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Abstract
We introduce a notion of c-group, which is a group up to congruence relation and con-
sider the corresponding category. Extensions, actions and crossed modules (c-crossed
modules) are defined in this category and the semi-direct product is constructed. We
prove that each categorical group gives rise to a c-group and to a c-crossed module,
which is a connected, special and strict c-crossed module in the sense defined by
us. The results obtained here will be applied in the proof of an equivalence of the
categories of categorical groups and connected, special and strict c-crossed modules.

Keywords Group up to congruence relation · c-crossed module · action · Categorical
group

Mathematics Subject Classification 20L99 · 20L05 · 18D35

1 Introduction

Our aim was to obtain for categorical groups an analogous description in terms of
certain crossed module type objects as we have for G-groupoids obtained by Brown
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626 T. Datuashvili et al.

and Spencer [5], which are strict categorical groups, or equivalently, group-groupoids
or internal categories in the category of groups. By a categorical group we mean a
coherent 2-group in the sense of Baez and Lauda [1]. It is important to note that it is
well known that a categorical group is equivalent to a strict categorical group [1,12,19],
but we do not have an equivalence between the corresponding categories. This idea
brought us to a new notion of group up to congruence relation. In this way we came
to the definition of c-group and the corresponding category. Then we defined actions
in this category and introduced the notion of c-crossed module. Among this kind of
objects we distinguished connected, strict and special c-crossed modules denoted as
cssc-crossed modules. We proved that every categorical group gives rise to a cssc-
crossed module. The prototypes of all the new concepts introduced in this paper are
those obtained from categorical groups. In the sequel to this paper we will prove that
there is an equivalence between the category of categorical groups and the category
of cssc-crossed modules. We hope that this result will give a chance to consider for
categorical groups the problems analogous to those considered and solved in the case
of strict categorical groups in terms of group-groupoids and internal categories in
[4,6–9].

We would like to thank one of the editors of the journal who pointed out to us the
paper of Schommer-Pries, [17], in which that author studies the notion of 2-group in
a general bicategory with finite products. The editor’s comments suggested that there
might be a link between the work in the noted paper and our results in this paper,
since an equivalence relation on a set gives a groupoid, and the category of sets with
equivalence relations˜Sets carries a bicategory structure.Wewould note, however, that
the paper referred to does not attempt to prove that equivalence that we are seeking,
and which will be further investigated in a sequel to this paper. Comparison with the
work in [17] does, although, suggest further questions about the links between internal
c-crossed modules and categorical groups in bicategories.

In Sect. 2 we recall the definitions of a categorical group, a group-groupoid, and a
crossedmodule in the category of groups. In Sect. 3 we define groups up to congruence
relation, shortly c-groups, give examples and consider the corresponding category of
c-groups denoted as cGr. We define cKer f , cIm f , for any morphism f in cGr, and
normal c-subgroups in any c-group. In Sect. 4 we define split extensions and actions
in cGr. After this, we define c-crossed modules and give examples. We introduce the
notions of special, strict and connected c-crossed modules and give examples. We
prove that every categorical group defines a cssc-crossed module.

2 Preliminaries

Recall the definition of a monoidal category given by Mac Lane [15].

Definition 1 Amonoidal category is a category C = (C0,C1, d0, d1, i,m) equipped
with a bifunctor +: C × C → C called the monoidal sum, an object 0 called the zero
object, and three natural isomorphisms α, λ and ρ. Explicitly,

α = αx,y,z : (x + y) + z
≈→ x + (y + z)
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is natural for all x, y, z ∈ C0, and the pentagonal diagram

((x + y) + z) + t

α+1

α
(x + y) + (z + t)

α
x + (y + (z + t))

(x + (y + z)) + t
α

x + ((y + z) + t)

1+α

commutes for all x, y, z, t ∈ C0. Again, λ and ρ are natural λx : 0+ x
≈→ x , ρx : x +

0
≈→ x , for all x ∈ C0, the diagram

(x + 0) + y
α

ρ+1

x + (0 + y)

1+λ

x + y x + y

commutes for all x, y ∈ C0 and also λ0 = ρ0 : 0 + 0
≈→ 0. Moreover “all” diagrams

involving α, λ, and ρ must commute. A monoidal category is said to be a monoidal
groupoid whenever each morphism is invertible.

In this definition we use the term monoidal sum and denote it as +, instead of
monoidal product, used in the original definition, and write the operation additively.
From the definition it follows that 10+ f ≈ f +10 ≈ f , for any morphism f . In what
follows the isomorphisms α, λ and ρ involved in group-like identities, their inverses,
compositions and their monoidal sums will be called special isomorphisms. Since+ is
a bifunctor in amonoidal categorywehaved j ( f +g) = d j ( f )+d j (g), j = 0, 1, i(x+
y) = i(x) + i(y) and the interchange law ( f ′ + g′)( f + g) = f ′ f + g′g, whenever
the composites f ′ f and g′g are defined, for any x, y ∈ C0, f , f ′, g, g′ ∈ C1.

Any categoryCwith finite products can be considered as amonoidal categorywhere
to any given two objects, + assigns their product and 0 is the terminal object. The
category of abelian groups Ab is a monoidal category where the tensor product ⊗ is
the monoidal sum and Z is the unit object. There are other examples as well [15].

In a monoidal category, if the special isomorphisms α, λ, and ρ are identities, then
C is called a strict monoidal category.

LetC andC’ be twomonoidal categories.A (strict)morphism ofmonoidal categories
T : (C,+, 0, α, λ, ρ) → (C ′,+′, 0′, α′, λ′, ρ′) is a functor T : C → C ′, such that
for all objects x, y, z and morphisms f and g there are equalities T (x + y) = T x +′
T y, T ( f +g) = T f +′ Tg, T 0 = 0′, Tαx,y,z = α′

T x,T y,T z, Tλx = λ′
T x , T�x = ρ′

T x .

Definition 2 [1] If x is an object in a monoidal category, an inverse for x is an object
y such that x + y ≈ 0 and y + x ≈ 0. If x has an inverse, it is called invertible.

It is well known and easy to show that if any object has a one-sided inverse in a
monoidal category, then any object is invertible [1,12].
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Definition 3 A categorical group C = (C0,C1, d0, d1, i,m) is a monoidal groupoid,
where all objects are invertible and moreover, for every object x ∈ C0 there is an
object −x ∈ C0 with a family of natural isomorphisms

εx : − x + x ≈ 0,

δx : x + (−x) ≈ 0

such that the following diagrams are commutative:

0 + x
δ−1
x +1

λx

(x + (−x)) + x
ax,−x,x

x + (−x + x)

1x+εx

x
ρ−1
x

x + 0

−x + 0
1+δ−1

x

ρ−x

−x + (x + (−x))
a−1−x,x,−x

(−x + x) + (−x)

εx+1−x

−x
λ−1−x

0 + (−x)

It is important and a well-known fact that the definition of a categorical group
implies that for anymorphism f : x → x ′ ∈ C1 there is amorphism− f : −x → −x ′
with natural isomorphisms− f + f ≈ 0 and f +(− f ) ≈ 0,where themorphism0 is 10
(see e.g. [18]). As in the case of monoidal categories the natural transformations α, λ,
ρ, ε, δ, identity transformation 1C → 1C, their compositions and sums will be called
special isomorphisms. The categorical group defined above is coherent [1,13], which
means that all diagrams involving special isomorphisms commute. For a monoidal
category one can find this in [15], Coherence Chapter VII Sect. 2.

A categorical group is called strict if the special isomorphisms α, λ, ρ, ε, and δ are
identities. Strict categorical groups are known as group-groupoids (see below for the
definition), internal categories in the category of groups or 2-groups in the literature.

The definition of categorical group we gave is Definition 3.1 in Baez and Lauda,
[1], where the operation is multiplication and where it is called a coherent 2-group.
Sinh [18] calls them “gr-categories”, and this name is also used by other authors as
well, e.g., Breen [2]. They are called “categories with group structure” in which all
morphisms are invertible byUlbrich [20] and Laplaza [13]. The term categorical group
for strict categorical groups is used by Joyal and Street [12], and it is used by Vitale
[21,22] and others for non-strict ones.

The functorial properties of addition + implies that in a categorical group we
have −1x = 1−x , for any x ∈ C0. Since an isomorphism between morphisms θ :
f ≈ g means that there exist isomorphisms θi : di ( f ) → di (g), i = 0, 1 with
θ1 f = gθ0, the naturality property of special isomorphisms implies that there exist
special isomorphisms between the morphisms in C1. But if θi , i = 0, 1 are special
isomorphisms, it does not imply that θ is a special isomorphism; in this case we will
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call θ a weak special isomorphism. It is obvious that a special isomorphism between
the morphisms in C1 will be a weak special isomorphism. Note that if f ≈ f ′ is a
weak special isomorphism, then the coherence property implies that f ′ is the unique
morphism weakly specially isomorphic to f with the same domain and codomain
objects as f ′.

Example 1 Let X be a topological space and x ∈ X be a point in X . Consider the cate-
gory Π2(X , x), whose objects are paths x → x , and whose morphisms are homotopy
classes of paths between paths, where f , g : x → x . This category is a categorical
group, for the proof see [1] and the paper of Hardie, Kamps and Kieboom [10,11].

One can see more examples in [1], and also we will give them in the sequel to this
paper, where we will construct a categorical group for any cssc-crossed module as
defined below in Sect. 5.

We define (strict) morphisms between categorical groups, which satisfy condi-
tions of (strict) morphisms of monoidal categories. Note that this definition implies:
T (−x) = −T (x) and T (− f ) = −T ( f ), for any object x and arrow f in a categorical
group. Categorical groups form a category with (strict) morphisms between them. For
any categorical group C = (C0,C1, d0, d1, i,m) denote Ker d0 = { f ∈ C1 | d0( f ) ≈
0} and Ker d1 = { f ∈ C1 | d1( f ) ≈ 0}.
Lemma 1 Let C = (C0,C1, d0, d1, i,m) be a categorical group. For any f ∈ Ker d1
and g ∈ Ker d0 we have a weak special isomorphism f + g ≈ g + f .

Proof Suppose d0(g) = 0′ and d1( f ) = 0′′, where 0′ ≈ 0 ≈ 0′′. The interchange law
implies (10′′ + g)( f + 10′) = f + g and (g+ 10′′)(10′ + f ) = g+ f . Let γ : 0′′ ≈ 0′
be a special isomorphism. Applying the coherence property of a categorical group,
we easily obtain that the left sides of both noted equalities are isomorphic to gγ f ,
and both are weak special isomorphisms. This implies that there is a weak special
isomorphism f + g ≈ g + f . ��

The analogous statement is well known for group-groupoids, where instead of the
isomorphisms we have equalities in the definitions of Ker d0 and Ker d1 and in the
final result [5].

Below we recall the definition of crossed module introduced byWhitehead in [23].
A crossed module (A, B, μ) consists of a group homomorphism μ : A → B together
with an action (b, a) 	→ b · a of B on A such that for a, a1 ∈ A and b ∈ B

CM1. μ(b · a) = b + μ(a) − b, and
CM2. μ(a) · a1 = a + a1 − a.

For an extensive treatment of crossed modules, see [3, Part I].
Here are some examples of crossed modules.

• The inclusion of a normal subgroup N → G is a crossed module with the action
by conjugation of G on N . In particular, any group G can be regarded as a crossed
module 1G : G → G.

• For any group G, modules over the group ring of G are crossed modules with
μ = 0.
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• For any groupG the objectμ : G → Aut G is a crossed module, whereμ(g) ·g′ =
μ(g)(g′) for any g, g′ ∈ G.

A morphism ( f , g) : (A, B, μ) → (A′, B ′, μ′) of crossed modules is a pair
f : A → A′, g : B → B ′ of morphisms of groups such that gμ = μ′ f and f
is an operator morphism over g, i.e., f (b · a) = g(b) · f (a) for a ∈ A, b ∈ B. So
crossed modules and morphisms of them, with the obvious composition of morphisms
( f ′, g′)( f , g) = ( f ′ f , g′g) form a category.

Definition 4 A group-groupoid G is a group object in the category of groupoids, which
means that it is a groupoid G equipped with functors

(i) +: G × G → G, (a, b) 	→ a + b;
(ii) u : G → G, a 	→ −a;
(iii) 0 : {�} → G, where {�} is a singleton, ��
which are called respectively sum, inverse and zero, satisfying the usual axioms for a
group.

The definition we gave was introduced by Brown and Spencer in [5] under the name
G-groupoid, where the group operation is multiplication. The term group-groupoid
was used later in [4]. It is interesting that a group object in the category of small
categories called G-category is a group-groupoid. As it is noted by the authors of [5]
this fact was known to Duskin.

Example 2 If X is a topological group, then the fundamental groupoid π1X of the
space X is a group-groupoid [5].

Example 3 For a group X , the direct product G = X × X is a group-groupoid. Here
the domain and codomain homomorphisms are the projections; the object inclusion
homomorphism is defined by the diagonal homomorphism i(x) = (x, x), for any
x ∈ X and the composition of arrows is defined by (x, y) ◦ (z, t) = (z, y) whenever
x = t , for any x, y, z, t ∈ X .

Theorem 1 [5] The categories of crossed modules and of group-groupoids are equiv-
alent.

According to the authors of [5], this result was known toVerdier. It was then used by
Duskin and was later discovered independently by Brown and Spencer. It was proved
by Porter that the analogous statement is true in the more general setting of a category
of groups with operations [16].

3 Groups up to congruence relation

Let X be a non-empty set with an equivalence relation R on X . Denote such a pair by
XR . Define a category whose objects are the pairs XR and morphisms are functions
f : XR → YS , such that f (x) ∼S f (y), whenever x ∼R y. Denote this category by

˜Sets.

123



Groups up to congruence relation. . . 631

Note that for XR, YS ∈ Ob
(̃
Sets

)
, the product XR ×YS is a product object in Sets

with the equivalence relation R × S defined by

(x, y) ∼R×S (x1, y1) ⇔ x ∼R x1 and y ∼S y1

We now define a group up to congruence relation or briefly c-group as follows.

Definition 5 Let GR be an object in˜Sets and

m : G × G −→ G
(a, b) 	−→ a + b

a morphism in˜Sets, i.e., m ∈ ˜Sets((G × G)R×R,GR). GR is called a c-group if the
following axioms are satisfied.

(i) a + (b + c) ∼R (a + b) + c for all a, b, c ∈ G;
(ii) there exists an element 0 ∈ G such that a + 0 ∼R a ∼R 0 + a, for all a ∈ G;
(iii) for each a ∈ G there exists an element −a such that a + (−a) ∼R 0 and

−a + a ∼R 0.

In a c-group GR , the given element 0 ∈ G is called zero element and for any a ∈ G
the given element −a ∈ G is called the inverse of a. The congruences involved in
the conditions (i)–(iii) of the definition, their compositions and sums will be called
special congruences.

Remark 1 Let GR be a c-group. Then we have the following:

(a) if a ∼R b and c ∼R d for a, b, c, d ∈ G then a + c ∼R b + d;
(b) if an element 0′ ∈ G different from 0 satisfies the congruence (ii) in Definition 5,

then 0 ∼R 0′;
(c) if an element a′ ∈ G different from -a satisfies the congruences involved in

condition (iii) in Definition 5, then a′ ∼R −a;
(d) if a ∼R b then −a ∼R −b.

Example 4 Every group G is a c-group where the congruence relation is equality.

So the concept of c-group generalizes that of group.

Example 5 This example comes fromMac Lane’s paper [14], where the author regards
the quotient group as a group with congruence relation. Let G be a group and H a
normal subgroup in G. The quotient group G/H can be regarded as a group with the
same elements as the group G and with the congruence relation g ∼ g′ if and only if
g − g′ ∈ H . The operations are defined in the same way as in G and they preserve
congruences. Such a group is a c-group, where group identities are in fact satisfied up
to equality.

Example 6 Let X be a topological space and x ∈ X . The set P(X , x) of all closed
paths at x is a c-group with the composition of paths. Here the congruence relation is
homotopy of paths.
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Example 7 Let Z

∗ = Z\{0}. Define an equivalence relation on Z

∗ by x ∼R y ⇔
xy > 0. Then Z

∗ becomes a c-group with respect to the multiplication. The unit is the
number 1 and the inverse for any number is this number itself.

Example 8 In a categorical group C the set C1 of morphisms and the set C0 of objects
are both c-groups. The congruence relations are isomorphisms between arrows and
between objects, respectively.

Example 9 Any group can be endowed with a c-group structure. To show this recall
that every group G can be regarded as a part of a certain crossed module in the
category of groups, for example G → AutG. According to Theorem 1 there exists
a group-groupoid C = (C0,C1, do, d1, i,m), for which d1|Ker d0 : Ker d0 → C0,
is a crossed module and is isomorphic to G → AutG. Ker d0 is a c-group, the
congruence relation on it is induced by the congruence relation on C1, which is the
relation being isomorphic between the morphisms. From this follows thatG has also a
c-group structure, group identities are satisfied up to equality, and naturally all special
isomorphisms are equalities.

Note that in this case the congruence relation on G is trivial, i.e., GR = G × G,
and any group can be considered as a c-group with trivial congruence relation on it.

The following example is due to the referee.

Example 10 Any magma can be considered as a c-group with trivial congruence rela-
tion.

Definition 6 Let GR be a c-group. If a + b ∼R b + a for all a, b ∈ G, then GR is
called a c-abelian (or c-commutative) c-group.

Definition 7 Let GR and HS be c-groups. A morphism f ∈ ˜Sets(GR, HS) such that
f (a + b) = f (a) + f (b) for any a, b ∈ G is called a c-group morphism from GR to
HS .

From the definition it follows that a morphism between c-groups preserves congru-
ences between elements; moreover we obtain that f (0) ∼ 0 and f (−a) ∼ − f (a), for
any a ∈ G. As a result we obtain that a morphism between c-groups carries special
congruences to special congruences between pairs of elements.

Remark 2 If f : GR → HS and g : HS → NT are two c-group morphisms, then
g f : GR → NT is also a c-group morphism. Further for each c-group GR there is a
unit morphism 1G : GR → GR such that 1G is the identity function onGR . Therefore,
we have a category of c-groups with c-group morphisms; denote this category by cGr.

Let GR and HS be c-groups, and f : GR → HS a morphism of c-groups.

Definition 8 The subset cKer f = {a ∈ GR | f (a) ∼S 0H } is said to be the c-kernel
of the c-group morphism f .

Note that cKer f is a c-group with the congruence relation induced by GR . In
particular, cKer d0, for a categorical group C = (C0,C1, d0, d1, i,m), is a c-group
with the congruence relation on cKer d0 induced by the isomorphisms in C1.
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Definition 9 The subset cIm f = {b ∈ HS | ∃a ∈ GR, f (a) ∼S b} is said to be the
c-image of the morphism f .

Lemma 2 Let G be a c-group with congruence relation R. Then the quotient set G/R
becomes a group with the operation defined by the induced map

m∗ : G/R × G/R −→ G/R,

([a], [b]) 	−→ [a] + [b] = [a + b].

Example 4 gives a full embedding of categories E : Gr → cGr, and Lemma 2 gives
a functor

Q : cGr → Gr.

It is easy to see that the functor Q is left adjoint to the functor E .
It is well known that the zero group 0 is an initial and terminal object in the category

of groups Gr. It is a terminal object in the category cGr as well, but note that 0 is not
an initial object in cGr.

Definition 10 Let GR be a c-group and let H be a subset of the underlying set of G.
H is called a c-subgroup in GR if HS is a c-group with the addition and congruence
relation S induced by GR .

Let GR be a c-group and let H be a subset of G. If for an element a ∈ G there
exists an element b ∈ H such that a ∼R b then we write a ∈̃ H . If H and H ′ are two
subsets of GR , then we write H ⊂̃ H ′ if for any h ∈ H we have h ∈̃ H ′. If H ⊂̃ H ′
and H ′ ⊂̃ H , then we write H ∼ H ′.

Definition 11 Let GR be a c-group and let HS ⊆ GR a c-subgroup in GR . Then HS

is called a normal c-subgroup if g + h − g ∈̃ HS for any h ∈ HS and g ∈ G.

The condition given in the definition is equivalent to the condition g+HS−g ⊂̃HS ,
and it is equivalent itself to the condition g + HS ∼ HS + g for any g ∈ G.

Definition 12 Let GR be a c-group and let HS ⊆ GR be a c-subgroup in GR . Then
HS is called a perfect c-subgroup if g ∈̃ H implies g ∈ H , for any g ∈ G.

Definition 13 A c-group GR is called connected if g ∼ g′ for any g, g′ ∈ G.

Lemma 3 Let GR and HS be c-groups and let f : GR → HS be a morphism of
c-groups. Then

(i) cKer f is a perfect and normal c-subgroup in GR;
(ii) cIm f is a perfect c-subgroup in HS.

Proof This follows from the definitions. ��
Now we shall construct the quotient object G/H , where H is a normal c-subgroup

of a c-group G. Consider the classes {g + H | g ∈ G}. If g + H ∩ g′ + H �= ∅, then
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we obtain −g + g′ ∈̃ H , which implies that g + H ∼ g′ + H . Now consider the set
of these classes {cl(g + H) | g ∈ G}, where cl(g + H) = ∪{x ∈ G | x ∈̃ g + H}.
We define G/H = {cl(g + H) | g ∈ G}. An addition operation in this set is defined
by cl(g + H) + cl(g′ + H) = cl((g + g′) + H), for any g, g′ ∈ G. This operation
is well defined, it is associative and we have the unit element cl(0+ H). Actually the
constructed object is a group, the congruence relation on G/H is the equality “ =′′.
We have an obvious surjective morphism p : G → G/H .

Lemma 4 (i) If G is a c-group and H is a normal c-subgroup in G, then for any group
G ′ and c-group morphism f : G → G ′, if f (h) = 0 for any h ∈ H, there exists
a unique morphism θ : G/H → G ′, in cGr such that θ p = f .

(ii) If H is a perfect normal c-subgroup in G, then H = cKer p.

Proof This follows by easy checking. ��

4 Actions and crossedmodules in cGr

An extension in the category cGr is defined in a similar way to that in the category of
groups.

Definition 14 Let A, B ∈ cGr. An extension of B by A is a sequence

0 A
i

E
p

B 0 (1)

in which p is surjective and i is the c-kernel of p in cGr. We say that an extension is
split if there is a morphism s : B → E , such that ps = 1B .

We shall identify a ∈ A with its image i(a). We shall use the notation b · a =
s(b) + (a − s(b)). Then a split extension induces an action (on the left) of B on A.
We have the following conditions for this action:

(i) b · (a + a1) ∼ (b · a) + (b · a1),
(ii) (b + b1) · a ∼ b · (b1 · a),
(iii) 0 · a ∼ a,
(iv) If a ∼ a1 and b ∼ b1 then b · a ∼ b1 · a1,
for a, a1 ∈ A and b, b1 ∈ B.

Here and in what follows we omit congruence relation symbols for A and B.
Let A, B ∈ cGr and suppose that B acts on A satisfying the conditions (i)–(iv). In

this case we will say, that we have an action in cGr. Consider the product B × A in
cGr. We have the operation in B × A, defined in an analogous way to that in the case
of groups:

(b′, a′) + (b, a) = (b′ + b, a′ + b′ · a) for any b, b′ ∈ B, a, a′ ∈ A.
This operation is associative up to the relation defined by (b, a) ∼ (b′, a′) if and

only if b ∼ b′ and a ∼ a′, which is a congruence relation. Obviously, we have a zero
element (0, 0) in B × A and the opposite element for any pair (b, a) ∈ B × A is
(−b,−b · (−a)). Therefore, we have a semidirect product B � A in cGr.
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Definition 15 Let f : D → D′ be a morphism in cGr. f is called an isomorphism up
to congruence relation or c-isomorphism if there is a morphism f ′ : D′ → D, such
that f f ′ ∼ 1D′ and f ′ f ∼ 1D .

We will denote such an isomorphism by ≈̃.
We have a natural projection p′ : B� A → B. The c-kernel of p′ is not isomorphic

to A as it would be in the case of groups, but we have an isomorphism up to congruence
relation cKer p′ ≈̃ A.

Let 0 → A → E → B → 0 be a split extension of B by A in cGr. Then we have
an action of B on A and the corresponding semidirect product B � A. In this case
we obtain a c-isomorphism E≈̃B � A given by the correspondences analogous to the
group case.

Definition 16 Let G and H be two c-groups, let ∂ : G → H be a morphism of c-
groups and let H act on G. We call (G, H , ∂) a c-crossed module if the following
conditions are satisfied:

(i) ∂(b · a) = b + (∂(a) − b),
(ii) ∂(a) · a1 ∼ a + (a1 − a).

for a, a1 ∈ G and b ∈ H .

Let (G, H , ∂) and (G ′, H ′, ∂ ′) be two c-crossed modules. A c-crossed module
morphism is a pair of morphisms 〈 f , g〉 : (G, H , ∂) → (G ′, H ′, ∂ ′) such that the
diagram

G
∂

f

H

g

G ′ ∂ ′
H ′

is commutative, and for all b ∈ H and a ∈ G, we have f (b · a) = g(b) · f (a), where
f and g are morphisms of c-groups.
c-crossed modules and morphisms of c-crossed modules form a category.

Example 11 Any crossed module in the category of groups can be endowed with the
structure of a c-crossed module by applying Example 4 or 9.

For other examples see Sect. 5.
Let G ∈ cGr and H be a normal c-subgroup in G. It is easy to see that in general

we do not have a usual action by conjugation of G on H .

Lemma 5 If H is a perfect normal c-subgroup of a c-group G, then we have an action
of G on H in the category cGr and the inclusion morphism defines a c-crossed module.

Proof This is by easy checking. ��
For a categorical group C = (C0,C1, d0, d1, i,m), we have a split extension

0 cKer d0
j

C1
d0

C0 0 (2)
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where cKer d0 is a c-group, a congruence relation on it is defined naturally as an
isomorphism between the arrows in cKer d0. Nowwe define an action ofC0 on cKer d0
by

C0 × cKer d0 −→ cKer d0,
(r , c) 	−→ r · c = i(r) + ( j(c) − i(r)).

Proposition 1 The action of C0 on cKer d0 satisfies the conditions for an action in
cGr.

Proof First we shall show the congruence r · (c + c′) ∼ r · c + r · c′.

r · (c + c′) = i(r) + ((c + c′) − i(r))

∼ (i(r) + ((c − i(r)) + i(r)) + (c′ − i(r)))

∼ (i(r) + (c − i(r))) + (i(r) + (c′ − i(r)))

= r · c + r · c′.

Next we shall show that (r + r ′) · c ∼ r · (r ′ · c).
We have

(r + r ′) · c = i(r + r ′) + (c − i(r + r ′))
∼ i(r) + ((i(r ′) + c − i(r ′)) − i(r))

= r · (r ′ · c).

It is trivial that 0 · c ∼ c and r · 0 ∼ 0. Now we shall show that if r ∼ r ′ and c ∼ c′
then r · c ∼ r ′ · c′. We have

r · c = i(r) + (c − i(r))

∼ i(r ′) + (c′ − i(r ′))
= r ′ · c′.

��

5 cssc-crossedmodules and themain theorem

Definition 17 A c-crossed module (G, H , ∂) will be called connected if G is a con-
nected c-group.

For a categorical group C = (C0,C1, d0, d1, i,m) denote d1|cKer d0 by d.

Proposition 2 LetC = (C0,C1, d0, d1, i,m)bea categorical group. Then (cKer d0,C0, d)

is a connected c-crossed module.
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Proof cKer d0 is a connected c-group, which follows from the fact that any two arrows
in cKer d0 have domains isomorphic to 0 and that C is a groupoid. Note that the
congruence relation on C0 is generated by the isomorphisms between the objects in
C0. Therefore d preserves the congruence relation on cKer d0 since f ≈ f ′ implies
that d1 f ≈ d1 f ′. For the first condition for a crossed module we have d(r · c) =
d(i(r) + (c − i(r))) = r + (dc − r), for any c ∈ cKer d0 and r ∈ C0.

For the second condition we have to prove that (dc) · c′ ∼ c + (c′ − c) for c, c′ ∈
cKer d0, which follows from the fact that cKer d0 is a connected c-group. ��

Now we shall introduce another sort of c-group denoted StarC0 for any categorical
group C = (C0,C1, d0, d1, i,m). By definition StarC0 = { f ∈ C1 | d0( f ) = 0}.
An addition operation is defined by f + f ′ = ( f + f ′)γ , where f + f ′ : 0 + 0 →
d1( f )+ d1( f ′) is a sum in C1, i.e., the same as the sum in cKer d0 and γ : 0 → 0+ 0
is the unique special isomorphism in C1. The ∼-relation on StarC0 is induced by the
relation on C1, which is the relation of being isomorphic in C1, and it is a congruence
relation onStarC0. It is obvious that d |StarC0 preserves the congruences. The operation
in StarC0 is associative up to congruence. The zero element in StarC0 is the zero arrow
0; we have f +0 ∼ f , 0+ f ∼ f , for any f ∈ StarC0. The opposite morphism of f in
C1 is − f : −0 → −d1 f . There is a unique special isomorphism κ : 0 ≈ −0. Define
the oppositemorphism− f in StarC0 as− f κ . One can easily see that f +(− f ) ≈ 0 in
StarC0 and the ∼-relation is a congruence. Therefore StarC0 is a c-group. C0 is also a
c-group, where the congruence relation is given by isomorphisms between the objects.
Nowwewill define an action ofC0 on StarC0. By definition r ·c = (i(r)+(c−i(r)))γ
for any r ∈ C0, c ∈ StarC0, where γ is a special isomorphism 0 ≈ r + (0− r), which
is unique as we know already. Here we check the action identities. We have

r · (c + c′) = (i(r) + ((c + c′) − i(r))γ

∼ (i(r) + (c − i(r)))γ1 + i(r) + (c′ − i(r)))γ2
= r · c + r · c′

for any r ∈ C0, c, c′ ∈ StarC0. The other three conditions of action for c-groups are
checked similarly.

Definition 18 A c-crossed module (G, H , ∂) will be called strict if it satisfies the
c-crossed module conditions, but where the ∼-relation in the second condition is
replaced by equality, i.e.,

(i) ∂(b · a) = b + (∂(a) − b),
(ii) ∂(a) · a1 = a + (a1 − a),

for a, a1 ∈ G and b ∈ H .

Definition 19 In a c-crossed module (G, H , ∂) a congruence g ∼ g′ in G will be
called a weak special congruence if ∂(g) ∼ ∂(g′) is a special congruence in H .

Since in a c-crossed module (G, H , ∂) the morphism ∂ carries any special congru-
ence to a special congruence between pairs of elements, in a crossed module every
special congruence in G is a weak special congruence.
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Definition 20 A c-crossed module (G, H , ∂) will be called special if for any congru-
ence γ : ∂c ∼ r , there exists c′ ∼ c, such that ∂c′ = r , where c, c′ ∈ G and r ∈ H .
If γ is a special congruence, then c′ is the unique element in G which is weakly
equivalent to c.

If a c-crossed module is connected, strict and special we will say that it is a cssc-
crossedmodule. This kind of crossedmodule is exactly that wewere looking for for the
description of categorical groups up to equivalence of the corresponding categories,
which will be proved in the sequel to this paper.

Theorem 2 Fora categorical groupC = (C0,C1, d0, d1, i,m) the triple (StarC0,C0, d)

is a cssc-crossed module.

Proof First we shall show that we have the equality in the first condition of the crossed
module (StarC0,C0, d). We have

d(r · c) = d((i(r) + (c − i(r))ε)

= d(i(r) + (c − i(r)))

= r + (dc − r)

where ε : 0 → r + (0− r) is a special isomorphism. Now we shall show that we have
the equality in the second condition of a crossed module. First we compute the left
side of the condition. We have

dc · c′ = (i(dc) + (c′ − i(dc)))γ

where γ : 0 → dc + (0 − dc) is a special isomorphism and i(dc) + (c′ − i(dc)) is
a morphism dc + (0 − dc) → dc + (dc′ − dc). We have −c + i(dc) ∈ cKer d1 and
c′ ∈ cKer d0; by Lemma 1 we obtain that there is a weak special isomorphism

(−c + i(dc)) + c′ ≈ c′ + (−c + i(dc));

this implies that i(dc)+c′ ≈ c+c′ −c+ i(dc), which implies id(c)+ (c′ − i(dc)) ≈
c + (c′ − c); this gives a weakly special isomorphism

id(c) · c′ ≈ c + (c′ − c).

By the definition of a sum in StarC0 for the right side we have c + (c′ − c) =
(c+ (c′ − c)ϕ)ψ , where ϕ : 0 → 0− 0 and ψ : 0 → 0+ 0 are special isomorphisms.
Here we have in mind that d(−c) = −dc and i(−dc) = −i(dc). Obviously, we have
a weak special isomorphism c+(c′−c)ϕ ≈ i(dc)+(c′−i(dc)), then there is a special
isomorphism between the domains of these morphisms θ : 0 + 0 → dc + (0 − dc),
such that (i(dc)+ (c′ − i(dc)))θ = c+ (c′ −c)ϕ. Here we applied that the codomains
of these morphisms are equal. Since ψ, θ and γ are special isomorphisms, we obtain
that θψ = γ . Then (c + (c′ − c)ϕ)ψ = (i(dc) + (c′ − i(dc)))γ , which means that
for the c-crossed module (StarC0,C0, d) we have an equality in the second condition
for c-crossed modules.
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The crossed module is connected by the definition of StarC0. Now we shall prove
that this crossed module is a special c-crossed module. Let c ∈ StarC0, and there
is a congruence γ : dc ∼ r , which means that γ is an isomorphism in C1. Take
c′ = γ c, then we will have c′ ≈ c in C1, which means that c′ ∼ c in StarC0.
Suppose γ is a special congruence, then it is a special isomorphism in C1. From the
coherence property of C we have that γ is the unique special isomorphism from dc
to r and therefore there is a unique morphism d0c → r , which is weakly specially
isomorphic to c and it is a composition γ c. Therefore, c′ is unique with this property
and (StarC0,C0, d) is a special c-crossed module. ��
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