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Abstract
The functor that takes a ring to its category of modules has an adjoint if one remembers
the forgetful functor to abelian groups: the endomorphism ring of linear natural trans-
formations. This uses the self-enrichment of the category of abelian groups. If one
considers enrichments into symmetric sequences or even bisymmetric sequences, one
can produce an endomorphism operad or an endomorphism properad. In this note, we
show that more generally, given a category C enriched in a monoidal category V, the
functor that associates to a monoid in V its category of representations in C is adjoint
to the functor that computes the endomorphism monoid of any functor with domain C.
After describing the first results of the theorywe give several examples of applications.
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1 Introduction

The functor that takes a ring R to its category of modules has an adjoint, provided that
in addition to R-mod, one remembers the forgetful functor R-mod → Ab.
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378 G. C. Drummond-Cole et al.

The adjoint sends a functor F : D → Ab to its endomorphism ring E(F) of natural
transformations. This fact is familiar to people working on duality results à la Tannaka.

If instead of using the self-enrichment 〈−,−〉 : Abop × Ab → Ab, one uses
an enrichment into symmetric sequences or bisymmetric sequences, then E(F) can
be promoted to an endomorphism operad or an endomorphism properad. This is
summarized in the table:

E(F) enrichment

endomorphism ring 〈X ,Y 〉
endomorphism operad 〈X⊗n,Y 〉
endomorphism properad 〈X⊗p,Y⊗q〉

In this note we study the general case, replacing Ab by a category C enriched in
a monoidal category V. First we review representations of monoids in the context
of an enriched category. Then we describe the endomorphism monoid of a functor
whose target is an enriched category and show that this construction is adjoint to the
representations functor.

After describing the adjunction between monoids in V and functors with target C,
we shall study the basic properties of this adjunction, in particular in the case where
the enrichment is also tensored.

In two brief appendices, we provide quick definitions of terms in enriched category
theory that we need and give a few examples of contexts in which this setup holds.

The sequel, Endomorphism operads of functors [1], contains some explicit compu-
tations.

After seeing the definitions of the functors E and Rep and their adjunction, the
reader is encouraged to take a look at the appendix [§ B]. Some of the examples there
might be surprising.

2 Monoids and their representations

Let us fix a a bicomplete monoidal category V and a category C enriched in V:

Cop × C V.
[−,−]

For convenience, we shall assume given a locally large universe enlargement V ↪→ ̂V

[§ A.1]. Because V ↪→ ̂V is fully faithful and monoidal, one has a fully faithful
embedding of categories of monoids

Mon(V) Mon
(

̂V
)

.

In order to distinguish between the two, we shall say that a monoid in ̂V is large.
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Representations are adjoint to endomorphisms 379

Remark 1 (Endomorphism monoid of an object) Thanks to the V-enrichment of C,
every object X ∈ C has a natural endomorphism monoid [X , X ].
Definition 1 (Representations of monoids) Let M be a monoid. Its category of repre-
sentations in C

M-rep

is the large category

– whose objects are (X , α) where X is an object of C and α : M → [X , X ] is a map
of monoids and

– whose morphisms (X , α) → (Y , β) are maps f : X → Y such that the following
diagram commutes:

M [X , X ]

[Y ,Y ] [X ,Y ].

α

β f∗

f ∗

The category of representations of M has an evident forgetful functor

UM : M-rep −→ C

that is both faithful and conservative. The assignment M �→ M-rep is moreover
functorial: given a morphism of monoids ψ : M → N , one has a commutative
diagram

M-rep N -rep

C
UM UN

Uψ

Denotingby ̂Cat the very large categoryof large categories, onegets a representation
functor

Mon(V)
(

̂Cat/C
)

op.
Rep

Remark 2 (Representations of large monoids) Since we have required ̂V to be locally
large, the definition of the category of representations M-rep also makes sense for
M a large monoid. Then, the large category C having been fixed, the representations
functor extends to the category of large monoids:

Mon
(

V
) (

̂Cat/C
)

op.

Mon
(

̂V
)

Rep

123



380 G. C. Drummond-Cole et al.

Indeed, let M be a large monoid. The cardinality of the objects of M-rep is bounded
by

⋃

X∈C
Hom

̂V(M, [X , X ]).

Since C is large and̂V is locally large, we deduce that M-rep has a large set of objects.
Given two representations X and Y of a monoid M , one has

HomM-rep(X ,Y ) ⊂ HomC(UM X ,UMY ).

Hence, since C has large sets of morphisms, so does M-rep.

3 The endomorphismmonoid of a functor

In this sectionwe show that the representation functorM �→ M-rep has a right adjoint

⎛

⎜

⎜

⎝

D

C

F

⎞

⎟

⎟

⎠

�−→ E(F).

It takes as inputs large categories D over C and outputs the endomorphism monoid
E(F) of the functor F : D → C.

Remark 3 (Enriched natural transformations) Given a large category D, the category
of functors Fun(D,C) is naturally enriched in̂V as follows. Given two functors F,G :
D → C, the V-natural transformations from F to G are presented by the object of ̂V

given by

NatV(F,G) :=
� ∗
D

[F−,G−],

where, following Yoneda’s original notation [2, § 4],
� ∗
D
denotes the cointegration (or

end) of a functor Dop × D → C.

Definition 2 The endomorphism monoid of a functor F : D → C is

E(F) := NatV(F, F)

the (large) monoid of V-natural transformations of F .

Remark 4 (Functoriality of E) As is the case in any 2-categorical setting, V-natural
transformations are compatible with ‘horizontal composition’ or ‘whiskering’:

⎛

⎝ D′ D C
Φ

F

F

⎞

⎠ �−→
⎛

⎝ D′ C

F◦Φ

F◦Φ

⎞

⎠ .
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Representations are adjoint to endomorphisms 381

Thus, the construction F �→ E(F) is functorial in the sense that given

D′ D C,
Φ F

one gets a morphism of large monoids

Φ∗ : E(F) −→ E(F ◦ Φ).

Theorem 1 The functor E is right adjoint to Rep

Mon
(

̂V
) (

̂Cat/C
)op

.

Rep

E

There are a number of examples where this setup gives interesting endomorphism
monoids and interesting adjunctions [§ B].

Proof Observe that a functor from D to M-rep over C consists of:

– at the object level, a monoid map M
ψX−→ [F(X), F(X)] for each object X of D,

and
– at the morphism level, no data, since the value on morphisms is determined by
being over C and the functor from M-rep to C is faithful.

However, to be a functor, the collection ψX must satisfy a condition so that for each
map f in HomD(X ,Y ), the map F( f ) is an M-representation map between F(X)

and F(Y ). This is precisely the condition for the maps ψX to assemble to a map
ψ : M → E(F). Compatibility with the M-representation structures for each object
X implies that ψ is a morphism of large monoids. �

Example 1 Let X : ∗ → C be an object of C. Then the equalizer formula for the
cointegral computing E(X) collapses to [X , X ]. So in this case E(X) recovers the
ordinary endomorphism object [X , X ].
Example 2 Let f : �1 → C be a morphism of C, with domain X and codomain
Y . Again the cointegral has a simple description via the equalizer formula; it is the
pullback of [X , X ] and [Y ,Y ] over [X ,Y ].

E( f ) = [X , X ] �[X ,Y ][Y ,Y ].

This is sometimes called the endomorphism monoid of f [3, 13.10].

Remark 5 (Generalized enrichments) We have taken as our fundamental input an
enrichment of the category C in the monoidal category V. A generalization of this
framework is to consider instead a lax functor

C −→ Bimod•(V)
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382 G. C. Drummond-Cole et al.

where Bimod•(V) is the bicategorywhose objects aremonoids inV, whosemorphisms
are pointed bimodules, and whose 2-morphisms are maps of bimodules.

Let us present an example of such a generalized enrichment that does not fit directly
in our framework. Let C be a large category, seen as naturally enriched in large sets.
There is a lax functor

C −→ Bimod•
(

̂Set
)

given on objects by

X �−→ Aut(X),

which sends a map f : X → Y to

Hom(X ,Y ) f := Hom(X ,Y ) pointed by f

and which sends the composite of two maps f and g to

Hom(X ,Y ) f ⊗Aut(Y ) Hom(Y , Z)g −→ Hom(X , Z) f g.

Using the same ideas, one can see how to produce a generalized enrichment out of a
V-enriched category C via

X �−→ [X , X ].

The cointegral defining the endomorphism monoid of a functor F has a natural
extension to the generalized framework.

The generalized enrichment of our example yields the following adjunction

̂Grp
(

̂Cat/C
)op

.

Rep

Aut

Of course one could—indirectly—obtain the adjunction between representations and
automorphismgroups byfirst taking themonoid of endomorphisms and then restricting
to groups.

4 Small endomorphismmonoids

When the domain categoryD of F is small, the endomorphism monoid E(F) is obvi-
ously small. We shall show that this is still the case whenD is large under appropriate
accessibility conditions.

Lemma 1 (Accessible reduction) Assume that the category C is accessibly enriched
[7], D is an accessible category and F : D → C is an accessible functor.
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Representations are adjoint to endomorphisms 383

Let κ be a small cardinal big enough so thatD is κ-accessible and so that both F and
X �→ [X ,Y ] commute with κ-filtered colimits. Let us denote by Fκ the restriction of
F to the full subcategoryDκ ⊂ D of κ-compact objects ofD. Then the canonical map

E(F) −→ E(Fκ)

is an isomorphism. In particular E(F) is a (small) monoid.

Proof Using the universal property of the cointegrals, it is enough to show the existence
of compatible maps

E(Fκ) [F(X), F(X)]ϕX

for every X ∈ D, such that for every κ-compact Xκ , the map ϕXκ is equal to the
projection map πXκ : E(Fκ) → [F(Xκ), F(Xκ)].

Since every X ∈ D is canonically the κ-filtered colimit X = colimXκ→X Xκ of the
κ-compact objects over it,

[F(X), F(X)] = lim
Xκ→X

[F(Xκ), F(X)].

Every map g : Xκ → X induces a morphism

E(Fκ) [F(Xκ), F(Xκ )] [F(Xκ), F(X)]πXκ g∗

and given h : Xκ → Xκ , one can draw a commutative diagram

E(Fκ) [F(Xκ), F(Xκ)] [F(Xκ), F(X)]

[F(Xκ), F(Xκ)] [F(Xκ), F(Xκ)] [F(Xκ), F(X)]

πXκ

πXκ h∗

g∗

h∗

h∗ g∗

where the commutation of the first square is guaranteed by the universal property of
E(Fκ). This shows that we get a well-defined morphism ϕX for every X ∈ D.

By construction of ϕX , the following diagram commutes

E(Fκ) [F(X), F(X)]

[F(Xκ), F(Xκ)] [F(Xκ), F(X)],

ϕX

πXκ g∗

g∗

hencewhen g is the identity of a κ-compact object Xκ , we getπXκ = ϕXκ as promised.
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384 G. C. Drummond-Cole et al.

Let f : X → Y be a morphism in D. We need to check the commutativity of the
induced square

E(Fκ) [F(X), F(X)]

[F(Y ), F(Y )] [F(X), F(Y )].

ϕX

ϕY f∗

f ∗

By accessibility again, one may check the equality f ∗ϕY = f∗ϕX after projection g∗ :
[F(X), F(Y )] → [F(Xκ), F(Y )] for every g : Xκ → X . Then by the commutativity
of the diagrams

E(Fκ) [F(X), F(X)]

[F(Xκ), F(Xκ)] [F(Xκ), F(Y )]

ϕX

πXκ f∗g∗

f∗g∗

and

E(Fκ) [F(Y ), F(Y )]

[F(Xκ), F(Xκ)] [F(Xκ), F(Y )],

ϕY

πXκ ( f g)∗

( f g)∗

we may conclude the desired result.

Remark 6 (Accessibility of the category of representations) In view of the previous
reduction lemma, one may wonder whether UM : M-rep → C is an accessible functor
between accessible categories whenever C is accessibly enriched.

This appears to be an intricate question in general: it is still unknown whether
the category of bigebras over some well-known props are actually accessible. In the
particular case where C is accessibly tensored (or cotensored), this question receives
a positive answer. We shall give more details about this case in the next section.

Cogebras over a dg-operad over a field give an example of an accessibly enriched
context [B.1.3] that is neither tensored, nor cotensored, in which P-cog is accessible
for any dg-operad P [4].

5 The case of tensored enrichment

In the case where C is tensored over V, the additional structure allows one to say more
about the adjunction between representations and endomorphisms, particularly when
the tensor structure is well-behaved.
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Representations are adjoint to endomorphisms 385

5.1 The adjunction in the accessibly tensored case

In the case where forgetful functors are accessible, we no longer need to have jumps
in sizes and we get a refined adjunction with the category of small monoids.

Proposition 1 (Accessibly tensored case) Assume that C is accessibly tensored over
V. Then there is an adjunction

Mon(V)
(

Acc/C

)op
Rep

E

in which Acc is the very large category of large accessible categories and accessible
functors.

For this one restricts the adjunction Rep � E using accessible reduction [1] and the
following lemmas.

Lemma 2 If C is accessibly tensored, then every monoid M induces an accessible
monad ˜M on C whose category of modules is canonically equivalent to M-rep as an
object of ̂Cat/C

M-rep = ˜M-mod.

Asa consequence, the category of representations M-rep is accessible and the forgetful
functor

M-rep C
UM

is accessible.

Proof Because the functor M �→ (M ⊗ −) is monoidal [4], each monoid M induces
an accessible monad ˜M with underlying functor X �→ M ⊗ X . As a consequence its
category of modules is accessible and the forgetful functor

˜M-mod C
U

˜M

is accessible.
We now claim that there is a canonical equivalence of categories above C

M-rep = ˜M-mod,

compatible with the forgetful functors. Let (X , α) be a representation of M . Then
the monoid morphism α : M → [X , X ] is equivalent by adjunction to an ˜M-module
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386 G. C. Drummond-Cole et al.

structure α̃ : M⊗X → X . Let (Y , β) be another representation ofM , then f : X → Y
is a morphism of representations if

M [X , X ]

[Y ,Y ] [X ,Y ].

α

β f∗

f ∗

commutes. By adjunction the top right part of the diagram is equivalent to M ⊗ X →
X → Y and the bottom left is equivalent to M ⊗ X → M ⊗ Y → Y so that the
commutativity of the above square is equivalent to the commutativity of

M ⊗ X M ⊗ Y

X Y .

M⊗ f

α̃ ˜β

f

Hence f : X → Y is a morphism of M-representations if and only if it is a morphism
of ˜M-modules. �

Lemma 3 Let F : D → C be an accessible functor with accessible domain. Then the
counit of the adjunction Rep � E applied to F

D E(F)-rep

C
F UE(F)

is given by an accessible functor.

Proof The top map of the diagram if accessible because the two other maps are acces-
sible [2] and the forgetful functor E(F)-rep → C is conservative. �

Remark 7 In the accessibly tensored case, the representation functor factors through
the category of accessible monads on C. Using an adapted version of a result of
Janelidze and Kelly [5], one can show that the adjunction Rep � E factors as a
composite of adjunctions

Mon(V) Monadsacc(C)
(

Acc/C

)

op.
M �−→ ˜M Mod

5.2 Faithfulness of Rep

The question of reconstructing a monoid M out of its category M-rep of represen-
tations is an old one, in the Tannakian context for example [B.2.1]. Such a result
cannot be obtained in general without additional hypotheses. Instead one can look at
the opportunity of recovering M as a submonoid of E(UM ).
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Representations are adjoint to endomorphisms 387

This is the question of faithfulness of the Rep functor which is of independent
interest. As an example, one can view Joyal’s results on analytic monads [6] as saying
in particular that the representation functor is faithful in the casewhereC is the category
of sets operadically enriched in symmetric sequences.

The representation functor M �→ M-rep is a priori not faithful. A trivial example
of this takes C to be the empty category. A nontrivial example of independent interest
is given by looking at the functor P �→ P-cog mapping a dg-operad to its category
of cogebras. Indeed, one can show that there exists a non-zero dg-operad without
nontrivial cogebras [7]:

∃ P �= 0, P-cog = 0.

However, when C is tensored, we get a criterion to check whether the representation
functor is faithful.

Proposition 2 (Faithfulness of representations) Assume that C is faithfully tensored
over V, then the representations functor

Mon(V)
(

̂Cat/C
)opRep

is faithful. Equivalently, for every monoid M, the unit map

M −→ E(UM )

is a monomorphism.

Proof Let φ,ψ : M ⇒ N be two morphisms of monoids such that

N -rep M-rep.
Uφ=Uψ

If φ! denotes the (partially defined) left adjoint to Uφ andψ! the (partially defined) left
adjoint to Uψ , then one has φ! = ψ!. Let X be an object of C, because C is tensored
over V, the monoid M acts on M ⊗ X and M ⊗ X is then the free representation of
M induced on X . The same goes for N ⊗ X . As a consequence, one has

Uφ ◦ φ!(M ⊗ X) = Uψ ◦ ψ!(M ⊗ X) = N ⊗ X .

Using the units of the adjunctions, one then gets that

M ⊗ X N ⊗ X .
φ⊗X=ψ⊗X

Since this is true for every X , we get φ = ψ . �

Acknowledgements The authors would like to thank Rune Haugseng, Theo Johnson-Freyd, Johan Leray,
Emily Riehl, and Claudia Scheimbauer for useful discussions, as well as Greg Arone and Birgit Richter for
pointing us to relevant literature.
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A Terminology of enriched categories

We let the reader turn to Kelly [8] for a detailed exposition on categories enriched in
a monoidal category (V,⊗, 1). In order to not be bothered by size issues, we fix once
and for all three infinite inaccessible cardinals L < XL < XXL and use the dictionary

small := L-small; large := XL-small; very large := XXL-small.

We now assume that V is large (has large sets of objects and morphisms) and has all
small limits and colimits. In what follows we consider a large V-enriched category

Cop × C V
[−,−]

and assume that C is large.

A.1 Enlargement of the universe

For convenience (when computing over large diagrams), we shall enlargeV: we choose

a very large monoidal category (̂V,⊗, 1) with a full monoidal embedding

(V,⊗, 1)
(

̂V,⊗, 1
)

.

The enlarged universe can be chosen to be locally large, have all large limits and
colimits and the embedding can be assumed to commutewith small limits and colimits.
This is discussed for example byKelly [8, §2.6] (albeit in the closed symmetric setting).

The V-category C can now without effort be seen as a ̂V-category

Cop × C V ̂V.
[−,−]

A.2 Properties of enrichments

Definition 3 (Closed monoidal category) One says that V is closed when the functor
Y �→ Y ⊗ X has a right adjoint Z �→ X Z for each object X in V.

Definition 4 (Tensored) One says that C is tensored over V whenever V is closed and
for every X ∈ C and M ∈ V, the functor

Y �−→ [X ,Y ]M

is V-representable by an object denoted M ⊗ X ∈ C. In that case, since V is closed
the induced functor

(V,⊗, 1) (Fun(C,C), ◦, idC)
M �−→(M⊗−)

123



Representations are adjoint to endomorphisms 389

is naturally endowed with a monoidal structure.

Definition 5 (Faithfully tensored) We shall say that C is faithfully tensored over V if
it is tensored and the functor

V Fun(C,C)
M �−→(M⊗−)

is faithful.

Definition 6 (Accessibly tensored) We shall say that C is accessibly tensored over V
if it is tensored, both V and C are accessible and for every M ∈ V, the functor

C C
X �−→M⊗X

is accessible.

Definition 7 (Accessibly enriched) When V and C are both accessible, we shall say
thatC is accessibly enriched if there exists a small cardinal κ such that for every Y ∈ C,
the functor

Cop V
X �−→[X ,Y ]

commutes with κ-cofiltered limits.

Remark 8 One can check that if C is accessibly tensored, it is then accessibly enriched.

B Examples of contexts of application

In this appendix, we give several application contexts for the adjunction

Mon
(

̂V
) (

̂Cat/C
)op

.

Rep

E

In each context, the terminology is specific, both for monoids and for their categories
of representations.

B.1 Using a closed symmetric monoidal category

In the next examples, we fix a presentable closed symmetric monoidal category
(C,⊗, 1) and denote its internal hom by 〈−,−〉. We then consider several enrich-
ments for C.

Potential examples of such closed symmetric monoidal categories include the cat-
egory of sets, vector spaces or coassociative cogebras (more generally cogebras over
Hopf operads). It also includes the categories of sheaves valued in those categories.
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390 G. C. Drummond-Cole et al.

B.1.1 Self enrichment

This one is the most obvious, since the monoidal structure of C is closed, it is self-
enriched via

[X ,Y ] := 〈X ,Y 〉.

In this context, the general idea of the adjunction Rep � E was well-known to people
doing reconstruction theorems à laTannaka. It appears for example inStreet’sQuantum
groups: a path to current algebra [9, Ch. 16].

B.1.2 Operadic enrichment

Let us denote byCSop
the category of symmetric sequences: sequences of objectsM(n)

of C endowed with right Sn-actions for every natural n. The category C is accessibly
tensored over the category of symmetric sequences via the formula

M � X :=
∐

n∈N
M(n) ⊗Sn X⊗n .

This induces a monoidal structure on symmetric sequences

M � N :=
∐

n∈N
M(n) ⊗Sn N�n .

Where� denotes the convolution of symmetric sequences. The associated enrichment
is given by

[X ,Y ](n) := 〈X⊗n,Y 〉.

Monoids in symmetric sequences are called operads

Op(C) := Mon
(

CSop
, �, 1�

)

Given an operad P , its category of representations is called the category of P-algebras.
One thus gets an adjunction

Op(C)
(

Acc/C

)op
.

Alg

E

123



Representations are adjoint to endomorphisms 391

B.1.3 The other (cogebraic) operadic enrichment

This time we let CS be the category of symmetric sequences with left actions of the
symmetric groups. It admits a monoidal structure given by

M � N :=
∐

n∈N
M�n ⊗Sn N (n)

and the associated enrichment is

[X ,Y ](n) := 〈X ,Y⊗n〉.

Since left and right actions of symmetric groups are equivalent, one has an equivalence
of categories

Mon
(

CS , �, 1�
)

= Mon
(

CSop
, �, 1�

)

= Op(C).

In this case, the category of representations of an operad P is its category of cogebras.
Conversely, the functor E associates to a functor F , seen as an object of the functor
category, its coendomorphism operad.

In general, the category of P-cogebras may not be presentable, although (for exam-
ple) it is presentable if the ground category is dg-vector spaces [4]. Thus, one has the
adjunction

Op(dgVect)
(

Acc/dgVect
)op

.

Cog

E

This example arises naturally in applications and appeared, for example, in unpub-
lished work by May, who considered it well-known.

In one application, the singular chains functor from topological spaces to chain
complexes factors through the category of E∞-cogebras in chain complexes.

The following stable improvement of this example was pointed out to us by Arone:
the coendomorphism operad of the suspension functor from pointed spaces to spectra
can be shown to be weakly equivalent to the commutative operad [10].

B.1.4 Propic enrichments

Going further, one can enrich C in the category of bisymmetric sequences CSop×S

using

[X ,Y ](p, q) := 〈X⊗p,Y⊗q〉.

There are severalmonoidal structures on bisymmetric sequences compatiblewith these
enrichment objects, depending on the classes of graphs involved in the definition of
the monoidal structure. One can allow connected graphs, in which case the monoids
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392 G. C. Drummond-Cole et al.

are properads [11, 2.1], or allow only simply connected graphs, in which case the
monoids are dioperads [12, 4.2]. Similar but more exotic examples are also possible
[13].

B.2 Examples with exogenous enrichments

B.2.1 Representations of topological monoids

The following example is taken from the duality between topological groups and their
categories of representations due to Tannaka [14]. The category of finite dimensional
vector spaces is canonically enriched in topological spaces. Since this category is
small, one gets an adjunction

Mon(Top)
(

Cat/Vectfd
)op

Repfd

E

where E associates to any functor F : D → Vectfd its topological monoid of endo-
morphisms.

B.2.2 Bigebras

Let K be a field. The category of associative K -algebras is naturally cotensored over
K -cogebras: given a cogebra V and an algebra Λ, convolution gives HomK (V ,Λ) a
structure of associative algebra. This cotensorization comes with an enrichment and
a tensorization [15].

Monoid objects in cogebras are bigebras. Given a bigebra H , it is an exercise
to verify that the category of representations H -rep is naturally isomorphic to the
category of H -module algebras studied byHopf theorists [16, 4.1.1] equippedwith the
functor to algebras forgetting the H -module structure. We thus obtain an adjunction

Bigebras
(

Acc/Alg
)op

Mod

E

where for an accessible functor F : D → Alg, the endomorphism bigebra E(F) is
universal among bigebras acting compatibly on the objects of D.
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