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Abstract
We prove that the cyclic homology of a saturated A∞ category admits the structure
of a ‘polarized variation of Hodge structures’, building heavily on the work of many
authors: the main point of the paper is to present complete proofs, and also explicit
formulae for all of the relevant structures. This formspart of a project ofGanatra, Perutz
and the author, to prove that homological mirror symmetry implies enumerativemirror
symmetry.
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1 Introduction

1.1 Calabi–Yaumirror symmetry

Mirror symmetry predicts the existence of certain ‘mirror’ pairs of Calabi–Yau Kähler
manifolds, X and Y , so that the Gromov–Witten invariants of X can be extracted
from certain Hodge-theoretic invariants of Y .1 The first thrilling application of mirror
symmetry was the prediction of the number of rational curves, in all degrees, on the
quintic threefold X , in terms of the Hodge theory of a mirror manifold Y [6]. This
prediction for the quintic, together with many more examples of mirror symmetry,
was later mathematically verified [16,26].

The most conceptually satisfying way of formulating the mirror relationship
between numerical invariants of X and Y is as an isomorphism of variations of
Hodge structures (VHS) [31]. A VHS over a complex manifold M consists of a holo-
morphic vector bundle V → M, equipped with a filtration F≥∗V by holomorphic

1 We only consider genus-zero Gromov–Witten invariants in this paper.
2 This is more precisely referred to as a complex variation of Hodge structures.
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subbundles, and a flat connection ∇ satisfying the condition ∇vF≥i V ⊂ F≥i−1V
known as Griffiths transverality.2 We introduce the Kähler moduli space MKäh(X),
which parametrizes deformations of the Kähler form on X , and the complex moduli
spaceMcpx (Y ), which parametrizes deformations of the complex structure on Y . The
Gromov–Witten theory of X gets packaged into the A-model VHS, which lives over the
Kähler moduli space: V A(X) → MKäh(X). The Hodge theory on deformations of
Y gets packaged into the B-model VHS, which lives over the complex moduli space:
V B(Y ) → Mcpx (Y ). Hodge-theoretic mirror symmetry then predicts an isomor-
phism V A(X) ∼= V B(Y ), covering an isomorphism MKäh(X) ∼= Mcpx (Y ) called
the mirror map. Enumerative mirror symmetry, i.e., the explicit formulae relating the
numerical invariants, can be deduced from this isomorphism of VHS (see, e.g., [8]).

Kontsevich proposed a generalization of Hodge-theoretic mirror symmetry called
homological mirror symmetry [24]. It predicts a quasi-equivalence of A∞ categories
F(X) 	 D(Y ), where F(X) is the split-closed derived Fukaya category of X , and
D(Y ) is a dg enhancement of the bounded derived category of coherent sheaves on
Y . More precisely, one should think of these as families of categories, parametrized
by the Kähler and complex moduli spaces respectively; and the quasi-equivalence
matches the Fukaya category living over a point in Kähler moduli space with the
derived category living over the corresponding point in complex moduli space, where
the correspondence between moduli spaces is given by the same mirror map as before.

Kontsevich also predicted that homological should imply Hodge-theoretic mirror
symmetry. This was subsequently made more precise [4,10,23]. The expectation is
that the cyclic homology of a family of saturated A∞ categories carries the structure
of a VHS; the cyclic homology of the Fukaya category is isomorphic to V A(X); and the
cyclic homology of the bounded derived category of coherent sheaves is isomorphic
to V B(Y ). Therefore, the equivalence of categories implies the isomorphism of VHS.

This paper forms part of a project of the author, joint with Ganatra and Perutz,
to carry out this program. Theorem A implies roughly that the cyclic homology of a
family of saturated Z-graded A∞ categories carries the structure of a VHS, and this
structure is functorial under A∞ functors; we also give explicit formulae for all of
the relevant structures. Ganatra [11] has defined a map from the cyclic homology
of the Fukaya category to the A-model VHS; this map is shown to respect the VHS
structure in [17], using the formulae in the present paper; and the map is shown to
be an isomorphism in [18]. The corresponding comparison theorem for the B-model
is known to experts, although not everything is written in the literature; modulo this
B-model comparison theorem, the proof is complete.

We refer to [18] for precise statements of the results. One corollary of them is a new
proof of the mirror symmetry predictions for Gromov–Witten invariants of the quintic,
as a consequence of the proof of homological mirror symmetry for the quintic [42].
The B-model comparison theoremhas been established in this specific case byTu [50].

1.2 Fanomirror symmetry

Although mirror symmetry was originally formulated for mirror pairs of Calabi–Yau
Kähler manifolds (X ,Y ), it admits a generalization in which X is allowed to be Fano.
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In this case the mirror is no longer a manifold, but rather a ‘Landau–Ginzburg model’
(Y ,W ), whichmeans a variety Y equippedwith a functionW : Y → C. TheGromov–
Witten invariants of X are related to the singularity theory of W [15].

Once again, the relation between the numerical invariants can be expressed in terms
of an isomorphism V A(X) ∼= V B(Y ,W ); however, the structures getting identified are
now variations of semi-infinite Hodge structures (VSHS). This notion was introduced
by Barannikov [3], but the study of the B-model VSHS associated to (Y ,W ) goes back
to Saito [36].

In Sect. 2 we define the notion of a graded VSHS. The following notions are equiv-
alent:

Z/2-graded VSHS ←→ VSHS in Barannikov’s sense;
Z-graded VSHS ←→ VHS in the sense of the previous section.

We refer to [18, Lemma 2.7] for a precise statement and proof of the latter equivalence,
which is a version of the ‘Rees correspondence’ between filtered bundles overM and
equivariant bundles over M × A

1 [46]. Thus, Hodge-theoretic mirror symmetry can
always be formulated as an isomorphism of graded VSHS; in the Fano case the grading
group is Z/2, and in the Calabi–Yau case it is Z. For the rest of the paper, ‘VSHS’ will
always mean ‘graded VSHS’, with the grading group implicit.

Homological mirror symmetry admits a generalization to the Fano case: roughly,
it predicts a quasi-equivalence of Z/2-graded A∞ categories DF(X) 	 MF(Y ,W ),
where the latter is the category of matrix factorizations of W [33]. One expects that it
should imply Hodge-theoretic mirror symmetry, by a similar argument to the Calabi–
Yau case, but with VHS replaced by VSHS.

Our TheoremA implies roughly that the cyclic homology of a family of saturatedY -
graded A∞ categories, which satisfies the degeneration property, carries the structure
of a Y -graded VSHS. The case Y = Z/2 is the one relevant to Fano mirror symmetry,
and the caseY = Z is the one relevant toCalabi–Yaumirror symmetry. In the latter case
the degeneration property holds automatically, by Kaledin’s proof [21] of Kontsevich–
Soibelman’s degeneration conjecture [25, Conjecture 9.1.2]. In particular, our result
implies that the cyclic homology of a family of saturated Z-graded A∞ categories
carries the structure of a Z-graded VSHS, which we recall is equivalent to a VHS (we
stated this version of the result in the previous section). We remark that the grading
group does not enter into the proof of Theorem A: the cases of relevance to Fano and
Calabi–Yau mirror symmetry are handled uniformly.

Remark 1.1 It should be possible to prove someversion of the statement that homologi-
cal implies Hodge-theoretic mirror symmetry in the Fano case, following the argument
in the Calabi–Yau case (and in particular, using the Z/2-graded case of our Theorem
A). See [2] for some recent progress.

1.3 Standing notation

Let k ⊂ K be fields. We will writeM := SpecK, and TM := DerkK.
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We fix a grading group throughout: more precisely, we fix a ‘grading datum’ in the
sense of [42], which is an abelian group Y together with homomorphisms Z → Y →
Z/2 whose composition is non-zero. All of our structures are Y -graded; when we talk
about an element of degree k ∈ Z, we really mean its degree is the image of k under
the map Z → Y ; and when we write a Koszul-type sign (−1)|a|, it means that the
image of the Y -degree of a, under the map Y → Z/2, is |a| ∈ Z/2.

Remark 1.2 The two most relevant grading data are Z := {Z id−→ Z → Z/2} and

Z/2 := {Z → Z/2
id−→ Z/2}; working with the former is equivalent to working

with ordinary Z-gradings, while working with the latter is equivalent to working with
ordinary Z/2-gradings.

We define K[[u]] to be the graded ring of formal power series in a formal variable
u of degree 2, andK((u)) the graded ring of formal Laurent series. For any f ∈ K[[u]]
or K((u)), we denote

f �(u) := f (−u).

Remark 1.3 To be precise, K[[u]] (respectively, K((u))) is the degreewise completion
ofK[u] (respectively,K[u, u−1]) with respect to the u-adic filtration. If the morphism
Z → Y is not injective then this includes infinite sums of powers of u, but if the
morphism is injective then the completion has no effect because all powers of u have
different degrees. Thus K((u)) contains ‘semi-infinite’ sums of powers of u in the
Z/2-graded case; hence Barannikov’s terminology.

Finally, if σ ∈ Z/2, we denote σ ′ := σ − 1.

1.4 Main result

We define various flavours of VSHS in Sect. 2. To give an idea of what they mean,
let us explain roughly what they correspond to under the Rees correspondence, in the
Z-graded case:

• An unpolarized pre-VSHS overM corresponds to anOM-module equipped with
a filtration F≥∗ and flat connection ∇ satisfying Griffiths transversality.

• An unpolarized VSHS is an unpolarized pre-VSHS such that the OM-module is a
finite-rank vector bundle.

• A polarization for an unpolarized pre-VSHS is a covariantly constant pairing (·, ·)
such that (F≥ j , F≥k) = 0 for j + k < 0, and (a, b) = (−1)n(b, a) for some
n ∈ Z/2 called the weight; a polarized pre-VSHS is a pre-VSHS equipped with a
polarization.

• A polarized VSHSis a polarized pre-VSHS, such that the OM-module is a finite-
rank vector bundle, and the pairing is non-degenerate.

Remark 1.4 Note that a polarized/unpolarized VSHS is the same thing as a polar-
ized/unpolarized pre-VSHS satisfying additional properties, rather than equipped with
additional data.
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Our main results concern the Hochschild invariants of A∞ categories:

Theorem A Let C be a K-linear graded A∞ category. Then:

(1) Its negative cyclic homology HC−• (C), endowed with the Getzler–Gauss–Manin
connection ∇ [14], carries the structure of an unpolarized pre-VSHS over M.

(2) If C is proper and admits an n-dimensional weak proper Calabi–Yau structure
(see Sect. 5.7 for the definition), then (HC−• (C),∇) admits a natural polarization
〈·, ·〉res of weight n, given by Shklyarov’s higher residue pairing [45].

(3) These structures are Morita invariant.
(4) If C is saturated and its noncommutative Hodge-to-de Rham spectral sequence

degenerates, then the polarized pre-VSHS (HC−• (C),∇, 〈·, ·〉res) is in fact a polar-
ized VSHS.

Remark 1.5 A conjecture of Kontsevich and Soibelmann [25, Conjecture 9.1.2] says
that the noncommutative Hodge-to-de Rham spectral sequence degenerates for any
saturated C. The conjecture has been proved by Kaledin in the case that C is Z-graded
[21] (see also [30]); so far as the author is aware it remains open if C is, for example,
Z/2-graded.

Remark 1.6 Katzarkov–Kontsevich–Pantev conjecture that the VSHS of Theorem A
can be endowed with a natural Q-structure (see [23, Section 2.2.6], and also [5]).

Let us comment on the originality of TheoremA.Webelieve our contribution ranges
from ‘writing down explicit formulae for known structures with uniform sign conven-
tions, as a handy reference’ at the low end, to ‘checking that these structures have cer-
tain natural (but slightly tricky-to-prove) compatibilities’ at the high end. To be precise:

• Our proof of the Morita invariance of the Getzler–Gauss–Manin connection is
new.

• Shklyarov’s construction of the higher residue pairing fordg categories [45] imme-
diately gives the construction for A∞ categories, because any A∞ category is
quasi-equivalent to a dg category via the Yoneda embedding. On the other hand,
for an A∞ category whose morphism spaces are finite-dimensional on the chain
level, work of Costello [9] and Konstevich–Soibelman [25] implies that there
should be an explicit formula for the pairing. We write down the formula and
prove that it is equivalent to Shklyarov’s definition (see Proposition 5.36). Our
proof is motivated by Shklyarov’s [45, Proposition 2.6].

• Using the explicit formula for the higher residue pairing, we establish that it is
covariantly constant with respect to the Getzler–Gauss–Manin connection: we
believe that this result is also new (a related result was proven by Shklyarov in
[45], but that was for a different version of Getzler’s connection, namely the one
in the u-direction rather than in the direction of the base).

Now we give a guide, to help the reader find the proofs of the different parts of
Theorem A. Part (1) is proved in Sect. 3. Part (2) is proved in two parts: covariant
constancy of the higher residue pairing, with respect to the Getzler–Gauss–Manin
connection, is proved in Corollary 5.39; and symmetry of the higher residue pairing
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(which is the only part that requires the weak proper Calabi–Yau structure) is proved
in Lemma 5.42. The tools to prove part (3) are developed in Sect. 4; Morita invariance
of negative cyclic homology and the Getzler–Gauss–Manin connection are proved
in Corollary 4.13, and Morita invariance of the higher residue pairing is proved in
Proposition 5.34. Part (4) is proved in Theorem 5.45.

The paper involves a lot of long formulae composing multilinear operations in
complicated ways, with non-trivial sign factors. We explain a graphical notation for
these composition rules in Appendix C, which allows one to check various identities,
with signs, in an efficient way; and we draw the graphical notation for some of the
trickiest signs that appear in the paper. We omit the proofs of some identities that
become trivial using the graphical notation, however we have tried very hard to write
down explicitly the correct signs for every operation we define.

2 Variations of semi-infinite Hodge structures: definitions

Variations of semi-infinite Hodge structures (VSHS) were introduced in [3]. Here we
recall the basic definitions, following [7, Section 2.2] and [19, Chapter 2]. We break
with certain conventions in the literature, for which we apologize. We point out the
places where our conventions differ as we go along.

Recall our standing notation: we fix a grading datum Z → Y → Z/2, and fields
k ⊂ K, and define M := SpecK, TM := DerkK.

2.1 Pre-VSHS

Definition 2.1 An unpolarized pre-VSHS overM consists of a graded K[[u]]-module
E, equipped with a flat connection3 ∇ : TM ⊗K E → u−1E of degree 0.

Definition 2.2 A polarization for a pre-VSHS is a pairing

(·, ·) : E × E → K[[u]]

of degree 0, additive in both inputs, and satisfying
( f · s1, g · s2) = f · g� · (s1, s2) for f , g ∈ K[[u]], (sesquilinearity)

uX(s1, s2) = (u∇Xs1, s2) − (s1, u∇X s2), and (covariant constance)

(s1, s2) = (−1)n+|s1|·|s2|(s2, s1)�, (symmetry)

where n ∈ Z/2 is called the weight.

3 More precisely, there is a map u∇ : TM ⊗ E → E, such that u∇X s is K-linear in X , additive in s,
satisfying

u∇X ( f · s) = uX( f ) · s + f · u∇X s for f ∈ K[[u]], and (Leibniz rule)

[u∇X , u∇Y ] = u2∇[X ,Y ] for all X , Y ∈ TM. (flatness)
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Remark 2.3 It is not usually assumed that a polarization must have degree 0: we prefer
to shift whatever pre-VSHS we are considering so that this is the case. In this paper,
polarizations will arise from Shklyarov’s higher residue pairing on cyclic homology,
which has degree 0 with respect to the standard grading.

Definition 2.4 A morphism of pre-VSHS is a degree-0 morphism of K[[u]]-modules
F : E1 → E2 which respects the connections, and, if the pre-VSHS are polarized,
satisfies (F(α), F(β))2 = (α, β)1.

2.2 VSHS

Definition 2.5 An unpolarized VSHSis an unpolarized pre-VSHS such that E is a free
K[[u]]-module of finite rank.

Definition 2.6 A polarization for a VSHS is a polarization for the underlying pre-VSHS,
which is furthermore non-degenerate: i.e., the pairing of K-vector spaces

E/uE ⊗K E/uE → K

induced by (·, ·) is non-degenerate.
A morphism of VSHS (polarized or unpolarized) is the same thing as a morphism

of the underlying pre-VSHS.

Remark 2.7 What we call a ‘Z/2-graded polarized VSHS’ is usually simply called a
VSHS, in particular, the polarization is part of the structure. However, the notion of an
unpolarized VSHS has applications in mirror symmetry so it seems useful to make the
distinction.

Remark 2.8 An unpolarized Z-graded VSHS is equivalent to a vector bundle over
the k-scheme M, equipped with a filtration and flat connection satisfying Griffiths
transversality [18, Lemma 2.7]; in the application to mirror symmetry we take k = C.
The most relevant choice of K for the application to mirror symmetry is K = C ((q)).
One can think ofM = SpecK as a ‘formal punctured disc’. Geometrically, one thinks
of this formal punctured disc as mapping into the Kähler/complex moduli space, with
the limit q → 0 corresponding to a ‘large volume’/‘large complex structure’ limit
point of the moduli space. We consider the pullback of the relevant structures (VSHS,
categories) to M. We shall define a ‘family of A∞ categories parametrized by M’
to be a K-linear A∞ category. Thus Theorem A constructs a VSHS over M from a
family of A∞ categories parametrized by M.

2.3 Euler gradings

We have assumed that our VSHS are graded, in the sense that E is a direct sum of
its graded pieces. A different notion of ‘graded VSHS’ is used in the literature [3,7],
which we will instead refer to as an ‘Euler-graded VSHS’. We depart from the standard
terminology in this way to avoid confusion regarding the usual terminology for A∞
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categories.Namely, ifC is agraded A∞ category (in the usual sense),which is saturated
and whose noncommutative Hodge-to-de Rham spectral sequence degenerates, then
Theorem A constructs a graded VSHS in our sense; it does not construct an Euler-
graded VSHS.

Definition 2.9 An Euler grading on a pre-VSHS is a k-linear endomorphism Gr : E →
E, such that there is a vector field E ∈ TM (called the Euler vector field) satisfying

Gr( f · s) = (2u∂u + 2E) f · s + f · Gr(s) for all f ∈ K[[u]],
[Gr,∇X ] = ∇[2E,X ], and

(2u∂u + 2E)(s1, s2) = (Gr(s1), s2) + (s1,Gr(s2)).

A morphism of Euler-graded pre-VSHS is required to satisfy Gr2 ◦ F = F ◦ Gr1.

Example 2.10 An R-graded pre-VSHS admits an Euler grading, by setting Gr(s) :=
|s| · s. The Euler vector field E ∈ TM is the graded derivation E : K → K defined
by the same formula as Gr, multiplied by 1

2 .

Remark 2.11 For any Euler-graded pre-VSHS, we can extend the connection∇ to a flat
connection that is also defined in the u-direction, by setting ∇u ∂

∂u
:= 1

2Gr − ∇E .

Remark 2.12 One can also extract an Euler graded VSHS from an A∞ category C,
if one assumes that the category itself comes with an ‘Euler grading’. Namely, one
assumes that there is an Euler vector field E on the coefficient field K, and that C
is a Z/2-graded K-linear A∞ category. Then an Euler grading on C is a map Gr on
the morphism spaces of the category, compatible with the Euler vector field as in
Definition 2.9, and such that the A∞ structure maps μs satisfy

Gr ◦ μs = μs ◦ Gr + (2 − s) · μs .

Our proof of Theorem A applies to the Z/2-graded A∞ category C, to produce Z/2-
graded Hochschild invariants: and one easily checks that, if C comes with an Euler
grading, then all of the Hochschild invariants admit Euler gradings, compatible with
all structures. This is relevant when one studies mirror symmetry for Fano varieties,
but not in the Calabi–Yau case. We will not comment further on it in this paper.

3 Hochschild invariants of A∞ categories

3.1 dg categories

Definition 3.1 AK-linear dg category C consists of: a set of objects Ob(C); for each
pair of objects, a graded K-vector space hom•(X ,Y ), equipped with a differential d
of degree +1; composition maps

hom•(X1, X2) ⊗ hom•(X0, X1) → hom•(X0, X2)
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of degree 0, which we denote by f ⊗ g �→ f · g, satisfying

( f · g) · h = f · (g · h), (1)

d( f · g) = d f · g + (−1)| f | f · dg, (2)

and there exists a unit eX ∈ hom0(X , X) for all X , satisfying deX = 0 and

f · eX = f = eY · f for all f ∈ hom•(X ,Y ). (3)

Example 3.2 Let R be a graded K-algebra. There is a dg category mod-R whose

objects are cochain complexes {. . . → Mp
dM→ Mp+1 → . . .} of R-modules; it is

defined by

homp
mod-R(M•, N•) :=

⊕

j

HomR(Mj , N j+p),

d f := dN ◦ f + (−1)| f |′ f ◦ dM ,

f · g := f ◦ g.

Definition 3.3 Let C be a dg category; we define the opposite dg category Cop with
the same set of objects, by setting

hom•
Cop (X ,Y ) := hom•

C(Y , X); dop(x) := d(x); f ·op g := (−1)| f |·|g|g · f .

3.2 A∞ categories

We follow the sign conventions of [14] and [38]. A pre-A∞ category C consists of a
set of objects, and a graded K-vector space hom•

C(X ,Y ) for each pair of objects X ,
Y .

We define the convenient notation

C(X0, . . . , Xs) := hom•(X0, X1)[1] ⊗ · · · ⊗ hom•(Xs−1, Xs)[1].

For a generator a1 ⊗ · · · ⊗ as of C(X0, . . . , Xs), we define

ε j := |a1|′ + · · · + |a j |′ ∈ Z/2.

We define the Hochschild cochains of length s:

CC•(C)s :=
∏

X0,...,Xs

Hom•(C(X0, . . . , Xs),C(X0, Xs))[−1].

We then define the Hochschild cochain complex

CC•(C) :=
∏

s≥0

CC•(C)s
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(more precisely, the completion of the direct sum in the category of graded vector
spaces, with respect to the filtration by length s). It admits theGerstenhaber product:

ϕ ◦ ψ(a1, . . . , as) :=
∑

j,k

(−1)|ψ |′·ε j ϕ∗(a1, . . . , ψ∗(a j+1, . . .), ak+1, . . .).

An A∞ structure on C is an elementμ∗ ∈ CC2(C) satisfyingμ∗ ◦μ∗ = 0 andμ0 = 0.
The cohomology category is a graded K-linear category H•(C) with the same

objects,

Hom•(X ,Y ) := H•(hom•(X ,Y ), μ1),

[a1] · [a2] = (−1)|a2|μ2(a2, a1).

We will assume that our A∞ categories are cohomologically unital, i.e., Hom•(X ,Y )

admits units.
We recall that an A∞ functor F : C → D consists of a map on the level of objects,

together with maps

Fs : C(X0, . . . , Xs) → D(FX0, FXs)

satisfying

∑
μ∗(F∗(a1, . . .), F∗(a j1+1, . . .), . . . , F

∗(a jk+1, . . . , as))

=
∑

(−1)ε j F∗(a1, . . . , μ∗(a j+1, . . .), . . . , as). (4)

Definition 3.4 If C is a dg category, we define an A∞ category A∞(C) with the same
set of objects:

hom•
A∞(C)(X ,Y ) := hom•

C(Y , X);
μ1( f ) := d f ; μ2( f , g) := (−1)| f | f · g; μ≥3 := 0.

If F : C → D is a dg functor, we define an A∞ functor A∞(F) : A∞(C) → A∞(D)

by setting A∞(F)1 := F and A∞(F)≥2 := 0.

Definition 3.5 If C is an A∞ category, we define the opposite A∞ category Cop. It
has the same objects as C, and morphism spaces hom•

Cop (X ,Y ) := hom•
C(Y , X). We

have an isomorphism CC•(C) → CC•(Cop) sending η �→ ηop, defined by

ηsop(a1, . . . , as) := (−1)†ηs(as, . . . , a1), where

† :=
∑

1≤i< j≤s

|ai |′ · |a j |′.

This isomorphism preserves the Gerstenhaber product, in the sense that αop ◦ βop =
(α ◦ β)op. Thus we can define the A∞ structure maps on Cop to be equal to μ∗

op.
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Remark 3.6 If e ∈ hom0
C(X , X) is a cohomological unit in C, then −e ∈

hom0
Cop (X , X) = hom0

C(X , X) is a cohomological unit in Cop.

Remark 3.7 This is a different definition of the opposite A∞ category from that given
in [39, Section 1a] (i.e., the two definitions give non-equivalent A∞ categories in
general). It was verified in [41, Appendix B] that there is an isomorphismF(X , ω)op ∼=
F(X ,−ω) for the exact Fukaya categoryF.We take this as evidence that this definition
of the opposite category is most relevant for Fukaya categories. We thank Seidel for
drawing our attention to this difference.

Remark 3.8 Definitions 3.4, 3.3 and 3.5 are compatible, but in a slightly non-trivial
way: given adg categoryC, there is a strict isomorphism of A∞ categories A∞(Cop) ∼=
(A∞(C))op which sends x �→ −x for all morphisms x .

3.3 Hochschild cohomology

We define the Gerstenhaber bracket on CC•(C):

[ϕ,ψ] := ϕ ◦ ψ − (−1)|ϕ|′·|ψ |′ψ ◦ ϕ.

It is a graded Lie bracket. We define the Hochschild differential M1 : CC•(C) →
CC•(C)[1] by M1 := [μ∗,−]. Because [μ∗, μ∗] = 0, M1 is a differential, i.e.,
(M1)2 = 0. Its cohomology is called the Hochschild cohomology, HH•(C).

For p ≥ 2, we define Mp ∈ CC2(CC•(C),CC•(C))p by

Mp(ϕ1, . . . , ϕp)(a1, . . . , as) :=
∑

(−1)†μ∗(a1, . . . , ϕ∗
1 (a j1+1, . . .),

. . . , ϕ∗
p(a jp+1, . . .), . . . , as),

where † =
p∑

i=1

|ϕi |′ · ε ji . (5)

By [14, Proposition 1.7], the operations M∗ ∈ CC2(CC•(C)) define an A∞ structure
on CC•(C). In particular, the Yoneda product on HH•(C), defined on the cochain level
by

ϕ ∪ ψ := (−1)|ψ |M2(ψ, ϕ), (6)

makes HH•(C) into a graded associative algebra. Together with the Gerstenhaber
bracket, this makes Hochschild cohomology into a Gerstenhaber algebra.

Remark 3.9 We have an isomorphism of A∞ algebrasCC•(C) → CC•(Cop)op, send-
ing η �→ ηop.

We now define theKodaira–Spencer map, which is closely related to the Kaledin class
[20,28].Wemake a choice ofK-basis for eachmorphism space hom•

C(X ,Y ).Wewrite
each A∞ structure map μ∗ in this basis, as a matrix with entries in K. We obtain a
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Hochschild cochain v(μ∗) ∈ CC2(C) by acting with the derivation v on the entries
of the matrix for μ∗. This Hochschild cochain is closed (as one sees by applying v to
the A∞ equations for C), so we may define

KS : DerkK → HH2(C),

KS(v) := [v(μ∗)].

We will prove in Corollary 4.9 that the Kodaira–Spencer map is independent of the
choice of K-bases for the morphisms spaces.

3.4 Hochschild homology

We define the Hochschild chain complex

CC•(C) :=
⊕

X0,...,Xs

C(X0, . . . , Xs, X0)[−1].

We denote generators by a0[a1| . . . |as] := a0 ⊗ · · · ⊗ as . For such a generator, we
define the sign

ε j := |a0|′ + |a1|′ + · · · + |a j |′

(the only difference between ε j and ε j is that the former starts at 1, the latter starts at
0).

We define an operation t on CC•(C) by

t(a0[a1| . . . |as]) := (−1)|as |′·εs−1as[a0| . . . |as−1].

Notation 3.10 If P : CC•(C) → M is some map, we define

P(a0[a1| . . . |
︷ ︸︸ ︷
a j+1| . . . |ak | . . . |as]) :=

k∑

i= j+1

P ◦ t i

=
k∑

i= j+1

(−1)†P(as−i+1[. . . |as |a0| . . . |as−i ]),

where

† := (εs − εs−i ) · εs−i .

In words, we add up all ways of cyclically permuting the inputs of P , in such a way
that a0 lands underneath the brace. We have included Examples 3.14 and 3.28 to help
familiarize the reader with the notation.
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We define the Hochschild differential b : CC•(C) → CC•(C)[1] by

b(a0[a1| . . . |as]) :=
∑

j

μ∗(
︷ ︸︸ ︷
a0, . . . , a j )[a j+1| . . . |as]

+
∑

j,k

(−1)ε j a0[. . . |μ∗(a j+1, . . . , ak)| . . . |as]. (7)

It is a differential, and its cohomology is called the Hochschild homology, HH•(C).

Remark 3.11 The convention for Hochschild homology of a dg category C (see, e.g.,
[44, Equation (2.1)]) coincideswith ours, i.e., there is a natural identification of cochain
complexes

(C•(C), b) = (CC•(A∞(C)), b).

Definition 3.12 There is an isomorphism of cochain complexes

CC•(C) → CC•(Cop)

α �→ α∨, sending

a0[a1| . . . |as] �→ (−1)†a0[as | . . . |a1], where

† :=
∑

1≤i< j≤s

|ai |′ · |a j |′.

Remark 3.13 Definition 3.12 is compatible with the corresponding map for dg cate-
gories, in the sense that for any dg category C, the following diagram commutes up
to an overall sign −1:

C•(C) CC•(A∞(C))

C•(Cop) CC•(A∞(Cop)).

Here, the horizontal maps are the tautological identifications (see Remark 3.11), the
left vertical arrow is the map defined, e.g., in [44, Proposition 4.5], and the right
vertical arrow is the map defined in Definition 3.12, composed with the isomorphism
CC•(A∞(C)op) ∼= CC•(A∞(Cop)) induced by the isomorphism of Remark 3.8.

For p ≥ 1, we define the operations4

bp|1 : CC•(C)⊗p ⊗ CC•(C) → CC•(C)[1 − p]
bp|1(ϕ1, . . . , ϕp|a0, . . . , as)
:=

∑
(−1)†μ∗(a0, . . . , ϕ∗

1 (a j1+1, . . .), . . . , ϕ
∗
p(a jp+1, . . .),

︷ ︸︸ ︷
. . . , ak)[. . . |as],

4 Getzler denotes bp|1 by b{−, . . . , −}.

123



262 N. Sheridan

where

† =
p∑

i=1

|ϕi |′ · ε ji . (8)

Example 3.14 We write out an example:

b1|1(ϕ|a0, a1) = μ3(ϕ0, a0, a1) + (−1)|a0|′·|a1|′μ3(ϕ0, a1, a0)

+(−1)(|ϕ|′+|a0|′)·|a1|′μ3(a1, ϕ
0, a0)

+(−1)|a0|′·|a1|′μ2(ϕ1(a1), a0) + μ2(ϕ0, a0)[a1]. (9)

By [14, Theorem 1.9], the operations bp|1 (with b0|1 := b) equip CC•(C) with the
structure of an A∞ left-module over the A∞ algebra CC•(C). In particular, HH•(C)

is a graded left HH•(C)-module, with the module structure given on the level of coho-
mology by ϕ ∩ α := (−1)|ϕ|b1|1(ϕ|α).

Lemma 3.15 If F : C → D is an A∞ functor, there is a chain map

F∗ : CC•(C) → CC•(D)

F∗(a0[. . . |as]) :=
∑

F∗(
︷ ︸︸ ︷
a0, . . .)[F∗(. . .)| . . . |F∗(. . . , as)].

3.5 Cyclic homology

If C is an A∞ category, we define a new A∞ category C+, by

hom•
C+(X ,Y ) :=

{
hom•

C(X ,Y ) if X �= Y
hom•

C(X , X) ⊕ K · e+ if X = Y .

We defineμs(. . . , e+, . . .) = 0 for all s �= 2, andμ2(e+, a) = a = (−1)|a|μ2(a, e+),
leaving all other structure maps μ∗ unchanged. Then C+ is a strictly unital A∞ cate-
gory, with strict units e+.

Remark 3.16 There is a strict isomorphism (Cop)+ ∼= (C+)op, which sends a �→ a for
all a ∈ hom•

C, but sends e
+ �→ −e+.

If F : C → D is an A∞ functor, then we can extend F to an A∞ functor F+ :
C+ → D+ by setting F1(e+) = e+ and Fs(. . . , e+, . . .) = 0 for all s ≥ 2. We define
the subcomplex D• ⊂ CC•(C+) of degenerate elements, generated by a0[. . . |as]
such that ai = e+ for some i > 0, together with the length-zero chains e+. We define
the non-unital Hochschild chain complex, CCnu• (C) := CC•(C+)/D•. When C is
cohomologically unital, the composition of the natural maps

CC•(C) ↪→ CC•(C+) → CCnu• (C)

is a quasi-isomorphism (compare [27, Section 1.4]).
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Now define Connes’ differential B : CCnu• (C) → CCnu• (C) by

B(a0[. . . |as]) := e+[
︷ ︸︸ ︷
a0| . . . |as]. (10)

It has degree −1, and satisfies B2 = 0 and bB + Bb = 0. Therefore, for any
gradedK[u]-moduleW , where u has degree +2, we obtain a graded cochain complex
(CCnu• (C) ⊗ W , b + uB).

Remark 3.17 The tautological identification of Hochschild complexes for a dg cat-
egory, and for its A∞ version (Remark 3.11) equates the dg version of Connes’
differential (with conventions as in [45, Section 2.2]) with the A∞ version (10).

Definition 3.18 We recall the automorphism of K[u] which sends f �→ f �, where
f �(u) := f (−u). If W1 and W2 are K[u]-modules, we call a map g : W1 → W2
sesquilinear if

g( f · w) = f � · g(w).

Remark 3.19 Given a sesquilinear automorphism of W , also denoted w �→ w�, we
obtain an isomorphism of cochain complexes

(CCnu• (C) ⊗ W , b + uB) ∼= (CCnu• (C) ⊗ W , b − uB)

by sending α ⊗ w �→ α ⊗ w�. Thus, although Getzler uses the convention that the
cyclic differential is b−uB in [14], every formula he writes can be translated into our
conventions by setting u �→ −u.

Remark 3.20 The isomorphism of Definition 3.12 extends to an isomorphism
CCnu• (C) ∼= CCnu• (Cop) which intertwines B with −B. This is a consequence
of Remark 3.16: insertion of e+ in CCnu• (C) corresponds to insertion of −e+ in
CC•(Cop).

Remark 3.21 As a consequence of the previous two remarks, for anyK[u]-module W
equipped with a sesquilinear automorphism, we obtain a sesquilinear isomorphism of
cochain complexes

(CCnu• (C) ⊗ W , b + uB) → (CCnu• (Cop) ⊗ W , b + uB)

α ⊗ w �→ α∨ ⊗ w�. (11)

If a gradedK[u]-moduleW admits, furthermore, an exhaustive decreasing filtration
· · · ⊃ F≥pW ⊃ F≥p+1W ⊃ · · · , such thatmultiplication by u increases the filtration:
u · F≥p ⊂ F≥p+1, then the cochain complex (CCnu• (C) ⊗ W , b + uB) admits an
exhaustive decreasing filtration CCnu• (C) ⊗ F≥pW ; so we can take the completion
of this filtration in the category of graded cochain complexes, to obtain a new filtered
cochain complex (CCnu• (C)⊗̂W , b + uB). The cohomology of this cochain complex
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will also acquire a filtration, which we call the Hodge filtration and denote by F≥p.
The corresponding spectral sequence has E1 page

E pq
1

∼=
⊕

r

HHp+q−r (C) ⊗ GrpWr . (12)

Lemma 3.22 If G : CCnu• (C) → CCnu• (D) is a map such that G ◦ b = b ◦ G and
G ◦ B = B ◦ G, then we obtain a map of filtered cochain complexes:

G⊗̂W : CCnu• (C)⊗̂W → CCnu• (D)⊗̂W .

If G is a quasi-isomorphism, then G⊗̂W is a quasi-isomorphism.

Proof The existence of G⊗̂W is clear. Because G⊗̂W respects filtrations, it induces
a map between the corresponding spectral sequences (13); because G is a quasi-
isomorphism, the map is an isomorphism on the E1 page. Therefore, because
the filtrations are exhaustive and complete, G⊗̂W is a quasi-isomorphism by the
Eilenberg–Moore comparison theorem [52, Theorem 5.5.11]. ��
Definition 3.23 The following examples are of particular interest:

• W− := K[u], with filtration F≥pW− := u p
K[u]. We denote

CC−• (C) := CCnu• (C)⊗̂W−,

and its cohomology by HC−• (C). This is called the negative cyclic homology.
• W∞ := K[u, u−1], with the same filtration. We denote

CC∞• (C) := CCnu• (C)⊗̂W∞,

and its cohomology by HP•(C). This is called the periodic cyclic homology.
• W+ := K[u, u−1]/K[u], with the same filtration. We denote

CC+• (C) := CCnu• (C)⊗̂W+,

and its cohomology by HC+• (C). This is called the positive cyclic homology.

Remark 3.24 For these examples, the spectral sequence (12) has E1 page

E pq
1

∼=
{
HHq−p(C) · u p if u p ∈ W
0 otherwise.

(13)

Remark 3.25 As a consequence of Remark 3.21, there is a sesquilinear isomorphism

HC−• (C) → HC−• (Cop)

α �→ α∨,

defined by (α ⊗ w)∨ := α∨ ⊗ w�, and similarly for HP• and HC+• .
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Lemma 3.26 If F : C → D is an A∞ functor, then the map F+∗ : CCnu• (C) →
CCnu• (D) satisfies

F+∗ ◦ b = b ◦ F+∗ and F+∗ ◦ B = B ◦ F+∗ .

In particular, it induces a map F∗ : HC−• (C) → HC−• (D), and similarly for HP• and
HC+• .

As a consequence of Lemma 3.22, we have:

Corollary 3.27 If an A∞ functor F : C → D induces an isomorphism F∗ : HH•(C) →
HH•(D), then it also induces an isomorphism F∗ : HC−• (C) → HC−• (D), and similarly
for HP• and HC+• .

3.6 The Getzler–Gauss–Manin connection

Getzler [14] defines operations5

B p|1 : CC•(C)⊗p ⊗ CCnu• (C) → CCnu• (C)

B p|1(ϕ1, . . . , ϕp|a0, . . . , as)
:=

∑
(−1)†e+[a0| . . . |ϕ∗

1 (a j1+1, . . .)| . . . |ϕ∗
p(a jp+1, . . .)|

︷ ︸︸ ︷
. . . |as], where

† :=
p∑

i=1

|ϕi |′ · ε ji .

Example 3.28 Note that B0|1 = B. We also write out another example:

B1|1(ϕ|a0, a1) = e+[ϕ0|a0|a1] + (−1)|a0|′·|a1|′e+[ϕ0|a1|a0]
+(−1)(|a0|′+|ϕ|′)·|a1|′e+[a1|ϕ0|a0] + (−1)|a0|′·|a1|′e+[ϕ1(a1)|a0].

(14)

Definition 3.29 TheGetzler–Gauss–Manin connection [14, Proposition 3.1] is defined
by

∇ : DerkK ⊗K CC−• (C) → u−1CC−• (C),

∇v(α) := v(α) − u−1b1|1(v(μ∗)|α) − B1|1(v(μ∗)|α).

Observe that the second term on the right-hand side has acquired a minus sign in our
conventions, in accordance with Remark 3.19.

Remark 3.30 In writing the expressions ‘v(α)’ and ‘v(μ∗)’, it is implicit that we have
chosen a K-basis for each morphism space hom•

C(X ,Y ). So really we should write

5 Getzler denotes B p|1 by B{−, . . . , −}.
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‘∇B’, where B denotes the choice of these bases; however we will prove (Corol-
lary 3.33) that ∇B is independent of the choice of B on the level of cohomology, so B
can be removed from the notation.

Remark 3.31 Observe that ∇B
v induces a linear map GrpFCC

−• (C) → Grp−1
F CC−• (C).

This map is given by −u−1b1|1(KS(v)|−) on the level of cohomology, in analogy
with the associated graded of the Gauss–Manin connection with respect to the Hodge
filtration (see, e.g., [51, Theorem 10.4]).

Getzler shows that [∇B
v , b+ uB] = 0, so ∇B

v gives a well-defined map on the level
of cohomology. It is clear from the formula that it is a connection. Getzler also shows
that ∇B is flat: more precisely, he writes down an explicit contracting homotopy for
u2

([∇X ,∇Y ] − ∇[X ,Y ]
)
(see [14, Theorem 3.3]), so the connection is flat in the sense

of Definition 2.1.

Theorem 3.32 Suppose that C and D are A∞ categories, equipped with a choice of
K-bases BC for the morphism spaces of C, and BD for the morphism spaces of D.
If F : C → D is an A∞ functor, then the induced map F∗ : HC−• (C) → HC−• (D)

respects the Getzler–Gauss–Manin connection, in the sense that

F∗ ◦
[
∇BC

v

]
=
[
∇BD

v

]
◦ F∗

on the level of cohomology.

Proof See Appendix B. ��
Corollary 3.33 TheGetzler–Gauss–Manin connection∇B is independent of the choice
of bases B, on the level of cohomology.

Proof Follows from Theorem 3.32, taking F to be the identity functor. ��
Henceforth, we simply write ‘∇’ instead of ‘∇B’. It follows that, for any graded

K-linear A∞ category C, (HC−• (C),∇) is a well-defined unpolarized pre-VSHS. This
completes the proof of Theorem A (1).

4 Morita invariance

4.1 Morita equivalence

We recall some material about A∞ bimodules from [38, Section 2]. If C and D are
A∞ categories, we denote by [C,D] the dg category of graded,K-linear, cohomolog-
ically unital A∞ (C,D) bimodules. Recall: morphisms are ‘pre-homomorphisms’ of
bimodules; the differential is given by [38, Equation (2.8)]; composition is given by
[38, Equation (2.9)].

Recall that if B, C and D are A∞ categories, and M is an A∞ (C,D) bimodule,
then there is an induced dg functor

? ⊗C M : [B,C] → [B,D]. (15)
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If D = C and M = C� is the diagonal bimodule, then the functor ? ⊗C C� is
quasi-isomorphic to the identity functor.

Definition 4.1 C and D are Morita equivalent if there exists a (C,D) bimodule M,
and a (D,C) bimodule N, and quasi-isomorphisms of A∞ bimodules

M ⊗D N ∼= C� and N ⊗C M ∼= D�.

In this situation, the functor (15) is a quasi-equivalence.

We now recall that, given A∞ functors Fi : Ci → Di for i = 0, 1, and a (D0,D1)

bimodule M, we can define the pullback (C0,C1) bimodule (F0 ⊗ F1)∗M (see [12,
Section 2.8]). We prove the following result in Appendix A:

Lemma 4.2 (= Lemma A.2) If F : C → D is a cohomologically full and faithful A∞
functor, and D is split-generated by the image of F, then M := (F ⊗ Id)∗D� and
N := (Id ⊗ F)∗D� define a Morita equivalence between C and D.

Now, let twπC denote the triangulated split-closure of C (denoted ‘
∏

(Tw(C))’ in
[39, Section 4c]). The following result is well-known:

Theorem 4.3 C andD are Morita equivalent if and only if twπC and twπD are quasi-
equivalent.

Proof Suppose twπC 	 twπD. Consider the A∞ functors

C ↪→ twπC → twπD ←↩ D.

Each is cohomologically full and faithful with split-generating image, hence each
defines a Morita equivalence by Lemma 4.2. This proves the ‘if’; Theorem A.3 proves
the ‘only if’. ��

4.2 Hochschild cohomology

Generalizing [12, Equation (2.200)] slightly, we have the following:

Lemma 4.4 There are A∞ homomorphisms6

CC•(C)
LM−−→ hom•

A∞([C,D])(M,M)
RM←−− CC•(D)op, (16)

with LM given by the formula

L p
M(ϕ1, . . . , ϕp)(a1, . . . , as ,m, b1, . . . , bt )

:=
∑

(−1)†μ∗
M(a1, . . . , ϕ

∗
1 (a j1+1, . . .), . . . , ϕ

∗
p(a jp+1, . . .), . . . , a1,m, b1, . . . , bt ),

6 We recall that [C,D] is a dg category, and A∞([C,D]) is the corresponding A∞ category, in accordance
with Definition 3.4.
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where

† =
p∑

i=1

|ϕi |′ · ε ji , (17)

and RM given by the formula

Rp
M(ϕ1, . . . , ϕp)(a1, . . . , as,m, b1, . . . , bt )

:=
∑

(−1)†μ∗
M(a1, . . . , as,m, b1, . . . ,

ϕ∗
p(y jp+1, . . .), . . . , ϕ

∗
1 (y j1+1, . . .), . . . , yt ),

where

† =
∑

i< j

|ϕi |′ · |ϕ j |′ +
p∑

i=1

|ϕi |′ ·
(|a1|′ + . . . + |as |′ + |m| + |b1|′ + . . . + |b ji |′

)
.

(18)

Proof The A∞ homomorphism equations are a consequence of the A∞ bimodule
equations forM. ��
Lemma 4.5 If M defines a Morita equivalence between C and D, then LM and RM

are quasi-isomorphisms. In particular,M induces an algebra isomorphism HH•(C) ∼=
HH•(D)op.

Proof It suffices to prove that the chain maps L1
M and R1

M are quasi-isomorphisms.
We start by observing that the following diagram of chain maps commutes up to
homotopy:

CC•(C)
L1
M

R1
C�

hom•
[C,D](M,M)

C�⊗?

hom•
[C,C](C�,C�)

?⊗CM
hom•

[C,D](C� ⊗C M,C� ⊗C M).

(19)

Indeed, the homotopy H : CC•(C) → hom•
[C,D](C� ⊗C M,C� ⊗C M) is given by

H(ϕ∗)0|1|0(a0, a1, . . . , as,m) :=
∑

(−1)†(a0, a1, . . . , ϕ
∗(a j+1, . . .), . . . , as,m),

where

† := |ϕ|′ · ε j ,

H(ϕ∗) j |1|k = 0 for j > 0 or k > 0.

We now observe that R1
C�

is a quasi-isomorphism by [12, Proposition 2.5]. C�⊗?
is a quasi-isomorphism because it is quasi-isomorphic to the identity functor. ?⊗CM

is a quasi-isomorphism becauseM defines a Morita equivalence. Therefore, the chain
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map L1
M is a quasi-isomorphism, by commutativity of the diagram. The proof that

R1
M is a quasi-isomorphism is analogous. ��

Lemma 4.6 The isomorphism HH•(C) ∼= HH•(C)op, induced by the diagonal bimod-
ule, is the identity. In particular, HH•(C) is graded commutative (cf. [13]).

Proof It suffices to check that the chain maps

L1
C�

,−R1
C�

: CC•(C) → hom•
A∞([C,C])(C�,C�)

are chain-homotopic (Remark 3.8 explains the minus sign). Indeed, the homotopy is
given by

H(ϕ)s|1|t (a1, . . . , as,m, b1, . . . , bt ) := ϕ(a1, . . . , as,m, b1, . . . , bt ).

��
Corollary 4.7 A Morita equivalence between C and D induces an isomorphism of
graded K-algebras

HH•(C) ∼= HH•(D). (20)

Proposition 4.8 The isomorphism (20) respects Kodaira–Spencer maps.

Proof Let M be a (C,D) bimodule which defines a Morita equivalence between C

and D, and let us choose a basis for the morphisms spaces of C, D and M. Given a
derivation v ∈ DerkK, we have

0 = ∂(v(μ∗
M)) + L1

M(v(μ∗
C)) − R1

M(v(μ∗
D)),

as follows by applying v to the A∞ bimodule equations for M. Therefore
L1
M(v(μ∗

C)) = R1
M(v(μ∗

D)) on the level of cohomology, and the result follows.
��

Taking C = D and M = C�, we obtain:

Corollary 4.9 The class KS(v) := [v(μ∗)] ∈ HH2(C) does not depend on the choice of
K-bases for the morphism spaces of C.

4.3 Hochschild homology

We recall the notion of cyclic tensor product of bimodules, from [38, Section 5]. If
C1, . . . ,Cl = C0 are A∞ categories, and Mi a (Ci−1,Ci ) bimodule for i = 1 . . . , l,
we can form the cyclic tensor productM1 ⊗C1 M2 ⊗C2 . . . ⊗Cl−1 Ml ⊗Cl cyc. It is a
chain complex with underlying vector space

⊕

Xi, j∈Ob(Ci )

M1(X0, j0 , X1,1) ⊗ C1(X1,1, . . . , X1, j1) ⊗ M2(X1, j1 , X2,1)
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⊗ · · · ⊗ Ml(Xl−1, jl , X0,1) ⊗ C0(X0,1, . . . , X0, j0),

and differential as in [38, Equation (5.1)]. As a particular case, we have the identifi-
cation CC•(C) = C� ⊗C cyc.

Lemma 4.10 A Morita equivalence between C and D induces an isomorphism of
graded vector spaces

HH•(C) ∼= HH•(D). (21)

Proof Let M be a (C,D) bimodule and N a (D,C) bimodule which define a Morita
equivalence between C and D. Then we have a chain of quasi-isomorphisms

CC•(C) = C� ⊗C cyc. 	 M ⊗D N ⊗C cyc. 	 N ⊗C M ⊗D cyc. 	 D� ⊗D cyc.

= CC•(D).

��
Remark 4.11 The isomorphism (21) respects the module structure over Hochschild
cohomology.

Lemma 4.12 Let F : C → D is an A∞ functor, so that the (C,D) bimodule M :=
(F⊗Id)∗D� and the (D,C) bimoduleN := (Id⊗F)∗D� define aMorita equivalence
betweenC andD (compare Lemma 4.2). Then the induced isomorphism (21) coincides
with the map F∗ defined in Lemma 3.15.

Proof The key point is to check that the maps M ⊗D N ⊗C cyc. → D� ⊗D cyc.
given by

m[b1| . . . |bt ]n[a1| . . . |as]
�→

∑
μ∗(b j+1, . . . , bt , n, F∗(a1, . . .), . . . , F∗(. . . , as),m, b1, . . .)[bk+1| . . . |b j ]

(22)

and

m[b1| . . . |bt ]n[a1| . . . |as] �→
∑

μ∗(. . . , F∗(. . . , as),m, b1, . . . , bt , n,

F∗(a1, . . .), . . .)[F∗(ak+1, . . .)| . . . |F∗(. . . , a j )] (23)

are chain homotopic. The chain homotopy is given by

H(m[b1| . . . |bt ]n[a1| . . . |as]) := m[b1| . . . |bt |n|F∗(a1, . . .)| . . . |F∗(. . . , as)].

��
Corollary 4.13 HC−• (C),HP•(C) and HC+• (C) are Morita invariants. So is the Getzler–
Gauss–Manin connection.
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Proof Suppose C andD areMorita equivalent. It follows by Theorem 4.3 that we have
A∞ functors

C ↪→ twπC → twπD ←↩ D.

Each of these induces a map on Hochschild and cyclic homology, by Lemmas 3.15
and 3.26. Furthermore, the maps on Hochschild homology coincide with the cor-
responding maps (21), by Lemma 4.12; so they are isomorphisms, by Lemma 4.10.
Therefore, the inducedmaps on cyclic homology are isomorphisms, byCorollary 3.27:
furthermore, they respect the Getzler–Gauss–Manin connections, by Theorem 3.32. ��

5 Pairings on Hochschild and cyclic homology

5.1 TheMukai pairing for dg categories

Let C be a K-linear dg category. We recall a construction due to Shklyarov [44].
There is a natural notion of tensor product of K-linear dg categories, and there is

a Künneth quasi-isomorphism of Hochschild chain complexes [44, Theorem 2.8]

C•(C) ⊗ C•(D) → C•(C ⊗ D). (24)

If C andD are dg categories, then a dg (C,D) bimoduleQ consists of the following
data: for each pair (X ,Y ) ∈ Ob(C) × Ob(D), a graded K-vector space Q•(X ,Y )

equipped with a differential d of degree +1; left-module maps

hom•
C(X1, X2) ⊗ Q•(X0, X1) → Q•(X0, X2)

f ⊗ q �→ f · q;

and right-module maps

Q•(X1, X2) ⊗ hom•
D(X0, X1) → Q•(X0, X2)

q ⊗ g �→ q · g

satisfying the obvious analogues of associativity (1), the Leibniz rule (2) and unitality
(3).

A dg (C,D) bimodule P is equivalent to a dg functor P : C⊗Dop → mod-K. On
the level of objects, the functor sends (X ,Y ) �→ P•(X ,Y ). To define the functor on
the level of morphisms, we first define, for any c ∈ hom•

C(X1, X2),

L(c) : P(X0, X1) → P(X0, X2),

p �→ c · p.
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Similarly, for any d ∈ hom•
D(X0, X1), we define

R(d) : P(X1, X2) → P(X0, X2),

p �→ (−1)|p|·|d| p · d.

We then define the functor on the level of morphisms: P(c ⊗ d) := L(c) ◦ R(d).
By functoriality of Hochschild homology, a dg (C,D) bimodule P induces a chain

map

C•(C ⊗ Dop) → C•(mod-K).

Pre-composing this with the Künneth quasi-isomorphism (24) gives another chain
map, which induces a map on cohomology

∧P : HH•(C) ⊗ HH•(Dop) → HH•(mod-K). (25)

Now we consider the full dg sub-category perf K ⊂ mod-K, whose objects are
the cochain complexes with finite-dimensional cohomology. There is an obvious dg
functor K ↪→ perf K given by including the full subcategory with the single object
K[0]. This induces an isomorphism

K ∼= HH•(K)
∼=−→ HH•(perf K), (26)

whose inverse is called the ‘Feigin–Losev–Shoikhet trace’ in [44]:

∫
: HH•(perf K)

∼=−→ K. (27)

Definition 5.1 We call a dg (C,D) bimodule P proper if P(X ,Y ) ∈ perf K for all
(X ,Y ) ∈ Ob(C) × Ob(D). A proper bimodule induces a pairing

C•(C) ⊗ C•(Dop) → K

α ⊗ β �→
∫

∧P(α, β).

If C is a proper dg category, we call the pairing

〈, 〉Muk : HH•(C) ⊗ HH•(C) → K,

〈α, β〉Muk :=
∫

∧C�
(α, β∨)

theMukai pairing. Shklyarov shows that the Mukai pairing is Morita invariant.

Lemma 5.2 Let fin K ⊂ perf K denote the full subcategory whose objects are the
finite-dimensional cochain complexes. There is a chain map

Str : C•(fin K) → K, sending
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a0 �→ str(a0),

a0[a1| . . . |an] �→ 0 for n ≥ 1,

where ‘str’ on the first line denotes the supertrace.7 It induces a map Str :
HH•(fin K) → K; this coincides with the composition

HH•(fin K) → HH•(perf K)

∫

→ K.

Proof One easily verifies that Str is a chain map. The inclusion fin K ↪→ perf K
is a quasi-equivalence, so induces an isomorphism of Hochschild homologies. It is
obvious that Str is left-inverse to the map induced by the inclusion (26), and the result
follows. ��

Shklyarov derives the following formula for ∧P: if α = a0[a1| . . . |as] ∈ C•(C)

and β = b0[b1| . . . |bt ] ∈ C•(Dop), then

∧P(α, β) = (−1)|b0|·(|a1|′+...+|as |′)L(a0)R(b0)shst [L(a1)| . . . |L(as)|
R(b1)| . . . |R(bt )]. (28)

Here, shst denotes the sum of all (s, t)-shuffles of the elements in the square brackets,
with the associated Koszul signs (where interchanging L(ai ) with R(b j ) introduces a
sign |ai |′ · |b j |′). To clarify: the symbols ‘L(ai )’ and ‘R(b j )’ in (28) are regarded as
morphisms in the dg category mod-K.

5.2 A∞ multifunctors

The notion of tensor product of A∞ categories is rather involved [1]. Nevertheless
there is a relatively straightforward notion of A∞ n-functor C1 × · · · × Cn ��� D,
which forms a substitute for the notion of an A∞ functor C1 ⊗ · · · ⊗ Cn ��� D, and
suffices for many purposes. We give the definition, following [29].

Definition 5.3 Let C1, . . . ,Cn and D be A∞ categories. An A∞ n-functor F : C1 ×
· · · × Cn ��� D consists of a map F : Ob(C1) × · · · × Ob(Cn) → Ob(D), together
with K-linear maps

Fs1;...;sn : C1(X
1
1, . . . , X

1
s1) ⊗ . . .

⊗Cn(X
n
1 , . . . , X

n
sn ) → D(F(X1

1, . . . , X
n
1 ), F(X1

s1 , . . . , X
n
sn ))

of degree 0, such that F0;0;...;0 = 0, and satisfying the A∞ n-functor relations (a
visual representation of which is given in Fig. 1):

7 If V is a graded K-vector space, and F ∈ EndK(V ) an endomorphism, we define str(F) as follows:
write F as a sum of components Fpq ∈ HomK(Vp, Vq ), then str(F) := ∑

p(−1)ptr(Fpp).
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∑

i, j,k

(−1)†Fs1;...;si+1−k;...;sn (c11, . . . , c1s1; . . . ; ci1,

. . . , μk
Ci

(cij , . . .), c
i
j+k+1, . . . , c

i
si ; cn1 , . . . , cnsn )

=
∑

k,i p,q

(−1)�μk
D(F(c11, . . . , c

1
i1,1; . . . ; cn1 ,

. . . , cnin,1
), . . . , F(c1i1,k+1, . . . , c

n
in,k+1)). (29)

The sign † is the Koszul sign obtained by commuting μk
Ci

(equipped with degree 1) to

the front of the expression (where each cpq is equipped with its reduced degree |cpq |′).
We henceforth adopt the convention, in expressions involving A∞ multifunctors, that
(−1)� is the Koszul sign associated to re-ordering the inputs cpq in the expression so
that they appear in the order (c11, . . . , c

1
s1; . . . ; cn1 , . . . , cnsn ) (still equipping the cpq with

their reduced degrees).
If Ci is strictly unital (with units denoted e), we say that F is strictly unital in the

i th entry if

Fs1;··· ;sn (. . . ; ai1, . . . , e, · · · , aisi ; . . .) =
{
e if s j = 0 for all j �= i, and si = 1;
0 otherwise.

Lemma 5.4 An A∞ n-functor F : C1 × . . . × Cn ��� D induces a functor

H•(C1) ⊗ . . . ⊗ H•(Cn) → H•(D)

(the tensor product on the left is defined by considering each H•(Ci ) as a dg category
with trivial differential—in particular the composition involves the Koszul sign rule).
The action on objects is obvious, and on morphisms it sends

[a1] ⊗ · · · ⊗ [an] �→ [F1;0;...;0(a1)] · · · · · [F0;...;0;1(an)].

If F is strictly unital in all entries, then this functor is unital.

Proof The components F0;...;0;s;0;...;0 of F define A∞ functors Ci ��� D for each
i , which induce functors H•(Ci ) → H•(D) by taking cohomology. It now suffices
to check that elements in (distinct) images of these functors supercommute, which is
a consequence of the following A∞ n-functor relation, written in the case n = 2 to
avoid notational clutter:

F1;1(μ1(a); b) + (−1)|a|′F1;1(a;μ1(b)) =
μ2(F1;0(a; ), F0;1(; b)) + (−1)|a|′·|b|′μ2(F0;1(; b), F1;0(a; )) + μ1(F1;1(a; b)).

(30)

The unitality part of the claim is straightforward. ��
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Example 5.5 Let C1, . . . ,Cn be dg categories, and C1 ⊗ · · · ⊗ Cn their tensor product
dg category. Then there is an A∞ n-functor

F : A∞(C1) × · · · × A∞(Cn) ��� A∞(C1 ⊗ · · · ⊗ Cn), with

F0;...;1;...;0(; . . . ; ci ; . . . ; ) := e1 ⊗ · · · ⊗ ei−1 ⊗ ci ⊗ ei+1 ⊗ · · · ⊗ en,

and all other F∗;...;∗ vanishing.

Definition 5.6 Suppose that we have A∞ multifunctors Fi : Ci1 × · · · × Citi ��� Di

for i = 1, . . . ,m, and G : D1 × · · · × Dm ��� E. We define the composition

H := G ◦ (F1, . . . , Fm) : C1
1 × · · · × Cm

tm ��� E.

It acts on objects in the obvious way, and on morphisms by analogy with composition
of A∞ functors:

Hs1,1,...,s1,t1 ,...,sm,1,...,sm,tm (c1,11 , . . . , c1,1s1,1; . . . ; cm,tm
1 , . . . , cm,tm

sm,tm
)

:=
∑

(−1)�G
(
F∗
1 (c1,11 , . . . ; . . . ; c1,t11 , . . .),

. . . , F∗
1 (. . . ; . . . , c1,t1s1,t1

); . . . ; F∗
m(. . .), . . . , F∗

m(. . . ; . . . , cm,tm
sm,tm

)
)

(31)

The check that the maps H∗ satisfy the A∞ multifunctor equations is straightforward.
It is also easy to check that composition is ‘associative’ in the obvious sense.

Lemma 5.7 Let C and D be K-linear A∞ categories, and [C,D] the dg category of
A∞ (C,D) bimodules. There is an A∞ tri-functor

F : A∞([C,D]) × C × Dop ��� A∞(mod-K),

defined on the level of objects by

F(P, X ,Y ) :=
(
P(X ,Y ), μ

0|1|0
P

)
,

and on the level of morphisms as follows:

• For (c1, . . . , cs; d1, . . . , dt ) ∈ C(X1, . . . , Xs) ⊗ Dop(Y1, . . . ,Yt ), we define

F0;s;t (; c1, . . . , cs; d1, . . . , dt ) ∈ Hommod-K(P(Xs,Yt ),P(X1,Y1))

to be the morphism which sends

p �→ (−1)†μP(c1, . . . , cs; p; dt , . . . , d1), for any P, where

† :=
∑

j<k

|d j |′ · |dk |′ + |p| ·
t∑

j=1

|d j |′.

123



276 N. Sheridan

• For (ρ; c1, . . . , cs; d1, . . . , dt ) ∈ A∞([C,D])(P1,P2) ⊗ C(X1, . . . , Xs) ⊗
Dop(Y1, . . . ,Yt ), we define

F1;s;t (ρ; c1, . . . , cs; d1, . . . , dt ) ∈ Hommod-K(P2(Xs,Yt ),P1(X1,Y1))

to be the morphism which sends

p �→ (−1)†ρ(c1, . . . , cs, p, dt , . . . , d1), where

† := |ρ| +
∑

j<k

|d j |′ · |dk |′ + |p| ·
t∑

j=1

|d j |′.

F is strictly unital in its first entry.

Lemma 5.8 Let G : C1 → D1 and H : C2 → D2 be A∞ functors. Then there is a dg
functor

(G ⊗ H)∗ : [C2,D2] → [C1,D1].

It is given on the level of objects by defining (G ⊗ H)∗P to be the (C1,D1) bimodule
with

(G ⊗ H)∗P(X ,Y ) := P(GX , HY ),

μ
s|1|t
(G⊗H)∗P(c1, . . . , cs, p, dt , . . . , d1)

:=
∑

μ
∗|1|∗
P (G(c1, . . .), . . . ,G(. . . , cs), p, H(dt , . . .), . . . , H(. . . , d1)).

(32)

It is given on the level of morphisms by mapping the bimodule pre-homomorphism ρ

to the bimodule pre-homomorphism (G ⊗ H)∗ρ, given by the same formula (32), but
with ‘μP’ replaced by ‘ρ’.

Lemma 5.9 Let G : C1 → D1 and H : C2 → D2 be A∞ functors, and denote by

Fi : A∞([Ci ,Di ]) × Ci × Di ��� A∞(mod-K)

the A∞ tri-functor introduced in Lemma 5.7, for i = 1, 2. Then we have an equality

F2 ◦ (Id,G, Hop) = F1 ◦ (A∞((G ⊗ H)∗), Id, Id)

of A∞ tri-functors A∞([C2,D2]) × C1 × D
op
1 ��� A∞(mod-K).

Lemma 5.10 Suppose that C1, . . . ,Cn are A∞ categories, D = A∞(D′) is the A∞
category corresponding to a dg categoryD′, and F : C1 × · · · × Cn ��� D is an A∞
n-functor. Then there is an induced chain map
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F∗ : CC•(C1) ⊗ · · · ⊗ CC•(Cn) → CC•(D),

F∗(c10[c11| . . . |c1s1 ], · · · , cn0 [cn1 | . . . |cnsn ])

:=
∑

(−1)�+†μ2
D

⎛

⎝. . .

⎛

⎝μ2
D

⎛

⎝F∗
1︷︸︸︷

(. . .), F∗
2︷︸︸︷

(. . .)

⎞

⎠ , . . .

⎞

⎠ , F∗
n︷︸︸︷

(. . .)

⎞

⎠

[
F∗(. . .), . . . , F∗(. . .)

]
. (33)

To clarify the notation: the first term is obtained by taking n terms, and combining
them with n− 1 applications of μ2

D into a single term. The overbraces signify that we
sum over all cyclic permutations of the inputs cij such that ci0 lands underneath the
overbrace labeled i . As usual,� is the Koszul sign associated to re-ordering the inputs
cpq : this includes the Koszul signs associated with the cyclic re-ordering associated
with the overbrace notation, exactly as in Sect. 3.4. The other contribution to the
overall sign is

† := n(n − 1)

2
+

∑

1≤ j≤n,1≤k≤s j

(n − j)|c jk |′.

Lemma 5.11 The maps induced by Lemma 5.10 are compatible with composition of
A∞ multifunctors, i.e., in the setting of Definition 5.6, we have H∗ = G∗ ◦ ((F1)∗ ⊗
· · · ⊗ (Fn)∗).

Lemma 5.12 In the situation of Example 5.5, the diagram

CC•(A∞(C1)) ⊗ . . . ⊗ CC•(A∞(Cn))
=

F∗

C•(C1) ⊗ . . . ⊗ C•(Cn)

sh

CC•(A∞(C1 ⊗ . . . ⊗ Cn))
=

C•(C1 ⊗ . . . ⊗ Cn)

commutes. Here, F∗ is the map induced by the A∞ n-functor F introduced in Exam-
ple 5.5, in accordance with Lemma 5.10. The other vertical map ‘sh’ is the natural
generalization of the Künneth quasi-isomorphism (24).

5.3 TheMukai pairing for A∞ bimodules

Definition 5.13 If X is an object of a cohomologically unital A∞ category C, then
the cohomological unit eX ∈ hom•(X , X) defines a Hochschild cycle; we call the
corresponding class in Hochschild homology the Chern character of X , and denote
it Ch(X) ∈ HH0(C).

Lemma 5.14 If X and Y are quasi-isomorphic objects of C, then Ch(X) = Ch(Y ).

Proof Let [ f ] ∈ Hom0(X ,Y ) and [g] ∈ Hom0(Y , X) be inverse isomorphisms. Then

μ2( f , g) = eX + μ1(hX ), μ2(g, f ) = eY + μ1(hY ),
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so

b( f [g] − hX + hY ) = eX − eY ,

so the classes [eX ] and [eY ] are cohomologous. ��
Definition 5.15 Let C and D be A∞ categories, and denote by

F∗ : HH•(A∞([C,D])) ⊗ HH•(C) ⊗ HH•(Dop) → HH•(mod-K)

the map induced by the A∞ tri-functor F introduced in Lemma 5.7, in accordance
with Lemma 5.10. We define the pairing

∧P : HH•(C) ⊗ HH•(Dop) → HH•(mod-K)

∧P(α, β) := F∗(Ch(P), α, β).

Definition 5.15 is compatible with the corresponding notion in the dg world (25).
To see how, we must first say how to turn a dg bimodule into an A∞ bimodule:

Definition 5.16 Let C andD be K-linear dg categories, and P a dg (C,D) bimodule.
We define an (A∞(C), A∞(D)) bimodule A∞(P) with A∞(P)(X ,Y ) := P(Y , X),

μ0|1|0 := dP; μ1|1|0(c, p) := c · p; μ0|1|1(p, d) := (−1)|p|′ p · d;
μs|1|t := 0 for all s + t ≥ 2.

Remark 5.17 If P is the diagonal (C,C) bimodule, then A∞(P) is tautologically
isomorphic to the diagonal (A∞(C), A∞(C)) bimodule (as defined in [38, Equa-
tion (2.20)]).

Lemma 5.18 If C and D are dg categories, and P is a dg (C,D) bimodule, then the
diagram

HH•(C) ⊗ HH•(Dop)

∧P

HH•(A∞(C)) ⊗ HH•(A∞(D)op)

∧A∞(P)

HH•(mod-K) HH•(A∞(mod-K))

commutes.Here, the toparrow is the tautological isomorphismHH•(C)∼=HH•(A∞(C)),
tensored with the isomorphism HH•(Dop) ∼= HH•(A∞(D)op) induced by the isomor-
phism of Remark 3.8.

Proof The diagram commutes on the level of cochain complexes: this follows by
comparing Shklyarov’s formula (28) with our own definition. ��
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Definition 5.19 Let C be a proper A∞ category. We define the Mukai pairing

〈, 〉Muk : HH•(C) ⊗ HH•(C) → K

〈α, β〉Muk := −
∫

∧C�
(α, β∨) (34)

where C� is the diagonal bimodule, ∧ is as in Definition 5.15,
∫
denotes the Feigin–

Losev–Shoikhet trace (which we can apply because C� is proper), and β∨ is the image
of β under the isomorphism of Definition 3.12.

Proposition 5.20 Let C andD be proper A∞ categories which are Morita equivalent.
Then the isomorphism HH•(C) ∼= HH•(D) of Lemma 4.10 respects Mukai pairings.

Proof By Theorem 4.3, it suffices to consider the case that the Morita equivalence is
induced by a functor F : C ��� D which is cohomologically full and faithful and
whose image split-generates. We will argue that

∧D�
(F∗α, F∗β) = ∧(F⊗F)∗D�

(α, β) = ∧C�
.

The first equality follows by combining Lemma 5.9 with Lemma 5.11. To prove the
secondwe observe that, because F is cohomologically full and faithful, (F⊗F)∗D� is
quasi-isomorphic toC� in [C,C] (cf. the proof of LemmaA.2).Hence, byLemma5.14,
their Chern characters coincide, so the second equality is obvious fromDefinition 5.15.
Composing with the Feigin–Losev–Shoikhet trace completes the proof. ��
Proposition 5.21 If C is a proper dg category, then our definition of the Mukai pair-
ing on HH•(A∞(C)) ∼= HH•(C) (i.e., Definition 5.19) coincides with that given by
Shklyarov (i.e., Definition 5.1).

Proof Follows immediately from Lemma 5.18, together with Remarks 5.17 and 3.13
(the discrepancy between the dg and A∞ versions of the isomorphism ∨ is the reason
for the minus sign in (34)). ��
Proposition 5.22 If C is an A∞ category with finite-dimensional hom-spaces (i.e.,
finite-dimensional on the cochain level, not just on the cohomology level), then the
Mukai pairing is induced by the following chain-level map: if α = a0[a1| . . . |as] and
β = b0[b1| . . . |bt ], then

〈α, β〉Muk =
∑

j,k

tr
(
c �→ (−1)†μ∗(

︷ ︸︸ ︷
a0, . . . , a j , μ

∗(a j+1,

. . . , as, c,
︷ ︸︸ ︷
b0, . . . , bk), bk+1, . . . , bt )

)
,

where † = 1 +
j∑

i=0

|ai |′ + |c| · |β|. (35)

To clarify (35): if the expression is not composable in C, we set the summand to be 0.
‘c’ represents an element in the corresponding hom-space of C.
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Proof By our assumption that C has finite-dimensional hom-spaces, ∧C�
lands in

CC•(fin K). Therefore, we have

∫
∧C�

(α, β∨) = Str
(∧C�

(α, β∨)
)
,

by Lemma 5.2. This yields (35). ��
Example 5.23 If C is an A∞ category with finite-dimensional hom-spaces, then (35)
implies immediately that for any X ,Y ∈ Ob(C), we have

〈Ch(X),Ch(Y )〉Muk = χ(Hom•(X ,Y ))

(by applying the formula toα = eX and β = eY , and observing thatμ2(eX , μ2(a, eY ))

= (−1)|a|a). Hence, the same holds for any proper A∞ category, by the homological
perturbation lemma and Morita invariance. This is [44, Theorem 1.3].

We recall that an A∞ category C is called smooth (or homologically smooth) if the
diagonal bimodule C� is perfect, i.e., split-generated by tensor products of Yoneda
modules (see [25]). An A∞ category which is proper and smooth is called saturated.

Proposition 5.24 If C is saturated, then the Mukai pairing is non-degenerate.

Proof The result was proved for dg categories in [44, Theorem 1.4]. Any A∞ category
is quasi-equivalent to a dg category via the Yoneda embedding, so the result follows
by Proposition 5.20. ��

5.4 Higher residue pairing on dg categories

We recall the definition of the higher residue pairing given in [45]. If C andD are dg
categories, then there is a Künneth map of cochain complexes, extending (24):

C−• (C) ⊗ C−• (D) → C−• (C ⊗ D), (36)

and similarly for the other versions of cyclic homology (see [45, Proposition 2.5]).
This map induces an isomorphism on periodic cyclic homology, but need not induce
an isomorphism on negative cyclic homology.

As before, a dg (C,D) bimodule P induces a dg functor C ⊗ Dop → mod-K;
composing this with the Künneth map (36) yields a map

∧̃P : C−• (C) ⊗ C−• (Dop) → C−• (mod-K). (37)

Because the inclusion K ↪→ perf K induces a quasi-isomorphism of Hochschild
chain complexes, it also induces a quasi-isomorphism of cyclic homology complexes,
by Corollary 3.27. We therefore obtain a quasi-isomorphism C−• (K) → C−• (perf K).
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We know that HC−• (K) ∼= K[[u]] (c.f. [27, (2.1.12)]), so we obtain an isomorphism on
the level of cohomology:

∼∫
: HC−• (perf K) → K[[u]], (38)

the ‘cyclic Feigin–Losev–Shoikhet trace’ (and similarly for periodic cyclic homol-
ogy, where the map is to K((u)), and positive cyclic homology, where the map is to
K[u, u−1]/K[u]).

The K[[u]]-linear extension of the map Str defined in Lemma 5.2 defines a chain
map

S̃tr : CC−• (fin K) → K[[u]].

The same argument as given in the proof of Lemma 5.2 shows that the induced map
on the level of cohomology coincides with the map

HC−• (fin K) → HC−• (perf K)

∼∫
→ K[[u]].

Definition 5.25 If C is a proper dg category, we define the higher residue pairing,
which is the pairing

〈, 〉res :HC−• (C) × HC−• (C) → K[[u]]

〈α, β〉res :=
∼∫
∧̃C�

(α, β∨).

The pairing is sesquilinear. We obtain similar pairings on HP• and HC+• .

Remark 5.26 Because the Künneth quasi-isomorphism for negative cyclic homology
(36) extends that forHochschild homology (24), and because the cyclic Feigin–Losev–
Shoikhet trace (38) extends the non-cyclic version (27), the higher residue pairing
extends the Mukai pairing, in the sense that

G〈α, β〉res = 〈Gα,Gβ〉Muk,

where on the left-hand side, G : K[[u]] → K is the map setting u = 0, and on the
right-hand side, G : HC−• → HH• is the map induced on Hochschild complexes.

5.5 Higher residue pairing for A∞ bimodules

Definition 5.27 Let F : C1 × C2 × C3 ��� D be an A∞ tri-functor, where μ
≥3
D = 0.

We define a K[[u]]-linear map

F ′∗ : CC−• (C1) ⊗ CC−• (C2) ⊗ CC−• (C3) → CC−• (D)
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as a sum of three maps: F ′∗ := F1 + F2 + F3. For α = a0[a1| . . . |as], β =
b0[b1| . . . |bt ], γ = c0[c1| . . . |cu], we define

F1(α, β, γ ) :=
∑

(−1)�+†+|β|′e+[F∗(a0, . . . ; b0, . . . ; c0, . . .)| . . . |μ2
D(F∗(

1︷︸︸︷
. . . ),

F∗(
2︷︸︸︷
. . . ))|F∗(. . .)| . . . |F∗(

3︷︸︸︷
. . . )| . . . |F∗(. . .)], (39)

where� is Koszul sign associated to re-ordering the inputs ai , b j , ck as before (ignor-
ing e+), and † is the Koszul sign associated to commuting μ2

D (equipped with sign
1) to the front of the expression, where all F∗ have degree 0, all ai , b j , ck have their
reduced degrees, and e+ has degree 0.

We define

F2(α, β, γ )

:=
∑

(−1)�+|β|F∗(
3︷ ︸︸ ︷

a0, . . . ; b0, . . . ; c0, . . .)

[F∗(. . .)| . . . |F(

1︷︸︸︷
. . . )| . . . |F(

2︷︸︸︷
. . . )| . . . |F∗(. . .)]. (40)

We define

F3(α, β, γ ) :=
∑

(−1)�+|β|F∗(
1,3︷ ︸︸ ︷

a0, . . . ; b0, . . . ; c0, . . .)

[F∗(. . .)| . . . |F(

2︷︸︸︷
. . . )| . . . |F∗(. . .)]. (41)

Lemma 5.28 Let F : C1 × C2 × C3 ��� D be an A∞ tri-functor, where μ
≥3
D = 0.

Then there is a K[[u]]-linear chain map

F̃∗ : CC−• (C1) ⊗ CC−• (C2) ⊗ CC−• (C3) → CC−• (D)

(the tensor products are over K[[u]]), defined by

F̃∗ := F∗ + uF ′∗,

where F∗ is as in Lemma 5.10 (in the case n = 3), and F ′∗ is as in Definition 5.27. The
analogous results also hold for the periodic and positive versions of cyclic homology.

Proof In order to prove that

F̃∗ ◦ (b + uB) = (b + uB) ◦ F̃∗,
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it suffices to prove that: F∗◦b = b◦F∗ (weproved this inLemma5.10); F ′∗◦b+F∗◦B =
b ◦ F ′∗ + B ◦ F∗; and F ′∗ ◦ B = B ◦ F ′∗. Each of these is a trivial check using the
graphical notation of Appendix C; we omit the details. ��
Definition 5.29 As in Definition 5.13, any object X of an A∞ category C has an asso-
ciated ‘cyclic Chern character’ C̃h(X) ∈ HC−

0 (C) (similarly for periodic and positive
versions). Quasi-isomorphic objects have the same cyclic Chern character. If C is
strictly unital, the Chern character has a particularly simple cochain-level represen-
tative. Namely, in the presence of strict units, we can define the Connes differential
(and all other operations we have considered so far) using the strict units e in place of
e+. This gives the unital cyclic complex ((CC•/D•)⊗̂W , b+uB). In the unital cyclic
complex, C̃h(X) is represented on the cochain level by the length-0 cycle eX .

Remark 5.30 We do not give a proof of the assertions made in Definition 5.29, but
they are standard: in fact, one can show that C̃h(X) depends only on the class of
[X ] ∈ K0(C) (cf. [37, Lemma 8.4]).

Definition 5.31 Let P be an A∞ (C,D) bimodule. We define a K[[u]]-linear pairing

∧̃P : HC−• (C) ⊗K[[u]] HC−• (Dop) → HC−• (A∞(mod-K)),

∧̃P(α, β) := F̃∗
(
C̃h(P), α, β

)
,

where F : A∞([C,D]) × C × Dop ��� A∞(mod-K) is the A∞ tri-functor of
Lemma 5.7, and F̃∗ is the induced map, in accordance with Lemma 5.28.

Lemma 5.32 Definition 5.31 is compatible with the corresponding definition in the dg
world, i.e., the following diagram commutes:

HC−• (C) ⊗ HC−• (Dop)

∧̃P

HC−• (A∞(C)) ⊗ HC−• (A∞(D)op)

∧̃A∞(P)

HC−• (mod-K) HC−• (A∞(mod-K)).

Here, the horizontal arrows are the tautological identifications (or the isomorphism
induced by the the isomorphism of Remark 3.8, in the case of Dop). The left vertical
map is themap (37), and the right verticalmap is themap introduced inDefinition 5.31.

Proof The diagram commutes on the level of cochain complexes. ��
Definition 5.33 Let C be a proper A∞ category. We define the higher residue pairing

〈, 〉res : HC−• (C) × HC−• (C) → K[[u]]

〈α, β〉res := −
∼∫
∧̃C�

(α, β∨) (42)
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where C� is the diagonal bimodule, ∧̃ is as in Definition 5.31,
∼∫
denotes the cyclic

Feigin–Losev–Shoikhet trace (which we can apply because C� is proper), and β∨ is
the image of β under the isomorphism of Remark 3.25. The higher residue pairing is
K[[u]]-sesquilinear.
Proposition 5.34 (Morita invariance of higher residue pairing) Let C andD be proper
A∞ categories, which are Morita equivalent. Then the isomorphism HC−• (C) ∼=
HC−• (D) of Corollary 4.13 respects higher residue pairings.

Proof The proof follows that of Proposition 5.20 closely. ��
Proposition 5.35 If C is a dg category, then our definition of the higher residue pair-
ing on HC−• (A∞(C)) ∼= HC−• (C) (i.e., Definition 5.33) coincides with that given by
Shklyarov (i.e., Definition 5.25).

Proof Follows immediately from Lemma 5.32, together with Remarks 5.17 and 3.13.
��

Proposition 5.36 If C is an A∞ category with finite-dimensional hom-spaces (i.e.,
finite-dimensional on the cochain level, not just on the cohomology level), then the
higher residue pairing is induced by a chain-level map, given by extending the formula
(35) K[[u]]-sesquilinearly.
Proof Observe that [C,C] is strictly unital, so we have the explicit representing cycle
eC�

for C̃h(C�), as explained in Definition 5.29.We now observe that F̃∗ = F∗+uF ′∗,
so on the chain level we have

〈α, β〉res = Str
(
F∗(eC�

, α, β∨)
) + uStr

(
F ′∗(eC�

, α, β∨)
)
.

Nowobserve that F ′∗ never outputs a termof length 1 (seeDefinition 5.27), so Str◦F ′∗ =
0 on the chain level. The proof now follows from that of Proposition 5.22. ��

5.6 The higher residue pairing is covariantly constant

Definition 5.37 Let C be aK-linear A∞ category with finite-dimensional hom-spaces,
together with a choice of basis for each hom-space (which we recall is necessary to
make sense of expressions like ‘v(μ∗)’). For each derivation v ∈ DerkK, we define a
K[[u]]-sesquilinear map

H : CC−• (C) × CC−• (C) → K[[u]]

as a sum of three terms: H := H1 + H2 + H3. For α = a0[a1| . . . |as] and β =
b0[b1| . . . |bt ], we define

H1(α, β)

:=
∑

j,k,�,m

tr
(
c �→ (−1)†μ∗(a0, . . . , v(μ∗)(a j+1, . . .),

︷ ︸︸ ︷
ak+1, . . . , a�,
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μ∗(a�+1, . . . , as, c,
︷ ︸︸ ︷
b0, . . . , bm), bm+1, . . . , bt )

)
,

where † :=
�∑

i= j+1

|ai |′ + |c| · |β|; (43)

H2(α, β)

=
∑

j,k,�,m

tr
(
c �→ (−1)†μ∗(

︷ ︸︸ ︷
a0, . . . , a j ,

μ∗(a j+1, . . . , as, c, b0, . . . , v(μ∗)(bk+1, . . .),
︷ ︸︸ ︷
b�+1, . . .), bm+1, . . . , bt )

)
,

where † := 1 +
s∑

i= j+1

|ai |′ +
k∑

i=0

|bi |′ + |c| · |β|′; and (44)

H3(α, β)

:=
∑

j,k

tr
(
c �→ (−1)†v(μ∗)(a0, . . . , μ∗(

︷ ︸︸ ︷
a j+1, . . .,

μ∗(ak+1, . . . , as, c,
︷ ︸︸ ︷
b0, . . .), b�+1, . . .), bm+1, . . . , bt )

)
,

where † :=
k∑

i= j+1

|ai |′ + |c| · |β|. (45)

Lemma 5.38 We have

〈u · ∇vα, β〉res − 〈α, u · ∇vβ〉res = u · v〈α, β〉res + H ◦ (b + uB)

as K[[u]]-sesquilinear maps from CC−• (C) × CC−• (C) → K[[u]].

Corollary 5.39 Let C be a proper K-linear A∞ category. Then the higher residue
pairing is covariantly constant with respect to the Getzler–Gauss–Manin connection:
i.e., for any v ∈ DerkK, we have

〈u · ∇vα, β〉res − 〈α, u · ∇vβ〉res = u · v〈α, β〉res

as K[[u]]-sesquilinear maps from HC−• (C) × HC−• (C) → K[[u]].

Proof By the homological perturbation lemma, any A∞ category C is quasi-
isomorphic to a minimal A∞ category C′ (i.e., one with μ1 = 0). We have
HC−• (C) ∼= HC−• (C′), and the isomorphism respects connections (Theorem 3.32) and
higher residue pairings (Proposition 5.34), so it suffices to prove the result for C′.
Because C is proper, C′ will have finite-dimensional hom-spaces, so its higher residue
pairing is covariantly constant by Lemma 5.38. ��
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5.7 Symmetry

Let P be a (C,D) bimodule. We recall the definition of the shift, P[1], which is a
(C,D) bimodule with P[1](X ,Y ) = P(X ,Y )[1] (see [38, Equation (2.10)]).

Lemma 5.40 Let P be a proper (C,D) bimodule. Then

∫
∧P[1](α, β) = −

∫
∧P(α, β).

Proof We may assume that C and D are dg categories, and P a proper dg bimodule.
We recall that P corresponds to a dg functor P : C ⊗ Dop → perf K, and that
Shklyarov [44] defines ∧P to be the map induced by this functor on Hochschild
homology, composed with the Künneth isomorphism. It is clear that P[1] corresponds
to the composition of dg functors S ◦ P, where S : perf K → perf K is the shift
functor. It now suffices to check that

∫
S∗(α) = − ∫

α, where S∗ : HH•(perf K) →
HH•(perf K) is the map induced by the functor S. Because the inclusion fin K ↪→
perf K is a quasi-equivalence, it suffices by Lemma 5.2 to prove that Str(S∗(α)) =
−Str(α) on HH•(fin K). This is clear from the definition of the supertrace. ��

We also recall the linear dual bimodule, P∨, which is a (D,C) bimodule with
P∨(Y , X) = hom(P(X ,Y ),K) (see, e.g., [40, Equation (2.11)]).

Lemma 5.41 Let P be a proper (C,D) bimodule. Then

∫
∧P∨(α, β) = (−1)|α|·|β|

∫
∧P(β∨, α∨).

Proof Once again, wemay assume thatC,D andP aredg, and regardP as adg functor.
The proof combines four pieces. First, let P∨ denote the following composition of dg
functors:

D ⊗ Cop ∼−→ (
C ⊗ Dop)op Pop−→ (perf K)op

dual−→ perf K,

where the first functor sends c ⊗ d �→ (−1)|c|·|d|d ⊗ c and ‘dual’ denotes the dg
functor that dualizes cochain complexes. One easily verifies that this is compatible
with the A∞ definition, in the sense that A∞(P)∨ ∼= A∞(P∨).

Second, for any dg functor F , one easily checks that (Fop)∗(α∨) = F∗(α)∨ (we
apply this to F = P).

Third, one checks that the following diagram commutes:

CC•(C) ⊗ CC•(Dop) CC•(C ⊗ Dop)

CC•(D) ⊗ CC•(Cop) CC•(D ⊗ Cop),
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where the horizontal arrows are the Künneth maps [44, Section 2.4], the left verti-
cal arrow combines the isomorphism CC•(C) ∼= CC•(Cop) of [44, Equation (4.8)]
(and similarly for D) with the Koszul isomorphism CC•(C) ⊗ CC•(Dop) ∼=
CC•(Dop) ⊗ CC•(C), and the right vertical arrow is induced by the isomorphism
CC•(C⊗Dop) ∼= CC•((C⊗Dop)op) composed with the map induced by the isomor-
phism of dg categories, (C ⊗ Dop)op ∼= Cop ⊗ D ∼= D ⊗ Cop.

Fourth, one checks that
∫
dual∗(α∨) = ∫

α. As in the proof of Lemma 5.40, it
suffices to prove that Str(dual∗(α∨)) = Str(α); and this reduces to the obvious fact
that the trace of the dual of a matrix coincides with the trace of the original matrix.
Combining the four pieces gives the result. ��

We recall that an n-dimensional weak proper Calabi–Yau structure on an A∞
category C is a quasi-isomorphism C�

∼= C∨
�[n] (see [39, Section 12j], as well as [48]

and [43, Section A.5], where it is called an ‘∞-inner product’).

Lemma 5.42 If C admits an n-dimensional weak proper Calabi–Yau structure, then
the Mukai pairing on HH•(C) satisfies:

〈α, β〉Muk = (−1)n+|α|·|β|〈β, α〉Muk .

Similarly for the higher residue pairing.

Proof The result for the the Mukai pairing follows directly from Lemmas 5.40
and 5.41, and the fact that the pairing ∧P only depends on the quasi-isomorphism
class of the bimodule P. The proof for the higher residue pairing is analogous. ��

Lemma 5.42 completes the proof of Theorem A (2).

5.8 Hodge-to-de Rham degeneration

Definition 5.43 Suppose that C is saturated. We say that C satisfies the degeneration
hypothesis if the spectral sequence (13) induced by the Hodge filtration on CC−• (C)

degenerates at the E1 page.

Remark 5.44 A conjecture of Kontsevich and Soibelman [25, Conjecture 9.1.2] asserts
that all saturated A∞ categories C satisfy the degeneration hypothesis. It has been
proved by Kaledin [21] (see also [30]), in the case that C is Z-graded.

Theorem 5.45 (= Theorem A (4)) If C is saturated, and satisfies the degeneration
hypothesis, then the polarized pre-VSHS (HC−• (C),∇, 〈·, ·〉res) of Theorem A (2) is a
polarized VSHS.

Proof Any A∞ category is quasi-equivalent to a dg category, via the Yoneda embed-
ding; so let us assume without loss of generality that C is dg. Then HH•(C) is
finite-dimensional and the Mukai pairing is non-degenerate, by [44, Theorem 1.4];
it follows that the polarization given by the higher residue pairing is non-degenerate.

As an immediate consequence, the spectral sequence (13) induced by the Hodge
filtration on any of CC+,−,∞• (C) is automatically bounded (by the degree bound on
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HH•) and regular (by finite-dimensionality); because the Hodge filtration is complete
and exhaustive, the complete convergence theorem [52, Theorem 5.5.10] implies that
the spectral sequence converges to its cohomology. Hence, HC−• (C) has finite rank.

Finally, if C satisfies the degeneration hypothesis, then it is clear that HC−• (C) is
a free K[[u]]-module. Thus we have verified all of the conditions of Definitions 2.5
and 2.6, so (HC−• (C),∇, 〈·, ·〉res) is a polarized VSHS. ��
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A Morita equivalence

In this Appendix we provide proofs of some well-known results relating to Morita
equivalence of A∞ categories.

Lemma A.1 Let ρ : P → Q be a homomorphism of (C,D) bimodules. LetX ⊂ Ob(C)

and Y ⊂ Ob(D) be subsets which split-generate C and D respectively. If the map

ρ0|1|0 : P(X ,Y ) → Q(X ,Y ) (46)

is a quasi-isomorphism for all (X ,Y ) ∈ X × Y, then ρ is a quasi-isomorphism.

Proof Denote by S ⊂ Ob(C) the set of objects X such that (46) is a quasi-isomorphism
for all Y ∈ Y. This set contains X by hypothesis, and it is straightforward to show
that it is closed under forming cones and direct summands; therefore it is all of Ob(C)

becauseX split-generates. Now repeat the argument for the set T ⊂ Ob(D) of objects
Y such that (46) is a quasi-isomorphism for all X ∈ Ob(C). ��
Lemma A.2 (= Lemma 4.2) If F : C → D is a cohomologically full and faithful A∞
functor, and D is split-generated by the image of F, then M := (F ⊗ Id)∗D� and
N := (Id ⊗ F)∗D� define a Morita equivalence between C and D.

Proof Tensor products of bimodules respect pullbacks in the following sense: If Fi :
Ci → Di are A∞ functors for i = 1, 2, 3, then there is a morphism of bimodules

(F1 ⊗ F2)
∗M ⊗C2 (F2 ⊗ F3)

∗N → (F1 ⊗ F3)
∗ (M ⊗D2 N

)
. (47)
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It is given by the formula

m[a1| . . . |as]n �→
∑

m[F2(a1, . . .)| . . . |F2(. . . , as)]n

(no higher maps). If F2 is the identity functor, it is clear from the formula that (47)
is the identity. It follows immediately thatM ⊗D N ∼= (F ⊗ F)∗D�. Now there is a
natural morphism C� → (F ⊗ F)∗D�, given by contracting all terms with F . This
morphism is clearly a quasi-isomorphismwhen F is cohomologically full and faithful.
Therefore, C�

∼= M ⊗D N as required.
It remains to prove that N ⊗C M ∼= D�. From (47), we obtain a morphism of

bimodules

N ⊗C M → (Id ⊗ Id)∗(D� ⊗D D�)
∼=→ D�. (48)

So it remains to prove that thismorphism is a quasi-isomorphism of (D,D) bimodules.
The linear term of (48) is the map

⊕
hom•

D(F(X0),U ) ⊗ hom•
C(X1, X0) ⊗ · · ·

⊗hom•
C(Xs, Xs−1) ⊗ hom•

D(V , F(Xs)) → hom•
D(V ,U ) (49)

given by the formula

m[a1| . . . |as]n �→
∑

μ∗(m, F•(c1, . . .), . . . , F•(. . . , as), n). (50)

We now prove that (49) is a quasi-isomorphism in the special case that U = F(Ũ )

and V = F(Ṽ ). To do this, we observe that the following diagram commutes up to
homotopy:

⊕
hom•

C(X0, Ũ ) ⊗ C(X0, . . . , Xs) ⊗ hom•
C(Ṽ , Xs)

F•⊗Id⊗F•

μ∗
C

hom•
C(Ũ , Ṽ )

F1

⊕
hom•

D(F(Y0), F(Ũ )) ⊗ C(Y0, . . . , Yt ) ⊗ hom•
D(F(Ṽ ), F(Yt )) hom•

D(F(Ũ ), F(Ṽ )).

(51)

The left vertical map sends

m[a1| . . . |as]n �→
∑

F•(m, a1, . . .)[ai+1| . . . |a j ]F•(a j+1, . . . , as, n).

(compare [12, Equation (2.240)]). The bottom horizontal map is precisely the map
(49). The diagram commutes up to the homotopy given by

m[a1| . . . |as]n �→ F•(m, c1, . . . , cs, n),
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using the A∞ functor equations for F . Furthermore, the top horizontal arrow is a
quasi-isomorphism (it is the first term in the quasi-isomorphism C� ⊗C C�

∼= C�);
the right vertical arrow is a quasi-isomorphism (because F is cohomologically full and
faithful); the left vertical arrow is a quasi-isomorphism, by a comparison argument
for the spectral sequences induced by the obvious length filtrations, again using the
fact that F is cohomologically full and faithful. It follows that the bottom map is a
quasi-isomorphism. So (49) is a quasi-isomorphism when U and V are in the image
of F .

It follows that (49) is a quasi-isomorphism of bimodules, by Lemma A.1 and the
hypothesis that the image of F split-generates D. ��
Theorem A.3 If C and D are Morita equivalent, then twπC and twπD are quasi-
equivalent.

Proof This is a consequence of [47, Proposition 13.36.6], which is due to [49] and [32]
(see also [22, Theorem 3.4]). Namely, we consider the dg category mod-C of right
A∞ C-modules: its cohomological category H0(mod-C) is a triangulated category,
which admits arbitrary coproducts and is compactly generated by theYonedamodules.
We call an object of mod-C compact if the corresponding object of the triangulated
category H0(mod-C) is compact in the usual sense. Then, the subcategory of compact
objects ofmod-C is precisely the triangulated split-closure of the image of the Yoneda
embedding, by the above-mentioned theorem. We refer to it as Cper f : it is quasi-
equivalent to twπC by the uniqueness of triangulated split-closures [39, Lemma 4.7].

Now suppose C and D are Morita equivalent. Then we have a quasi-equivalence
mod-C ∼= mod-D, given by tensoring with the Morita bimodule. As a conse-
quence, the respective subcategories of compact objects, Cper f and Dper f , are
quasi-equivalent: hence twπC and twπD are quasi-equivalent. ��

B Functoriality of the Getzler–Gauss–Manin connection

The aim of this appendix is to prove Theorem 3.32.

Lemma B.1 Let F : C → D be an A∞ functor. Define H1, H2 : CC•(C) → CC•(D)

by

H1(a0[a1| . . . |as ])
:=

∑
(−1)ε j F∗ (a0, . . . , v(μ∗

C(a j+1, . . .),
︷ ︸︸ ︷
. . . , ak

) [
F∗(ak+1, . . .)| . . . |F∗(. . . , as)

]
.

(52)

and

H2(a0[a1| . . . |as])
:=

∑
μ∗
D

(
F∗(a0, . . .), . . . , v(F∗)(. . .),

︷ ︸︸ ︷
F∗(. . .), . . . , F∗(. . .)

)

[
F∗(. . .)| . . . |F∗(. . . , as)

]
. (53)
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Define H := H1 − H2. Then

F∗(b1|1(v(μ∗
C)|α) = b1|1(v(μ∗

D)|F∗(α)) + b(H(α)) + H(b(α))

for all α ∈ CC•(C). In particular, on the level of cohomology,

F∗(KS(v) ∩ α) = KS(v) ∩ F∗(α).

Proof By the A∞ functor equation,

∑
(−1)ε j F∗ (a0, . . . , μ∗(a j+1, . . .), . . . , ai

) [ai+1| . . . |as]
=
∑

μ∗ (F∗(a0, . . .), F∗(. . .), . . . , F∗(. . . , ai )
) [ai+1| . . . |as] (54)

for all i . Pre-compose this relation with the map Gi : CC•(C) → CC•(C), defined
by

Gi (a0[a1| . . . |as]) :=
∑

(−1)ε j a0[a1| . . . |v(μ∗)(a j+1, . . .)|
︷ ︸︸ ︷
. . . |ai | . . . |as].

One obtains

A1 + A + A2 + A3 = A4 + A5, (55)

where

A1(a0[a1| . . . |as])
:=

∑
(−1)ε j+εk F∗ (a0, . . . , μ∗(a j+1, . . .),

. . . , v(μ∗)(ak+1, . . .),
︷ ︸︸ ︷
. . . , ai

) [
F∗(ai+1, . . .)| . . . |F∗(. . . , as)

]
, (56)

A(a0[a1| . . . |as])
:=

∑
(−1)ε j+εk F∗ (a0, . . . , μ∗ (a j+1, . . . , v(μ∗)(ak+1, . . .),

︷ ︸︸ ︷
. . . , ai

)
, . . .

)

[
F∗(. . .)| . . . |F∗(. . . , as)

]
, (57)

A2(a0[a1| . . . |as])
:=

∑
(−1)ε j+εk F∗ (a0, . . . , μ∗ (a j+1, . . . , v(μ∗)(ak+1, . . .), . . .

)
,
︷ ︸︸ ︷
. . . , ai

)

[
F∗(. . .)| . . . |F∗(. . . , as)

]
, (58)

A3(a0[a1| . . . |as])
:=

∑
(−1)ε j+εk F∗ (a0, . . . , v(μ∗)(a j+1, . . .),

︷ ︸︸ ︷
. . . , μ∗(ak+1, . . .), . . . , ai

) [
F∗(. . .)| . . . |F∗(. . . , as)

]
, (59)

A4(a0[a1| . . . |as])
:=

∑
(−1)ε j μ∗ (F∗(a0, . . .), . . . , F∗ (. . . , v(μ∗)(a j+1, . . .),
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︷ ︸︸ ︷
. . . , ai

)
, . . . , F∗(. . .)

) [
. . . |F∗(. . . , as)

]
, (60)

A5(a0[a1| . . . |as]) :=∑
(−1)ε j μ∗ (F∗(a0, . . .), . . . , F∗ (. . . , v(μ∗)(a j+1, . . .), . . .

)
,

︷ ︸︸ ︷
F∗(. . .), . . . , F∗(. . . , ai )

) [
. . . |F∗(. . . , as)

]
. (61)

By the A∞ relations μ∗ ◦ μ∗ = 0, we find that

C1 + C2 + C3 + C4 = 0, (62)

where

C1(a0[a1| . . . |as])
:=

∑
(−1)ε j μ∗ (F∗(a0, . . .), . . . , μ∗ (F∗(a j+1, . . .), . . .

)
,

. . . , v(F∗)(. . .),
︷ ︸︸ ︷
. . . , F∗(. . . , ai )

) [
. . . |F∗(. . . , as)

]
, (63)

C2(a0[a1| . . . |as])
:=

∑
(−1)ε j μ∗ (F∗(a0, . . .), . . . , μ∗ (F∗(a j+1, . . .), . . . , v(F∗)(. . .),

︷ ︸︸ ︷
. . . , F∗(. . .)

)
, . . . , ai

) [
. . . |F∗(. . . , as)

]
, (64)

C3(a0[a1| . . . |as])
:=

∑
(−1)ε j μ∗ (F∗(a0, . . .), . . . , μ∗ (F∗(a j+1, . . .), . . . , v(F∗)(. . .), . . .

)
,

︷ ︸︸ ︷
F∗(. . .), . . . , F∗(. . . , ai )

) [
. . . |F∗(. . . , as)

]
, (65)

C4(a0[a1| . . . |as])
:=

∑
(−1)ε j μ∗ (F∗(a0, . . .), . . . , v(F∗)(. . .),

︷ ︸︸ ︷
. . . , μ∗ (F∗(a j+1, . . .), . . .

)
, . . . , F∗(. . . , ai )

) [
. . . |F∗(. . . , as)

]
, (66)

By differentiating the A∞ functor equation, we find that

B1 + C3 = D + A5, (67)

where

B1(a0[a1| . . . |as])
:=

∑
(−1)ε j μ∗ (F∗(. . .), . . . , F∗(. . .), v(μ∗)

(
F∗(. . .), . . .

)
,

︷ ︸︸ ︷
F∗(. . .), . . . , F∗(. . . , ai )

) [
. . . |F∗(. . . , as)

]
, (68)

D(a0[a1| . . . |as])
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:=
∑

(−1)ε j μ∗ (F∗(. . .), . . . , F∗(. . .), v(F∗)
(
. . . , μ∗(a j+1, . . .), . . .

)
,

︷ ︸︸ ︷
F∗(. . .), . . . , F∗(. . . , ai )

) [
. . . |F∗(. . . , as)

]
, (69)

We now compute that

b ◦ H1 + H1 ◦ b = A4 − A1 − A2 − A3; (70)

all other terms cancel by the A∞ functor equations (note: here, ‘◦’ simply denotes
composition of functions, not Gerstenhaber product). We similarly compute that

b ◦ H2 + H2 ◦ b = C2 + C1 + D + C4 (71)

(we must apply the A∞ functor equation to obtain the terms C1 and C4).
Combining Eqs. (55), (62), (67), (70) and (71), we find that

A = B1 + b ◦ H + H ◦ b.

We now observe that A = F∗(b1|1(v(μ∗
C)|α) and B1 = b1|1(v(μ∗

D)|F∗(α)) by defi-
nition; so the proof is complete. ��
Theorem B.2 (Theorem 3.32) Let F : C → D be an A∞ functor, and F∗ : HC−• (C) →
HC−• (D) the map induced by F. Denote by ∇ the Getzler–Gauss–Manin connection
(Definition 3.29). Then

F∗ ◦ u∇v = u∇v ◦ F∗

on the level of cohomology, for all v ∈ DerkK.

Proof Define H3 : CCnu• (C) → CCnu• (D) by

H3(a0[a1| . . . |as ]) :=
∑

e+
[
F∗(a0, . . .)| . . . |v(F∗)(. . .),

︷ ︸︸ ︷
F∗(. . .), . . . , F∗(. . . , as)

]
.

Let Hu : CC−• (C) → CC−• (D) be defined by Hu := H2 − H1 + u · H3. We will
prove that

F∗ ◦ u∇v − u∇v ◦ F∗ = (b + uB) ◦ Hu + Hu ◦ (b + uB), (72)

from which the result follows.
It suffices to prove (72) for α ∈ CCnu• (C), by K[[u]]-linearity. We separate it into

powers of u: it is clear that the ui term vanishes for all i except i = 0, 1. The u0

component of (72) says

F∗(b1|1(v(μ∗)|α) − b1|1(v(μ∗)|F∗(α)) = b ◦ (H1 − H2)(α) + (H1 − H2) ◦ b(α),

(73)
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which holds by Lemma B.1. The u1 component of (72) says

F∗(v(α)) − v(F∗(α)) − F∗(B1|1(v(μ∗)|α) + B1|1(v(μ∗)|F∗(α))

= b ◦ H3(α) + H3 ◦ b(α) − B ◦ (H1 − H2)(α) − (H1 − H2) ◦ B(α). (74)

First, by differentiating the A∞ functor equation, we obtain the relation

Q1 + Q4 = Q2 + Q3, (75)

where

Q1(a0[a1| . . . |as])
:=

∑
(−1)ε j F∗(a0, . . .)

[
F∗(. . .)| . . . |v(F∗)

(
. . . , μ∗(a j+1, . . .),

. . .) |
︷ ︸︸ ︷
F∗(. . .)| . . . |F∗(. . . , as)

]
, (76)

Q2(a0[a1| . . . |as])
:=

∑
(−1)ε j F∗(a0, . . .)

[
F∗(. . .)| . . . |μ∗ (F∗(a j+1, . . .), . . . , v(F∗)(. . .),

. . .) |
︷ ︸︸ ︷
F∗(. . .)| . . . |F∗(. . . , as)

]
(77)

Q3(a0[a1| . . . |as]) :=
∑

(−1)ε j e+
[
F∗(a0, . . .)| . . . |v(μ∗)

(
F∗(a j+1, . . .), . . .

) |
︷ ︸︸ ︷
. . . |F∗(. . . , as)

]
(78)

Q4(a0[a1| . . . |as]) :=
∑

(−1)ε j e+
[
F∗(a0, . . .)| . . . |F∗ (. . . , v(μ∗)(a j+1, . . .), . . .

) |
︷ ︸︸ ︷
. . . |F∗(. . . , as)

]
.

(79)

Now, we compute each pair of terms in (74) separately. We compute

F∗ ◦ v − v ◦ F∗ = −P1 − P2, (80)

where

P1(a0[a1| . . . |as]) :=
∑

v(F∗)(
︷ ︸︸ ︷
a0, . . .)

[
F∗(. . .)| . . . |F∗(. . . , as)

]
, (81)

P2(a0[a1| . . . |as]) :
=
∑

F∗(
︷ ︸︸ ︷
a0, . . .)

[
F∗(. . .)| . . . |v(F∗)(a j+1, . . .)| . . . |F∗(. . . , as)

]
. (82)

Next, we compute

b ◦ H3 + H3 ◦ b = P3 − P2 + Q1 − R1 − Q2, (83)
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where

P3(a0[a1| . . . |as]) :=
∑

v(F∗)(a0, . . .)
[︷ ︸︸ ︷
F∗(. . .)| . . . |F∗(. . . , as)

]
, (84)

R1(a0[a1| . . . |as])
:=

∑
(−1)ε j F∗(a0, . . .)

[
. . . |μ∗ (F∗(a j+1, . . .), . . . , v(F∗)(. . .),

︷ ︸︸ ︷
F∗(. . .), . . .

)
| . . . |F∗(. . . , as)

]
, (85)

(all other terms cancel by the A∞ functor equations). Next, we compute

F∗ ◦ B1|1(v(μ∗)|−) − B1|1(v(μ∗)|F∗(−)) = S1 + Q4 − Q3, (86)

where

S1(a0[a1| . . . |as])
:=

∑
(−1)ε j e+ [

F∗(a0, . . .)| . . . |F∗ (. . . , v(μ∗)(a j+1,

. . .)
︷ ︸︸ ︷
F∗(. . .), . . .

)
| . . . |F∗(. . . , as)

]
, (87)

(all other terms cancel by the A∞ functor equations). Next, we compute

B ◦ H1 = S1 (88)

and

H1 ◦ B = 0. (89)

Next, we compute

B ◦ H2 + H2 ◦ B = R1 − P1 − P3. (90)

Now, by substituting in (80), (86), we obtain

F∗ ◦ v − v ◦ F∗ − F∗ ◦ B1|1(v(μ∗)|−) + B1|1(v(μ∗)|F∗(−))

= −(P1 + P2) − (S1 + Q4 − Q3)

= (P3 − P2 + Q1 − R1 − Q2) − S1 + (R1 − P1 − P3)

(applying (75) and regrouping)

= (b ◦ H3 + H3 ◦ b) − (B ◦ H1 + H1 ◦ B) + B ◦ H2 + H2 ◦ B (91)

where the last line follows by substituting in (83), (88), (90). This completes the proof
of (74), and hence the result. ��
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C Graphical sign convention

In this appendixweexplain a convenient notation for checking formulae in A∞ algebra,
including the signs and gradings.

C.1 The idea

The idea is to represent compositions of multilinear operations by a diagram as in
Fig. 1, which we call a sign diagram. The inputs will always be at the top of the
diagram, and the outputs at the bottom. Strands in the diagram are allowed to cross,
but no three strands should meet at a point.

Each strand in the diagram is oriented (from input to output), and carries a degree.
By convention, strands which correspond to morphisms in our A∞ category will carry
their reduced degree, |a|′ := |a| − 1. Also by convention, the sum of the degrees of
the edges coming into each vertex must be equal to the sum of the degrees going out.
This convention forces us to add a red strand coming into each vertex, carrying the
degree of the corresponding operation (we omit it when the degree is zero). This is
the case, for example, for the A∞ operations μs , which have degree 1 with respect to
the reduced degree.

To any sign diagram D, we associate a sign σ(D) ∈ Z/2, as follows: to each
crossing of strands, we associate the product of the degrees of those strands (the
Koszul sign associated to commuting the corresponding two variables). Then σ(D) is
the sum of these signs, over all crossings in the diagram.

Definition C.1 We say two sign diagrams are isotopic if they are related by a sequence
of moves of the following two types: moving a strand over a crossing; and moving a
strand over a vertex.

Lemma C.2 If sign diagrams D1 and D2 are isotopic, then σ(D1) = σ(D2).

Proof It is trivial that moving a strand over a crossing does not change the sign. When
one moves a strand over a vertex, the sign does not change because of the assumption
that the sum of the degrees going into the vertex is equal to the sum of the degrees
going out. ��

If we assign multilinear operations to the vertices in our sign diagram, then the
sign diagram gives us a prescription for composing the operations: by convention, this
composition gets multiplied by the sign associated to the sign diagram. By Lemma
C.2, isotopic sign diagrams give the same sign, and they also obviously give the same
composition of operations: so they represent the same composed operation.

C.2 Sign diagrams for operations in this paper

In this section we give the sign diagrams associated to some of the more complicated
formulae in this paper (Figs. 1, 2, 3).
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Fig. 1 The A∞ multifunctor equations (see Definition 5.3). The A∞ structure maps are represented by
solid dots, whereas the multi-functor maps are represented by open dots. We have illustrated the case of an
A∞ tri-functor, and only show one of the three types of diagrams on the right-hand side

(a) (b)

Fig. 2 The A∞ tri-functor F : A∞([C,D]) × C × Dop ��� A∞(mod-K) of Lemma 5.7

Fig. 3 In these sign diagrams, we sum over cylic permutations of the inputs in eachCC•(Ci ), corresponding
to sweeping some number of strands from front to back; however we only sum over the permutations of

CC•(C j ) such that the initial term c j0 gets input to the vertex labelled ‘ j’. In the Mukai pairing on the right,
the loop carries its unreduced sign, whereas all other strands carry reduced signs
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