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Abstract
Manifold calculus is a form of functor calculus that analyzes contravariant functors
from some categories ofmanifolds to topological spaces by providing analytic approx-
imations to them. In this paper, using the technique of the h-principle, we show that
for a symplectic manifold N , the analytic approximation to the Lagrangian embed-
dings functor EmbLag(−, N ) is the totally real embeddings functor EmbTR(−, N ).
More generally, for subsets A of the m-plane Grassmannian bundle Gr(m, T N ) for
which the h-principle holds for A-directed embeddings, we prove the analyticity of
the A-directed embeddings functor EmbA(−, N ).

Keywords Manifold calculus · h-Principle · Lagrangian embeddings · Totally real
embeddings
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1 Introduction

A symplectic manifold is a smooth manifold, N , equipped with a closed, non-
degenerate differential 2-form; see Sect. 5 for details. One very important invariant
associated to N is its Fukaya category whose objects are Lagrangian submanifolds
of N . The Fukaya category appears in the statement of the homological mirror sym-
metry conjecture of Kontsevich. For this and other reasons, the study of the space of
Lagrangian submanifolds of symplectic manifolds is of great interest in symplectic
geometry.

One very important example of a symplectic manifold is the cotangent bundle of
a smooth manifold. Much of the study of the space of Lagrangian submanifolds of
the cotangent bundle has centered on Arnold’s Nearby Lagrangian Conjecture. Recent
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310 A. Nakade

attempts to prove this conjecture combine techniques from the classical theory of J-
holomorphic curves with modern homotopy theoretic techniques [20]. A simplified
version of this conjecture can be stated in the following way. Let L and L ′ be closed,
simply-connected, smooth manifolds of the same dimension.

Conjecture 1.1 (Nearby Lagrangian Conjecture) The space of unparametrized
Lagrangian embeddings of L into T ∗L ′ is non-empty if and only if L is diffeomorphic
to L ′, in which case it is contractible.

It is known that if L is a Lagrangian submanifold of T ∗L ′ then the natural projection
map is a simple homotopy equivalence between L and L ′ [1,2,20]. The conjecture has
been shown to be true for L ′ = S2 [15–17]. In this paper, we initiate a program to
apply homotopy theoreticmethods coming frommanifold calculus to study embedding
spaces coming from symplectic geometry.

Let M and N be smooth manifolds and let Emb(M, N ) be the space of smooth
embeddings of M into N . Manifold calculus, as first defined in [28] and later
reformulated in [6], studies contravariant homotopy functors on manifolds, such as
F(M) = Emb(M, N ). To such a functor F it associates a tower of fibrations

· · · −→ Tk F(M) −→ Tk−1F(M) −→ · · · −→ T1F(M)

where the approximationTk F(M) is the homotopy limit of F evaluated on the category
of open subsets of M diffeomorphic to k or fewer copies of Rm , where m is the
dimension of M . This tower can be thought of as a “Taylor tower” of F . Denote by
T∞F(M) the homotopy inverse limit of Tk F(M).

There also exist compatible maps F(M) → Tk F(M) which induces a map
F(M) → T∞F(M). When this map is a homotopy equivalence, one says that the
Taylor tower converges to F and the functor F is analytic. A deep and important
convergence result for the functor F(M) = Emb(M, N ) states the following.

Theorem 1.2 (Goodwillie and Weiss [11]; Goodwillie and Klein [12]) The embed-
dings functor Emb(M, N ) is analytic if dim(N ) − dim(M) ≥ 3.

In Sect. 5, we prove that manifold calculus sees the “flexible side” of symplectic
geometry that can be studied using the technique of the h-principle. Let (N , ω) be
a symplectic manifold and let J be any almost complex structure on it which is
compatiblewithω. LetEmbLag(M, N ) andEmbTR(M, N )be the spaces ofLagrangian
and totally real embeddings, respectively, of M into N (see Sect. 5 for definitions).

Theorem 1.3 When dim(N ) − dim(M) ≥ 3, the analytic approximation of the
Lagrangian embeddings functor EmbLag(M, N ) is weakly homotopy equivalent to
the totally real embeddings functor EmbTR(M, N ).

In general, the space of Lagrangian embeddings is not the same as the space of
totally real embeddings. As such, this result provides an example of a non-analytic
functor. The author is unaware of any other examples of non-analytic functors in the
present literature on manifold calculus.

We prove this theorem using the technique of the h-principle for directed embed-
dings. Let Gr(m, T N ) be the m-plane Grassmannian bundle over N and let A be a
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An application of the h-principle to manifold calculus 311

subset of Gr(m, T N ). An embedding e : M ↪→ N is called A-directed if the image
of the naturally induced map Gr(m, e) : M → Gr(m, T N ) lies in A. We say that
the h-principle holds for A-directed embeddings if an arbitrary embedding e can be
perturbed to get an A-directed embedding, provided we are also given a tangential
homotopy connecting De toA, where De is the derivative of e; see Sect. 3. In Sect. 4
we prove the following result.

Theorem 1.4 If dim(N ) − dim(M) ≥ 3 and the h-principle holds for A-directed
embeddings, then the space EmbA(M, N ) is weakly homotopy equivalent to its ana-
lytic approximation T∞ EmbA(M, N ).

Theorem 1.4 recovers the Theorem 1.2 of Goodwillie–Weiss, Goodwillie–Klein
for A = Gr(m, T N ). So it can be seen as a generalization of their result.

In the case when M = S1, the invariants coming from manifold calculus for
Emb(S1,Rn) have been shown to be related to finite type knot invariants [8]. In
higher dimensions, manifold calculus has been used to produce loop space structures
on embedding spaces of discs [7], and for proving finiteness results about homotopy
groups of automorphisms spaces of discs [22]. We hope to generalize these results to
embedding spaces that arise from the h-principle.

1.1 Notation and conventions

Throughout the paper we will work in the category of smooth manifolds without
boundary. The mapping spaces are endowed with the weak C∞ topology. M and
N will denote smooth manifolds of dimensions m and n, respectively. Throughout
the paper we will assume that m < n. We will use the terms space and topological
space interchangeably. All categories are enriched over spaces and likewise for all the
categorical constructions.

2 Manifold calculus

Westart by recalling basic definitions ofmanifold calculus from [6]. Denote by Top the
category of compactly generated Hausdorff spaces enriched over itself. The category
Manm is the Top-enriched category defined as

Ob(Manm) := {m dimensional smooth manifolds without boundary}
Manm(U , V ) := Emb(U , V )

where Emb(U , V ) is the space of embeddings U ↪→ V topologized under the weak
C∞ topology [18].

Definition 2.1 Define Disc∞ to be the full subcategory of Manm consisting of mani-
folds diffeomorphic to a disjoint union of finitely many Rm.

The presheaf category PSh(Manm) consisting of functors Manmop → Top has
a natural projective model structure [19] induced by the model structure on Top.
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312 A. Nakade

The fibrations are object-wise fibrations, the weak equivalences are object-wise weak
equivalences, and the cofibrations are maps which satisfy the right lifting property
with respect to trivial fibrations.

Definition 2.2 For a functor F in PSh(Manm), the analytic approximation to F is the
functor T∞F in PSh(Manm) defined as the right derived Kan extension of F |Disc∞
along the inclusion Disc∞ ↪→ Manm.

Disc∞
F |Disc∞ Top

Manm

T∞F

More explicitly, for a manifold M in Manm,

T∞F(M) := HomPSh(Disc∞)(Q Emb(−, M), F)

where Q Emb(−, M) is the cofibrant replacement of Emb(−, M) in PSh(Manm).

Definition 2.3 We say that a functor F in PSh(Manm) is analytic if the natural map

F � T∞F

is a weak homotopy equivalence.

Example 2.4 The following examples of analytic functors will be of use to us in the
later sections.

1. By the formal properties of Kan extensions, it follows that

T∞T∞F � T∞F

for any functor F in PSh(Manm). Hence, an analytic approximation T∞F is itself
always analytic.

2. For a topological space X, the functor Maps(−, X) of all continuous maps into
X is analytic [28, Example 2.4], [23, Chapter 10.2].

3. Let Imm(M, N ) denote the space of immersions of M into N. For n > m, the
functor Imm(−, N ) in PSh(Manm) is analytic [28, Example 2.3].

Manifold calculus was introduced to study embedding spaces of manifolds. One of
the deepest theorems in manifold calculus states the following.

Theorem 2.5 (Goodwillie and Weiss [11]; Goodwillie and Klein [12]) If n −m ≥ 2,
then the functor Emb(−, N ) in PSh(Manm) is analytic.
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An application of the h-principle to manifold calculus 313

3 Directed immersions and embeddings

In this section, we recall the notions of directed immersions and embeddings and the
corresponding h-principles as defined in [10,14,27].

The homotopy principle (h-principle) is a very general method for reducing
problems from geometry to homotopy theory. The h-principle first appeared in the
Whitney–Graustein Theorem [29], the Smale–Hirsch Immersion Theorem [26], and
the Nash–Kuipers Embedding Theorem [21,24,25]. These theorems provide homo-
topy theoretic descriptions of the spaces of immersions and embeddings of manifolds
in Euclidean spaces. Their proof techniques were vastly generalized by Gromov [14]
to a general framework for finding solutions to underdetermined differential relations.

The following is a very simplified idea of the general h-principle; for details see [10].
Suppose we want to find a smooth map e : M → N satisfying a first order differential
relation

P(e, De) = 0, (1)

where De is the differential of e.Weconsider instead thedecoupled differential relation

P(e, F) = 0, (2)

where F is any bundlemap from T M to T N . The solutions of Eq. (1) are called genuine
solutions and solutions of Eq. (2) are called formal solutions. A formal solution (e, F)

is a genuine solution if F = De. It is usually possible to describe the space of formal
solutions as the space of sections of certain naturally occuring bundles constructed
from T M and T N (see below). We say that the h-principle holds for the partial
differential relation P if the space of formal solutions isweakly homotopy equivalent to
the space of genuine solutions. The weak homotopy equivalence is proven by showing
that any continuously varying family of formal solutions (es, Fs) can be perturbed to a
continuously varying family of genuine solutions (e′

s, F
′
s). Thus, when the h-principle

holds, the problem of finding the homotopy type of the space of genuine solutions is
reduced to the simpler problem of finding the homotopy type of the space of formal
solutions.

For a real vector space V , let Gr(m, V ) be the m-plane Grassmannian, i.e., the
space of m-dimensional subspaces of V . Let bs : Gr(m, T N ) → N be the m-plane
Grassmannian bundle over N whose fiber over a point q in N is Gr(m, Tq N ), as
described by the following pullback diagram.

Gr(m, Tq N ) Gr(m, T N )

bs

∗ q
N

An immersion e : M � N induces a map Gr(m, e) : M → Gr(m, T N ) sending a
point p in M to De(TpM).

For the rest of this section, fix a manifold N and a subset A of Gr(m, T N ).
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314 A. Nakade

Definition 3.1 We say that an immersion (or an embedding) e : M → N isA-directed
if the image of Gr(m, e) lies in A.

Denote by ImmA(M, N ) and EmbA(M, N ) the space of A-directed immersions and
A-directed embeddings, respectively.

Definition 3.2 A formal immersion from M to N is a vector bundle monomorphism
from T M to T N. A formal immersion F : T M → T N is A-directed if the image of
F lies in A.

Denote the space of formal immersions and the space of formal A-directed immer-
sions by Immf(M, N ) and Immf

A(M, N ), respectively. There are natural inclusion

maps Imm(M, N ) ↪→ Immf(M, N ) and ImmA(M, N ) ↪→ Imm f
A(M, N ) sending

an immersion e : M → N to its differential De : T M → T N .

Definition 3.3 We say that the h-principle holds for A-directed immersions if the
inclusion ImmA(M, N ) ↪→ Immf

A(M, N ) is a weak homotopy equivalence for all
manifolds M in Manm.

Definition 3.4 A formal A-directed embedding is a pair (e, γ ) where e is an embed-
ding in Emb(M, N ) and γ is a smooth map γ : [0, 1] → Maps(M,Gr(m, T N ))

satisfying

1. bs ◦γ (t) = e for all t ∈ [0, 1],
2. γ (0) = Gr(m, e),
3. image of γ (1) lies in A.

The path γ is called a tangential homotopy lying over e.

Denote the space of formal A-directed embeddings by Emb f
A(M, N ). There is a

natural inclusion EmbA(M, N ) ↪→ Emb f
A(M, N ) which sends an embedding e :

M ↪→ N to the constant tangential homotopy at Gr(m, e) lying over e.

Definition 3.5 We say that the h-principle holds for A-directed embeddings if the
inclusion EmbA(M, N ) → Emb f

A(M, N ) is a weak homotopy equivalence for all
manifolds M in Manm.

4 Main Theorems

In this section, we connect the theories of manifold calculus and the h-principle
for directed embeddings. For this section, fix a manifold N and let A be a subset
of Gr(m, T N ) for which the h-principle holds for A-directed embeddings. Further
assume that the projection map bs : A → N is a fibration.

Lemma 4.1 The projection map onto the first coordinate from EmbfA(M, N ) to
Emb(M, N ) is a fibration.
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An application of the h-principle to manifold calculus 315

Proof Let X ↪→ Y be a cofibration. From Definition 3.4 of EmbfA(M, N ) it follows
that the lifting problem for the square

X EmbfA(M, N )

Y Emb(M, N )

is equivalent to producing compatible lifts for the following two squares.

(X × {1}) × M A

(Y × {1}) × M N

(X × [0, 1] ∪ Y × {0, 1}) × M Gr(m, T N )

(Y × [0, 1]) × M N

There exist compatible solutions for these lifting problems as the inclusions

(X × {1}) −→ (Y × {1})
(X × [0, 1] ∪ Y × {0, 1}) × M −→ (Y × [0, 1]) × M

are cofibrations and the maps A → N and Gr(m, T N ) → N are fibrations. ��
Theorem 4.2 For every manifold M in Manm, the following commuting square is a
homotopy pullback square,

EmbA(M, N )
Gr(m,−)

Maps(M,A)

Emb(M, N )
Gr(m,−)

Maps(M,Gr(m, T N ))

(3)

where the vertical maps are inclusions.

Proof Fix an embedding e : M ↪→ N . We will show that the homotopy fiber
hofibe(EmbA(M, N ) → Emb(M, N )) is weakly homotopy equivalent to homotopy
fiber hofibGr(m,e)(Maps(M,A) → Maps(M,Gr(m, T N ))).

Because the h-principle holds for A-directed embeddings, the inclusion of
EmbA(M, N ) into EmbfA(M, N ) is a weak homotopy equivalence. The projection
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map from EmbA(M, N ) to Emb(M, N ) factors through EmbfA(M, N ) giving us a
weak homotopy equivalence

hofibe(EmbA(M, N ) → Emb(M, N ))
�−→ hofibe(EmbfA(M, N ) → Emb(M, N )).

As shown in Lemma 4.1, the map EmbfA(M, N ) → Emb(M, N ) is a fibration. Hence,
the homotopy fiber hofibe(EmbfA(M, N ) → Emb(M, N )) is simply the fiber over e,
which is the space of tangential homotopies lying over e ending in A:

{γ : [0, 1] → Maps(M,Gr(m, T N )) | bs ◦γ = e,

γ (0) = Gr(m, e),

γ (1) ∈ A}.
(4)

The homotopy fiber of the map Maps(M,A) → Maps(M,Gr(m, T N )) over
Gr(m, e) is the total homotopy fiber [23, Chapter 3.4] of the following commutative
square over e.

Maps(M,A)

bs1

Maps(M,Gr(m, T N ))

bs2

Maps(M, N ) Maps(M, N )

AsA → N is a fibration, so are the vertical maps. The total homotopy fiber is then the
homotopy fiber of the map bs−1

1 (e) → bs−1
2 (e) which is precisely the space described

in (4). ��
Corollary 4.3 If further the h-principle holds for A-directed immersions, then for
every manifold M in Manm, the following commuting square is a homotopy pullback
square,

EmbA(M, N ) ImmA(M, N )

Emb(M, N ) Imm(M, N )

(5)

where all the maps are inclusions.

Proof We can extend the above square as follows.

EmbA(M, N ) ImmA(M, N )
Gr(m,−)

Maps(M,A)

Emb(M, N ) Imm(M, N )
Gr(m,−)

Maps(M,Gr(m, T N ))

(6)
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An application of the h-principle to manifold calculus 317

In Theorem 4.2 we have shown that the larger square is a homotopy pullback square.
By 2-out-of-3 property of homotopy pullbacks, it suffices to show that that the right
square a homotopy pullback square. This square factors through the space of formal
immersions as follows.

ImmA(M, N ) Immf
A(M, N ) Maps(M,A)

Imm(M, N ) Immf
Gr(m,TN)(M, N ) Maps(M,Gr(m, T N ))

(7)

The map ImmA(M, N ) → Immf
A(M, N ) is a weak homotopy equivalence as the

h-principle holds forA-directed immersions. The space Immf
Gr(m,TN)(M, N ) is simply

the space of vector bundle monomorphisms T M → T N . Because of our assumption
that m < n, the left lower horizontal map is a weak homotopy equivalence by the
Smale–Hisrch Theorem [10,26]. Hence, the left square in (7) is a homotopy pullback
square.

It follows from Definition 3.2 that the maps Immf
A(M, N ) → Maps(M,A) and

Immf
Gr(m,TN)(M, N ) → Maps(M,Gr(m, T N )) are both principal GLm(R) bundles.

Hence, the right square in (7) is a homotopy pullback square. ��

Lemma 4.4 For a small I -shaped diagram of analytic functors F : I → PSh(Manm),
the homotopy limit holimi∈I Fi is also analytic.

Proof For a diagram of analytic functors F : I → PSh(Manm) we have,

(T∞ holim I Fi )(M) = HomPSh(Disc∞)(Q Emb(−, M), holim I Fi ) (8)

� holim I HomPSh(Disc∞)(Q Emb(−, M), Fi ) (9)

= holim I (T∞Fi )(M) (10)

� holim I Fi (M) (11)

where the equalities in (8) and (10) are by the definition of T∞, the homotopy equiva-
lence in (9) follows from the universal property of enriched holim and the homotopy
equivalence in (11) follows from the analyticity of Fi . ��

Theorem 4.5 Let n − m ≥ 3. Let A be a subset of Gr(m, T N ) for which the h-
principle holds for A-directed embeddings. Further suppose that the projection map
bs : A → N is a fibration.

1. The functor EmbA(−, N ) in PSh(Manm) is analytic, i.e., the natural map

EmbA(M, N )
� T∞ EmbA(M, N )

is a weak homotopy equivalence for all manifolds M in Manm.
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2. Let A′ be a subset of A such that the projection map bs : A′ → N is a fibration
and the inclusion A′ ↪→ A is a weak homotopy equivalence. Then there exists a
weak homotopy equivalence

T∞ EmbA′(M, N ) � EmbA(M, N )

for all manifolds M in Manm.

Proof For n−m ≥ 3, as mentioned in Example 2.4 and Theorem 2.5 the three functors

Maps(−,A), Maps(−,Gr(m, T N )), Emb(−, N )

are analytic. By applying Lemma 4.4 to the homotopy pullback square from Theo-
rem 4.2

EmbA(−, N ) Maps(−,A)

Emb(−, N ) Maps(−,Gr(m, T N ))

we get the analyticity of EmbA(−, N ).
As A′ � A, when M is a manifold in Disc∞, the inclusion of EmbA′(M, N )

into EmbA(M, N ) is a weak homotopy equivalence. As T∞ is defined to be the
Kan extension along the inclusion Disc∞ ↪→ Manm, there is a natural homotopy

equivalence T∞ EmbA′(M, N )
�−→ T∞ EmbA(M, N ). The second part of the theorem

follows from the analyticity of EmbA(−, N ). ��

5 Lagrangian embeddings

In this section, we use the above framework to study the Lagrangian embeddings
functor.

A symplectic manifold is a pair (N , ω) where N is a smooth manifold and ω is
a closed, non-degenerate, differential 2-form on N . Existence of a symplectic form
on N forces it to be even dimensional. For every point q in N , the 2-form ω restricts
to a bilinear form on the tangent space Tq N . We say that a subspace V of TqM
is Lagrangian if dim V = n/2 and ω|V ≡ 0. A submanifold M of N is called
Lagrangian if ω|M ≡ 0 and dim M = n/2. This is equivalent to requiring that for
every point p in M , the tangent space TpM is a Lagrangian subspace of TpN .

For the rest of this section fix a symplectic manifold (N , ω) of dimension n = 2m.

Definition 5.1 Let Lag be the subset of Gr(m, T N ) whose fiber over a point q in N
is the space of Lagrangian subspaces of Tq N.

Note that e : M ↪→ N is a Lag-directed embedding if and only if e(M) is a Lagrangian
submanifold of M , so that EmbLag(M, N ) is the space of Lagrangian embeddings of
M into N .
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An application of the h-principle to manifold calculus 319

The h-principle does not hold for Lag-directed immersions and embeddings.
Instead, Lag is homotopy equivalent to a larger space for which h-principles do hold.

Definition 5.2 An almost complex structure J on N is a vector bundle isomorphism
J : T N → T N satisfying J 2 = −1. This is equivalent to saying that the structure
group of T N can be reduced to GLm(C).

Definition 5.3 An almost complex structure J on a symplectic manifold (N , ω) is
said to be compatible with the symplectic structure if the following two conditions are
satisfied.

1. ω(−, J−) defines a Riemannian metric on N,
2. ω(J−, J−) = ω(−,−).

On every symplectic manifold N , the space of all compatible almost complex
structures is non-empty and contractible [9, Chapter 13]. For the rest of this section,
we will fix a compatible almost complex structure J on (N , ω).

Definition 5.4 For a point q of N , a subspace V of Tq N is called totally real if
dim V = n/2 and V + JV = Tq N. A submanifold M of N is called totally real if for
each point p in M, TpM is a totally real subspace of TpN.

Denote by TR the subset of Gr(m, T N ) consisting of totally real subspaces of T N .
EmbTR(M, N ) is the space of totally real embeddings ofM into N . Compatibility of J
withω implies that there is a natural inclusion Lag ⊆ TR and hence EmbLag(M, N ) ⊆
EmbTR(M, N ).

Proposition 5.5 The inclusion Lag ↪→ TR is a homotopy equivalence.

Proof For a point q in N , we can use the almost complex structure to identify the
tangent space Tq N with C

m . Under this identification, the space of all totally real
subspaces equals GL(m,C)/GL(m,R).

Arnol’d [3] has shown that the space of Lagrangian subspaces of Tq N is homeo-
morphic to U (m)/O(m).

GL(m,C)/GL(m,R) TR

N

U (m)/O(m) Lag

N

The result follows from the fact that the natural inclusion of U (m)/O(m) into
GL(m,C)/GL(m,R) is a homotopy equivalence. ��

In [14, Section 2.4.5], Gromov proved the following using convex integration.

Theorem 5.6 (Gromov)Let N be analmost complexmanifold and letTR be the subset
of Gr(m, T N ) consisting of totally real subspaces of T N. The h-principle holds for
TR-directed embeddings.

Theorem 4.5, 5.6, and Proposition 5.5 and give us the following result.
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Theorem 5.7 Let n − m ≥ 3, n = 2m and let (N , ω) be a symplectic manifold of
dimension n with a compatible almost complex structure J . Then for all manifolds M
inManm the analytic approximation ofEmbLag(M, N ) is weakly homotopy equivalent
to EmbTR(M, N ) via a zig-zag of maps,

EmbTR(M, N )
� T∞ EmbTR(M, N ) T∞ EmbLag(M, N ).

�

As a consequence of this, we can see that in general EmbLag(−, N ) is not analytic.
For example, there are no simply connected Lagrangian submanifolds of (Cn, ω),
where ω is the standard symplectic structure [13] but S3 can be embedded in C

3

as a totally real manifold [14, Section 2.4.5]. Thus EmbLag(S3,C3) is empty but
T∞ EmbLag(S3,C3), which is weakly homotopy equivalent to EmbTR(S3,C3), is not.

Corollary 5.8 EmbLag(−,C3) is not analytic on the category of 3 dimensional smooth
manifolds.

Remark 5.9 Computations of πi (EmbTR(M,Cm)) for i = 0, 1 for some M can be
found in [4,5]. We hope to use manifold calculus to compute higher homotopy groups.

5.1 Isotropic embeddings

A stronger result is true for isotropic embeddings. An m-dimensional submanifold M
of a symplecticmanifold (N , ω) is called isotropic ifω|M ≡ 0. Isotropic submanifolds
necessarily have dimension ≤ n/2. When the dimension m = n/2 the isotropic
submanifolds are the Lagrangian submanifolds. As before, let Iso be the subset of
Gr(m, T N ) whose fiber over q in N is the space of m dimensional subspaces of Tq N
on which ω vanishes, so that e : M ↪→ N is an Iso-directed embedding if and only if
e(M) is an isotropic submanifold of M . By the Darboux theorem [9], every point q in
N has an open neighborhood that is symplectomorphic to an open subset of Rn with
the standard symplectic form. Hence, Iso → N is a fiber bundle.

In [10, Section 12.4] Eliashberg–Mishachev prove the following theorem using the
method of holonomic approximation.

Theorem 5.10 (Eliashberg–Mishachev) Let (N , ω) be a symplectic manifold of
dimension n and let Iso be the subset of Gr(m, T N ) consisting of isotropic subspaces
of T N. If m < n/2, then the h-principle holds for Iso-directed embeddings.

A direct application of Theorem 4.5 gives us the following result.

Theorem 5.11 Let n − m ≥ 3, let n > 2m be an even integer and let (N , ω) be a
symplecticmanifold of dimension n. The functorEmbIso(−, N ) defined on the category
Manm is analytic.
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23. Munson, B., Volić, I.: Cubical Homotopy Theory. Cambridge University Press, Cambridge (2015)
24. Nash, J.: C1-isometric imbeddings. Ann. Math. 20, 383–396 (1960)
25. Nash, J.: The imbedding problem for riemannian manifolds. Ann. Math. 20, 20–63 (1963)
26. Smale, S.: The classification of immersions of spheres in euclidean spaces. Ann. Math. 69(2), 327–344

(1959)
27. Spring, D.: Convex Integration Theory. Monographs in Mathematics. Springer, Berlin (1998)

123

https://doi.org/10.4310/ACTA.2018.v220.n2.a1
http://eudml.org/doc/140136
http://eudml.org/doc/140136
https://doi.org/10.1112/topo.12048
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/topo.12048
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/topo.12048
http://eudml.org/doc/143289
https://doi.org/10.1007/s00039-004-0459-6
https://doi.org/10.1007/s00039-004-0459-6
https://doi.org/10.4310/AJM.2012.v16.n1.a1
https://doi.org/10.4310/AJM.2012.v16.n1.a1
https://doi.org/10.4310/JSG.2016.v14.n1.a8
https://doi.org/10.4310/JSG.2016.v14.n1.a8
https://doi.org/10.2140/gt.2013.17.639
https://doi.org/10.2140/gt.2019.23.2277


322 A. Nakade

28. Weiss, M.: Embeddings from the point of view of immension theory: Part I. Geom. Topol. 3, 67–101
(1999)

29. Whitney, H.: On regular closed curves in the plane. Compos. Math. 4, 276–284 (1937)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	An application of the h-principle to manifold calculus
	Abstract
	1 Introduction
	1.1 Notation and conventions

	2 Manifold calculus
	3 Directed immersions and embeddings
	4 Main Theorems
	5 Lagrangian embeddings
	5.1 Isotropic embeddings

	Acknowledgements
	References




