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Abstract
We prove that in formal dimension ≤ 20 the Hilali conjecture holds, i.e. that the total
dimension of the rational homology bounds from above the total dimension of the
rational homotopy for a simply connected rationally elliptic space.
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1 Introduction

The Hilali conjecture [4] in rational homotopy theory states that for a minimal com-
mutative differential graded algebra over the rationals (�V , d) with V 1 = 0 whose
cohomology H∗(�V , d) = ⊕

i H
i (�V , d) and space of indecomposables V are

both finite–dimensional, we have H∗(�V , d) ≥ dim V . Translated into a geometric
statement, this says that the total dimension of the rational cohomology of a simply
connected space bounds the total dimension of the rational homotopy from above if
the latter quantity is finite.

Simply connected spaces with such minimal models, called rationally elliptic
spaces, are known to satisfy very restrictive topological conditions. For such a space
X , the topological Euler characteristic is non-negative and the homotopy Euler char-
acteristic

∑
i (−1)iπi (X) ⊗ Q is non-positive; furthermore, one is non-zero if and

only if the other is zero [2, Prop. 32.10]. Such spaces are akin to closed mani-
folds, as they satisfy a Poincaré duality on their rational cohomology [2] Prop. 38.3:
H∗(X;Q) ∼= Hn−∗(X;Q), where n is the formal dimension fd(X) of X , i.e. the largest
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index forwhich the rational cohomology does not vanish. In fact, if the homotopyEuler
characteristic of X is negative, one can find a simply connected closed smooth mani-
fold M and a rational homotopy equivalence M → X by the Barge–Sullivan theorem
[3, p.124]

Friedlander and Halperin [3] identified the condition under which a set of integers
occurs as the degrees of a homogeneous basis ofπ∗(X)⊗Q of a rationally elliptic space
X . Namely, the sequence (2a1, . . . , 2ar :2b1−1, . . . , 2bq −1) denotes the degrees of a
homogeneous basis of π∗(X)⊗Q of some elliptic X if and only if the following strong
arithmetic condition is satisfied: for every subsequence A∗ of (a1, . . . , ar ) of length
s, at least s many elements b j in (b1, . . . , bq) can be written as b j = ∑

ai∈A∗ γi j ai ,
where the γi j are non-negative integers whose sum for any fixed j is at least two. Call
such a sequence a homotopy rank type; note that the homotopy rank type does not
uniquely determine the space X up to rational homotopy equivalence, even amongst
elliptic spaces.

Using this characterization, Nakamura and Yamaguchi [7] wrote a C++ program
to output all the homotopy rank types of simply connected elliptic spaces up to a
given formal dimension. In the present paper, after establishing some preliminary
results, we will verify the Hilali conjecture up to formal dimension 20 by employing
our results into the code of [7] to significantly reduce the number of homotopy rank
types that need to be considered manually. In [5], the conjecture is claimed to be
verified up to formal dimension 10; in [7] this claim was pushed to formal dimension
16. However, the tables of homotopy rank types in [5] are slightly incomplete (for
example the homotopy rank type (2:11) corresponding to CP5 is not present in Table
1 therein), and the current authors failed to understand how an inequality in the proof
of the crucial Proposition 4.3 in the latter article was obtained. We hence reverify the
conjecture in these dimensions carefully and extend the verification up to dimension
20. In the next section the reader may see how the number of homotopy rank types
increases considerably with the formal dimension.

Throughout, (�V , d) will denote a minimal commutative differential graded alge-
bra modelling a given space X ; V k will denote the degree k elements of the space of
indecomposables V , and (�V )k the degree k elements in the algebra. Likewise�V≤m

will denote the subalgebra of �V generated by the elements of degree at most m, and
(�V≤m)k will denote the vector space of degree k elements in this subalgebra. For
ease of notation we will denote by H∗ the total cohomology

⊕
i H

i (�V , d).

2 Verification in dimension≤ 20

We now collect some general statements and ad hoc arguments which we will imple-
ment into the code found in [7] in order to reduce the verification of the Hilali
conjecture in formal dimension ≤ 20 to several cases, which we will then rule out
by hand. Following the notation of [7], homotopy rank types will be denoted by
(2a1, . . . , 2an :2b1 − 1, . . . , 2bn+p − 1), where the sequences ai and bi are (not nec-
essarily strictly) increasing. Note that −p equals the homotopy Euler characteristic of
any space X realizing the given homotopy rank type.

123



Verifying the Hilali conjecture up to... 325

Proposition 2.1 If p = 0, then the Hilali conjecture holds.

Proof The vanishing of the homotopy Euler characteristic χπ implies that the Euler
characteristic of any such space is positive. This now implies the space admits a
pure minimal model (the existence of a pure model is stated in [2, Prop. 32.10], and
minimality of this model can be seen from the proof therein), and so by [1, Section 3]
the conjecture holds. 	

Remark 2.2 In the lemmas to follow we will rely on the existence of elements of
V in degree strictly smaller than half the formal dimension. We thus verify now
that the Hilali conjecture holds for simply connected rationally elliptic spaces X of
formal dimension n for which b1, . . . , b� n

2 �−1 = 0. If the formal dimension is odd
or if bn

2
= 0, then by Poincaré duality X is rationally homotopy equivalent to a

sphere, for which the conjecture holds. If the formal dimension is even, n = 2k, and
dim Vk = 1, then X has minimal model �(xk, y3k−1) with dx = 0, dy = x3, and
so the conjecture holds. If dim Vk = 2, the space X will admit a minimal model over
the complex numbers of the form �(xk, x ′

k, y2k−1, y′
2k−1) with dx = dx ′ = 0 and

dy = x2 − x ′2, dy′ = xx ′ (tensoring with the complex numbers has the advantage
of making the nondegenerate pairing in the middle degree cohomology equivalent to
the pairing represented by the identity matrix). We see that dim H∗(X;C) = 4 and
dim π∗(X)⊗C = 4; since these dimensions are independent of the choice of coefficient
field of characteristic zero, the conjecture is verified. In the case of dim Vk ≥ 3, one can
build the minimal model over the complex numbers (again to simplify the intersection
pairing) and see that onemust introduce at least twogenerators in degrees> n, showing
that this space is not elliptic [2, p. 441] (cf. with the rational hyperbolicity of #ki=1CP

2

for k ≥ 3). Alternatively, any rational Poincaré duality spacewith b1, . . . , b� n
2 �−1 = 0

is formal by [6] and hence satisfies the Hilali conjecture by [4, Theorem 2] if it is
rationally elliptic.

Lemma 2.3 Let X be a simply connected rationally elliptic space with p > 0. Suppose
the smallest degree inwhichπ∗(X)⊗Q is nonzero is strictly less than fd(X)

2 , and denote
the dimension of this space by k. If fd(X) is odd, then dim H∗(X;Q) ≥ 2k + 2. If
fd(X) is even, and the smallest degree in which π∗(X) ⊗ Q is nonzero is odd, then
dim H∗(X;Q) ≥ 4k. Otherwise, if the smallest nonzero degree of π∗(X)⊗Q is even,
we have dim H∗(X;Q) ≥ 4k + 4.

Proof Note that every element in the smallest nonzero degree of π∗(X) ⊗ Q corre-
sponds to a closed, non-exact element in the minimal model of X for degree reasons.
The first statement now follows from dim H0(X;Q) = 1 and Poincaré duality. If the
formal dimension of X is even, and the smallest nonzero degree of π∗(X) ⊗ Q is
odd, Poincaré duality ensures 2k independent cohomology classes of odd degree in X .
Since p �= 0, the Euler characteristic of X is zero, providing us with another 2k inde-
pendent cohomology classes, of even degree. If fd(X) is even and the smallest nonzero
degree of π∗(X)⊗Q is even, then Poincaré duality gives us at least 2k+2 independent
cohomology classes in even degree, since dim H0(X;Q) = 1. The vanishing of the
Euler characteristic then provides another 2k + 2 independent cohomology classes,
now of odd degree. 	
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Lemma 2.4 Let X be a simply connected rationally elliptic space with p > 0. Suppose
the smallest degree d in which π∗(X)⊗Q is nonzero is even, and denote the dimension
of this space by k. Suppose further that the second smallest nonzero degree of π∗(X)⊗
Q is 2d−1, of dimension l, with 2d−1 <

fd(X)
2 −1. Then if fd(X) is even and

(k+1
2

) ≥ l,

we have dim H∗ ≥ 4(1 + k + (k+1
2

) − l); if
(k+1

2

)
< l, then dim H∗ ≥ 4max(l −

(k+1
2

)
, 1 + k). If fd(X) is odd, then in either case dim H∗ ≥ 2(1 + k +

∣
∣
∣l − (k+1

2

)∣∣
∣).

Proof We note that (�V≤d)2d has dimension k + (k
2

)
(spanned by squares of a basis

of generators in degree d and products of two distinct generators). These elements
are closed, and the dimension of the image of d in this space is bounded by l. Now
the lemma follows by combining this with dim H0(X;Q) = 1, Poincaré duality, and
χ(X) = 0 as in Lemma 2.3. 	

Remark 2.5 In the above Lemma 2.4, if the second smallest nonzero degree of rational
homotopy is odd and strictly less than 2d − 1, then the corresponding elements in
the minimal model are closed and non-exact, and so by Poincaré duality we have
dim H∗(X;Q) ≥ 2(1 + k + l). If the degree is strictly greater than 2d − 1, then the
inequalities in the statement of the Lemma hold with l = 0.

Lemma 2.6 Let X be a simply connected rationally elliptic space. Suppose the smallest
degree d in whichπ∗(X)⊗Q is nonzero is even, and denote the dimension of this space
by k. Suppose further that the second smallest nonzero degree of π∗(X)⊗Q is 2d−1.
Denote l = dim π2d−1(X)⊗Q and m = dim π3d−2(X)⊗Q. If 3d − 1 <

fd(X)
2 , then

dim H∗(X;Q) ≥ 2(1 + k +
∣
∣
∣
∣l −

(
k + 1

2

)∣
∣
∣
∣ + max(0, kl − k2 −

(
k

3

)

− m)).

Proof Note that dim(�V≤d)3d = k2 + (k
3

)
. In (�V )3d−1, there is a kl dimensional

subspaceW spanned by products of degree d generators and degree 2d−1 generators.
The image of d applied to this subspace W lies in (�V≤d)3d . Since W is spanned by
quadratic elements, an element in it is exact only if it is in the image of the differential
applied to them–dimensional V 3d−2. Hencewe have at least max(0, kl−k2−(k

3

)−m)

independent cohomology classes in degree 3d − 1. Combining this with the degree

0 class, the k-dimensional cohomology we obtain in degree d, and the
∣
∣
∣l − (k+1

2

)∣∣
∣-

dimensional cohomology in degree 2d−1 or 2d as in Lemma 2.4, along with Poincaré
duality, we obtain the desired bound.

Remark 2.7 Note that if the smallest nonzero degree d of π∗(X)⊗Q is odd, of dimen-
sion l, and the smallest nonzero even degree d ′ ofπ∗(X)⊗Q is strictly less than 3d−1,
of dimension s, then these two vector spaces must correspond to closed non-exact ele-
ments in the minimal model of X for degree reasons. Indeed, the differential applied
to a generator in the smallest even degree would have to land in the subalgebra of odd
degree elements, producing a polynomial all of whose monomials are at least cubic
and hence of degree at least 3d. If furthermore we denotem = dim π2d−1(X)⊗Q, we
have an additional |(l2

) −m| independent cohomology classes in degree 2d − 1 or 2d.
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Indeed, the differential applied to a degree 2d −1 generator must land in the subspace
of quadratic polynomials in the degree d generators for degree reasons, which is of
dimension

(l
2

)
. If 2d and d ′ are both strictly less than fd(X)

2 , then Poincaré duality gives

us dim H∗(X;Q) ≥ 2(1 + l + s + |(l2
) − m|).

Remark 2.8 Three more quick observations that will rule out several homotopy rank
types each are the following:

(1) Every even generator whose degree is smaller than the lowest degree among odd
generators is closed and non-exact; likewise all products of such generators (for
our purposes we will only need squares) whose total degree is smaller than the
lowest odd degree are closed and non-exact.

(2) A homotopy rank type in fd ≥ 9 of the form (2, a:3, b, c), where fd−2 > a ≥ 4
and fd−2 > b ≥ 5, satisfies the conjecture. Let (x, x ′, y, z, z′) be generators of
the corresponding degrees. Note that x is closed and non-exact, and so by Poincaré
duality, since dim H0 = 1, we have dim H∗ ≥ 4. If we find one more independent
cohomology class the conjecture is verified. If a < b, then dx ′ = αxk y for some
α ∈ Q, k ≥ 1. Now, either y is closed and we are done, or dy = βx2 for some
β �= 0; however, this would mean dx ′ is not closed, which cannot be. If b < a,
then dz = αxk for some α ∈ Q, k ≥ 3. Either y or z is closed and we are done, or
z plus a multiple of xk−2y is closed and necessarily non-exact by minimality.

(3) A homotopy rank type of the form (2, 4, a:3, 3, b, c), where a ≥ 4 and b ≥ 7 in
fd ≥ 13 satisfies the conjecture. Indeed, let (x, z, u, y, y′, v, v′) be generators of
the corresponding degrees. If dy = dy′ = 0, we have dim H∗ ≥ 8, so we may
assume upon a change of basis that dy = x2 and dy′ = 0. Then the kernel of d in
degree 5 is spanned by xy′. If a = 4, we see theremust be a non-zero closed degree
4 generator, and dim H∗ ≥ 8. Otherwise, if a ≥ 6, we may assume dz = xy′.
Then the Massey product [xz − yy′] is non-zero and dim H∗ ≥ 8.

We now list the homotopy rank types remaining upon implementation of the above
observations into the code of [7], and for illustration include the total number of
homotopy rank types in a given formal dimension. Recall that we adopt the convention
that we list the subsequences of even and odd numbers in ascending order in a given
homotopy rank type.

fd ≤ 14: total number of homotopy rank types = 229, all ruled out

fd = 15: number of homotopy rank types = 58

p = 1:(2, 4, 4:3, 5, 7, 7), (2, 2, 4, 4:3, 3, 3, 7, 7),
fd = 16: number of homotopy rank types = 134, all ruled out

fd = 17: number of homotopy rank types = 103

p = 1:(2, 4, 4:3, 7, 7, 7), (2, 4, 6:3, 5, 7, 11),
(2, 2, 4, 4:3, 3, 5, 7, 7), (2, 2, 4, 6:3, 3, 3, 7, 11), (2, 4, 4, 4:3, 3, 7, 7, 7),

p = 3:(2:3, 5, 5, 5),
fd = 18: number of homotopy rank types = 217, all ruled out

fd = 19: number of homotopy rank types = 173
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p = 1:(8, 8:3, 15, 15), (2, 4, 4:3, 5, 7, 11), (2, 4, 4:3, 7, 7, 9),
(2, 4, 6:3, 5, 9, 11), (2, 4, 6:3, 7, 7, 11), (2, 4, 8:3, 5, 7, 15),
(2, 6, 6:3, 5, 11, 11), (4, 6, 6:3, 7, 11, 11),
(2, 2, 4, 4:3, 3, 3, 7, 11), (2, 2, 4, 4:3, 3, 7, 7, 7), (2, 2, 4, 6:3, 3, 3, 9, 11),
(2, 2, 4, 6:3, 3, 5, 7, 11), (2, 2, 4, 8:3, 3, 3, 7, 15),
(2, 4, 4, 4:3, 5, 7, 7, 7), (2, 4, 4, 6:3, 3, 7, 7, 11),
(2, 2, 4, 4, 4:3, 3, 3, 7, 7, 7),

p = 3:(2:3, 5, 5, 7), (2, 4:3, 3, 5, 5, 7),
fd = 20: number of homotopy rank types = 373

p = 2:(2, 4, 4, 4:3, 3, 3, 7, 7, 7).

Theorem 2.9 The Hilali conjecture holds in formal dimension ≤ 20.

Proof We now deal with the remaining cases listed above. When counting arguments
fail to rule out a given case, we instead detect Massey products to obtain the sought
after amount of cohomology. Throughout, (�V , d) will denote an arbitrary minimal
cdga realizing a given homotopy rank type.

In formal dimension 15, we rule out (2, 4, 4:3, 5, 7, 7) by noting that if the gen-
erator in degree 3 is closed, we are done as the square of the degree 2 generator is
then non-exact and so dim H∗ ≥ 8. Otherwise, we have ker d ∩ (�V≤3)5 = {0},
and so dim H4 = 2 and dim H∗ ≥ 8. This also rules out (2, 4, 4:3, 7, 7, 7),
(2, 4, 4:3, 5, 7, 11), and (2, 4, 4:3, 7, 7, 9).

The remaining homotopy rank type (2, 2, 4, 4:3, 3, 3, 7, 7) in dimension 15, along
with (2, 2, 4, 4:3, 3, 3, 7, 11) in dimension 19, is verified as follows. If the kernel of

V 3 d→ (�V )4 is non-trivial, then dim H3 ≥ 1 and dim H4 ≥ 1 (since dim V 3 =
dim(�V≤2)4) so we are done. If the kernel of V 3 d→ (�V )4 is trivial, we can choose
bases {x, x ′}, {y, y′, y′′} of V 2 and V 3 respectively such that dy = x2, dy′ = x ′2,
dy′′ = xx ′. Now ker d ∩ (�V )5 is spanned by xy′ − x ′y′′ and x ′y − xy′′. If V 4 d→
(�V )5 is not injective, thenwe are done as dim H4+dim H5 ≥ 2. If this d is injective,
we can choose a basis {z, z′} ofV 4 such that dz = xy′−x ′y′′, dz′ = x ′y−xy′′.We then
have theMassey products [y′y′′+x ′z], [yy′′+xz′], [yy′−xz+x ′z′] forming a basis for
H6(�V , d). We can also rule out (2, 2, 4, 6:3, 3, 3, 7, 11), (2, 2, 4, 6:3, 3, 3, 9, 11),
and (2, 2, 4, 8:3, 3, 3, 7, 15) with this argument by adapting the last two sentences: let
{z} now be a basis for V 4; note dim H5 ≥ 1. If dz = xy′′ − x ′y, then [y′y′′ − xz] �= 0
gives dim H6 ≥ 1; if dz = p(xy′−x ′y′′)+q(xy′′−x ′y) for some non-zero p ∈ Q and

q ∈ Q, then [− q
p yy

′ − q2

p2
yy′′ + y′y′′ + q

p2
xz+ 1

p x
′z] �= 0. In any case, dim H∗ ≥ 10.

On to formal dimension 17, consider (2, 4, 6:3, 5, 7, 11): label the generator in
degree i by xi . If dx3 = 0, we are done; so suppose that, upon rescaling, we have
dx3 = x22 , and hence x4 is closed. Now, dx5 = ax2x4 + bx32 for some a, b ∈ Q.
We see that ker d ∩ (�V≤5)7 is spanned by x2x5 − ax3x4 − bx22 x3. (Note that this
verifies dim H∗ ≥ 8 for (2, 4, 8:3, 5, 7, 15) in dimension 19, since there this ele-
ment containing a quadratic term cannot be exact as V 6 = {0}.) Now, either x6 is
closed and we have dim H∗ ≥ 8, or upon rescaling dx6 = x2x5 − ax3x4 − bx22 x3.
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Since d(x2x6) = d(x3x5) = x22 x5 − ax2x3x4 − bx32 x3, we have that ker d ∩ (�V )8

is spanned by {x42 , x22 x4, x24 , x2x6 − x3x5}. The vector space (�V )7 is spanned by
{x22 x3, x3x4, x2x5, x7}, with the image of the differential on the first three vectors
being two dimensional. We conclude that dim H8 ≥ 1 and thus dim H∗ ≥ 8. We
draw the same conclusion for (2, 4, 6:3, 5, 9, 11) in dimension 19.

For the homotopy rank types (2, 2, 4, 4:3, 3, 5, 7, 7) and (2, 2, 4, 4:3, 3, 7, 7, 7),
note that if d is not injective on V 3, we are done as dim H4 ≥ 2. If it is injective, then

inspection of a matrix for (�V≤3)5
d→ (�V≤2)6 yields dim ker d ∩ (�V≤3)5 ≤ 1,

and so dim ker d ∩ V 4 ≥ 1, giving us dim H4 ≥ 2.
For (2, 4, 4, 4:3, 3, 7, 7, 7), we have dim ker d∩V 3 ∈ {1, 2}. Since dim V 2 = 1 we

have dim ker d ∩ (�V )5 = dim ker d ∩V 3, and so dim H4 ≥ 3−dim ker d ∩ (�V )5,
giving dim H∗ ≥ 2(2 + dim ker d ∩ V 3 + (3 − dim ker d ∩ (�V )5)) = 10. As for
(2:3, 5, 5, 5) and (2:3, 5, 5, 7), since dim(�V )6 = 1, there is a non-zero closed degree
5 indecomposable, yielding dim H∗ ≥ 6.

Moving on to formal dimension 19, the homotopy rank type (8, 8:3, 15, 15) is ruled
out by noting that the degree 8 generators must be closed. For (2, 4, 6:3, 7, 7, 11), we
are done if the degree 3 generator is closed; otherwise, the degree 4 generator and its
product with the degree 2 generator are closed and non-exact, giving dim H∗ ≥ 8.

For (2, 6, 6:3, 5, 11, 11), label by x , y, u the generators of degree 2, 3, 5 respec-
tively. If y is closed, it and xy provide two independent cohomology classes and we
have dim H∗ ≥ 8. Suppose then that dy = x2. If u is closed, we are done as x3 is
non-exact; so assume du = x3, inwhich case ker d∩(�V≤5)7 is spanned by x2y−xu.
It follows from here that dim ker d ∩ V 6 ≥ 1, and the product of a non-zero class in
this kernel with x must be closed and non-exact since V 7 = {0}; thus dim H∗ ≥ 8.

Next, (4, 6, 6:3, 7, 11, 11) is verified by noting that the degree 3 and 4 generators
must be closed and non-exact, along with at least one non-zero element in V 6.

For the case of (2, 2, 4, 6:3, 3, 5, 7, 11), note that if d is not injective on V 3, we
have dim H∗ ≥ 10. Suppose then that d is injective on V 3; denoting by {x, x ′},
{y, y′}, {z} bases of V 2, V 3, V 4 respectively, we have dy = ax2 + bx ′2 + cxx ′
and dy′ = a′x2 + b′x ′2 + c′xx ′ for some independent (a, b, c), (a′, b′, c′) ∈ Q3.

As in the case of (2, 2, 4, 4:3, 3, 5, 7, 7), it follows that (�V≤3)5
d→ (�V )6 has at

least 3–dimensional image (note dim(�V≤3)5 = 4). If the image is 4–dimensional,
i.e. the kernel is trivial, the generator in degree 4 must be closed and hence we are
done. So suppose the kernel is one–dimensional and that dz is non-zero. We will
show that this implies the existence of a closed non-zero element in the span of
{yy′, xz, x ′z}; combined with the fact that every element in the 4–dimensional space

(�V≤2)6 is closed, and dim im((�V )5
d→ (�V )6) ≤ 4, we will have dim H6 ≥ 1

and hence dim H∗ ≥ 10. Now, dz = kxy + lxy′ +mx ′y + nx ′y′ being closed, where
k, l,m, n ∈ Q are not all zero, yields the equations

ka + la′ = 0, kc + lc′ + ma + na′ = 0, kb + lb′ + mc + nc′ = 0, mb + nb′ = 0.

If a �= 0, we can rearrange our basis for V 3 so that dy = x2 + bx ′2 + cxx ′, dy′ =
b′x ′2 + c′xx ′. If furthermore b′ �= 0, we may take b′ = 1 and b = 0, yielding
d(yy′ − xz − cx ′z) = 0. If a �= 0 and b′ = 0, then upon change of basis for
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V 3 we have dy = x2 + bx ′2, dy′ = xx ′, and we use the above four equations to
conclude b = 0. Then d(yy′ − xz) = 0. The case of b �= 0 is analogous to the case
of a �= 0. Suppose now that c �= 0 and a, b = 0; after change of basis we have
dy = xx ′, dy′ = a′x2 + b′x ′2. If b′ �= 0, upon change of basis we have dy = xx ′
and dy′ = a′x2 + x ′2. Note however that the above four equations yield n = 0 and
hence ma′ = 0. Since m = 0 implies k, l,m, n = 0 (which we are assuming is not
the case), we have a′ = 0, and d(yy′ + x ′z) = 0. If b′ = 0, we may assume dy = xx ′
and dy = x2, giving d(yy′ + x ′z) = 0.

In the case of (2, 4, 4, 4:3, 5, 7, 7, 7), note that dim H4 ≥ 3, and so dim H∗ ≥ 10.
For (2, 4, 4, 6:3, 3, 7, 7, 11), note that if d vanishes on V 3 we have dim H4 ≥ 1,
and so dim H∗ ≥ 10. Otherwise, dim ker d ∩ (�V≤3)5 = 1 so there is a non-zero
z ∈ ker d ∩ V 4. Then z and its product with a degree 2 generator are closed and
non-exact as V 5 = {0}, giving us dim H∗ ≥ 10.

Now we consider (2, 2, 4, 4, 4:3, 3, 3, 7, 7, 7). Suppose first that d is injective on
V 3. Then, as in the case of (2, 2, 4, 4:3, 3, 3, 7, 7) in dimension 15, we have that
ker d∩(�V )5 is two–dimensional. Therefore, there is a non-zero element in ker d∩V 4,
and the product of this elementwith anynon-zero degree twoelement is closed andnon-

exact, giving dim H∗ ≥ 12. If V 3 d→ (�V )4 has trivial or one–dimensional image,
thenwe see dim H∗ ≥ 14 by considering only�V≤3 up to degree 4. Now suppose that
the image of this d is two–dimensional. We can choose bases {x, x ′}, {y, y′, y′′} of V 2

and V 3 such that dy = ax2+bx ′2+cxx ′, dy′ = a′x2+b′x ′2+c′xx ′, dy′′ = 0, where
(a, b, c) and (a′, b′, c′) are linearly independent. This implies the kernel of d on the
six–dimensional space (�V≤3)5 has dimension two or three. If the dimension is two,
then dim ker d ∩ V 4 ≥ 1 and so dim H∗ ≥ 12 since dim H3 = 1 and dim H4 ≥ 2. If
the dimension is three, then either d is not injective on V 4 in which case we are done,
or we can choose a degree four generator z so that dz = xy′′. Then [y′′z] is a non-zero
class in H7, and we have dim H∗ ≥ 12.

For the remaining case of (2, 4:3, 3, 5, 5, 7) in dimension 19, if d vanishes on V 3

we are done, so assume that for some bases {x}, {y, y′}, {z} of V 2, V 3, V 4 we have
dy = x2, dy′ = 0. If dz = 0 we have dim H∗ ≥ 8, so suppose dz = xy′. Then
ker d ∩ (�V )6 is spanned by x3 and yy′ − xz, and since d(xy) = x3 we conclude that
there is a closed element in (�V )5 with a non-zero term in V 5 (and so by minimality
it is not exact), yielding dim H∗ ≥ 8.

In formal dimension20, the only remaininghomotopy rank type is (2, 4, 4, 4:3, 3, 3,
7, 7, 7). Ifd vanishes onV 3,we are done; otherwise, choose bases {x}, {y, y′, y′′}ofV 2

and V 3 such that dy = x2, dy′ = dy′′ = 0. We see now that dim ker d ∩ (�V )5 = 2,
and so dim ker d ∩ V 4 ≥ 1, giving dim H∗ ≥ 10. 	
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