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Abstract
Infinitary operations, such as products indexed by countably infinite linear orders, arise
naturally in the context of fundamental groups and groupoids. Despite the fact that
the usual binary operation of the fundamental group determines the operation of the
fundamental groupoid, we show that, for a locally path-connected metric space, the
well-definedness of countable dense products in the fundamental group need not imply
the well-definedness of countable dense products in the fundamental groupoid. Addi-
tionally, we show the fundamental groupoid �1(X) has well-defined dense products
if and only if X admits a generalized universal covering space.

Keywords Fundamental groupoid · Fundamental group · Infinite product ·
Transfinite product · Generalized covering space

1 Introduction

Groups and groupoids with infinite product operations arise naturally in fundamental
groups π1(X , x) and fundamental groupoids �1(X) of a space X with non-trivial
local homotopy. In particular, since the components of an open set in [0, 1] may have
any countable linear order type, including the dense order type of Q, it is possible to
form transfinite path-concatenations

∏
j∈L α j indexed by any countable linear order

L and hence a transfinite�1-product
∏

j∈L [α j ] :=
[∏

j∈L α j

]
in�1(X)when the

concatenation is defined and continuous. If each α j is a loop based at x ∈ X , the result
is a transfinite π1-product in π1(X , x). However, these partial infinitary operations
on homotopy classes are only well-defined if path-homotopic factors result in path-
homotopic concatenations; this is not guaranteed even for some subspaces of R3.
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1084 J. Brazas

In [4], it is shown that, for both the fundamental group and groupoid, the well-
definedness of the infinitary operation ([α j ]) j∈L �→ ∏

j∈L [α j ] for all countable
scattered linear orders L is equivalent to the well-known homotopically Hausdorff
property (see Definition 3.5). This paper is a study of the two homotopy invariant
properties: well-definedness of transfinite π1-products and well-definedness of trans-
finite �1-products over arbitrary countable linear orders (see Definitions 3.9 and 5.1).
As noted in [4], it remains an open question if the well-definedness of scattered π1-
products implies the well-definedness of transfinite π1-products.

Within the extensive literature on homotopy groups of locally non-trivial spaces,
the use of infinite products is ubiquitous. This includes the algebra of the Hawaiian
earring group [7,11–13,27], fundamental groups of one-dimensional spaces [1,6,15,
17,22], and fundamental groups of planar spaces [14,19]. The well-definedness of
transfiniteπ1-products plays an implicit role in Katsuya Eda’s homotopy classification
of one-dimensional Peano continua [16] and related “automatic continuity” results for
fundamental groups of one-dimensional and planar Peano continua [9,14,23]. The
well-definedness of transfinite �1-products as a property in its own right was first
formalized in [5, Section 7] as an intermediate property useful for proving partial
converses of known implications.

Our first main result detects a fundamental difference between the well-definedness
of transfinite π1-products and transfinite �1-products. This is somewhat surprising
since properties of groups typically pass to their groupoid counterparts and since the
two are equivalent when restricted to products indexed over scattered orders.

Theorem 1.1 There exists a locally path-connected metric space X having well-
defined transfinite π1-products but which does not have well-defined transfinite
�1-products.

Generalizations of covering space theory have proved useful for studying funda-
mental groups with non-trivial transfinite products and identifying connections with
geometric and topological group theory (e.g. See [2,8,21,22]). In [20], Fischer and
Zastrow set the foundation for a study of generalized universal covering maps based
only on lifting properties. According to [3], this approach to generalized covering
spaces is, for metric spaces, categorically, the most robust possible generalization of
covering theory based on unique lifting, which gives a classification by a lattice of π1-
subgroups. Conditions sufficient for the existence of a generalized universal covering
include π1-shape injectivity [20] and the homotpically path-Hausdorff property [18];
we utilize the necessary and sufficient characterization for metric spaces in [5].

The second main result of this paper proves that the existence of a generalized
universal coveringmap is equivalent to thewell-definedness of transfinite�1-products
for any metric space.

Theorem 1.2 A path-connected metrizable space X admits a generalized universal
covering in the sense of [20] if and only if X has well-defined transfinite �1-products.

It is evident from Theorem 1.2 that the space used to prove Theorem 1.1 is a
refinement of the example in [26], i.e. a homotopically Hausdorff space without a
generalized universal covering space. Together, Theorems 1.1 and 1.2 illustrate that the
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Dense products in fundamental groupoids 1085

algebraic structure of fundamental groups alone are insufficient for characterizing the
existence of generalized covering spaces; one must employ the fundamental groupoid.

We prove our results using the closure operators introduced in [5]. This approach
provides convenient theoretical tools for effectively characterizing and comparing
many properties of fundamental group(oid)s. While the absolute (i.e. trivial subgroup)
case is of primary interest, the generality of the closure framework allows us to prove
a subgroup-relative version of Theorem 1.2 (See Theorem 6.10). Such subgroup-
relative results are particularly useful for distinguishing properties, e.g. in the proof
of Theorem 1.1.

The remainder of this paper is structured as follows: In Sect. 2, we settle notation
and recall relevant background content on paths and linear orders. In Sect. 3, we review
closure pairs and operators from [5], focusing on theHawaiian earring as a test space. In
Sect. 4, we consider relative CW-complexes and the preservation of closure properties
after the attachment of 2-cells. In Sect. 5, we prove Theorem 1.1 by constructing a
special normal subgroup and applying the results of Sect. 4. In Sect. 6, we briefly
review generalized coverings spaces and use the ternary Cantor map and the dyadic
arc-space from [5] to prove Theorem 6.10, the equivalence of the well-definedness
of �1-products relative to a normal subgroup N � π1(X , x0) and the existence of a
generalized covering space corresponding to N . We also show these two notions are
distinct for non-normal subgroups (See Example 6.7).

2 Preliminaries and notation

Most of the notation in this paper agrees with that in [5]. Throughout this paper, X
will denote a path-connected topological space and x0 ∈ X will be a basepoint. The
homomorphism induced on π1 by a based map f : (X , x) → (Y , y) is denoted
f# : π1(X , x) → π1(Y , y).
A path is a continuous function α : [0, 1] → X , which we call a loop based

at x ∈ X if α(0) = α(1) = x . If [a, b], [c, d] ⊆ [0, 1] and α : [a, b] → X ,
β : [c, d] → X are maps, we write α ≡ β if α = β ◦ φ for some increasing
homeomorphism φ : [a, b] → [c, d]; if φ is linear and if it does not create confusion,
we will identify α and β. Under this identification, the restriction α|[a,b] of a path
α : [0, 1] → X is a path itself with a path-homotopy class [α|[a,b]].

If α : [0, 1] → X is a path, then α−(t) = α(1 − t) is the reverse path. If
α1, α2, . . . , αn is a sequence of paths such that α j (1) = α j+1(0) for each j , then
∏n

j=1 α j = α1 · α2 · · · · · αn is the path defined as α j on
[
j−1
n ,

j
n

]
. A sequence

α1, α2, α3, . . . of paths in X is a null sequence if αn(1) = αn+1(0) for all n ∈ N

and there is a point x ∈ X such that every neighborhood of x contains αn([0, 1]) for
all but finitely many n. The infinite concatenation of such a null sequence is the path
∏∞

n=1 αn defined to be αn on
[
n−1
n , n

n+1

]
and

(∏∞
n=1 αn

)
(1) = x .

A path α : [a, b] → X is reduced if α is constant or if whenever a ≤ s < t ≤ b
with α(s) = α(t), the loop α|[s,t] is not null-homotopic. If X is a one-dimensional
metric space, then every path α : [0, 1] → X is path-homotopic within the image of
α to a reduced path, which is unique up to reparameterization [15].
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1086 J. Brazas

If H ≤ π1(X , x0) is a subgroup and α : [0, 1] → X is a path from α(0) = x0
to α(1) = x , let Hα = [α−]H [α] ≤ π1(X , x) denote the path-conjugate subgroup
under basepoint change.

For basic theory of linearly ordered sets, we refer to [24].

Definition 2.1 Let (L,≤) be a linearly ordered set.

(1) L is dense if L has more than one point and if for each x, y ∈ L with x < y, there
exists z ∈ L with x < z < y.

(2) L is a scattered order if L contains no dense suborders.

The empty order and one-point order are scattered by definition. Every countable
linear order embeds as a suborder of the dense order Q.

Definition 2.2 If A is a non-degenerate compact subset of R, let I(A) denote the set
of components of [min(A),max(A)]\A equipped with the ordering inherited from R.

Note that I(A) is always countable and if A is nowhere dense, i.e. the closure of A
has empty interior, then Amay be identified with the set of cuts of I(A). The intuition
behind the transfinite products appearing in our main results may seem somewhat
masked by subgroup-relative approach of the following sections. We use the next
remark to provide some intuition for the absolute version of well-definedness of trans-
finite products in fundamental group(oids).

Remark 2.3 Finite and infinite concatenations of paths generalize to concatenations
indexed by arbitrary countable linear orders in the followingway: LetL be a countable
linear order and A ⊆ [0, 1] be a closed, nowhere dense set containing {0, 1} such that
there is an order-preserving bijection ψ : L → I(A). A system of paths (α j ) j∈L in
X is composable if there exists a transfinite concatenation path α = ∏

j∈L α j such
that α|ψ( j) = α j for each j ∈ L . Another choice of the pair (A, ψ) will result in a
reparameterization of

∏
j∈L α j .

Hence, for any countably infinite linear order L and composable system of
paths (α j ) j∈L , there is a transfinite �1-product of homotopy classes ([α j ]) j∈L �→[∏

j∈L α j

]
; this is a transfinite π1-product at x ∈ X if each α j is a loop based at x .

This partial infinitary operation on homotopy classes (of paths or loops) is well-
defined if

∏
j∈L α j is path-homotopic to

∏
j∈L β j whenever α j is path-homotopic to

β j for all j ∈ L . The term “well-defined transfinite �1-products” refers to the well-
definedness of these operations on homotopy classes for all countable linear orders
L . The term “well-defined transfinite π1-products” refers to the well-definedness, for
all x ∈ X , of the operation restricted to loops based at x .

3 Closure operators on subgroups of fundamental groups

3.1 Review of closure pairs and operators

The following definitions are from [5] where closure operators on the π1-subgroup
lattice are introduced.
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Dense products in fundamental groupoids 1087

Definition 3.1 Suppose (T, t0) is a based space, T ≤ π1(T, t0) is a subgroup, and
g ∈ π1(T, t0). A subgroup H ≤ π1(X , x0) is (T , g)-closed if for every based map
f : (T, t0) → (X , x0) such that f#(T ) ≤ H , we also have f#(g) ∈ H . We refer to
(T , g) as a closure pair for the test space (T, t0).

The set of (T , g)-closed subgroups of π1(X , x0) is closed under intersection and
therefore forms a complete lattice.

Definition 3.2 The (T , g)-closure of a subgroup H ≤ π1(X , x0) is

ClT ,g(H) =
⋂

{K ≤ π1(X , x0) | K is (T , g)-closed and H ≤ K }.

We refer to Section 2 of [5] for proofs of the following basic properties of these
closure operators.

Lemma 3.3 (Closure operator properties of ClT ,g) Let (T , g) be a closure pair. Then
ClT ,g(H) = H if and only if H is (T , g)-closed. Moreover,

(1) H ≤ ClT ,g(H),
(2) H ≤ K implies ClT ,g(H) ≤ ClT ,g(K ),
(3) ClT ,g(ClT ,g(H)) = ClT ,g(H),
(4) if f : (X , x0) → (Y , y0) is a map, then f#(ClT ,g(H)) ≤ ClT ,g( f#(H)) in

π1(Y , y0).

See [4] for a construction of ClT ,g(H) from H using transfinite induction.

Definition 3.4 A closure pair (T , g) for the test space (T, t0) is called normal if given
any space (X , x0) and subgroup H ≤ π1(X , x0), H is (T , g)-closed if and only if for
every path α ∈ P(X , x0), Hα is a (T , g)-closed subgroup of π1(X , α(1)).

If (T , g) is a normal closure pair, then the closure operator ClT ,g preserves the
normality of subgroups.Any closure pair for awell-pointed test space (T, t0) is normal.

3.2 The Hawaiian earring as a test space

Let Cn ⊆ R2 be the circle of radius 1
n centered at

( 1
n , 0

)
and H = ⋃

n∈N Cn

to be the usual Hawaiian earring space with basepoint b0 = (0, 0). Let �n(t) =( 1
n (1 − cos(2π t)),− 1

n sin(2π t)
)
be the canonical counterclockwise loop traversing

Cn . We consider the following important loops in H, which represent a prototypical
ω-product, dense product, and “densely conjugated” (see the proof of Lemma 4.3 for
justification of this term) product respectively.

(1) �∞ denotes the infinite concatenation
∏∞

n=1 �n (see Fig. 1).
(2) Let C ⊆ [0, 1] be the standard middle third Cantor set. Write I(C) = {I kn | n ∈

N, 1 ≤ k ≤ 2n−1} where I kn is an open interval of length 1
3n and, for fixed n,

the sets I kn are indexed by their ordering in I(C). Let �τ : [0, 1] → H be the
transfinite concatenation

∏
I kn ∈I(C) �2n−1+k−1 over the dense order I(C). In other

words, �τ (C) = b0 and �τ |I kn = �2n−1+k−1 (see Fig. 2).
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1088 J. Brazas

Fig. 1 The loop �∞

Fig. 2 The loop �τ

Fig. 3 The loop �odd · �−
even

Fig. 4 The space H+

(3) Consider the maps fodd , feven : H → H satisfying fodd ◦ �n = �2n−1 and
feven ◦ �n = �2n . Let �odd = fodd ◦ �τ and �even = feven ◦ �τ . We make use of
the concatenation �odd · �−

even (see Fig. 3).

Let H+ = H ∪ ([−1, 0] × {0}) be the Hawaiian earring with a “whisker” attached
with basepoint b+

0 = (−1, 0) and where ι : [0, 1] → H+, ι(t) = (t − 1, 0) is the
inclusion of thewhisker (See Fig. 4).Wedefine the following elements ofπ1(H

+, b+
0 ):

cn = [ι · �n · ι−], n ∈ N; pn = [ι · �2n−1 · �−
2n · ι−], n ∈ N;

cτ = [ι · �τ · ι−]; pτ = [ι · �odd · �−
even · ι];

c∞ = [ι · �∞ · ι−];
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Dense products in fundamental groupoids 1089

and the following subgroups of π1(H
+, b+

0 ):

C = 〈cn | n ∈ N〉; P = 〈pn | n ∈ N〉.

We consider the closure pairs (C, c∞), (C, cτ ), and (P, pτ ). The use of the well-
pointed space (H+, b+

0 ) in place of (H, b0) means that these closure pairs are normal,
that is, their respective closure operators detect point-local properties at all points of
a space rather than at a single basepoint.

Definition 3.5 [10,20] We call X homotopically Hausdorff relative to a subgroup
H ≤ π1(X , x0) if for every x ∈ X , every path α : [0, 1] → X from α(0) = x0 to
α(1) = x , and every g ∈ π1(X , x)\Hα , there is an open neighborhood U of x such
that there is no loop δ : ([0, 1], {0, 1}) → (U , x) with Hαg = Hα[δ]. The space
X is homotopically Hausdorff if it is homotopically Hausdorff relative to the trivial
subgroup H = 1.

Remark 3.6 Aspace X is homotopicallyHausdorff if and only if for every point x ∈ X ,
there are no non-trivial elements of π1(X , x) that have a representative loop in every
neighborhood of x .

The two propositions to follow are combinations of results in Section 3 of [5].

Proposition 3.7 For any space X and subgroup H ≤ π1(X , x0), consider the follow-
ing three properties:

(1) X is homotopically Hausdorff relative to H,
(2) H is (C, cτ )-closed,
(3) H is (C, c∞)-closed.

In general, (1) ⇒ (3) and (2) ⇒ (3). If X is first countable, then (3) ⇒ (1). If H is
normal, then (3) ⇒ (2).

Example 3.8 A topological space S is a scattered space if every non-empty subspace
of S contains an isolated point. If X is a one-dimensional metric space and A ⊆ X is
closed, we define:

F(X , A) = {[α] ∈ π1(X , x0) | α−1(A) is finite or α is constant},
Sc(X , A) = {[α] ∈ π1(X , x0) | α−1(A) is a scattered space or α is constant}.

It is shown in [4] that ClC,c∞(F(X , A)) = Sc(X , A). For instance, the subgroup
Sc = Sc(H, {b0}) ≤ π1(H, b0) of scattered words [13] is an example of a non-normal
subgroup which is (C, c∞)-closed but not (C, cτ )-closed.

Definition 3.9 We say a space X has well-defined transfinite π1-products relative to
a subgroup H ≤ π1(X , x0) provided that for every pair of maps a, b : (H+, b+

0 ) →
(X , x0) such that a ◦ ι = b ◦ ι and Ha#(cn) = Hb#(cn) for all n ∈ N, we have
Ha#(g) = Hb#(g) for all g ∈ π1(H

+, b+
0 ). We say X has well-defined transfinite

π1-products if X has well-defined transfinite π1-products relative to H = 1.
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1090 J. Brazas

Remark 3.10 A space X has well-defined transfinite π1-products if and only if for
every pair of based maps f , g : (H, b0) → (X , x) such that f ◦ �n � g ◦ �n for all
n ∈ N, we have f# = g#.

Proposition 3.11 For any space X and subgroup H ≤ π1(X , x0), consider the fol-
lowing four properties:

(1) X has well-defined transfinite π1-products relative to H,
(2) H is (P, pτ )-closed,
(3) H is (C, cτ )-closed,
(4) H is (C, c∞)-closed.

In general, (1) ⇔ (2) ⇒ (3) ⇒ (4). If H contains the commutator subgroup of
π1(X , x0), then all four are equivalent.

Example 3.12 If f : H+ → H+ is the map defined so that f ◦ ι = ι and f ◦ �n =
�2n−1 · �−

2n , n ∈ N, then ClC,cτ (P) = f#(π1(H
+, b+

0 )) is an example of a non-normal
subgroup ofπ1(H

+, b+
0 ), which is (C, cτ )-closed but not (P, pτ )-closed (see the proof

of [5, Theorem 3.25]). There is no known normal counterexample.

4 Relative CW-complexes

To simplify the proof of Theorem 1.1, we consider relative CW-complexes, i.e. spaces
constructed by attaching 2-cells to spaces that are not necessarily CW-complexes.

Proposition 4.1 Suppose (T , g) is a closure pair for test space (T, t0), (X , x0) is a
space, and Y = X ∪⋃

β∈S D2
β is the space obtained from X by attaching 2-cells along

a family S of loops in X based at x0. If j : X → Y is the inclusion map and the trivial
subgroup of π1(Y , x0) is (T , g)-closed, then ker j# is (T , g)-closed.

Proof Suppose 1 ≤ π1(Y , x0) is (T , g)-closed and f : (T, t0) → (X , x0) is a map
such that f#(T ) ≤ ker j#. Then j ◦ f : (T, t0) → (Y , x0) satisfies ( j ◦ f )#(T ) = 1
so by assumption, we have ( j ◦ f )#(g) = 1. Thus f#(g) ∈ ker j#. ��

The next lemma shows the converse of Proposition 4.1 holds in a special case. For
each n ∈ N, bothH+≤n = [−1, 0]×{0}∪⋃n

k=1 Ck andH
+≥n = [−1, 0]×{0}∪⋃∞

k=n Ck

are retracts of H+. Let rn : H+ → H+≤n denote the retraction collapsing
⋃∞

k=n+1 Ck

to b0 and identify the free subgroup C≤n = 〈ck | 1 ≤ k ≤ n〉 of π1(H
+, b+

0 ) with
the fundamental group π1(H

+≤n, b
+
0 ). Since H+ is one-dimensional, the retractions

(rn)# induce a natural injection π1(H
+, b+

0 ) → π̌1(H
+, b+

0 ) = lim←−n
C≤n to the first

shape homotopy group. Consequently, π1(H
+, b+

0 ) splits as the free product C≤n ∗
π1(H

+
≥n+1, b

+
0 ) for each n ∈ N.

Lemma 4.2 Suppose (T , g) is a closure pair for (H+, b+
0 ) such that for all n ∈ N,

there exists an m ≥ n such that (rm)#(g) lies in the normal closure of (rm)#(T ) in
C≤m. Suppose (X , x0) is a space and Y = X ∪ ⋃

β∈S D2
β is the space obtained from

X by attaching 2-cells along a family S of loops in X based at x0. If j : X → Y is
the inclusion map, then ker j# is (T , g)-closed if and only if the trivial subgroup of
π1(Y , x0) is (T , g)-closed.
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Proof Suppose (T , g) satisfies the hypothesis in the statement of the lemma. The
first direction is Proposition 4.1. Suppose ker j# is (T , g)-closed and consider a map
f : (H+, b+

0 ) → (Y , x0) such that f#(T ) = 1. It suffices to show f#(g) = 1. Set
α = f ◦ ι, γn = f ◦ �n , n ∈ N, and let Km denote the normal closure of (rm)#(T ) in
C≤m .

If f (b0) lies in the interior of a 2-cell, then there exists an m ∈ N such that
f# vanishes on π1(H

+
≥m+1, b

+
0 ). By our assumption on (T , g), we may choose m

large enough so that (rm)#(g) ∈ Km . Since π1(H
+, b+

0 ) may be identified with the
free product C≤m ∗ π1(H

+
≥m+1, b

+
0 ), it follows that f# ◦ (rm)#(h) = f#(h) for all

h ∈ π1(H
+, b+

0 ). Since f#((rm)#(T )) = f#(T ) = 1, we have (rm)#(T ) ≤ ker f# and
thus Km ≤ ker f# by the normality of ker f#. Therefore,

f#(g) = f#((rm)#(g)) ∈ f#(Km) = 1.

On the other hand, suppose f (b0) ∈ X . Since j# is onto, we may find a path α′ :
[0, 1] → X from x0 to f (b0), which is path-homotopic to α in Y . Let Uβ be an
open set in the 2-cell D2

β , which deformation retracts on the boundary ∂D2
β . Let

Z = X ∪ ⋃
β Uβ and note that there is a deformation retraction φ : Z → X . Since Z

is an open neighborhood of f (b0), there is an m ∈ N such that f (H≥m+1) ⊂ Z . For
each n = 1, 2, . . . ,m, there is a loop γ ′

n : S1 → X based at x0 which is homotopic
to γn in Y . Define f ′ : H+ → X by f ′ ◦ ι = α′, f ′|H≥m+1 = φ ◦ f |H≥m+1 , and
f ′ ◦ �n = γ ′

n for n = 1, 2, . . . ,m. Notice that f ′ has image in X and f is homotopic
to j ◦ f ′ in Y . Since f# = ( j ◦ f ′)#, we have j#(( f ′)#(T )) = f#(T ) = 1 and thus
( f ′)#(T ) ≤ ker j#. We have assumed that ker j# is (T , g)-closed and conclude that
( f ′)#(g) ∈ ker j#. Thus f#(g) = j#(( f ′)#(g)) = 1. ��
Lemma 4.3 The closure pairs (C, c∞), (C, cτ ), and (P, pτ ) satisfy the hypothesis of
Lemma 4.2.

Proof Suppose n ∈ N. For (C, c∞) and (C, cτ ), wemay takem = n since (rm)#(C) =
C≤m .

For (P, pτ ), let Km be the normal closure of (rm)#(P) in C≤m . To verify the
hypothesis of Lemma 4.2, will show that (r2n)#(pτ ) ∈ K2n for all n ∈ N. Note that
sinceH+

≤2n−2 is a retract ofH
+
≤2n , wemay identify K2n−2 canonically as a non-normal

subgroup of K2n .
A basic factorization of (r2n)#(pτ ) is a productwoddvoddv

−1
evenw

−1
even inC≤2n where

(1) woddvoddv
−1
evenw

−1
even is already a reduced representative of (r2n)#(pτ ).

(2) wodd , vodd ∈ 〈c1, c3, . . . c2n−1〉 and weven, veven ∈ 〈c2, c4, . . . c2n〉,
(3) wodd and weven have equal word length (which may be 0),
(4) vodd and veven have equal word length (which may be 0),

As a necessary convention, we consider the case where wodd = weven = 1 are empty
and voddv

−1
even = (r2n)#(pτ ) and the case where vodd = veven = 1 are empty and

woddw
−1
even = (r2n)#(pτ ) to be distinct basic factorizations.

Recalling the structure of pτ , note that (r2n)#(pτ ) has n+1 basic factorizations.We
prove the following by induction on n: If woddvoddv

−1
evenw

−1
even is a basic factorization

of (r2n)#(pτ ), then voddv
−1
even and woddw

−1
even are elements of K2n .
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1092 J. Brazas

For n = 1, we have (r2)#(pτ ) = [�1 · �−
2 ] = p1 ∈ (r2)#(P) ≤ K2. Suppose the

hypothesis holds for n − 1. By the definition of pτ , there is a unique factorization

(r2n)#(pτ ) = woddc2n−1voddv
−1
evenc

−1
2n w−1

even

where woddvoddv
−1
evenw

−1
even is a basic factorization of (r2n−2)#(pτ ). By our induction

hypothesis, we have woddw
−1
even, voddv

−1
even ∈ K2n−2. Since K2n−2 ≤ K2n , we have

woddw
−1
even, voddv

−1
even ∈ K2n . Therefore, the equality

woddc2n−1voddv−1
evenc

−1
2n w−1

even = (wodd ((c2n−1c
−1
2n )(c2n(voddv−1

even)c−1
2n ))w−1

odd )(woddw−1
even)

shows that (r2n)#(pτ ) an element of K2n . This completes the induction.
Now, for any n ∈ N, and using any basic factorization woddvoddv

−1
evenw

−1
even of

(r2n)#(pτ ), we see that

(r2n)#(pτ ) = woddvoddv
−1
evenw

−1
even = woddw

−1
even(weven(voddv

−1
even)w

−1
even)

is an element of K2n . ��

5 Well-definedness of dense products in fundamental groupoids

Definition 5.1 A space X has well-defined transfinite �1-products relative to H ≤
π1(X , x0) if for every closed set A ⊆ [0, 1] containing {0, 1} and paths α, β :
([0, 1], 0) → (X , x0) such that α|A = β|A and [α|[0,b] · β|−[a,b] · α|−[0,a]] ∈ H for
every component (a, b) of [0, 1]\A, we have [α · β−] ∈ H . A space X has well-
defined transfinite �1-products if X has well-defined transfinite �1-products relative
to the trivial subgroup H = 1.

As noted in [5, Remark 7.2], in the previous definition, one only needs to consider
closed nowhere dense sets A.

Recall that C is the Cantor set and I(C) is a countable dense order. For I = (a, b) ∈
I(C), let CI =

{
(x, y) ∈ R2 | y ≥ 0,

(
x − a+b

2

)2 + y2 = ( b−a
2

)2}
be the semicircle

whose boundary is {(a, 0), (b, 0)}. LetW = B ∪⋃
I∈I(C) CI where B = [0, 1]× {0}

is the base-arc and w0 = (0, 0) is the basepoint (see Fig. 5).
For I = (a, b) ∈ I(C), let λI : [0, 1] → B be the path λI (t) = (bt + a(1 − t), 0)

and υI : [0, 1] → CI be the path so that if r : W → B is the projection onto the x-axis,
then r ◦ υI = λI . Let λ(t) = (t, 0) and υ : [0, 1] → (C × {0}) ∪ ⋃

I∈I(C) CI be the

Fig. 5 The space W
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path such that r ◦υ = λ, i.e. the respective transfinite concatenations υ = ∏
I∈I(C) υI

and λ = ∏
I∈I(C) λI .

Let W be the subgroup of π1(W, w0) generated by the elements wI = [υ[0,b] ·
λ−

[a,b] · υ−
[0,a]], I = (a, b) ∈ I(C) and let w∞ = [υ · λ−]. Although W is not well-

pointed at w0, the self-similarity ofW ensures that (W , w∞) is a normal closure pair
for (W, w0) (see [5, Proposition 7.4]).

Proposition 5.2 [5, Proposition 7.5] X has well-defined transfinite �1-products rela-
tive to H ≤ π1(X , x0) if and only if H is (W, w∞)-closed.

We now construct a normal subgroup which is (P, pτ )-closed but not (W , w∞)-
closed.

If γ : [0, 1] → X is a loop in a space, let 〈γ 〉 ∈ H1(X) denote the class of γ in first
singular homology. For each I = (a, b) ∈ I(C), let KI = CI ∪ ([a, b] × {0}) ⊂ W

and note that we may identify H1(KI ) with Z by identifying 〈υ|I · λ|−I 〉 = 1. There
is a natural retraction qI : W → KI such that qI (x, y) = (a, 0) for x ≤ a and
qI (x, y) = (b, 0) if x ≥ b. In combination with the Hurewicz homomorphisms,
these maps induce a homomorphism φ : π1(W, w0) → ∏

I∈I(C) H1(KI ) given by
φ([α]) = (〈qI ◦ α〉)I∈I(C).

The support of an element g = (gI )I∈I(C) ∈ ∏
I∈I(C) H1(KI ) is the set

supp(g) = {I ∈ I(C) | gI �= 0}.

Note that if loops α and β are freely homotopic loops in W, then supp((〈qI ◦
α〉)I∈I(C)) = supp((〈qI ◦ β〉)I∈I(C)). We are interested in the set

N0 = {[α] ∈ π1(W, w0) | supp(φ([α])) is a scattered suborder of I(C)},

which contains the homotopy classes of loops that have non-zero winding number
around a scattered ordering of the simple closed curves KI , I ∈ I(C).

Proposition 5.3 The set

N0 = {[α] ∈ π1(W, w0) | supp(φ([α])) is a scattered suborder of I(C)}

is a normal subgroup of π1(W, w0) such that

(1) [π1(W, w0), π1(W, w0)] ≤ N0,
(2) W ≤ N0,
(3) and w∞ /∈ N0.

Proof Suppose g, h ∈ N0 where φ(g) = (gI )I∈I(C) and φ(h) = (hI )I∈I(C). Then
supp(φ(g)) and supp(φ(h)) are scattered suborders of I(C). Note that φ(gh−1) =
(gI − hI )I∈I(C). The only way gI − hI is nonzero is if one of gI , hI is nonzero.
Hence supp(φ(gh−1)) ⊆ supp(φ(g)) ∪ supp(φ(h)). Since the set of scattered subor-
ders of any linear order is closed under both suborders and finite unions, supp(gh−1)

is scattered. Therefore, gh−1 ∈ N0, proving N0 is a subgroup. If g ∈ N0 and
h ∈ π1(W, w0), then φ(hgh−1) = φ(g) since

∏
I∈I(C) H1(KI ) is abelian. Thus
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1094 J. Brazas

supp(φ(hgh−1)) = supp(φ(g)) is scattered, giving hgh−1 ∈ N0. We conclude that
N0 is a normal subgroup.

Since the product
∏

I∈I(C) H1(KI ) is abelian, ker φ contains the commutator sub-
group [π1(W, w0), π1(W, w0)]. Since the empty order is scattered, we have ker φ =
{g ∈ π1(W, w0) | supp(φ(g)) = ∅} ≤ N0. Thus [π1(W, w0), π1(W, w0)] ≤ N0.

If J ∈ I(C) and φ(wJ ) = (gI )I∈I(C), then gI = 1 if I = J and gI = 0 otherwise.
Since supp(φ(wI )) contains a single element, it is a scattered order. Therefore, wJ ∈
N0 for all J ∈ I(C), giving W ≤ N0.

Finally, if φ(w∞) = (gI )I∈I(C), then gI = 1 for all I ∈ I(C). Since
supp(φ(w∞)) = I(C) is a dense order, we have w∞ /∈ N0. ��
Proposition 5.4 The subgroup N0 � π1(W, w0) is (C, c∞)-closed.

Proof Suppose f : (H+, b+
0 ) → (W, w0) is a basedmap such that f#(C) ≤ N0. Since

W is one-dimensional, we may assume the path α = f ◦ ι and loops γn = f ◦ �n ,
n ∈ N are reduced. Set γ = ∏∞

n=1 γn . We seek to show f#(c∞) = [α · γ · α−] ∈ N0.
Since W is locally contractible at all points except those in C × {0}, we may assume
f (b0) = (k, 0) ∈ C × {0}. Moreover, since γ and α · γ · α− are homologous, it is
enough to show supp(φ( f#(c∞))) = supp

(
(〈qI ◦ γ 〉)I∈I(C)

)
is a scattered order.

Suppose, to the contrary, that supp
(
(〈qI ◦ γ 〉)I∈I(C)

)
contains a dense suborder

L ⊆ I(C). Pick any (a0, b0) ∈ L . If b0 ≤ k, let L ′ = {(a, b) ∈ L | (a, b) <

(a0, b0)} and if k ≤ a0, let L ′ = {(a, b) ∈ L | (a0, b0) < (a, b)}. Either way, L ′
is a dense suborder of supp

(
(〈qI ◦ γ 〉)I∈I(C)

)
. Set ε = b0 − a0 and notice that if

|x − k| < ε, then x /∈ ∪{I | I ∈ L ′}. Find integer N > 1 such that if n ≥ N , then
the image of γn lies inU = ((k − ε, k + ε) × [0, 1/6]) ∩W. Since ζ = ∏∞

n=N γn has
image in U , we have 〈qI ◦ ζ 〉 = 0 for all I ∈ L ′.

Fix J ∈ L ′ and recall that 〈qJ ◦ γ 〉 �= 0. Since [γ ] = [γ1 · γ2 · · · γN−1][ζ ], we
have the following in H1(KJ ):

0 �= 〈qJ ◦ γ 〉 = 〈qJ ◦ (γ1 · γ2 · · · γN−1)〉 + 〈qJ ◦ ζ 〉 = 〈qJ ◦ (γ1 · γ2 · · · γN−1)〉

Therefore, L ′ is a dense suborder contained in

supp(φ([γ1 · γ2 · · · γN−1])) = supp(φ( f#(c1c2 . . . cN−1))).

Thus c1c2 · · · cN−1 ∈ C but f#(c1c2 . . . cN−1) /∈ N0; a contradiction of f#(C)

≤ N0. ��
Theorem 5.5 The normal subgroup N0 of π1(W, w0) is (P, pτ )-closed but not
(W , w∞)-closed.

Proof In light of (2) and (3) of Proposition 5.3, the identity map ofW suffices to show
that N0 is not (W , w∞)-closed.According toProposition 5.4 and (1) of Proposition 5.3,
N0 is (C, c∞)-closed and contains the commutator subgroup ofπ1(W, w0). Therefore,
by Proposition 3.11, N0 is (P, pτ )-closed. ��
Proof of Theorem 1.1 Consider the normal subgroup N0 ≤ π1(W, w0) from Theo-
rem 5.5, which is (P, pτ )-closed but not (W , w∞)-closed. Let X be the space obtained
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by attaching 2-cells toW along a set of loops representing generators of N0. According
to Proposition 4.1, the trivial subgroup of π1(X , w0) is not (W , w∞)-closed. How-
ever, by Lemmas 4.2 and 4.3, the trivial subgroup of π1(X , w0) is (P, pτ )-closed.
Therefore, X has well-defined transfinite π1-products but does not have well-defined
transfinite �1-products. Although W is a Peano continuum, with the relative CW-
topology, X is not metrizable since it is not first countable. However, using a standard
approach (e.g. see [26]), one can endow X with a coarser metrizable topology without
changing homotopy type to obtain a locally path-connected metric space. ��
Corollary 5.6 If 〈〈W 〉〉 is the normal closure of W in π1(W, w0), then w∞ /∈
ClP,pτ (〈〈W 〉〉).

6 Transfinite51-products and generalized covering spaces

6.1 A brief review of generalized covering space theory

The following definition appears in [3] under the name “lpc0-covering” and agrees
with the notion of generalized regular covering in [20] for normal subgroups.

Definition 6.1 A map p : X̂ → X is a generalized covering map if

(1) X̂ is nonempty, path connected, and locally path connected,
(2) for every path-connected, locally path-connected space Y , point x̂ ∈ X̂ , and based

map f : (Y , y) → (X , p(̂x)) such that f#(π1(Y , y)) ≤ p#(π1(X̂ , x̂)), there is a
unique map f̂ : (Y , y) → (X̂ , x̂) such that p ◦ f̂ = f .

If X̂ is simply connected, we call p a generalized universal covering map.

By definition, a generalized covering map p : X̂ → X has the unique path-lifting
property: if α, β : [0, 1] → X are paths with α(0) = β(0) and p ◦ α = p ◦ β,
then α = β. Moreover, if p(̂x) = x0, p is characterized up to equivalence by the
conjugacy class of the subgroup H = p#(π1(X̂ , x̂)) ≤ π1(X , x0). Additionally,
when such a generalized covering space exists, it is equivalent to a construction from
classical covering space theory (See [25]): given a subgroup H ≤ π1(X , x0), let
X̃ H = P(X , x0)/∼ where α ∼ β if and only if α(1) = β(1) and [α · β−] ∈ H . The
equivalence class of α is denoted H [α] and x̃H denotes the equivalence class of the
constant path at x0. We give X̃ H the topology generated by the sets B(H [α],U ) =
{H [α · ε] | ε([0, 1]) ⊆ U } where U is an open neighborhood of α(1) in X . Let pH :
X̃ H → X denote the endpoint projection map defined as pH (H [α]) = α(1).

Lemma 6.2 [3, Theorem 5.11] For any subgroup H ≤ π1(X , x0), the following are
equivalent:

(1) pH has the unique path lifting property,
(2) pH is a generalized covering map,
(3) (pH )#(π1(X̃ H , x̃H )) = H,
(4) X admits a generalized covering p : (X̂ , x̂) → (X , x0) such that p#(π1(X̂ , x̂))

= H.
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Consequently, the existence of generalized covering maps depends entirely on
whether or not the constructed map pH has the unique path-lifting property.

6.2 The dyadic arc space

A pair of integers (n, j) is dyadic unital if the dyadic rational 2 j−1
2n lies in (0, 1).

For each dyadic unital pair, let D(n, j) denote the upper semicircle{

(x, y) ∈ R2
∣
∣
∣
(
x − 2 j−1

2n

)2 + y2 = ( 1
2n

)2
, x ≥ 0

}

. We consider the union D =
B ∪⋃

(n, j) D(n, j) over all dyadic unital pairs as a subspace ofR2 and with basepoint

d0 = (0, 0). Let �n, j : [0, 1] → D(n, j) be the arc �n, j (t) =
(
t+ j−1
2n−1 , 1

2n−1

√
t − t2

)

from
(

j−1
2n−1 , 0

)
to

(
j

2n−1 , 0
)
and λ∞(t) = (t, 0) be the unit speed path on the base-arc

(See Fig. 6).
For each n ∈ N, let En be the finite graph, which is the union of B and all D(k, j)

with 1 ≤ k ≤ n. The retractions rn : D → En , which collapse D(k, j), k > n ver-
tically to the base-arc induce a homomorphism � : π1(D, d0) → ∏

n∈N π1(En, d0),
�([α]) = ([r1 ◦ α], [r2 ◦ α], [r3 ◦ α], . . . ). Since D is one-dimensional, and thus
π1-shape injective [17], � is injective. Therefore, two paths α, β : [0, 1] → D are
path-homotopic if and only if rn ◦α and rn ◦β are path-homotopic in En for all n ∈ N.

Recalling Example 3.8, let D denote the subgroup F(D, B) ≤ π1(D, d0). Note that
D consists of homotopy classes of loops based at d0, which are finite concatenations
of paths of the form �n, j or �−

n, j . Let d∞ = [�1,1 · λ−∞]; we consider the closure pair
(D, d∞).

Theorem 6.3 [5, Theorem 4.13] Suppose H ≤ π1(X , x0). If pH : X̃ H → X has the
unique path-lifting property, then H is (D, d∞)-closed. The converse holds if X is
metrizable.

Fig. 6 The space D and paths �n, j , λ∞
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6.3 Non-equivalence for non-normal subgroups

We confirm the necessity of the test space D by showing that the well-definedness
of transfinite �1-products relative to a general subgroup H ≤ π1(X , x0) does not
guarantee the existence of a generalized covering map corresponding to H .

Definition 6.4 If X is a space and A ⊆ X , let

Nd(X , A) = {[α] ∈ π1(X , x0) | α−1(A) is nowhere dense or α is constant}.

Note that Nd(X , A) is a subgroup of π1(X , x0) and F(X , A) ≤ Sc(X , A) ≤
Nd(X , A). If X is a one-dimensional metric space, reduction of paths takes place
within the image of that path. Hence, if α is the reduced representative of a non-trivial
element of Nd(X , A), then α−1(A) is nowhere dense.

Lemma 6.5 [5, Corollary 3.12] Let α : ([0, 1], 0) → (X , x0) be a reduced path in
a one-dimensional metric space X, γn : [0, 1] → X be a null-sequence of reduced
loops based at α(1), and ηn be a reduced representative of [α ·γn ·α−]. Then for every
0 < t < 1, there exists an N and 0 < s < 1 such that ηN |[0,s] ≡ α|[0,t].
Theorem 6.6 If X is a one-dimensional metric space and A ⊆ X is closed, then
Nd(X , A) is (W , w∞)-closed.

Proof Let f : (W, w0) → (X , x0) be a map such that f#(W ) ≤ Nd(X , A). Fix any
(a, b) ∈ I(C). Since I(C) has dense order type, find

(a1, b1) < (a2, b2) < (a3, b3) < · · · < (a, b)

in I(C) such that an → a. Let α = f ◦ υ|[0,a] and γn = f ◦ (υ|−[an ,a] · υ|[an ,bn ] ·
λ−

[an ,bn ] ·υ|[an ,a]). If In = (an, bn), then [α · γn ·α−] = f#(wIn ) ∈ Nd(X , A) for each

n ∈ N. Therefore, if ηn is the reduced representative of α ·γn ·α− in X , then η−1
n (A) is

nowhere dense. By Lemma 6.5, for every 0 < t < 1, there exists an N and 0 < s < 1
such that ηN |[0,s] ≡ α|[0,t]. Hence for each 0 < t < 1, α|−1

[0,t](A) is nowhere dense. It

follows that α−1(A) is nowhere dense.
Recall that (a, b)was arbitrary, so by applying the previous paragraph to (cn, dn) ∈

I(C) with dn → 1, we see that for each 0 < t < 1, ( f ◦ υ|[0,t])−1(A) is nowhere
dense. It follows that ( f ◦ υ)−1(A) is nowhere dense.

Again, fix I = (a, b) ∈ I(C) and define α = f ◦ υ|[0,a]. Let β be the reduced
representative of the path f ◦ υ|I and ζ be the reduced representative of f ◦ λ|I . We
have already seen that α−1(A) and β−1(A) are nowhere dense. Since [α ·β ·ζ−·α−] =
f#(wI ) ∈ Nd(X , A), if η is the reduced representative of α ·β · ζ− ·α−, then η−1(A)

is nowhere dense. Hence, if ζ−1(A) contains an interval (s, t), then γ |[s,t] must fully
cancel in the reduction from α ·β ·ζ−·α− to η. However, this would force the existence
of an interval in either β−1(A) or (α−)−1(A); a contradiction. We conclude that for
each I ∈ I(C), the reduced representative ζI of f ◦ λ|I has the property that ζ |−1

I (A)

is nowhere dense.
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Define a map g : W → X so that g ◦ υ = f ◦ υ and for each I ∈ I(C),
g ◦ λ|I = ζI . Although g ◦ λ need not be a reduced path, the uniqueness of reduced
representatives in path-homotopy classes ensures that f is homotopic to g as a based
map.Thus g#(wI ) = f#(wI ) for all I ∈ I(C) and g#(w∞) = f#(w∞). By the previous
paragraphs, we have that (g◦υ)−1(A) is nowhere dense and (g◦λ|I )−1(A) is nowhere
dense (treated as a subspace of I ) for each I ∈ I(C). It follows that (g ◦ λ)−1(A)

is nowhere dense. Finally, we see that the preimage of A under (g ◦ υ) · (g ◦ λ)− is
nowhere dense. Thus f#(w∞) = g#(w∞) = [(g ◦ υ) · (g ◦ λ)−] ∈ Nd(X , A). ��
Example 6.7 IfD is the dyadic arc space with base arc B, then clearly D ≤ Nd(D, B),
however d∞ /∈ Nd(D, B) since �1,1 · λ−∞ is reduced and λ−1∞ (B) = [0, 1] has non-
empty interior. Therefore, Nd(D, B) is a non-normal subgroup of π1(D, d0), which
is (W , w∞)-closed but not (D, d∞)-closed. In particular, pNd(D,B) : X̃ Nd(D,B) → X
does not have the unique path-lifting property.

Corollary 6.8 d∞ /∈ ClW ,w∞(D).

6.4 Equivalence for normal subgroups

Let fC : [0, 1] → [0, 1] be the standard ternary Cantor map which is surjective,
monotone, injective on C\⋃

(a,b)∈I(C){a, b}, and for each I = (a, b) ∈ I(C), there is
a unique dyadic rational u ∈ (0, 1) such that fC([a, b]) = u.

Theorem 6.9 If H ≤ π1(X , x0) is (D, d∞)-closed, then H is (W , w∞)-closed. The
converse holds if H is normal. In particular, the closure operatorsClD,d∞ andClW ,w∞
agree on normal subgroups.

Proof Thefirst statement is (1) of [5, Proposition 7.6]. For the partial converse, suppose
H is a (W , w∞)-closed normal subgroup of π1(X , x0). Let g : (D, d0) → (X , x0) be
a map such that g#(D) ≤ H . We will check that g#(d∞) ∈ H .

Define a map f : W → D as follows: set f (s, 0) = ( fC(s), 0) where fC is
the ternary Cantor map. For each dyadic rational 2 j−1

2n ∈ (0, 1), there is a unique

(a, b) ∈ I(C) such that fC([a, b]) = 2 j−1
2n . Using this correspondence, we complete

the definition of f by setting f ◦υ|[a,b] = γn, j where γn, j = �−
n+1,2 j−1 ·�n, j ·�−

n+1,2 j .
The function f is clearly well-defined.

For continuity, it suffices to show f is continuous at each (c, 0) ∈ C × {0}. First,
notice that if I = (a, b) ∈ I(C) has diameter 1

3n , then f (CI ∪ ([a, b] × {0})) has
diameter 1

2n−1 . Let n ∈ N. By the continuity of fC , there exists an m ∈ N such that if

|x − c| < 1
3m , then | fC(x)− fC(c)| < 1

2n−1 . NowU = {(x, y) ∈ W | |x − c| < 1
2(3m)

}
is an open neighborhood of (c, 0) in W and if (x, y) ∈ U , then d((x, y), (c, 0)) ≤

1
2(3m)

+ |x − c| < 1
3m inW and thus

d( f (x, y), f (c, 0)) ≤ d( f (x, y), f (x, 0)) + d( f (x, 0), f (c, 0))

= d( f (x, y), f (x, 0)) + | fC(x) − fC(c)|
<

1

2n−1 + 1

2n−1 = 1

2n
.
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This verifies the continuity of f .
Fix I = (a, b) ∈ I(C) so that fC([a, b]) = 2 j−1

2n = u. Note that α = f ◦ υ|[0,a]
is a path in D from d0 to (u, 0). Since u is a dyadic rational, there exists a path
δu : [0, 1] → D from d0 to (u, 0) which is a finite concatenation of paths of the form
�n, j or �−

n, j .

Note that f#(wI ) = [α ·�−
n+1,2 j−1 ·�n, j ·�−

n+1,2 j ·α−]. Let k = [δu ·α−] ∈ π1(D, d0)
and observe that

k f#(wI )k
−1 =

[
δu · �−

n+1,2 j−1 · �n, j · �−
n+1,2 j · δ−

u

]
∈ D.

Since g#(wI ) ∈ H and H is normal, we have

(g ◦ f )#(wI ) = g#(k)
−1g#(k f#(wI )k

−1)g#(k)

∈ g#(k)
−1g#(D)g#(k)

≤ g#(k)
−1Hg#(k)

= H .

Since (g ◦ f )#(W ) ≤ H and H is (W , w∞)-closed, we have (g ◦ f )#(w∞) ∈ H .
To finish the proof that g#(d∞) ∈ H , it suffices to show that f#(w∞) = [( f ◦

υ) · ( f ◦ λ)−] is equal to d∞ = [�1,1 · λ−∞]. Since f ◦ λ = λ∞ ◦ fC , the path
f ◦ λ is path-homotopic to λ∞. Therefore, it suffices to show that f ◦ υ and �1,1 are
path-homotopic.

Recall the retraction rn : D → En and consider the projections rn ◦ f ◦ υ. Using
only homotopies that delete constant subpaths, we have:

r1 ◦ f ◦ υ � �1,1
r2 ◦ f ◦ υ � �2,1 · γ1,1 · �2,2
r3 ◦ f ◦ υ � �3,1 · γ2,1 · �3,2 · γ1,1 · �3,3 · γ2,2 · �3,4
· · ·

Since each path on the right reduces to �1,1, the projection rn ◦ �1,1 is path-homotopic
to rn ◦ f ◦ υ for all n. By the π1-shape injectivity of D, f ◦ υ is path-homotopic to
�1,1.

The final statement of the theorem now follows from [5, Corollary 2.8]. ��
Combining Theorem 6.9 with the characterizations in Proposition 5.2 and Theo-

rem 6.3, we obtain the following.

Theorem 6.10 If pH : X̃ H → X has the unique path-lifting property, then X has
well-defined transfinite�1-products rel. H. The converse holds if X is metrizable and
H is normal.

Theorem 1.2 is the case H = 1 of Theorem 6.10.

Corollary 6.11 If 〈〈D〉〉 is the normal closure of D in π1(D, d0), then d∞ ∈
ClW ,w∞(〈〈D〉〉).
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Proof d∞ ∈ ClD,d∞(D) ≤ ClD,d∞(〈〈D〉〉) and, by Theorem 6.9, ClD,d∞(〈〈D〉〉) =
ClW ,w∞(〈〈D〉〉). ��
Corollary 6.12 The normal closure 〈〈W 〉〉 of W in π1(W, w0) is (W , w∞)-dense in
the sense that ClW ,w∞(〈〈W 〉〉) = π1(W, w0)

Proof By [5, Lemma 4.1], D is (D, d∞)-dense, i.e. ClD,d∞(D) = π1(D, d0). Accord-
ing to the proof of [5, Proposition 7.6], W may be identified as a subspace of D such
that there is a retraction r : D → W satisfying r#(D) ≤ W and r#(d∞) = w∞. Since
r# is a retraction of groups, it must be onto. Hence,

π1(W, w0) = r#(π1(D, d0))

= r#(ClD,d∞(D))

≤ ClD,d∞(r#(D))

≤ ClD,d∞(W )

≤ ClD,d∞(〈〈W 〉〉)
= ClW ,w∞(〈〈W 〉〉)

where the last equality follows from Theorem 6.9. ��

Remark 6.13 In combinationwith Lemma 3.3, the “density”mentioned in the previous
corollary implies that a normal subgroup N � π1(X , x0) is (W , w∞)-closed if and
only if for every map f : (W, w0) → (X , x0) such that f#(W ) ≤ N , we have
f#(π1(W, w0)) ≤ N .

Let WA be the “archipelago-like” space akin to DA in [5] where a 2-cell D2
I is

attached to W along the loops υI · λ−
I for each I ∈ I(C) (See Fig. 7). The following

Fig. 7 The space WA
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theorem is an alternative version of [5, Theorem 6.1] where D is replaced withW; we
omit the proof since it is completely analogous.

Theorem 6.14 The following are equivalent for any path-connected metric space X:

(1) X admits a generalized universal covering,
(2) every map f : W → X such that f#(W ) = 1 induces the trivial homomorphism

on π1,
(3) every map f : WA → X induces the trivial homomorphism on π1.

Remark 6.15 The space used to prove Theorem 1.1 is highly non-compact. We recall
that Eda’s Problem asks if every homotopically Hausdorff Peano continuum admits a
generalized universal covering. In light of the results in [4] and the current paper, we
point out that Eda’s Problem is equivalent to the following: If a Peano continuum X
has well-defined scattered �1-products, must it also have transfinite �1-products?
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