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Abstract
We give a new proof of the classical Dold–Thom theorem using factorization homol-
ogy. Our method is direct and conceptual, avoiding the Eilenberg–Steenrod axioms
entirely in favor of a more general geometric argument.
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1 Introduction

The Dold–Thom theorem is a classical result giving a beautiful relation between
homotopy and homology. It states that for a nice, based topological space M and
abelian group A, there are isomorphisms between the homotopy groups of the infinite
symmetric product of M with coefficients in A and the reduced homology groups of
M itself, again with coefficients in A:

π∗(Sym(M; A)) ∼= ˜H∗(M; A).

The infinite symmetric product is the space of configurations of points in M labeled
by elements of A endowed with a certain topology; see Definition 2 for a precise
formulation.

A fundamental result with applications in both algebraic topology and algebraic
geometry, this theorem has received much attention since it was first published in
1958. In 1959, Spanier used the equivalence of homology theories exhibited to under-
stand Spanier–Whitehead duality [27]. Later, McCord gave a convenient model for
the categorical tensor of a based space and a topological abelian group which gener-
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580 L. Bandklayder

alized Dold and Thom’s infinite symmetric product [22]. Inspired in part by McCord,
the notes of Floyd and Floyd [13] discuss the infinite symmetric product as a source
of models for spectra. Both McCord’s model and the notes [13] are treated in the
paper of Kuhn, [17], where more historical perspective is also given. Segal, too, gave
a generalized model for the infinite symmetric product in [25], viewing it as a labelled
configuration space. In 1996, Gajer gave an intersection-homology variant of the
Dold–Thom theorem [14]. An equivariant formulation of the theorem was given by
dos Santos in [11], which generalizes an equivariant integral-coefficient formulation
given by Lima–Filho in [18]. More recently, Suslin and Voevodsky used the theorem
to define motivic cohomology, giving a means of translating techniques and results
of algebraic topology into algebraic geometry [28]. As giving a complete history of
the Dold–Thom theorem would constitute a paper of its own, we have only outlined
some of the highlights here, but we hope this convinces the reader of its rich history
and utility.

Aswe now explain, our construction of the infinite symmetric product is an instance
of factorization homology, although we shall make no use of the formal machinery of
that theory—the interested reader can consult [1–3] and Chapter 5 of [19] for more.
Factorization homology acts as a bridge between the algebraic and geometric study of
manifolds, taking two pieces of input—geometric data in the form of an n-manifold,
M , and algebraic data in the form of an n-disk algebra,A—and returning an invariant
denoted

∫

M A and called the factorization homology of M with coefficients in A.
Roughly speaking, an n-disk algebra is a functor out of a certain category of disjoint
unions of disks which determines a local algebraic structure on n-manifolds, and fac-
torization homology gives a means of gluing together this local data across coordinate
patches of a given manifold M by taking a homotopy colimit to obtain a global invari-
ant of M . From this point of view, the Dold–Thom theorem asserts that, when viewing
the infinite symmetric product as an n-disk algebra, factorization homology recovers
ordinary homology. This perspective is illustrated in Proposition 15.

Remark 1 The reader may have noticed that what we have called the Dold–Thom
theorem is not the statement one finds in [10], but a slight variation thereof which
considers coefficients in an abelian group.However, one can observe that our definition
of the infinite symmetric product will still hold with coefficients in an abelian monoid
and in fact there is homeomorphism between our Sym(M;N) and the classical version
of the infinite symmetric product SP∞(M) as defined in [10]. We will focus our
attention on proving the variation of the Dold–Thom theorem which considers group
coefficients, and in the “Appendix” we will derive the original statement from this
variant.

1.1 Motivation for a new approach

The original proof of the Dold–Thom theorem proceeds by verifying that the com-
position of functors π∗(Sym(−; A)) satisfies the Eilenberg–Steenrod axioms for a
reduced homology theory [12]. In this note, we will outline a new, direct proof of the
Dold–Thom theorem which avoids the Eilenberg–Steenrod axioms entirely. At the
heart is a powerful local-to-global argument of Dugger and Isaksen allowing us to
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The Dold–Thom theorem via factorization homology 581

recognize the infinite symmetric product as an instance of factorization homology. We
imagine the conceptual and geometric nature of this proof lends itself readily to many
generalizations and reinterpretations. As the development of factorization homology
is relatively modern, another compelling aspect of this approach is in its unification
of contemporary and classical constructions in algebraic topology.

1.2 Overview of this work

For simplicity we will restrict ourselves to the case where M is a smooth manifold.
Because any finite CW complex can be approximated up to homotopy by a smooth
manifold, the homotopy invariance of the infinite symmetric product immediately
implies the theorem for all finite CW complexes, and it is quite possible similar tech-
niques extend this proof even further. Nevertheless, for the purposes of this note we
will content ourselves with the case of a manifold.

The rough outline of our proof of the Dold–Thom theorem is as follows. The heart
lies in Proposition 15, wherewe use a local-to-global argument to see that, for Disk∗/M
an appropriate category of disks embedded in M , there is a homotopy equivalence
between the infinite symmetric product of M and the factorization homology of M :

Sym(M; A) � hocolim
U∈Disk∗/M

Sym(U ; A).

In Lemma 18 we will show how to use the Dold–Kan correspondence to pass to
chain complexes. It is crucial to this step that we take the homotopy colimit over a
sifted category, and we wish to emphasize this point to the reader, as it is precisely this
fact that allows us to analyze this same homotopy colimit in spaces as one in chain
complexes. Once in the context of chain complexes, we finish the proof by showing
the homotopy colimit hocolimU∈Disk∗/M Sym(U ; A) considered as a chain complex is
quasi-isomorphic to the reduced singular chain complex, ˜C∗(M; A), which precisely
implies the desired Dold–Thom isomorphisms: πi (Sym(M; A)) ∼= ˜Hi (M; A). We
remark that at this point it may not be clear to the reader why one can consider the
expression hocolimU∈Disk∗/M Sym(U ; A) as a chain complex, this will be elaborated
on in Corollary 17 in conjunction with the paragraph directly following it.

In Sect. 2 we will provide the basic definitions we work with, including that of the
infinite symmetric product and the relevant categories of disks, before turning to a
discussion of the local-to-global argument we will use to make the identification of
the infinite symmetric product with factorization homology. In Sect. 3 we will actually
prove this identification and derive from it the Dold–Thom theoremwith abelian group
coefficients. Finally, in “Appendix” we will derive the Dold–Thom theorem as stated
in [10] from the case with abelian group coefficients.
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582 L. Bandklayder

2 Preliminaries

2.1 The infinite symmetric product

In this section we briefly recall the definition of the infinite symmetric product asso-
ciated to a topological space, motivated by the idea of defining the free topological
A-module on a space, M .

Definition 2 For M a pointed space with basepoint, ∗, and A an abelian group with
identity, e, define the infinite symmetric product of M with coefficients in A to be the
space

Sym(M; A)

:= {

(S, l)
∣

∣ ∗ ∈ S, S ⊂ M, |S| < ∞, and l : S → A such that l(∗) = e
}/ ∼

where ∼ is the equivalence relation generated by (S, l) ∼ (S ∪ {x}, l ′) when l ′ is the
map which agrees with l on S and sends x to e, topologized with the finest topology
making the following maps continuous for any finite set I :

f I : MI+ × AI+ → Sym(M; A)

(c : I+ → M, l : I+ → A) �→
⎡

⎣(c(I+), l ′ : s �→
∑

i∈c−1(s)

l(i))

⎤

⎦ .

Here MI+ denotes based maps I+ → M , AI+ denotes all maps of sets I+ → A
sending the basepoint to e, and both are endowed with the product topology.

That is, taking the union over all finite I of the maps f I gives a surjection
MI+ × AI+ � Sym(M; A), and we say U ⊂ Sym(M; A) is open if and only if its
inverse image is openunder eachof thesemaps. In particular, this topology requires that
labels vanish at the basepoint and that points labeled by the identity be forgotten, and
allows for points to collidewhence their labels add. A first example of this construction
is given in the following lemma:

Lemma 3 For I a finite set, there is a homeomorphism

Sym(I+; A) ∼= AI

where we consider A as a topological space with the discrete topology and AI with
the product topology.

Remark 4 A pointed map M
f−→ Y induces a map Sym(M; A)

Sym( f ;A)−−−−−−→ Sym(Y ; A)

which is given explicitly by the assignment:

[(S, l)] �→
⎡

⎣( f (S), x �→
∑

s∈ f −1(x)

l(s))

⎤

⎦
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The Dold–Thom theorem via factorization homology 583

and, in fact, this allows us to view the infinite symmetric product as a functor

Sym(−; A) : Top∗ → Top∗.

In the futurewewill use the notation Sym( f ; A)
[

(S, l)
] = [

f (S), f (l)
]

.Moreover,
this functor is homotopy invariant. Let H : M × [0, 1] → Y be a homotopy between
two pointed maps f , g : M → Y and for each element t ∈ [0, 1], let Ht denote the
map H(−, t) : M → Y , then one can define a homotopy between Sym( f ; A) and
Sym(g; A) explicitly as

H ′ : Sym(M; A) × [0, 1] → Sym(Y ; A)

((S, l), t) �→ Sym(Ht ; A)(S, l).

2.2 Categories of disks

From here on we will fix M to be a smooth, pointed n-manifold. The following
categories will come up throughout our proof:

Definition 5 Let Mfldn denote the category whose objects are n-manifolds and with
morphisms given by open embeddings.

Definition 6 LetDisk ⊂ Mfldn denote the full subcategory consisting of objectswhich
are finite disjoint unions of n-dimensional Euclidean spaces.

Of course, the category Disk also depends on n, but since we have fixed a dimension
n we will omit that from the notation for ease of reading. We can then consider the
over-category Disk/M .

Definition 7 Let Disk∗/M denote the full subcategory of Disk/M consisting of embed-
dings U ↪→ M whose image contains the basepoint ∗ ∈ M .

2.3 Local-to-global methods

As mentioned in the introduction, our approach to the Dold–Thom theorem will be to
understand the local structure of the infinite symmetric product and leverage this to
understand its global structure. We will show that the infinite symmetric product can
be constructed from some collection of simpler, more tangible spaces, much in the
way that manifolds can be constructed from disks. In particular, we would like to see
that there is an equivalence Sym(M; A) � hocolim U ↪→M∈Disk∗/MSym(U ; A).

We will make use of the following definition due to Dugger and Isaksen [7]:

Definition 8 For X a topological space and U = {Ui }i∈I an open cover of X , we
say that U is a complete cover if for all finite subsets J of the indexing set I , the
intersection

⋂

j∈J U j admits an open cover by elements of U.

Example 9 ForM a basedmanifold, the over-categoryDisk∗/M determines a complete
cover of M . It is clear that this category determines a cover of M since M is locally
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584 L. Bandklayder

Euclidean, and to see that it is complete one simply notes that given two embeddings
of finitely many copies of Euclidean space into M , the intersection of the images of
these embeddings is an open submanifold of M , and thus itself admits a cover by disks
embedded in M .

Example 10 More generally, for X a topological space, any basis for the topology of
X is a complete cover of X .

These complete covers will be our local data, and now we provide a pleasant result
of Dugger and Isaksen [7] which states that this local data is sufficient to recover a
topological space up to weak equivalence. More rigorously:

Theorem 11 If U = {Ui }i∈I is a complete cover, then there is a weak equivalence

hocolim
U

Ui � X

between X and the homotopy colimit of the diagram in spaces determined by U.

Remark 12 We work with complete covers because they are most convenient for our
purposes, but one can replace complete covers with many nice covers to obtain anal-
ogous results—in [7] one can find versions of Theorem 11 for Cech complexes and
hypercovers, generalizing Segal’s earlier work in [26], and more recently, in A.3 of
[19] Lurie extends these result to the “generalized Seifert–Van Kampen theorem.”

We conclude this section with two useful consequences of Theorem 11 which
immediately follow from Examples 9 and 10:

Corollary 13 For M a based manifold, there is a weak equivalence

hocolim
U ↪→M∈Disk∗/M

U � M .

Corollary 14 For X a topological space, and U = {Ui }i∈I any basis for the topology
on X, there is a weak equivalence

hocolim
U

Ui � X .

3 A new proof of the Dold–Thom theorem

We are now ready to prove the Dold–Thom theorem. Our first step, and the core of
our proof, will be to appeal to Theorem 11 in order to prove the following:

Proposition 15 For M a based manifold, there is a weak equivalence

Sym(M; A) � hocolim
U ↪→M∈Disk∗/M

Sym(U ; A).
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Proof of Proposition 15 Observe first that the functor

Sym(−; A) : Top∗ → Top∗

preserves open embeddings.
To see it this, suppose g : X → Y is anopen embedding.We’ll first showSym(g) :=

Sym(g; A) : Sym(X; A) → Sym(Y ; A) is open. Note that for any finite set I , we
have the commutative diagram

X I+ × AI+ Sym(X; A)

Y I+ × AI+ Sym(Y ; A)

f I ,X

gI×idI Sym(g)

f I ,Y

where f I ,X and f I ,Y are the maps topologizing X and Y , respectively. For any open
U ⊂ Sym(X; A), we want to see that Sym(g)(U ) is open in Sym(Y ; A). We know
by definition that f −1

I ,X (U ) is open, and because g is an open embedding,
(

gI × idI
) ◦

(

f −1
I ,X (U )

)

is also open. Now

Sym(g)(U ) =
⋃

I -finite

f I ,Y
(

(gI × idI ) ◦ ( f −1
I ,X (U ))

)

so that Sym(g)(U ) is open as desired.
Now to see Sym(g) is an embedding, it suffices to see it is an injection. For this,

assume the equivalence class
[

(g(S), g(l))
]

is the same as
[

(g(T ), g(m))
]

, then we
will see it follows that

[

(S, l)
]

is the same equivalence class as
[

(T ,m)
]

.
From our assumption of the equivalence

[

(g(S), g(l))
] = [

(g(T ), g(m))
]

, we can
write without loss of generality the following equalities:

(1) g(S) = g(T ) ∪ g(S′),
(2) g(l)|g(T ) = g(m),

(3) g(l)|g(S′) ≡ e.

The first line, with the fact that g is an embedding, implies that T is a subset of S, so
we have the equality S = T � (S−T ). Then we will be done if we show that l|T = m
and that l|S−T ≡ e, because then the equalities

[

(S, l)
] = [

(T � (S − T ),m � e)
]

= [

(T ,m)
]

will immediately follow. Let us first consider l|T , the case of l|S−T will
be similar. We know by assumption (2) that g(l)|g(T ) = g(m) which implies that that
for t an element of T , we have the string of equalities
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m(t) =
∑

x∈g−1(g(t))

m(x)

= g(m)(g(t))

= g(l)(g(t))

=
∑

x∈g−1(g(t))

l(x)

= l(t)

where the first and last line come from the fact that g is an embedding, the second
and fourth lines are by definition, and the third line is our assumption (2). This shows
l|T = m as desired. To see the equivalence l|S−T ≡ e, note by our assumption (3), as
above we have the following equalities for s an element of S − T ,

e = g(l)(g(s))

=
∑

x∈g−1(g(s))

l(x)

= l(s)

which proves the claim, and further concludes the proof that Sym(−; A) preserves
open embeddings.

If we let Open(X) denote the poset of open subsets of a topological space X ordered
by inclusion, the above discussion then allows us to consider the functor

Sym(−; A) : Disk∗/M → Open(Sym(M; A))

which sends an object ι : U ↪→ M to im(Sym(ι; A)) = Sym(U ; A) viewed as
a subspace of Sym(M; A). To apply Theorem 11, we now just need to see that the
collectionS = {Sym(U ; A)}Disk∗/M gives a complete cover of Sym(M; A) (Figs. 1, 2).

Fig. 1 An illustration that S
covers Sym(M; A)
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Fig. 2 An illustration that S is
complete

• To see that S covers Sym(M; A)

Because M is a manifold, and in particular is Hausdorff, for any finite labelled
configuration (x, l) ∈ Sym(M; A) one can find a finite disjoint union of disks in
M , each of which contains a unique point of x . Such a disjoint union gives an
element of Disk∗/M whose image under Sym(−; A) contains (x, l), and because
(x, l) was arbitrary, this shows that S gives an open cover of Sym(M; A).

• To see that S is complete
We must see that any finite intersection Sym(U1; A) ∩ · · · ∩ Sym(Un; A) of
elements inS admits a cover by elements ofS. Let’s again consider an arbitrary con-
figuration (x, l) ∈ Sym(U1; A)∩· · ·∩Sym(Un; A). Since eachUi is open inM , the
finite intersectionU1∩· · ·∩Un is also in M , so one can repeat the above argument
and find a finite disjoint union of disks Dx ∼= �n

1R
n
i inside ofU1 ∩ · · · ∩Un ⊂ M ,

each of which contains a unique point of x , and whose image under Sym(−; A)

contains (x, l). Doing this for each configuration x ∈ Sym(U1; A) ∩ · · · ∩
Sym(Un; A) determines a cover of this intersection by elements in S, as desired.

We can now apply Theorem 11 to see there is an equivalence

hocolim
U ↪→M∈Disk∗/M

Sym(U ; A)
�−→ Sym(M; A).

��

Remark 16 As described in the introduction, the homotopy colimit above is equivalent
to the factorization homology of M with coefficients in the n-disk algebra in spaces
determined by the functor Sym(−; A), motivating the title of this note. To be slightly
more precise, one should viewM as a zero-pointedmanifold, pointed by the basepoint,
and use the theory of factorization homology for zero-pointed manifolds, see 2.2 of
[2].

Corollary 17 There are homotopy equivalences of spaces

Sym(M; A) � hocolim

(

Disk∗/M
Sym(−;A)−→ Top

)

� hocolim

(

Disk∗/M
˜H0(−;A)−→ Top

)
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588 L. Bandklayder

where, for U ↪→ M in Disk∗/M, we consider ˜H0(U ; A) ∼= Aπ0(U )\[∗] as a discretely
topologized space.

Proof For I a finite set, we have seen in Lemma 3 the homeomorphism Sym(I+; A) ∼=
AI . Thus, since for any U ↪→ M in Disk∗/M there is a homotopy equivalence U �
π0(U ), the corollary follows from the above proposition combined with the homotopy
invariance [Remark 4] of Sym(−; A). ��

Nowwewish to compute this homotopy colimit in the category of connective chain
complexes. Observe that the functor ˜H0(−; A) : Disk∗/M → Top∗ factors through
connective chain complexes in the following fashion:

Disk∗/M Top

Ch≥0 �
DK

sAb

˜H0(−;A)

˜H0(−;A)[0]; d=0 |U (−)|

where DK : Ch≥0 → sAb is part of the Dold–Kan correspondence taking chain com-
plexes to simplicial abelian groups, and |U (−)| : sAb → Top is the composition of
the forgetful functorU from simplicial abelian groups to simplicial sets and geometric
realization | − | from simplicial sets to topological spaces. We will henceforth simply
use ˜H0(−; A) to denote the functor ˜H0(−; A)[0] : Disk∗/M → Ch≥0.

Lemma 18 The natural map

∣

∣

∣

∣

U ◦ DK

(

hocolim

(

Disk∗/M
˜H0(−;A)−→ Ch≥0

))∣

∣

∣

∣

�−→hocolim

(

Disk∗/M
˜H0(−;A)−→ Top

)

is an equivalence of spaces.

Proof To see this equivalence, it suffices to see that the composition of functors
|U ◦ DK (−)| commutes with the homotopy colimit on the left. Since both geometric
realization and the Dold–Kan functor commute with all homotopy colimits, our task is
reduced to seeing that the forgetful functor U commutes with this homotopy colimit.
A general fact about forgetful functors is that they commute with homotopy sifted
homotopy colimits, so we will attempt to exploit this fact. The category Disk∗/M need
not be sifted, however, if one inverts isotopy equivalences Disk∗/M , one obtains an
∞-categorywhichwe’ll denote byDisk∗/M that is homotopy sifted. Analogously, one
can invert isotopy equivalences in Disk/M to obtain a homotopy sifted ∞-category
we will denote by Disk/M . For more rigorous details on the construction of these
∞-categories, see [1] and [3]. These four categories fit in to the following diagram:

Disk∗/M Disk/M

Disk∗/M Disk/M
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where the top horizontal functor is full and final and the right vertical functor is a local-
ization in the sense of 5.2.7 of [20] and hence final, 2.21 of [3]. In this particular case,
that is sufficient to imply the left vertical functor is also a localization and hence final,
so there is an equivalence hocolim Disk∗/M

˜H0(−; A) � hocolimDisk∗/M
˜H0(−; A)

which, with the siftedness of Disk∗/M 3.3.2 of [1], proves the lemma. ��
To summarize, we have shown the equivalences

πi (Sym(M; A)) ∼= πi

(

hocolim

(

Disk∗/M
˜H0(−;A)−→ Top

))

∼= Hi

(

hocolim

(

Disk∗/M
˜H0(−;A)−→ Ch≥0

))

where the first equivalence follows from Proposition 15 and Corollary 17, and the
second from Lemma 18. Now all that remains is to see that this does, in fact, agree
with the singular reduced homology of M . This is roughly a special case of the fact
that factorization homology recovers ordinary homology; nevertheless, for the reader
unfamiliar with the language of factorization homology we will include a proof of this
special case.

Lemma 19 The canonical map of chain complexes

hocolim

(

Disk∗/M
˜H0(−;A)−→ Ch≥0

)

�−→ ˜C∗(M; A)

is a quasi-isomorphism.

Proof FromCorollary 14weknow there is an equivalenceM � hocolimU ↪→M∈Disk∗/M

U , and thus we have the following quasi-isomorphisms:

˜C∗(M; A) = ˜C∗
(

hocolim
U ↪→M∈Disk∗/M

U ; A
)

� hocolim
U ↪→M∈Disk∗/M

˜C∗(U ; A)

� hocolim
U ↪→M∈Disk∗/M

˜C∗(π0(U ); A)

where the last equivalence comes from our assumption thatU is homotopy equivalent
to π0(U ).

Now there is an obvious map

hocolim
U ↪→M∈Disk∗/M

˜H0(U ; A) → hocolim
U ↪→M∈Disk∗/M

˜C∗(π0(U ); A)

which induces an isomorphism on homology, and the lemma follows. ��
Stringing the above together, we arrive immediately at the Dold–Thom theorem:
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590 L. Bandklayder

Theorem 20 (Dold–Thom). For M a smooth pointed manifold and for every integer
i ∈ Z, there is an isomorphism of groups

πi (Sym(M; A)) ∼= ˜Hi (M; A).
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Appendix: The original statement of the Dold–Thom theorem

In its original form [10], the Dold–Thom theorem for smooth manifolds is the follow-
ing:

Theorem 21 (Dold–Thom). For M a connected, based manifold and for every integer
i ∈ Z, there is an isomorphism of groups

πi (SP
∞(M)) ∼= ˜Hi (M;Z).

Here, SP∞(M) is defined as the colimit of the finite symmetric powers of M; ie.

SP∞M := colim
i

X×i/�i .

In this “Appendix”wewill showhow this statement follows easily from the statement in
Theorem 20. To arrive at the classical statement one must first observe that Definition
2 only uses the monoid structure of A and not its full group structure. With this
observation, it is clear that Sym(M;N) is defined and homeomorphic to SP∞(M).

We remark that while in [10] Dold and Thom only proved a statement about infinite
symmetric product with coefficients in N and integral homology, their proof can be
imitated nearly verbatim to obtain the analogous results in the case of abelian group
coefficients—that is to say, one can simply check directly that the composition of
functors π∗(Sym(−; A)) satisfies the Eilenberg–Steenrod axioms and agrees with
singular homology, and this argument will run through just as it does in the case
where A = N. In fact, considering only abelian group coefficients actually simplifies
the original proof. In particular, the subtlety in the axiomatic approach to Theorem
21 is in checking the exactness axiom for a homology theory—namely, one needs a
homotopy fiber sequence:

Sym(N ;N) → Sym(M;N)
p−→ Sym(M/N ;N),
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The Dold–Thom theorem via factorization homology 591

for N ⊂ M a based subspace and p the map induced by the quotient mapM → M/N .

The map p is not a fibration when considering coefficients in N, so in [9] Dold and
Thom developed the theory of quasifibrations in order obtain this fiber sequence.
However, later in [22],McCord showed that when one considers the infinite symmetric
product with coefficients in an abelian group A, the map p does become a fibration,
immediately giving the desired fiber sequence. It is for this reason we feel justified
in referring to both of Theorems 20 and 21 “the Dold–Thom theorem.” Let us now
derive Theorem 21 from Theorem 20.

We will actually derive a direct generalization of Theorem 21:

Theorem 22 Let A be a discrete monoid and denote by GG(A) the Grothendieck
group completion of A. For M a connected, based manifold and for every integer
i ∈ Z, there is an isomorphism of groups

πi (Sym(M; A)) ∼= ˜Hi (M;GG(A)).

We will need the following classical result:

Proposition 23 For X a grouplike topological monoid, there is a weak equivalence

X � �BX .

Proof One can construct a quasifibration EX → BX whose total space EX is con-
tractible and which has geometric fiber X and homotopy fiber �BX , for details see,
for example, Proposition D.2 of [16], Theorem 7.6 of [21], or [23]. ��

In particular, because Sym(M;−) is connected whenever M is connected, this
gives the following corollary:

Corollary 24 For M a connected topological space and A a discrete monoid, there is
a weak equivalence

Sym(M; A) � �BSym(M; A).

In light of this corollary, it suffices to see that there is an equivalence�BSym(M; A)

� Sym(M;GG(A)), as then we would have the equivalences:

πi (Sym(M; A)) ∼= πi (Sym(M;GG(A))

∼= ˜Hi (M;GG(A)),

recovering Theorem 22, and the classical statement of the Dold–Thom theorem (21)
as special case when A = N and GG(A) = Z.

Proposition 25 For M a based n-manifold, there is a weak equivalence

�BSym(M; A) � Sym(M;GG(A)).
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Proof Using complete covers precisely as in the proof of Proposition 15, we see
there is a weak equivalence Sym(M; A) � hocolimDisk∗/M Sym(−, A). Upon tak-
ing topological group completions, this induces an equivalence �BSym(M; A) �
�B hocolim Disk∗/M Sym(−, A). We would like to commute group completion with
this homotopy colimit. Because �B is the total left derived functor of group comple-
tion [8], it preserves all homotopy colimits of A∞ spaces. It thus suffices to see that
ours is a homotopy colimit of A∞ spaces. Any homotopy sifted homotopy colimit
of spaces in which all the spaces and maps are A∞ is itself a homotopy colimit in
A∞ spaces, so analogously to the argument in Lemma 18 we will appeal to the fact
that hocolimDisk∗/M Sym(−, A) is equivalent to the homotopy sifted homotopy colimit
hocolimDisk∗/M Sym(−, A) to arrive at the equivalence:

�BSym(M; A) � hocolim
Disk∗/M

�BSym(−; A).

Using homotopy invariance, Sym(U ; A) is equivalent to Sym(π0(U ); A) forU a finite
disjount union of disks embedded in M . Then just as in Lemma 3, one can easily see
Sym(π0(U ); A) ∼= Aπ0(U )\[∗] where π0(U )\ [∗] denotes the fundamental group of U
without the homotopy class of the basepoint. This leads us to the equivalences:

�BSym(M; A) � hocolim
U ↪→M∈Disk∗/M

�B(Aπ0(U )\[∗])

� hocolim
U ↪→M∈Disk∗/M

GG(A)π0(U )\[∗]

� Sym(M;GG(A)) by Proposition 15.

��
Remark 26 While Proposition 23 assumes X is connected, we note that this condition
is unnecessary for Proposition 25. On the other hand, our proof of Proposition 25 relies
on M being a manifold, whereas Proposition 23 holds for any connected topological
monoid.

The Dold–Thom theorem as stated in [10] and Theorems 21 and 22 now follow
immediately for any smooth manifold. As remarked in Sect. 1.2, one can again simply
appeal to homotopy invariance of SP∞(−) combined with approximation of finite
CW complexes by smooth manifolds to arrive at a more general theorem for finite
CW complexes, and it is the author’s hope to generalize these methods further still in
future work.
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