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Abstract
In this paper we use topological tools to investigate the structure of the algebraic K -
groups K4(R) for R = Z [i] and R = Z [ρ] where i := √−1 and ρ := (1+√−3)/2.
We exploit the close connection between homology groups of GLn(R) for n ≤ 5 and
those of related classifying spaces, then compute the former using Voronoi’s reduction
theory of positive definite quadratic and Hermitian forms to produce a very large finite
cell complex on which GLn(R) acts. Our main result is that K4(Z[i]) and K4(Z[ρ])
have no p-torsion for p ≥ 5.

Keywords Cohomology of arithmetic groups · Voronoi reduction theory · Linear
groups over imaginary quadratic fields · K -theory of number rings

Mathematics Subject Classification Primary 19D50; Secondary 11F75

1 Introduction

1.1 Statement of results

Let R be the ring of integers of a number field F . Only very few cases are known
where the algebraic K -group K4(R) has been explicitly computed, the first such
K4(Z) having been determined as recently as 2000 by Rognes [17], building on work

Communicated by Chuck Weibel.

MDS was partially supported by the Humboldt Foundation. PG was partially supported by the NSF under
contract DMS 1101640 and DMS 1501832. The authors thank the American Institute of Mathematics
where this research was initiated.

B Herbert Gangl
herbert.gangl@durham.ac.uk

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-018-0212-8&domain=pdf


282 M. Dutour Sikirić et al.

of Soulé [18]. The goal of this paper is the explicit topological computation of the
torsion (away from 2 and 3) in the groups K4(R) for R one of two special imaginary
quadratic examples: theGaussian integersZ[i] and theEisenstein integersZ[ρ], where
i := √−1 and ρ := (1+√−3)/2. Our work is in the spirit of Lee–Szczarba [12–14],
Soulé [19], andElbaz-Vincent–Gangl–Soulé [7,8]who treated KN (Z) for small N , and
Staffeldt [20] who investigated K3(Z[i]). As in these works, the first step is to compute
the cohomology of GLn(R) for n ≤ N +1; information from this computation is then
assembled into information about the K -groups following the program in Sect. 1.2.
Using these computations we show the following (Theorem 4.1):

Theorem. The orders of the groups K4
(
Z[i]) and K4

(
Z[ρ]) are not divisible by any

primes p ≥ 5.
We remark that this result is not new; in fact, Kolster’swork [11] implies the stronger

result that K4
(
Z[i]) and K4

(
Z[ρ]) vanish. Indeed, if R is the ring of integers of a CM

field, then Kolster proved that, assuming the Quillen–Lichtenbaum conjecture, the
orders of the groups K4n(R), n = 1, 2, 3, . . . , can be computed in terms of special
values of certain L-functions. This deep connection between K -groups and special
values of L-functions is now a theorem, thanks to the celebrated work by Voevodsky
[21] and Rost, as put into context in [9].

Our work, on the other hand, treats K4
(
Z[i]) and K4

(
Z[ρ]) by completely different

methods. We only use the definition of the K -groups and explicit results about the
cohomology of the relevant arithmetic groups [6], together with Arlettaz’s bounds
on the kernel of the Hurewicz homomorphism [1], to prove Theorem 4.1. This also
explains why our calculations do not allow us to say anything for the primes 2 and 3:
both the results of [6] and the injectivity of the Hurewicz map in our cases only hold
away from these primes.

1.2 Outline of method

In the rest of this introduction we outline the main steps of our argument. These
follow the classical approach for computing algebraic K -groups of number rings due
to Quillen [15], which shifts the focus to computing the homology (with nontrivial
coefficients) of certain arithmetic groups.

(i) (Definition) By definition the algebraic K -group KN (R) of a ring R is a
particular homotopy group of a topological space associated to R: we have
KN (R) = πN+1(BQ(R)), where BQ(R) is a certain classifying space attached
to the infinite general linear group GL(R). In particular BQ(R) is the classifying
space of the category Q(R) of finitely generated R-modules. This is known as
Quillen’s Q-construction of algebraic K -theory [16].

(ii) (Homotopy to homology) The Hurewicz homomorphism πN+1(BQ(R)) →
HN+1(BQ(R)) allows one to replace the homotopy group by a homology group
without losing too much information; more precisely, what may get lost is infor-
mation about small torsion primes appearing in its finite kernel.

(iii) (Stability) By a stability result of Quillen [15, p. 198] one can pass from Q(R)

to the category QM+1(R) of finitely generated R-modules of rank ≤ M + 1
for sufficiently large M . This amounts to passing from GL(R) to the finite-
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dimensional general linear group GLM+1(R). In the cases at hand, a result of
Lee and Szczarba allows to reduce to the case M = N .

(iv) (Sandwiching) The homology groups to be determined are then H∗(BQn(R))

for n ≤ N + 1. Rather than computing these directly, one uses the fact that they
can be sandwiched between homology groups of GLn(R), where the homology
is taken with (nontrivial) coefficients in the Steinberg module Stn associated to
GLn(R).

(v) (Equivariant homology) It has been shown for certain number rings R that the
homology groups Hm(GLn(R), Stn) are isomorphic to the equivariant GLn(R)-
homology of an associated pair (denoted (X∗

n, ∂X
∗
n) in Sect. 1.3 below). The

standard method to compute the latter uses Voronoi complexes. These are relative
chain complexes of certain explicit polyhedral reduction domains of a space
of positive definite quadratic or Hermitian forms of a given rank, depending
respectively on whether R = Z or R is imaginary quadratic.

(vi) (Vanishing results) There are various techniques to show vanishing of homology
groups. As a starting point one has vanishing results for Hn(BQ1) as in The-
orem 3.1 below, and for H0(GLn, Stn) as in Lee–Szczarba [13], Cor. to Thm
4.1.

For a given N , using (ii) and knowing the results of (iv)–(vi) for all 0 ≤ n ≤ N + 1
is often enough to give an upper bound B on the primes p dividing the order of the
torsion subgroup KN ,tors(R) of KN (R).

1.3 Outline of paper

In this paper the sections work backwards through the method outlined in Sect. 1.2
to determine the structure of K4(Z[i]) and K4(Z[ρ]). In Sect. 2, we describe the
computation of the equivariant homology in question and relate it to the Steinberg
homology. In Sect. 3 we use the results on Steinberg homology and some vanishing
results to determine the groups Hm(BQn(R)) (i.e., step (iv) above). A key role here is
played by Quillen’s stability result (iii) for BQn , as refined by Lee–Szczarba in [13],
which serves as a stopping criterion. Finally, in Sect. 4wework out the potential primes
entering the kernel of the Hurewicz homomorphism (i.e., step (ii) above), which gives
Theorem 4.1.

2 Homology of Voronoi complexes

We first collect the results from [6] concerning the Voronoi complexes attached to
� = GLn(Z[i]) or � = GLn(Z[ρ]); this is the necessary information needed for step
(v) fromSect. 1.2 above.More details about these computations, including background
about how the computations are performed, can be found in [6].

Let F be an imaginary quadratic field with ring of integers R, and let Xn :=
GLn(C)/U(n) be the symmetric space of GLn(F⊗QR). The space Xn can be realized
as the quotient of the cone of rank n positive definite Hermitian matrices Cn modulo
homotheties (i.e. non-zero scalar multiplication), and a partial Satake compactification
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X∗
n of Xn is given by adjoining boundary components to Xn given by the cones of

positive semi-definite Hermitian forms with an F-rational nullspace (again taken up to
homotheties).We let ∂X∗

n := X∗
n�Xn denote the boundary of X∗

n . Then� := GLn(R)

acts by left multiplication on both Xn and X∗
n , and the quotient �\X∗

n is a compact
Hausdorff space.

A generalization—due to Ash [2, Chapter II] and Koecher [10]—of the polyhedral
reduction theory of Voronoi [22] yields a �-equivariant explicit decomposition of X∗

n
into (Voronoi) cells. Moreover, there are only finitely many cells modulo � and we
have the following result.

Proposition 2.1 [6, Proposition 3.6] For � ∈ {GLn(Z[i]),GLn(Z[ρ])} and m ∈ Z we
have H�

m (X∗
n, ∂X

∗
n, Z) 	 Hm−n+1(�, Stn).

Let �∗
d := �d(�)∗ be a set of representatives of the �-inequivalent d-dimensional

Voronoi cells that meet the interior Xn , and let �d := �d(�) be the subset of rep-
resentatives of the �-inequivalent orientable cells in this dimension; here we call a
cell orientable if all the elements in its stabilizer group preserve its orientation. Note
that in our consideration the prime 2 will always be inverted. This entails that only
orientable cells can contribute to the homology. One can form a chain complex Vor∗,
the Voronoi complex, and one can prove that modulo small primes the homology of
this complex is the homology H∗(�, Stn), where Stn is the rank n Steinberg module
(cf. [4, p. 437]). To keep track of these small primes explicitly, we make the following
definition.

Definition 2.2 (Serre class of small prime power groups) Given k ∈ N, we let S p≤k

denote the Serre class of finite abelian groups G whose cardinality |G| has all of its
prime divisors p satisfying p ≤ k.

For any finitely generated abelian group G, there is a unique maximal subgroup
Gp≤k of G in the Serre class S p≤k . We say that two finitely generated abelian groups
G and G ′ are equivalent modulo S p≤k and write G 	/p≤k G ′ if the quotients
G/Gp≤k ∼= G ′/G ′

p≤k are isomorphic.

We call the torsion primes of a group G those prime numbers p which divide the
order of at least one of the finite subgroups of G.

2.1 Voronoi data for R = Z[i]

We now give results for the Voronoi complexes and the equivariant homology of the
pairs (X∗

n, ∂X
∗
n) in the cases relevant to our paper (n = 2, 3, 4). This subsection treats

the Gaussian integers; in Sect. 2.2 we treat the Eisenstein integers.

Proposition 2.3 [20]

1. There is one d-dimensional Voronoi cell for GL2(Z[i]) for each 1 ≤ d ≤ 3, and
only the 3-dimensional cell is orientable.

2. The number of d-dimensional Voronoi cells for GL3(Z[i]) is given by:
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d 2 3 4 5 6 7 8

|�d (GL3(Z[i]))∗| 2 3 4 5 3 1 1
|�d (GL3(Z[i]))| 0 0 1 4 3 0 1

Proposition 2.4 [6, Table 12] The number of d-dimensional Voronoi cells for
GL4(Z[i]) is given by:

d 3 4 5 6 7 8 9 10 11 12 13 14 15

|�d (GL4(Z[i]))∗| 4 10 33 98 258 501 704 628 369 130 31 7 2
|�d (GL4(Z[i]))| 0 0 5 48 189 435 639 597 346 120 22 2 2

We remark that for GL3(Z[i]) the Voronoi complexes and their homology ranks
were originally computed by Staffeldt [20], who even distilled the 3-part for each
homology group. After calculating the differentials for this complex one obtains the
following homology groups, in agreement with Staffeldt’s results:

Proposition 2.5 [20, Theorems IV, 1.3 and 1.4, p.785]

Hm(GL2(Z[i]), St2) 	/p≤3

{
Z if m = 2,

0 otherwise,
(1)

Hm(GL3(Z[i]), St3) 	/p≤3

{
Z if m = 2, 3, 6,

0 otherwise.
(2)

In particular, from the above theorem we deduce that the only possible torsion primes
for Hm(GLn(Z[i]), Stn) for n = 2, 3 are the primes 2 and 3.

While the Voronoi homology of GL4(Z[i]) has been determined in all degrees in
[6, Theorem 7.2], we will only need the following two special cases.

Proposition 2.6 [6, Theorem 7.2] For m = 1, 2 we have

Hm(GL4(Z[i]), St4) 	/p≤5 {0}. (3)

The last column of [6, Table 12] further shows that the elementary divisors of all the
differentials in the Voronoi complex for GL4(Z[i]) in small degree (in fact for degree
≤ 13) are supported on primes ≤ 3.

We want to show the stronger result that H1(GL4(Z[i]), St4) 	/p≤3 {0}, i.e. we
want to show that the prime 5 cannot occur. For this we will need to use spectral
sequences. According1 to [5, VII.7], there is a spectral sequence Er

d,q converging to

1 More precisely [5, VII.7] constructs a spectral sequence converging to the equivariant homology
HG∗ (X , M) of a G-complex X with coefficients in a G-module M ; the E1 page has a form similar to
(4). One can formulate an analogous spectral sequence for the equivariant homology of a pair (X , Y ) of
G-complexes with E1 page (4), cf. the remarks in [5, VII.7] in the paragraphs preceding equation (7.1).
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the equivariant homology groups H�
d+q(X

∗
n, ∂X

∗
n; Z) of the homology pair (X∗

n, ∂X
∗
n),

and such that
E1
d,q =

⊕

σ∈�∗
d

Hq(�σ , Zσ ), (4)

where Zσ is the orientation module of the cell σ and �σ the stabilizer of the cell σ . In
the remainder of this section we put n = 4 and consider (X∗

4, ∂X
∗
4).

Proposition 2.7 Let � = GL4(Z[i]) and E1
d,q as above.

(i) For each d = 0, . . . , 4 one has E1
d,4−d 	/p≤3 {0}.

(ii) Similarly, for each d = 0, . . . , 5 one has E1
d,5−d 	/p≤3 {0}.

Proof We use the data obtained in [6, Table 12], available at [24].
(i) 1. As there are no cells in �∗

d for d ≤ 2, we have E1
0,4 = E1

1,3 = E1
2,2 = 0.

2. Consider now d = 3. The stabilizer of each of the four cells in �∗
3 lies in S p≤3.

Thus in particular we have

E1
3,1 =

⊕

σ∈�∗
3

H1(Stabσ , Zσ ) ∈ S p≤3,

where S p≤3 is as in Definition 2.2.
3. For d = 4, we note that none of the ten cells in �∗

4 has its orientation preserved
under the action of its stabilizer, so E1

4,0 = 0 mod S p≤2.

(ii) 1. As there are no cells in �∗
d for d ≤ 2, we have E1

0,5 = E1
1,4 = E1

2,3 = 0.
2. Consider now d = 3 and d = 5. The stabilizer of each of the four cells in �∗

3
and each of the 33 cells in �∗

5 lies in S p≤3. Thus in particular we have

E1
3,2 ∈ S p≤3, E1

5,0 ∈ S p≤3.

3. Finally, for d = 4, there is only one cell (out of ten) in �∗
4 , denoted by σ 1

4 , that
contains a subgroup of order 5.Wemust therefore show that there is no 5-torsion in the
group H1(Stab(σ 1

4 ), Z̃) (where Z̃ is the orientation moduleZσ 1
4
). Indeed, the subgroup

K1 of Stab(σ 1
4 ) preserving the orientation of σ 1

4 is isomorphic to Z/4Z × A5, where
A5 is the alternating group on five letters, with abelianization H1(Stab(σ 1

4 ), Z̃) 	
H1(K1, Z) 	 Z/4Z (for the first equality, which holds mod S p≤2, we make use of
Lemmas 8.2 and 8.3 in [8]) lies in S p≤3. Thus there can be no 5-torsion from here,
which completes the proof. �
Corollary 2.8 For � = GL4(Z[i]) one has H1(�, St4) 	 H�

4 (X∗
4, ∂X

∗
4, Z) 	/p≤3 {0}

and H2(�, St4) 	 H�
5 (X∗

4, ∂X
∗
4, Z) 	/p≤3 {0}.

2.2 Voronoi homology data for R = Z[�]

Now we turn to the Eisenstein case.

Proposition 2.9 [6, Tables 1 and 11]
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1. There is one d-dimensional Voronoi cell for GL2(Z[ρ]) for each 1 ≤ d ≤ 3, and
only the 3-dimensional cell is orientable.

2. The number of d-dimensional Voronoi cells for GL3(Z[ρ]) is given by:
d 2 3 4 5 6 7 8

|�d (GL3(Z[ρ]))∗| 1 2 3 4 3 2 2
|�d (GL3(Z[ρ]))| 0 0 1 2 1 1 2

3. The number of d-dimensional Voronoi cells for GL4(Z[ρ]) is given by:
d 3 4 5 6 7 8 9 10 11 12 13 14 15

|�d (GL4(Z[ρ]))∗| 2 5 12 34 82 166 277 324 259 142 48 15 5
|�d (GL4(Z[ρ]))| 0 0 0 8 50 129 228 286 237 122 36 10 5

After calculating the differentials we find the same results as for the homology of
Z[i] above:
Proposition 2.10 [6, Theorems 7.1 and 7.2 with Propositions 3.2 and 3.6]

Hm(GL2(Z[ρ]), St2) 	/p≤3

{
Z if m = 2,

0 otherwise,
(5)

Hm(GL3(Z[ρ]), St3) 	/p≤3

{
Z if m = 2, 3, 6,

0 otherwise,
(6)

For m = 1, 2 we have
Hm(GL4(Z[ρ]), St4) 	/p≤5 {0}. (7)

As with Z[i], a more refined analysis of the � = GL4(Z[ρ]) case shows that
H�
m (X∗

4, ∂X
∗
4, Z) contains no 5-torsion for m = 4, 5:

Proposition 2.11 Let � = GL4(Z[ρ]) and E1
d,q as above.

(i) For each d = 0, . . . , 4 one has E1
d,4−d 	/p≤3 {0}.

(ii) Similarly, for each d = 0, . . . , 5 one has E1
d,5−d 	/p≤3 {0}.

Proof The argument is very similar to that of the proof of Proposition 2.7. We use the
data obtained in [6, Table 11], available at [24].

(i) 1. As there are no cells in �∗
d for d ≤ 2, we have E1

0,4 = E1
1,3 = E1

2,2 = 0.
2. For d = 3, there are two cells in �∗

3 , with stabilizer in S p≤3, and hence

E1
3,1 =

⊕

σ∈�∗
3

H1(Stab(σ ), Zσ ) ∈ S p≤3.
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3. For d = 4, we note that none of the five cells in �∗
4 has its orientation preserved

under the action of its stabilizer, so E1
4,0 = 0 mod S p≤2.

(ii) 1. As there are no cells in �∗
d for d ≤ 2, we have E1

0,5 = E1
1,4 = E1

2,3 = 0.
2. Consider now d = 3 and d = 5. The stabilizer of each of the two cells in �∗

3
and each of the 12 cells in �∗

5 lies in S p≤3. Thus in particular we have

E1
3,2 ∈ S p≤3, E1

5,0 ∈ S p≤3.

3. Finally, for d = 4, there is only one cell (out of five) in �∗
4 , denoted by σ 1

4 , that
contains a subgroup of order 5.Wemust therefore show that there is no 5-torsion in the
group H1(Stab(σ 1

4 ), Z̃) (where Z̃ is the orientation moduleZσ 1
4
). Indeed, the subgroup

K1 of Stab(σ 1
4 ) preserving the orientation of σ 1

4 is isomorphic to Z/6Z × A5, where
A5 is the alternating group on five letters, with abelianization H1(Stab(σ 1

4 ), Z̃) =
H1(K1, Z) 	 Z/6Z, which lies in S p≤3. Thus there can be no 5-torsion from here,
which completes the proof. �
Corollary 2.12 For � = GL4(Z[ρ]) one has H1(�, St4) 	 H�

4 (X∗
4, ∂X

∗
4, Z) 	/p≤3

{0} and H2(�, St4) 	 H�
5 (X∗

4, ∂X
∗
4, Z) 	/p≤3 {0}.

3 Vanishing and sandwiching

In this section, we carry out the sandwiching argument (step (iv) of Sect. 1.2). As a
first step we invoke a vanishing result for homology groups for BQ1 due to Quillen
[15, p. 212]. In our cases this result boils down to the following statement:

Proposition 3.1 For the rings R = Z[i] and Z[ρ], we have

Hn(BQ1(R)) = 0 whenever n � 3.

For R = Z[i] a slightly stronger result is proved in [20, Lemma I.1.2]. However,
we will not need this stronger result for Z[i], or its analogue for Z[ρ].

Using our homology data from Sect. 2 and Proposition 3.1, we can get for both
rings R = Z[i] and R = Z[ρ] the following result:

Proposition 3.2 H5
(
BQ(R)

) 	/p≤3 Z.

Proof For brevity we will drop R from the notation, as the argument is the same
for both cases. We will successively determine H5(BQ j ) for j = 1, . . . , 5 and then
identify the last group via stability with H5(BQ). For this, we will combine results
from Sect. 2 with Quillen’s long exact sequence for different j , given by

· · · −→ Hn(BQ j−1) −→ Hn(BQ j ) −→ Hn− j (GL j , Stj ) −→ Hn−1(BQ j−1) −→ · · · .

(8)
The case j = 1. By Proposition 3.1 we have Hn(BQ1) = 0 for n ≥ 3.
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The case j = 2. From the above sequence (8) for j = 2, we get

H5(BQ1)︸ ︷︷ ︸
=0

−→ H5(BQ2) −→ H3(GL2, St2) −→ H4(BQ1)︸ ︷︷ ︸
=0

,

whence H5(BQ2) = 0 mod S p≤3 by (1) and (5).
The case j = 3. Now we invoke another result of Staffeldt, who showed (see [20,

proof of Theorem I.1.1] that

H4(BQ2) = H4(BQ3) = Z mod S p≤3. (9)

From (8) for j = 3 we get the exact sequence, working mod S p≤3,

H5(BQ2) −→ H5(BQ3) −→ H2(GL3, St3)︸ ︷︷ ︸
=Z (by (2), (6))

−→ H4(BQ2)︸ ︷︷ ︸
=Z (by (9))

−→ H4(BQ3)︸ ︷︷ ︸
=Z (by (9))

−→ H1(GL3, St3)︸ ︷︷ ︸
=0 (by (2), (6))

.

Since the leftmost group H5(BQ2) vanishes modulo S p≤3 by the case j = 2, this
sequence implies that H5(BQ3) = Z mod S p≤3.

The case j = 4. Moreover, since H2(GL4, St4) = H1(GL4, St4) = 0 mod S p≤3
by Propositions 2.6, 2.7 and 2.11, the sequence (8) for j = 4 gives in a similar way
that

H5(BQ4) = H5(BQ3) = Z mod S p≤3. (10)

The case j = 5. This is the most complicated of all the cases to handle. Note
that BQ is an H -space which implies that H∗(BQ) ⊗ Q is the enveloping algebra of
π∗(BQ)⊗Q. It is well-known that K0(Z[i]) = Z, K1(Z[i]) = Z/2 and K2(Z[i]) = 0
[3, Appendix] as well as K3(Z[i]) = Z ⊕ Z/24 (given by Merkurjev–Suslin, cf. e.g.
Weibel [23], Theorem 73 in combination with Example 28), so moduloS p≤3 we have

π1(BQ) ⊗ Q = K0(Z[i]) ⊗ Q = Q,

as well as π2(BQ) ⊗ Q = π3(BQ) ⊗ Q = 0, and

π4(BQ) ⊗ Q = K3(Z[i]) ⊗ Q = Q.

A very similar argument works for Z[ρ].
Hence H5(BQ) ⊗ Q contains the product of π1(BQ) ⊗ Q by π4(BQ) ⊗ Q and so

its dimension is at least 1.
The stability result foreshadowed in step (iii) of Sect. 1.2 (resulting for a Euclidean

domain � from H0(GLn(�), Stn) = 0 for n ≥ 3 [13, Corollary to Theorem 4.1]),
now implies that one has H5(BQ) = H5(BQ5) . By the above we get that the rank
of H5(BQ5) = H5(BQ) is at least 1.

Therefore, invoking yet again Quillen’s exact sequence (8), this time for j = 5, and
using the above result that H5(BQ4) is equal to Z modulo S p≤3, we deduce from

H5(BQ4)︸ ︷︷ ︸
=Z by (10)

−→ H5(BQ5) −→ H0(GL5, St5)︸ ︷︷ ︸
=0
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that H5(BQ) = H5(BQ5) must be equal to Z modulo S p≤3 as well. Thus H5(BQ)

cannot contain any p-torsion with p > 3. �

4 Relating K4(R) and H5(BQ(R)) via the Hurewicz homomorphism

It is well known that for a number ring R the space BQ(R) is an infinite loop
space. Hence a theorem due to Arlettaz [1, Theorem 1.5] shows that the kernel of the
corresponding Hurewicz homomorphism K4(R) = π5(BQ) → H5(BQ) is certainly
annihilated by 144 (cf. Definition 1.3 in loc.cit., where this number is denoted R5).
Thus that kernel lies in S p≤3 (Definition 2.2).

Therefore this Hurewicz homomorphism is injective modulo S p≤3. For R = Z[i]
or Z[ρ], Proposition 3.2 implies that H5(BQ) contains no p-torsion for p > 3. After
invoking Quillen’s result that K2n(R) is finitely generated and Borel’s result that the
rank of K2n(R) is zero for any number ring R and n > 0, we obtain the following
theorem:

Theorem 4.1 The groups K4(Z[i]) and K4(Z[ρ]) lie in S p≤3.
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