

rn−1

�∞[(S(n−1)U ∧ �n−1
F )hU(n−1)]

.

.

.

r2

T1F(U )

r1

�∞[(SU ∧ �1
F )hU(1)]

F(U ) F(C∞).

9 Analyticity and convergence

One of the big questions in any version of functor calculus is that of convergence of
the Taylor tower. This question is really two-fold; does the tower converge? And, if
so, what is does the tower converge to?

Definition 9.1 The Taylor tower of a functor F ∈ E0 converges at U ∈ J0 if the
induced map

F(U ) −→ holim
n

TnF(U ),

is a weak homotopy equivalence. We say that F is weakly ρ-analytic if its Taylor
tower converges at U with dim(U ) ≥ ρ.

Before we talk about special classes of functors for which the Taylor tower is known
to converge, there is a classical approach. Since we have a homotopy fibre sequence

�∞[(SnU ∧ �n
F )hU(n)] −→ TnF(U ) −→ Tn−1F(U ),

for all U ∈ J0, we can apply [14, Section IX.4].
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Definition 9.2 Let F ∈ E0. The Weiss spectral sequence associated to F at U ∈ J0
is the homotopy spectral sequence of the tower of pointed spaces {TnF(U )}n∈N with
E1-page

E1
s,t

∼= πt−s�
∞[(SsU ∧ �s

F )hU(s)] ∼= πt−s(S
sU ∧ �s

F )hU(s),

and abuts to

π∗holim
n

TnF(U ).

This spectral sequence indicates why studying the layers of the tower is important,
a firm grasp of the layers gives a firm grasp on the spectral sequence and hence on its
limit.

Remark 9.3 Bousfield and Kan [14] provide a method of comparison between this
spectral sequence for different towers of fibrations. It would be interesting to see how
this Bousfield-Kan map of spectral sequences interacts with the comparison functors
between orthogonal and unitary calculi.

9.1 Agreement

We start with the notion of agreement to order n. This is the unitary version of order n
agreement fromGoodwillie calculus [19, Definition 1.2]. These connectivity estimates
played a crucial role in bothGoodwillie calculus [18, Proposition 1.17] and orthogonal
calculus [38].

Definition 9.4 Let n be a non-negative integer. Amap p : F −→ G in E0 is an order n
unitary agreement if there is some ρ ∈ N and b ∈ Z such that pU : F(U ) −→ G(U )

is (2(n + 1) dim(U ) − b)-connected for all U ∈ J0, satisfying dim(U ) ≥ ρ. We
will say that F agrees with G to order n if there is an order n unitary agreement
p : F −→ G between them.

When two functors agree to a given order, their Taylor tower agree to a prescribed
level. The first result in that direction is the unitary analogue of [38, Lemma e.3].

Lemma 9.5 let p : G −→ F be a map in E0. Suppose that there is b ∈ Z such that
pU : G(U ) −→ F(U ) is (2(n + 1) dim(U ) − b)-connected for all U ∈ J0. Then

τn(p)U : τn(G(U )) −→ τn(F(U ))

is (2(n + 1) dim(U ) − b + 1)-connected for all U ∈ J0.

Iterating this result, gives the following.

Lemma 9.6 If p : F −→ G is an order n unitary agreement, then Tk F −→ TkG is a
levelwise weak equivalence for k ≤ n.
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Proof If p : F −→ G is an order n unitary agreement, then by Lemma 9.5,

τn(p)U : τn F(U ) −→ τnG(U )

is (2(n + 1) dim(U ) − b + 1)-connected. Repeated application of Lemma 9.5 yields
the result for k = n since Tk F(U ) = hocolimi τ

i
k F(U ). The result follows for k < n

since if a map f : X −→ Y is k-connected, then it is (k − 1)-connected. ��
Example 9.7 The functor nS : J0 −→ Top∗ is k-reduced for all k ≤ n. Indeed, the
map ∗ −→ SnU is (2n dim(U ) − 1)-connected for all U ∈ J0, hence by Lemma 9.5,
τn−1(∗) −→ τn−1(nS(U )) is (2n dim(U ))-connected for all V ∈ J . It follows from
Lemma 9.6 that ∗ � Tn−1(∗) −→ (Tn−1nS)(U ) is a weak homotopy equivalence.
The result for k ≤ n − 1 follows since a k-connected map is k − 1-connected.

The connectivity estimate of Lemma 9.5 gives conditions for the Taylor tower to
be trivial to a prescribed level.

Lemma 9.8 If F ∈ E0 is such that F(U ) has connectivity (2(n + 1) dimU − b) for
some constant b, then the Taylor tower of F(U ) is trivial up to and including level n.

Proof If F(U ) has such a connectivity, then the map ∗ −→ F(U ) is (2(n +
1) dim(U ) − b)-connected. An application of Lemma 9.6 yields that ∗ −→ Tk F(U )

is a weak homotopy equivalence for all k ≤ n. ��
Example 9.9 The n-sphere functor nS : U �−→ SnU satisfied the conditions of Lemma
9.8, as SnU is (2n dim(U ) − 1)-connected. Hence the first non-trivial polynomial
approximation to nS is the n-th approximation TnnS.

Agreement with the n-polynomial approximation functor for all n ≥ 0 gives con-
vergence of the Taylor tower.

Lemma 9.10 If for all n ≥ 0, a unitary functor F agrees with TnF to order n then the
Taylor tower associated to F converges to F(U ) at U with dim(U ) ≥ ρ.

Proof Since F agrees with TnF to order n for all n, the map η : F(U ) −→ TnF(U )

is (2(n + 1) dim(U ) − b)-connected for all n and all U with dimU ≥ ρ. It follows
that the map F(U ) −→ holim TnF(U ) is a weak homotopy equivalence. ��

9.2 Weakly polynomial

The class of functors with this property are called weakly polynomial. They are an
important class of functors in that they are weakly analytic, but defined in simpler
terms. In particular weakly polynomial functors are more tractable for computations.

Definition 9.11 Let n be a non-negative integer. A unitary functor F is weakly (ρ, n)-
polynomial if the map η : F(U ) −→ TnF(U ) is an agreement of order n whenever
dim(U ) ≥ ρ. A functor is weakly polynomial if it is weakly (ρ, n)-polynomial for all
n ≥ 0.
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We start with a few examples.

Example 9.12 The sphere functor S : U �−→ SU is weakly polynomial.

Proof The identity functor Id : Top∗ −→ Top∗ is 1-analytic in the Goodwillie sense,
[20, Example 4.3]. Barnes and Eldred [8, Example 3.7] shows that S = S∗Id is weakly
2-polynomial, specifically, that the map S∗Id(V ) −→ TnS∗Id(V ) is an agreement of
order n for all n ≥ 0, where S : V �−→ SV is the orthogonal sphere functor. Their
proof may be extended to the unitary calculus case giving that S = S

∗Id is weakly
polynomial for dim(V ) ≥ 1. ��
Example 9.13 Fix a constant k ≥ 0. Then the functor given by V �−→ SU+2k is weakly
polynomial. This follows from Example 9.12 since V �−→ SU+2k is equivalent to
S(U ⊕ C

k).

The following result is an alteration of [8, Theorem 4.1] for weakly polynomial
functors.

Theorem 9.14 (Theorem G) Let E, F ∈ E0 are such that there is a homotopy fibre
sequence

E(U ) F(U ) F(U ⊕ V )

for U , V ∈ J . Then

(1) If F is weakly (ρ, n)-polynomial, then E is weakly (ρ, n)-polynomial; and
(2) If E is weakly (ρ, n)-polynomial and F(U ) is 1-connectedwhenever dim(U ) ≥ ρ,

then F is weakly (ρ, n)-polynomial.

Proof For (1), simply note that Tn preserves fibre sequence, hence there is a commu-
tative diagram

E(U ) F(U ) F(U ⊕ V )

TnE(U ) TnF(U ) TnF(U ⊕ V ).

It follows that since the middle and right hand vertical maps are agreements of order
n, that the left hand vertical map is also an agreement of order n.

For (2) it suffices to consider a fibre sequence

E(Cρ) F(Cρ) F(Cρ+1).

We achieve the same map of fibre sequences,

E(Cρ) F(Cρ) F(Cρ+1)

TnE(Cρ) TnF(Cρ) TnF(Cρ+1)
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in which the left hand vertical map is (2(n+1)ρ−b)-connected. Taking vertical fibres
on the above diagram gives a diagram,

FE(Cρ) FF(Cρ) FF(Cρ+1)

E(Cρ) F(Cρ) F(Cρ+1)

TnE(Cρ) TnF(Cρ) TnF(Cρ+1).

Since the lower left hand vertical map is (2(n + 1)ρ − b)-connected,
FE(Cρ) is (2(n + 1)ρ − b − 1)-connected, hence the top right hand horizontal map
is (2(n + 1)ρ − b)-connected. It follows by [34, Proposition 3.3.18] and the fact
that F(Cρ) and F(Cρ+1) are path connected, that the lower right hand square is
(2(n + 1)ρ − b)-cartesian.

Applying [34, Proposition 3.3.20] to the sequence of (2(n + 1)ρ − b)-cartesian
squares,

F(Cρ) F(Cρ+1) F(Cρ+2) . . .

TnF(Cρ) TnF(Cρ+1) F(Cρ+2) . . . .

yields for all q ≥ ρ and all k ≥ 1 a (2(n + 1)ρ − b)-cartesian square

F(Cq) F(Cq+k)

TnF(Cq) TnF(Cq+k)

Filtered homotopy colimits preserve (2(n + 1)ρ − b)-cartesian squares, hence the
square

F(Cq) F(C∞)

TnF(Cq) TnF(C∞)

is (2(n + 1)ρ − b)-cartesian. The unitary version of [37, Lemma 5.14], which holds
since finite homotopy limits commute with filtered homotopy colimits, gives that
F(C∞) −→ TnF(C∞) is a weak equivalence, in particular, it is (2(n + 1)ρ − b)-
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connected. It follows by [34, Proposition 3.3.11] that the map

F(Cq) −→ TnF(Cq)

is (2(n + 1)ρ − b)-connected, hence and agreement of order n. ��
This recovers a version [8, Theorem 4.1] as a corollary.

Corollary 9.15 Let F ∈ E0. If F (1) is weakly (ρ, n)-polynomial and F(U ) is 1-
connected whenever dim(U ) ≥ ρ, then F is weakly (ρ, n)-polynomial.

Proof Apply Theorem 9.14 to the fibre sequence

F (1)(U ) −→ F(U ) −→ F(U ⊕ C).

��
Example 9.16 The Taylor tower associated to BU(−) : V �−→ BU(V ) converges to
BU(V ) at V with dim(V ) ≥ 1.

Proof By Example 9.12, the first derivative of BU(−) is the sphere functor S which
is weakly polynomial for dim(V ) ≥ 1 by Example 9.12. An application of Corollary
9.15 yields the result upon noting that BU(V ) is 1-connected for V in the given range.

��
We end this section with one of the main results, which shows that the Taylor tower

of any representable functor converges. This theorem yields convergence results for
many interesting functors.

Theorem 9.17 (Theorem H) Representable functors are weakly polynomial, that is,
for all U ∈ J , the functor J (U ,−) is weakly polynomial.

Proof As linear isometries are in particular injections, it suffices to prove that the
functor

U �−→ J (Cn,Cn ⊕U )

is weakly polynomial. The coset quotient projection U (n − 1) −→ U (n) −→ S2n−1

induces a fibre sequence

J (Cn−1,Cn−1 ⊕U ) −→ J (Cn,Cn ⊕U ) −→ S2(dim(U )+n)−1.

By induction on n, it suffices to prove that S2(dim(U )+n)−1 is weakly 1-polynomial for
all n ≥ 0, since Tn preserves fibre sequences. This follows for n ≥ 0 by Example
9.13. ��
Example 9.18 The n-sphere functor nS : U �−→ SnU ∼= J (0, nU ) is weakly
1-polynomial.
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Example 9.19 The functor U(−) : V �−→ U(V ) is weakly 1–polynomial via the
identification U(V ) ∼= J (V , V ).

Lemma 9.20 Let F be a weakly ρ-polynomial functor. Then, �F is weakly
ρ-polynomial.

Proof We calculate the connectivity of �F(U ) −→ Tn�F(U ) forU with dim(U ) ≥
ρ, given that

F(U ) −→ TnF(U ),

is (2(n + 1) dim(U ) − b)-connected. As homotopy limits commute, it is enough
to calculate the connectivity of the map �F(U ) −→ �TnF(U ). This map is
(2(n + 1) dim(U ) − b − 1)-connected. ��
Corollary 9.21 If the Taylor tower associated to F ∈ E0 converges to F, then the
Taylor tower associated to �F converges to �F.

We now give an alternative proof that the Taylor tower associated to
U(−) : V �−→ U(V ) converges to U(V )

Example 9.22 (Example B) The Taylor tower associated to U(−) : V �−→ U(V )

converges to U(−) for dim(V ) ≥ 1.

Proof By Example 9.16, the Taylor tower associated to BU(−) : V �−→ BU(V )

converges to BU(−) for dim(V ) ≥ 1. It follows by Corollary 9.21 that the Tay-
lor tower associated to �BU(−) : V �−→ �BU(V ) converges to �BU(−) for
dim(V ) ≥ 1. This last functor is levelwise weakly equivalent (in fact homotopy
equivalent) to U(−) : V �−→ U(V ). ��
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