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Abstract
Given a marked ∞-category D† (i.e. an ∞-category equipped with a specified col-
lection of morphisms) and a functor F : D → B with values in an ∞-bicategory,
we define colim† F , the marked colimit of F . We provide a definition of weighted
colimits in ∞-bicategories when the indexing diagram is an ∞-category and show
that they can be computed in terms of marked colimits. In the maximally marked
case D�, our construction retrieves the ∞-categorical colimit of F in the underlying
∞-category B ⊆ B. In the specific case when B = Cat∞, the ∞-bicategory of ∞-
categories and D� is minimally marked, we recover the definition of lax colimit of
Gepner–Haugseng–Nikolaus.We show that a suitable∞-localization of the associated
coCartesian fibration UnD(F) computes colim† F . Our main theorem is a character-
ization of those functors of marked ∞-categories f : C† → D† which are marked
cofinal. More precisely, we provide sufficient and necessary criteria for the restriction
of diagrams along f to preserve marked colimits

Keywords Infinity bicategories · Weighted colimits · Cofinality · localization

1 Introduction

The theory of ∞-categories is, by now, well-established as an excellent way to treat
coherence and higher homotopical data. However, the mere presence of this higher
data means that many properties which can be explored most easily by explicit com-
putation in the ordinary categorical setting are best accessed by universal properties
in the∞-categorical setting. Consequently, general constructions exhibiting universal
properties take on an even greater importance in the study of higher category theory.
Among such constructions, the theories of limits and colimits form an essential core
around which many of the results in higher category theory are built. In the developing
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2 F. Abellán García

theory of ∞-bicategories, as in its strict 1-categorical analogue, these theories must
be extended to allow for laxness—loosely, allowing cones over a functor to commute
up to non-invertible 2-morphism.

This paper is a new entry in this story, dealing with lax colimits which depend
on a collection of marked morphisms in the source. These morphisms can be viewed
as “controlling the laxness” of the colimit in question. Such collections of marked
morphisms arise throughout the study of higher categories—in localizations, cartesian
fibrations, etc. The theory of marked colimits and marked cofinality developed in this
paper represents a new technology for treating such objects. Along the way to ∞-
cofinality, we will also see that the theory of weighted colimits expounded in [6] can
be viewed as one instance of the general theory of marked colimits, and will note a
fundamental relation to the Grothendieck construction, generalizing extant results for
lax colimits and usual ∞-colimits.
A comment from the author (22/06/20): After completion of this work, a prepint [4]
appeared proving Theorem 3 below. This result was achieved independently by both
authors using completely different methods of proof. In this work, the definition of
marked colimit provided is characterized by a 2-dimensional universal property. By
the time the paper [4] was uploaded I was working in the proof of Proposition 2 in
order to show that the definition of weighted colimits appearing in [6] satisfies this
2-dimensional universal property. The reader not willing to take Proposition 2 on faith
can adapt the proof to the definition of lax colimit provided in the aforementioned
papers.
Update (28/09/20): The proof of Proposition 2 can be now found in [2].
Marked colimits in 2-categories. Let F : C → B be a 2-functor. A lax cone for F
with vertex point b ∈ B is given by the following data

• For every object c ∈ C a morphism αc : F(c) → b.
• For every morphism u : c → c′ inC a 2-morphism θu : αc ⇒ αc′ ◦ F(u) depicted
by a 2-commutative diagram

F(c) F(c′)

b

F(u)

αc αc′

θu

These data must satisfy the following set of axioms
(I) Unitality: θidc = idαc for every c ∈ C. (II) Composability: Given u : c → c′ and
v : c′ → c′′ the following equation holds

F(c) F(c′) F(c′′)

b
αc

F(u)

αc′

F(v)

αc′′
=

F(c) F(c′′)

b

F(vu)

αc αc′

θvu

(III) Compatibility with 2-morphisms: For every 2-morphism η : u ⇒ u′ in C the
following equation holds
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F(c) F(c′)

b

F(u′)

αc αc′

θu′ =
F(c) F(c′)

b

F(u′)

F(u)

αc αc′θu

A morphism of lax cones {αc}c∈C → {βc}c∈C with vertex point b is given by a
family of 2-morphisms {εc : αc ⇒ βc}c∈C such that for every f : c → c′ the following
equation holds

F(c) F(c′)

b

F( f )

αc

βc

βc′
=

F(c) F(c′)

b

F( f )

αc

αc′

βc′

One can then show that this defines a category of lax cones for F with vertex b.
Furthermore, we can arrange the previous definitions into a 2-functor with values in
the 2-category of categories

B → Cat; b 	→ {category lax cones with vertex b}

The laxcolimit of F is then defined as an object colim[
C F ∈ B correpresenting the

functor above (see [7] for a classical reference on lax limits). In practice it is common
to work with a category C (resp. 2-category C) equipped with a collection of chosen
morphisms containing the identities (marked categories, resp. marked 2-categories)
that one wants to formally invert. It is thus desirable to have a theory of colimits
adapted to accomodate the extra information present in marked (2)-categories.

Let C† be a marked 2-category. We define a marked cone for F to be a lax cone
such that the 2-morphisms θ f are invertible whenever f is a marked morphism in C†.
Paralleling the construction above, we obtain the notion of the marked colimit of F .
This definition was already present in the literature under the name of σ -colimits [5],
where it was succesfully applied to define a 2-dimensional theory of flat pseudofunc-
tors. Although similar in spirit, our definition of marked colimits presented in Sect. 3
will depart from that of Descotte et al. The main cause of this difference is our use of
weighted colimits as the jumping-off point of our theory, rather than using different
levels of laxness (see Definition 2.4.3 in [5]) in the natural transformation defining a
marked cone. We have opted for this approach since to our eyes is the one that is better
suited for developing the cofinality theory that we will now introduce.
Marked colimits in ∞-bicategories. Let Cat∞ denote the ∞-bicategory of ∞-
categories. Let F : C → B andW : Cop → Cat∞ be functorswhereC is an∞-category
and B is an ∞-bicategory. In Sect. 3 we define W ⊗ F , the colimit of F weighted
by W . Once this basic theory is established we embark upon the main construction
of this work, the definition of marked colimits, appearing in Sect. 4. Given a marked
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4 F. Abellán García

∞-category C† we define a functor

C†
C/

: Cop → Cat∞; c 	→ LW

(
C
†
c/

)

where LW

(
C
†
c/

)
stands for the ∞-localization of the slice category Cc/ with respect

to the marking induced by C†. This allows us to define the marked colimit of a functor
F : C → B as C†

C/
⊗ F . The definition presented naturally extends the notion of ∞-

colimits appearing in [3,10], as demonstrated by the following result.

Theorem 1 Let F : C → Band suppose that colim]
C F exists. Then the∞-categorical

colimit of F in the underlying ∞-category B ⊆ B exists and there is an equivalence

colim]
C F

�−→ colimC F

In particular, both universal properties coincide if B = B.
The rest of Sect. 4 is devoted to computational results. First, we show that weighted

colimits indexed by an ∞-category C can be computed in terms of marked colimits.
Let W : Cop → Cat∞ be a weight functor. Let us observe that its associated Cartesian
fibration W comes equipped with a canonical marking given by the Cartesian edges.
We denote this marked category byW
. With the aid of this observation, we can then
prove:

Theorem 2 Let F : C → B and W : Cop → Cat∞. Let p : W → C denote the Carte-
sian fibration classifying W. Suppose that W ⊗ F exists. Then colim\W F ◦ p exists
and there is an equivalence in B

W ⊗ F colim

W F ◦ p.�

WeconcludeSect. 4 byproviding a thorough analysis ofmarked colimits inCat∞. To
achieve this goal, we will employ the Grothendieck construction in its ∞-categorical
incarnation as the unstraightening functor (see chapter 3 in [10]), as the “universal
recipe” to compute colimits of diagrams in ∞-categories. This is witnessed by two
results already known in the literature: in [6] the authors define lax colimits in ∞-
categories and show in Theorem 7.4 that given a functor F with values in∞-categories
its associated coCartesian fibration computes the lax colimit. Let us remark that our
definition in the minimally marked case C� particularizes to that of Gepner et al. If
we focus our attention on the maximally marked case C�, we note that Corollary
3.3.4 in [10] shows that the colimit of a functor F with values in ∞-categories can be
computed as the∞-localization of its associated coCartesian fibration at the collection
of coCartesian edges.

Therefore, we observe that the two extremal cases C� resp. C�, are already well
understood. It is then natural to ask ourselves if there is a generalization of both results
which can be seen through the lens of marked colimits. We provide an affirmative
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answer to this question in the following result which can be found as Theorem 8 in
the main body of this article.

Theorem 3 Let C† be a marked ∞-category. Given F : C → Cat∞ there is a equiva-
lence of ∞-categories

LW

(
UncoC (F)
(†)

)
� colim†

C F

where LW
(
UncoC (F)
(†)

)
denotes the ∞-localization at the collection of coCartesian

edges lying over marked edges of C†.

Acofinality criterion: TheoremA†. Let f : C† → D† be amarking-preserving func-
tor. We call f amarked cofinal functor if for every diagram F : D → B the canonical
comparison map1

colim†
C F ◦ f

�−→ colim†
D F

is an equivalence in B. The main result of this work is a characterization of this higher
notion of cofinality.

Theorem 4 Let f : C† → D† be a marking-preserving functor of∞-categories. Then
f is marked cofinal if and only if for every d ∈ D the canonical map C

†
d/ → D

†
d/

induces an equivalence on localized ∞-categories,

LW

(
C
†
d/

) �−→ LW

(
D

†
d/

)
.

As a corollary we obtain a generalization of Theorem A in [12] to marked ∞-
categories.

Corollary 1 (Theorem A†) Let f : C† → D† be a marking-preserving functor of ∞-

categories. If the canonical map LW

(
C
†
d/

) �−→ LW

(
D

†
d/

)
is an equivalence of ∞-

categories for every d ∈ D, then the induced functor on ∞-localizations

fW : LW

(
C†

) �−→ LW

(
D†

)

is an equivalence of ∞-categories.

In previous work, (see [1] for general background and notation) we generalized
Quillen’s Theorem A to (strict) marked 2-categories.

Theorem 5 Let F : C† → D
† be a functor of marked 2-categories. Suppose that,

1. For every object d ∈ D, there exists a morphism gd : d → F(c) which is initial in
both LW (C

†

d

→ ) and LW (D
†

d

→ ).

1 See Sect.5 for a precise definition of the comparison map.
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6 F. Abellán García

2. Every marked morphism d F(c) is initial in LW (C
†

d

→ ).

3. For any marked morphism
f : b d in D, the induced functors f ∗ : LW (C

†

d

→ ) → LW (C
†

b
→ ) preserve

initial objects.

Then the induced functor FW : LW (N2(C
†)) → LW (N2(D

†)) is an equivalence of
∞-categories.

We also claimed that the conditions of the previous theorem should control the
notion of higher cofinality for ∞-bicategories. This work can be understood as a
partial result towards proving the cofinality conjecture as stated in [1]. This will be
justified in Theorem 9where we show that the hypotheses of Theorem 4 are equivalent
to the analogous conditions of Theorem 5 for ∞-categories.

The importance of Theorem 4 becomes apparent when combined with Theorem 2.
The use of weighted colimits permeates throughout category theory. Many essential
constructions, for example, Kan extensions, are best formulated in terms of weighted
(co)limits. However, to the author’s knowledge the general theory was lacking tools
that allow us to simplify the computations of weighted colimits. Marked colimits are
devised as an equivalent language to that of their weighted counterparts that allows for
transparent cofinality statements. Let us consider for example a functor f : C → D

between ∞-categories. A common situation that we might encounter ourselves in is
to try to determine whether the restriction functor

f ∗ : Fun(D,Cat∞) → Fun(C,Cat∞)

is fully faithful. An elegant sufficient criterion to check is to show that for every d ∈ D

the induced morphism is Cd/ → Dd/ is cofinal in the usual sense. Once our cofinality
theory is developed to its full 2-category potential such statements will be available
to the public allowing a better access to complicated constructions such as functor
∞-bicategories.

2 Preliminaries

In this section, we collect notation, definitions and background necessary for our
constructions and proofs.We assume basic familiarity with the theory of∞-categories
as in [3,10].Wewill use scaled simplicial sets as amodel for∞-bicategories following
[9]. We refer the reader to [8] for the basics of enriched category theory including
weighted (co)limits.

Notation 1 Wewill denote ordinary strict 1-categories by capital letters (A, B,C) and
∞-categories by caligraphic letters (A,B, C). We will generally (see Remark 1 below
for an exception) denote ∞-bicategories by boldface letters (A,B,C).

Remark 1 Following the previous convention we will denote by Cat∞ the full sub-
category of the 1-category of simplicial sets consisting of ∞-categories. We will use
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Marked colimits and higher cofinality. . . 7

the notation Cat∞ to denote the ∞-category of ∞-categories. We will denote the
∞-bicategory of ∞-categories by Cat∞.

Notation 2 We will extensively use marked simplicial sets as a model for ∞-
categories. Given a simplicial set X we denote by X � ∈ Set+� the marked simplicial
set with only degenerate edges marked and by X � the marked simplicial set with all
edges marked.

Notation 3 Given a simplicial set X we denote by X� ∈ Setsc� the scaled simplicial
set with only degenerate 2-simplices being thin and by X� the scaled simplicial set
with all 2-simplices being thin. We will identify ∞-categories with maximally scaled
simplicial sets that are fibrant in the bicategorical model structure.

Notation 4 Given an ∞-bicategory B and objects x, y ∈ B, we denote by B(x, y) ∈
Cat∞ the mapping category. For every y ∈ B we denote by B(−, y) the functor

B
op → Cat∞; x 	→ B(x, y).

Notation 5 Given ∞-bicategories B,C and functors F,G : C → B we denote by
NatB(F,G) themapping category of Fun (C,B).Wedenote byNat�

B
(F,G) the under-

lying Kan complex.

Notation 6 Given an ∞-bicategory B we denote by YB the ∞-bicategorical Yoneda
embedding

B → Fun
(
B
op,Cat∞

) ; y 	→ B(−, y).

Notation 7 Given a functor F : C → Cat∞ we will denote by UncoC (F) the value of
the (coCartesian) unstraightening functor as defined (with the adequate dualization) in
3.2.1 [10]. Since UncoC induces an equivalence of∞-categories between Fun(C,Cat∞)

and the ∞-category of coCartesian fibrations over C we will often call UncoC (F) the
“coCartersian fibration associated to F”.

2.1 Marked∞-categories and localizations

Definition 1 Let U : Set+� → Set� be the forgetful functor. We define Cat†∞ (see
Remark 1) as the full subcategory of Set+� on those objects X† ∈ Set+� such that

U (X†) is an ∞-category. We call the objects of Cat†∞ marked ∞-categories and its
morphisms marked functors.

Definition 2 Let f : C† → D† be amarked functor. Given d ∈ Dwe define amarking
on Cd/ by declaring an edge σ : �1 → Cd/ to be marked if an only if its image under
the canonicalmap ismarked inC†.Wedenote thismarked simplicial set byC†

d/ ∈ Set+�.

Notation 8 Given a marked ∞-category C† we denote its ∞-categorical localization
with respect to its marked edges by LW (C†). Given X ∈ Cat∞ we define Fun†(C,X)

to be the full subcategory of Fun(C,X) on those functors mapping marked edges of C
to equivalences in X.

123



8 F. Abellán García

Remark 2 Note that the universal property of localizations implies that we have an
equivalence of ∞-categories Fun†(C,X) � Fun

(
LW (C†),X

)
. We remind the reader

that a model for the localization of C† is given by its fibrant replacement in the model
structure on marked simplicial sets.

2.2 Free fibrations

In this section, we review the main results of [6] regarding free Cartesian fibrations
and their relation to marked ∞-categories.

Definition 3 Given C ∈ Cat∞ let Catcart∞/C be the subcategory of the undercategory
Cat∞/C, whose objects are Cartesian fibrations, and whose morphisms are functors
which preserve Cartesian morphisms.

Remark 3 There is an obvious forgetful functor U : Catcart∞/C → Cat∞/C.

Notation 9 Given an ∞-category C and two Cartesian fibrations

X → C, Y → C

we denote by FuncartC (X,Y) the full subcategory of functors over C that preserve Carte-
sian morphisms.

Definition 4 Let C be an ∞-category. For p : E → C any functor of ∞-categories,
let F(p) : F(E) → C denote the map E ×C C�1 → C, where the pullback is along
the target fibration C�1 → C given by evaluation at 1 ∈ �1, and the projection F(p)
is induced by evaluation at 0. We call the projection map E ×C C�1 → C the free
Cartesian fibration on p. The Cartesian edges of F(p) are precisely those which are
mapped to equivalences under the projection to E. Then F defines a functor

F : Cat∞/C → Catcart∞/C .

Remark 4 Let p : E → C. Then the objects of F(E) are given by edges of C of the
form c → p(e) where e ∈ E. A morphism is given by a commutative diagram in C

c c′

p(e) p(e′)p( f )

where f is an morphism in E.

Remark 5 Composition with the degeneracy map s0 : �1 → �0 induces a functor
C → C�1

which is a section to both of the evaluation maps. Given a functor E → C,
this section gives a natural map

E → E ×C C�1
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Marked colimits and higher cofinality. . . 9

over C, inducing a unit natural transformation η : id ⇒ U ◦ F.

Proposition 1 Given a map of∞-categories E → C then the unit natural transforma-
tion E → F(E) induces an equivalence of ∞-categories

FuncartC (F(E),X) → [�]FunC(E,U(X))

Proof This is Proposition 4.11 in [6]. �
Definition 5 Let p : E → C be a functor of ∞-categories. Suppose that E is a marked
∞-category and denote it by E†. We declare an edge of E×C C�1

to be marked if and
only if its projection to E is marked. We denote this marked ∞-category over C by
F(E)†.

Remark 6 Observe that in the previous definition, we can identify the fibers F(E)†×{c}
Cwith themarked sliceE†

c/ wherewe declare an edgemarked if and only if it is marked

in E†.

Definition 6 Let p : E → C be a functor of ∞-categories and assume further that E
is a marked ∞-category. Given a Cartesian fibration X → C we define Fun†C(E,X) to
be the full subcategory on those functors mapping marked edges in E† to Cartesian
morphisms in X. If p is a Cartesian fibration we define Funcart,†C (E,X) to be the full

subcategory of Fun†C(E,X) on those functors which also preserve the Cartesian edges
of E.

Lemma 1 Let E† be a marked ∞-category together with a functor p : E → C. Con-
sider F(E)† as in Definition 5. Then the unit map η induces a commutative diagram
in Cat∞

Funcart,†C (F(E),X) Fun†C(E,U(X))

FuncartC (F(E),X) FunC(E,U(X))

�

�

where the vertical maps are fully faithful and the horizontal maps are equivalences of
∞-categories.

Proof The vertical maps are fully faithful by definition. Since the bottom horizontal
map is an equivalence by Proposition 1 it will suffice to compute its essential image
when restricted to Funcart,†C (F(E),X). It is clear that the image of this restricted map

lands in Fun†C(E,U(X)). Now suppose that we are given a functor of Cartesian fibra-

tions L : F(E) → X such that its image under the unit map lands in Fun†C(E,U(X)).
Consider a marked edge in σ : �1 → F(E) represented by a commutative diagram

c c′

p(e) p(e′)
u

β

v

p(α)
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10 F. Abellán García

where α : �1 → E is a marked morphism. We claim that L(σ ) is a Cartesian edge
of X. First we observe that we have an inner horn θ : �2

1 → X given by

c p(e) p(e′)

p(e) p(e) p(e′).

u

u

p(α)

=
p(α)

Using Proposition 2.4.1.7 in [10] we see that since both edges of the horn are
Cartesian in X it follows that any composite of those two edges must be Cartesian in
X. We consider another horn  : �2

1 → X

c c′ p(e′)

p(e) p(e′) p(e′).

β

u v

v

p(α)

=

First we observe that the restriction �{1,2} → �1
2 → []X is a Cartesian edge and

that the restriction of  to �{0,1} is L(σ ). Finally one notes that any composite of the
morphisms in θ must be homotopic to any composite of the morphisms in . Again
by Proposition 2.4.1.7 in [10] this implies that L(σ ) is Cartesian in X. �
Definition 7 Let π : X → C be a Cartesian fibration and assume that X† is a marked
∞-category. A fiberwise localization of π at the collection of marked edges of X
is a Cartesian fibration LC

W (π†) → C together with a map of Cartesian fibrations
ι : X → LC

W (π†) such that

• The map ι sends marked edges in X to Cartesian edges in LC
W (π†).

• For any Cartesian fibration Y → C the induced functor
FuncartC (LC

W (π†),Y) → Funcart,†C (X,Y) is an equivalence of ∞-categories.

Remark 7 Given π : X → C as above let X� denote the marked simplicial set over
C where an edge is marked if it is Cartesian or if it is marked in X†. Then a fibrant
replacement in the model structure for Cartesian fibrations over C gives a model for
LC
W (π†).

Lemma 2 Let E† be a marked ∞-category together with a functor p : E → C. Con-
sider F(p)† : F(E)† → C as in Definition 5. Then for every vertex c ∈ C there is an
equivalence of ∞-categories

LC
W

(
F(p)†

)
×C {c} � LW

(
E
†
c/

)
.

Proof Let EC/ denote the functor classifying F(E). It is not hard to verify that this
functor maps each c ∈ C to the ∞-category Ec/ and that its action on morphisms is
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Marked colimits and higher cofinality. . . 11

induced by precomposition in C. Therefore we define Ẽ†
C/

to be the functor sending

each c to E†
c/. It is clear that we have an equivalence of Cartesian fibrations

LC
W

(
F(p)†

)
� LC

W

(
UnC

(
Ẽ†
C/

))
.

In addition,weobserve that the right-hand side canbemodeled by afibrant replacement
of Ẽ†

C/
in the projective model structure of Set+�-valued functors. This finally implies

LC
W

(
UnC

(
Ẽ†
C/

))
×C {c} � LW

(
E
†
c/

)

�

3 Weighted colimits in∞-bicategories

Definition 8 Let F : C → B and W : Cop → Cat∞. We define a functor as the com-
posite

NatCop(W ,B(F(−),−)) : B CatB
op

∞ CatC
op

∞ Cat∞.
YB F∗ NatCop (W ,−)

Definition 9 Let F : C → B andW : Cop → Cat∞. We say that an object b ∈ B is the
colimit of F weighted by W if there exists an equivalence of functors

B(b,−) NatCop(W ,B(F(−),−)).
�

Remark 8 Since weighted colimits are unique up to equivalence we will often speak
of “the weighted colimit” and denote it by W ⊗ F .

Definition 10 Let C be an ∞-category. The twisted arrow ∞-category Tw(C) of C is
the simplicial set given by HomSet�(�n,Tw(C)) � HomSet�(�n�(�n)op,C). Note
that Tw(C) comes equipped with a projection functor Tw(C) → C × Cop which is a
right fibration by Proposition 5.2.1.3 in [11], so that Tw(C) is an ∞-category.

We present now two of the main results obtained in [2] that will allow us to under-
stand weighted colimits in Cat∞. The proofs can be found in the aforementioned
document as Theorem 4.3 and*** Theorem 4.28.

Proposition 2 Let C be a ∞-category and D an ∞-bicategory. Then for every pair of
functors F,G : C → D there exists a equivalence of ∞-categories

NatC(F,G) → lim
Tw(C)op

MapD(F(−),G(−))

which is natural in each variable.
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12 F. Abellán García

Corollary 2 Let F : C → Cat∞ and W : Cop → Cat∞. Then there is an equivalence of
∞-categories

W ⊗ F colimTw(C) W × F .
�

We finish the section by relating conical weighted colimits, i.e. those with weight
constant on the terminal category, with ordinary colimits.

Proposition 3 Let F : C → B and let ∗ : Cop → Cat∞ denote the constant functor
with value the terminal ∞-category. Suppose that ∗ ⊗ F exists. Then colimC F exists
and there is an equivalence in B

∗ ⊗ F
�−→ colimC F

where the right-hand side is given by the∞-categorical colimit of F in the underlying
∞-category B ⊆ B.

Proof Let  : B(∗ ⊗ F,−)
�−→ NatCop(∗,B(F(−),−)) be the natural equivalence

exhibiting ∗ ⊗ F as the weighted colimit of F and let ι∗ denote its restriction to B.
Observe that ι∗ factors through Cat∞. We will abuse notation by viewing ι∗ as a
functor with target Cat∞. Now we consider the following composite

B × �1 ι∗−−→ Cat∞
k−→ S.

where k denotes the underlying Kan complex functor. It is clear that we have produced

a natural equivalence B(∗ ⊗ F,−)
�−→ NatCop(∗,B(F(−),−)). Observe that due to

Proposition 2 we have the following natural equivalence of spaces for every b ∈ B

NatCop(∗,B(F(−), b)) � lim
Tw(C)op

S(∗,B(F(−), b)) � lim
Tw(C)op

B(F(−), b)

lim
Tw(C)op

B(F(−), b) � NatC(F, b)

where b denotes the constant functor with value b ∈ B. We have thus produced
equivalences of functors

B(∗ ⊗ F,−)
�−→ NatCop(∗,B(F(−),−))

�−→ NatC
(
F, (−)

)
.

We note that B/∗⊗F is the left fibration classifying the functor B(∗ ⊗ F,−) and that
it has an initial object. Therefore the left fibration classifying NatC

(
F, (−)

)
has an

initial object. This exhibits ∗ ⊗ F as the colimit of F : C → B. �
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4 Marked colimits

4.1 Definitions and general properties

Definition 11 Let C† be a marked ∞-category and consider F(idC) : F(C)† → C as
in Definition 5. Given the Cartesian fibration LC

W

(
F(idC)†

)
discussed in Definition 7

we let

C†
C/

: Cop → Cat∞

be its associated functor. As we noted in Lemma 2, the functor C†
C/

sends each c ∈ C

to the localized comma category LW

(
C
†
c/

)

Definition 12 Given a marked ∞-category C† and a diagram F : C → B we define

colim†
C F :=C†

C/
⊗ F

and call it the marked colimit of F .

Remark 9 Using Corollary 2 we see that if B = Cat∞ and the marking of C consists
only of equivalences our definition coincides with the definition of lax colimit given
in [6].

Theorem 6 Let F : C → Band suppose that colim]
C F exists. Then the∞-categorical

colimit of F in the underlying ∞-category B ⊆ B exists and there is an equivalence

colim†
C F

�−→ colimC F

Proof Let t : C�

C/
⇒ ∗ denote the unique map to the terminal functor. By Proposition

3 it will suffice to show that t is a levelwise equivalence. This follows immediately
from Lemma 2 and the fact that slice categories Cc/ are all contractible. �
Remark 10 It is natural to ask ourselves, whether Theorem 6 admits a converse. The
answer to this question is no and it is already well documented (see for example 3.54
in [8]). For the sake of completeness we will include an example here. Let B be the
following 2-category

a

c

b

f

f
g

α

Then it is clear that c is the coproduct of a and b in the underlying 1-category B.
However c fails to satisfy the 2-dimensional universal property because the identity
morphism on c has no non-trivial 2-morphisms.
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14 F. Abellán García

Corollary 3 Let C† be a marked ∞-category and consider a functor F : C† → B with
B an∞-category. Then colim†

C F exists if and only if the colimit of F exists and there
is an equivalence in B

colim†
C F

�−→ colimC F

Proof It follows from Theorem 6 after noting that since the mapping categories in B

are Kan complexes then any natural transformation C†
C/

⇒ B(F(−), b) must factor

through C
�

C/
. Thus concluding that both universal properties are the same. �

Proposition 4 Let π : X → C be a Cartesian fibration where we view X as a marked
category (denoted by X
) by marking the Cartesian edges. Consider the base change
adjunction

π! : Catcart∞/X
−→←− : Catcart∞/C : π∗.

Then for every Cartesian fibration Y → C there is an equivalence of ∞-categories

FuncartX

(
LX
W

(
F(idX)


)
, π∗Y

)
→ [�]FuncartC (X,Y)

natural in Y. In particular, there is an equivalence of Cartesian fibrations π! LX
W(

F(idX)

) � X.

Proof We can produce the following natural equivalences

FuncartX

(
LXW

(
F(idX)


)
, π∗Y

)
� Fun


X

(
X,U(π∗Y)

) � Fun

C(X,U(Y)) = FuncartC (X,Y)

where the third equivalence is given by the non-Cartesian base change adjunction. The
result follows. �
Theorem 7 Let F : C → B and W : Cop → Cat∞. Let p : W → C denote the Carte-
sian fibration classifying W. Suppose that W ⊗ F exists. Then colim


W exists and
there is an equivalence in B

W ⊗ F colim


W F ◦ p.�

Proof Let W


W/
denote the weight functor in the definition of the colimit of F ◦ p.

By Proposition 4 we know that p!W


W/
� W . This shows that there is a map

NatCop(W ,B(F(−),−)) ⇒ NatWop

(
W




W/
,B((F ◦ p)(−),−)

)
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which is levelwise an equivalence on the underlying Kan complexes. Combining
Proposition 2 and Proposition 6.9 in [6] we obtain for every b ∈ B the following
commutative diagram

NatCop(W ,B(F(−), b)) NatWop

(
W




W/
,B ((F ◦ p)(−), b)

)

FuncartC (W,Y) FuncartW
(
LW
W

(
F(idW )


)
, p∗Y

)
� �

�

whereY is the Cartesian fibration classifyingB(F(−), b). Since the bottom horizontal
map is an equivalence due to Proposition 4 we conclude by 2-out-of-3. �

4.2 Marked colimits in the∞-bicategory of∞-categories.

In this section we show how to compute marked colimits of functors with values in∞-
categories. Our strategy will be a direct generalization of the arguments presented in
[6] where the authors show that the unstraightening functor (see Notation 7) computes
the lax colimit of a functor.

Definition 13 Let F : C → Cat∞ be a functor and denote by F → C its associated
coCartesian fibration. Given X ∈ Cat∞ we define a simplicial set �F

X over C via the
universal property HomC(K ,�F

X) � Hom(K ×C F,X).

Remark 11 As a special case of (the dual of) Corollary 3.2.2.12 in [10] we see that
�F

X → C is a Cartesian fibration. An edge �1 → �F
X is Cartesian if and only if the

associated functor�1 ×C F → Xmaps coCartesian edges in�1×CF to equivalences
in X.

Proposition 5 The Cartesian fibration �F
X → C classifies the functor

Fun(F(−),X) : Cop → Cat∞ .

Proof This is Proposition 7.3 of [6]. �
Definition 14 LetC† be amarked∞-category and consider a Cartesian (resp. coCarte-
sian) fibration X → C. We equip X with a marking by declaring an edge marked if
and only if it is Cartesian (resp. coCartesian) and its image in C is marked. We will
denote this marked ∞-category over C by X
(†).

Remark 12 Let C† be a marked ∞-category and consider a functor F : C → Cat∞.
Denote its associated coCartesian fibration by F. Then given X ∈ Cat∞ we have a
natural equivalence of ∞-categories

Fun
(
LW

(
F


(†)
)

,X
)

� Fun
(†)(F,X) � Fun†C(C,�F
X).

where the first equivalence is the universal property of the localization (see Notation
8) and the second is given by the universal property of �F

X.
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16 F. Abellán García

Proposition 6 Let C be an ∞-category. Given F,G : Cop → Cat∞ classified by the
Cartesian fibrations F and G respectively, there is a natural equivalence of ∞-
categories

FuncartC (F ,G) � lim
Tw(C)op

Fun(F(−),G(−))

Proof See Proposition 6.9 in [6]. �

Theorem 8 Let C† be a marked ∞-category. Given F : C → Cat∞ there is a equiva-
lence of ∞-categories

LW

(
UncoC (F)
(†)

)
� colim†

C F

Proof We fix the notation UncoC (F)
(†) = F
(†). We have a natural equivalence of
∞-categories provided by Lemmas 1 and 12

Fun
(
LW

(
F
(†)

)
,X

)
� Fun†C(C,�F

X) � Funcart,†C (F(C),�F
X) � FuncartC

(
LC
W (F(idC)†),�F

X

)

Propositions 5 and 6 in turn imply

FuncartC

(
LC
W (F(idC)†),�F

X

)
� lim

Tw(C)op
Fun(C†

C/
,Fun(F(−),X)) � Fun

(
colimTw(C) C

†
C/

× F,X
)

Combining these two natural equivalences, the result follows from the Yoneda lemma
and Corollary 2. �

Corollary 4 Let C be an ∞-category. Given F : C → Cat∞ there is an equivalence of
∞-categories

UncoC (F) � colim�

C F

Proof This follows by observing that a coCartesian edge lying over a degenerate edge
must be an equivalence. �

As a consequence of Theorem 8, we obtain an alternative proof of Corollary 3.3.4.3
in [10].

Corollary 5 Let F : C → Cat∞ then there is an equivalence of ∞-categories

LW
(
UncoC (F)


) � colimC F

Proof Combine Theorem 8 with C� and Proposition 3. �
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5 A cofinality criterion

The goal of this section is to extend the preexisting theory of cofinality to the setting of
marked colimits.Ourmain result, Theorem9, is a generalization of the characterization
of cofinal functors appearing in Theorem 4.1.3.1 in [10]. As an immediate corollary
we obtain a generalization of Quillen’s theorem A for marked ∞-categories.

Definition 15 Let f : C† → D† be a marked functor and consider F( f ) : F(C)† → D

as in Definition 5. We denote by

C†
D/

: Dop → Cat∞

the functor classifying the Cartesian fibration LD
W

(
F( f )†

)
.

Remark 13 Observe that we have a natural transformationA f : C†
D/

⇒ D†
D/

.Wewill
abuse notation by also denoting by A f the associated map of Cartesian fibrations.

Proposition 7 Let f : C† → D† be a marked functor and let f! � f ∗ denote the base
change adjunction

f! : Catcart∞/C
−→←− : Catcart∞/D : f ∗.

Then there is a natural equivalence of ∞-categories

FuncartC

(
LC
W

(
F(idC)†

)
, f ∗X

) �−→ FuncartD

(
LD
W

(
F( f )†

)
,X

)
.

In particular, we have f! LC
W

(
F(idC)†

) �−→ LD
W

(
F( f )†

)
.

Proof Let X → D be a Cartesian fibration. We observe that we have natural equiva-
lences

FuncartC

(
LC
W

(
F(idC)†

)
, f ∗X

)
� Fun†C(C,U( f ∗X)) � Fun†D(C,U(X))

where the second equivalence is given by the non-Cartesian base change adjunction
f∗ � f ∗. It is clear that the right-hand side is equivalent to FuncartD

(
LD
W

(
F( f )†

)
,X

)
and the result follows. �

Given a marked functor f : C† → D† it follows that for every functor G : Dop →
Cat∞ we can produce the following natural transformations

NatDop(D†
D/

,G) NatDop(C†
D/

,G) Nat(C†
C/

, f ∗G).
�

where the last map is a natural equivalence by virtue of Proposition 7. It follows that
when G = B(F(−), b) for some diagram F : D → B, we obtain a map

colim†
C F ◦ f → colim†

D F

123



18 F. Abellán García

which we will call the canonical comparison map whenever both are defined.

Definition 16 A functor f : C† → D† of marked ∞-categories is said to be marked
cofinal if for every functor F : D → B, the following conditions hold:

• The marked colimit F exists if and only the marked colimit of (F ◦ f ) exists.

• The canonical comparison map colim†
C F ◦ f colim†

D F� is an equiva-
lence in B.

Proposition 8 Let f : C† → D† be a marked functor. For every diagram F : D →
Cat∞ we have a commutative diagram in Cat∞ given by

LW
(
UncoC (F ◦ f )
(†)

)
colim†

C F ◦ f

LW
(
UncoD(F)
(†)

)
colim†

D F

�

�

where the leftmost vertical map is induced by pullback along f .

Proof This follows as a corollary of Theorem 8. �
Proposition 9 A functor f : C† → D† of marked ∞-categories is marked cofinal if
and only if the natural transformation

A f : C†
D/

⇒ D†
D/

is a levelwise equivalence.

Proof Suppose f is marked cofinal. Given an object d ∈ D we define the composite

Yd : D → S ⊆ Cat∞

where first functor is given by MapD(d,−) and the second functor is the inclusion of
the full subcategory of spaces. Then using Corollary 8 we obtain an equivalence of
∞-categories

LW (C
†
d/) LW (D

†
d/).

�

Using Lemma 2 we identify this map with the fiber of the map A f over d. Since
equivalences of Cartesian fibrations can be detected fiberwise it follows thatA f is an
equivalence. The converse follows immediately. �
Remark 14 Suppose f : C� → D� is cofinal for the maximal marking. Since f is
cofinal we obtain an equivalence after ∞-groupoid completion

LW

(
C

�
d/

)
� LW

(
D

�
d/

)
.

Then it follows that f satisfies the hypothesis of Theorem 4.1.3.1 in [10] and so
pullback along f preserves all ∞-limits.
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Corollary 6 (Theorem A†) Let f : C† → D† be a marked cofinal functor. Then there
exists an equivalence of ∞-categories

LW

(
C†

) �−→ LW

(
D†

)

Proof By Theorem 8we can identify LW
(
D†

)
with the marked colimit of the constant

point valued functor. The result then follows from Corollary 8. �
Remark 15 For the rest of this section,wewill abuse notation by denoting theCartesian
fibration LD

W

(
F( f )†

)
by C†

D/
and similarly for the other fiberwise localizations of free

fibrations already mentioned.

Lemma 3 Let D† be a marked ∞-category and consider the Cartesian fibration
D†

D/
→ D. Then the following hold

• For every d ∈ D there exists an initial object in D†
D/

×D {d}.
• Every object in D†

D/
×D {d} represented by a marked morphism is initial.

Proof The proof is analogous to the proof of Lemma 4.0.3 in [1]. �
Proposition 10 Let π : X → D be a Cartesian fibration of simplicial sets. Assume
that for each vertex c ∈ C, the∞-categoryXd has an initial object. Denote byX′ ⊂ X

the full simplicial subset of X spanned by those x which are initial objects in Xπ(x).
Then

π |X′ : X′ → C

is a trivial Kan fibration of simplicial sets. Moreover, a section s of π : X → C is
initial in the ∞-category FunC(C,X) if and only if s factors through X′.

Proof See Proposition 2.4.4.9 in [10]. �
Theorem 9 Let f : C† → D† be a functor of marked∞-categories. Then f is marked
cofinal if and only the following conditions hold

1. For every d ∈ D there is a morphism gd : d → f (c) which is initial in LW

(
C
†
d/

)

and in LW

(
D

†
d/

)
.

2. Every object in LW

(
C
†
d/

)
represented by a marked morphism inD† is initial.

3. There exists a Cartesian morphism providing a solution to the lifting problem

∂�1 C†
D/

(�1)� D†

σ

u

if the image of σ consists in two initial objects in their respective fibers.
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20 F. Abellán García

Proof By Proposition 9 it will suffice to show that A f is an equivalence of Cartesian
fibrations precisely when the conditions above are satisfied.

Suppose that A f is an equivalence and pick an inverse  : D†
D/

→ C†
D/

over D.
First we see that the first 2 conditions can be checked by noting that A f induces an
equivalence of ∞-categories upong passage to fibers. The existence of  implies the
existence of a section s f : D → C†

D/
mapping each object of D to an initial object

in the fiber and mapping marked edges to Cartesian edges. To finish the proof of this
implicationwewill show that condition (3) holds.We start by picking aCartesian lift of
u denoted by û such that û(1) = σ(1). Then since σ(0) is initial we obtain a morphism
from σ(0) → û(0). Note that if we show that û(0) is initial its corresponding fibre
then we can finish our argument by picking an adequate composite σ(0) → û(0) →
û(1) = σ(1). Since A f is an equivalence it will suffice that A f (û(0)) = y is initial.
We note that y is equivalent to the morphism u viewed as an object ofD†

D/
, therefore

the conclusion follows from Lemma 3.
To show the conversewefirst observe that condition (1) togetherwith Proposition 10

imply the existence of a section s f : D → C†
D/

such that for every d ∈ D both s f (d)

and A f (s f (d)) are initial in their respective fibers. We claim that s f maps marked
edges to Cartesian edges in C†

D/
. To see this given α : (�1)� → D† we denote by α̃

the Cartesian lift provided by condition (3). One immediately checks that there exists
an equivalence in �1 u−→ C†

D/
such that s f (α) ∼ u ◦ α̃ and thus s f (α) is Cartesian. In

particular we obtain a map of Cartesian fibrations

 : D†
D/

→ C†
D/

.

We fix the notation

�D : FuncartD (D†
D/

,D†
D/

)
�−→ Fun†D(D,D†

D/
)

and observe that both the identity functor onD†
D/

andA f ◦  get mapped under �D

to sections landing in initial objects in the fibers. It follows from Proposition 10 that
A f ◦  ∼ id.

Similarly we consider

�C : FuncartD (C†
D/

,C†
D/

)
�−→ Fun†D(C,C†

D/
)

and observe that �C( ◦A f )(c) = s f ( f (c)) which is initial in the fiber by construc-
tion. Similarly the image of the identity functor under �C sends c ∈ C to an object
represented by a marked morphism. Condition (2) implies that this object is initial.
Since both maps can factored through the pullback

f ∗ (
CD/

)
C†
D/

C D
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we can apply Proposition 10 to their factorizations. This shows that  ◦A f ∼ id and
thus finishes the proof. �

Remark 16 Let C†
D/

: Dop → Cat∞. Note that condition (3) in Theorem 9 holds if and

only if for every marked edge d d ′u in D the functor C†
D/

(u) preserves initial
objects.
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