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Abstract We revisit Auslander–Buchweitz approximation theory and find some rela-
tions with cotorsion pairs and model category structures. From the notion of relative
generators, we introduce the concept of left Frobenius pairs (X , ω) in an abelian
category C. We show how to construct from (X , ω) a projective exact model struc-
ture on X∧, the subcategory of objects in C with finite X -resolution dimension, via
cotorsion pairs relative to a thick subcategory of C. We also establish correspon-
dences between these model structures, relative cotorsion pairs, Frobenius pairs, and
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Auslander–Buchweitz contexts. Some applications of this theory are given in the con-
text of Gorenstein homological algebra, and connections with perfect cotorsion pairs,
covering subcategories and cotilting modules are also presented and described.

Keywords Frobenius pairs · Relative cotorsion pairs · Auslander–Buchweitz model
structures · Auslander–Buchweitz contexts

Mathematics Subject Classification 18G10 · 18G20 · 18G25 · 18G55 · 16E10

1 Introduction

The study of relative homological dimensions, obtained by replacing the projective
or injective modules by certain subcategories of an abelian category, was initiated
by Eilenberg and Moore in [12], which was the starting point for what is nowa-
days called relative homological algebra. Several years later, an important branch
of relative homological algebra was developed by Auslander and Buchweitz in their
paper [2]. The concepts and results in this seminal work comprise what is usually
known as Auslander–Buchweitz approximation theory (to which we refer as “AB
theory”, for short), which roughly speaking consists of methods for obtaining (pre-
)covers and (pre-)envelopes, that is, right and left approximations, from generators
and cogenerators of a full subcategory of an abelian category. These methods allowed
Auslander and Buchweitz to prove, among other results, that for every finitely gen-
erated left R-module N (with R a commutative noetherian Cohen–Macaulay ring)
there exists a maximal Cohen–Macaulay left R-module M which is mapped onto N
and such that any other surjection from a maximal Cohen–Macaulay module onto
N factors over it; in other words, N has a maximal Cohen–Macaulay pre-cover.
Recently, H. Holm reproves this result in [28] for Cohen–Macaulay local rings, show-
ing that the class of maximal Cohen–Macaulay modules is the left half of a complete
and hereditary cotorsion pair in the abelian category of finitely generated modules
over such rings. Note that, in these two cases where R is a commutative noetherian
Cohen–Macaulay ring or a Cohen–Macaulay local ring, the existence of the men-
tioned pre-covers and of complete hereditary cotorsion pairs is restricted to a certain
subcategory of the left R-modules: those which are finitely generated. Then, the prob-
lem of obtaining approximations for modules over such rings is tackled locally . In
this paper, we will propose the concept of relative cotorsion pair as a method to
find right and left approximations locally in thick subcategories of an abelian cate-
gory.

It is worth saying that the importance of approximations is not only constrained
to the context of modules over Cohen–Macaulay rings, but that it also lies in the fact
that the existence of approximations is a prerequisite for computing relative dimen-
sions. For instance, this can be appreciated in Holm’s work [27], where he constructs
Gorenstein-projective pre-covers and Gorenstein-injective pre-envelopes for certain
modules over an arbitrary ring, fromwhich it is possible to defineGorenstein homolog-
ical dimensions and Gorenstein derived functors. Holm’s results point out the strong
relation between the existence of complete cotorsion pairs and approximations.
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In recent years, a powerful machinery for producing approximations via complete
cotorsion pairs has been developed by Eklof, Trlifaj, Enochs, Jenda and Göbel in
[13,14,24]. So it is not surprising that AB theory provides a good setting for investi-
gating relative Gorenstein objects in abelian categories which, as we will prove, are
also cofibrant and fibrant objects of certain model categories, a notion that comes
from algebraic topology. This last assertion will be a consequence of a one-to-one
correspondence between complete cotorsion pairs and model category structures on
abelian categories, developed by Hovey in [32] and later generalized by Gillespie in
[19] for weakly idempotent complete exact categories. This result, to which we refer
as Hovey–Gillespie correspondence, has turned out to be, citing verbatim Gillespie’s
words in [20], “a powerful method for constructing model struc tures in algebraic
settings and for transporting ideas from topology into algebra”.

The main purpose of this paper is to use AB theory in order to develop, in the
general setting provided by an abelian category C, the theory of left and right Frobe-
nius pairs, which are concepts we will construct from the notions of generators and
cogenerators (in the sense of Auslander and Buchweitz [2]). We will use Frobenius
pairs to construct relative cotorsion pairs, seeking to bring the Hovey–Gillespie cor-
respondence between complete cotorsion pairs and model structures to AB theory.
Specifically, from a certain type of Frobenius pairs (X , ω) in C, we will obtain model
category structures (to which we will name Auslander–Buchweitz model structures)
on the thick subcategory X∧ ⊆ C of objects in C with finite resolution dimension
relative toX . Once we have obtained these model structures, we compute their homo-
topy categories, aiming to represent the homological algebra made up of generators
and cogenerators as certain stable categories. As an application, we will show how
several known homotopy categories coming from relative Gorenstein objects, such as
Gorenstein-projective, Ding-projective and Gorenstein AC-projective modules (and
their duals), can be represented as homotopy categories of Auslander–Buchweitz
model structures. This bridge between AB theory and model structures via Frobe-
nius pairs is also related to the notion of Auslander–Buchweitz contexts. We will
see how this relation gives rise to generalizations of some methods for constructing
approximations in Auslander–Reiten theory and cotilting theory.

This paper is organized as follows. We begin recalling in Sect. 2 some results from
AB theory. We also present in Definition 2.5 the notion of (left and right) Frobenius
pairs, which constitutes the main subject studied in this work. Later in Sect. 3, we
recall the concept of cotorsion pairs in exact categories. In the particular case where
S ⊆ C is a thick subcategory, a complete cotorsion pair in S is what we will call in
Definition 3.4 an S-cotorsion pair (or a cotorsion pair relative to S). We provide in
Proposition 3.5 an alternative description of S-cotorsion pairs, from which we induce
such pairs from generators and cogenerators in AB theory. Motivated by the interplay
between cotorsion pairs and model categories, we show how to obtain from a strong
left Frobenius pair (X , ω) tw o compatible and complete cotorsion pairs in the subcate-
goryS := X∧, which are examples of relative cotorsion pairs.We then apply in Sect. 4
the Hovey–Gillespie correspondence to obtain in Theorem 4.1 the main homotopical
construction in this paper: the projective Auslander–Buchweitz model structure asso-
ciated to (X , ω), that is, an exact model structure on the exact subcategory X∧ ⊆ C,
whose classes of cofibrant, fibrant and trivial objects are given by X , X∧ and ω∧,

123



4 V. Becerril et al.

respectively. In Sect. 5 we recall the notion of Auslander–Buchweitz contexts, and
present some (one-to-one) correspondences with Frobenius pairs, relative cotorsion
pairs, and exact model structures (see Theorems 5.4, 5.11, 5.13, 5.27, and 5.29). One
important application of these correspondences is stated in Proposition 5.20, where
we reprove in a categorical context an important theorem by M. Auslander and I.
Reiten which establishes a bijective correspondence between basic cotilting modules
inmod(Λ) (the category of finitely generated left modules over an Artin algebra Λ),
resolving pre-covering subcategories F ⊆ mod(Λ) satisfying F∧ = mod(Λ), and
coresolving pre-enveloping subcategories G ⊆ mod(Λ) with finite injective dimen-
sion. Finally, in Sect. 6we provide some important applications to appreciate the utility
of Frobenius pairs when it comes to interchange properties between homological and
homotopical structures appearing in Gorenstein homologica l algebra and represen-
tation theory. We also revise some known results on which the theory of Frobenius
pairs is motivated. First, we will show how part of the theory of Gorenstein projective,
Ding projective and Gorenstein AC-projective modules fits in the context of Frobenius
pairs and ABmodel structures. Some relations with several model structures found by
Bravo, Gillespie and Hovey [10,18,23,32] will be commented, along with a couple
of open questions (see Propositions 6.1, 6.10 and 6.12). In the more general setting
of abelian categories, in Proposition 6.4 we present Gorenstein subcategories, in the
sense of Sather-Wagstaff et al. [43], as part of a strong Frobenius pair. Other appealing
applications include characterizations of certain special rings. In Proposition 6.13 we
will show that a ring R is perfect if, an d only if, the classes of Ding projective and flat
R-modules form a left Frobenius pair. For local commutative rings R, we will prove
in Corollary 6.6 that R is nonregular, Iwanaga–Gorenstein and artinian if, and only
if, R is quasi-Frobenius and with infinite global dimension. At the end of this paper,
we will use Gorenstein flat modules and Frobenius pairs to state a characterization for
GF-closed rings. Namely, we will prove in Proposition 6.17 that having a GF-closed
ring R is equivalent to saying that the classes of Gorenstein flat and flat-cotorsion
R-modules form a left Frobenius pair.

1.1 Conventions

Throughout this paper, C will always denote an abelian category, unless otherwise
stated. One example of such categories considered in this paper will be the category
Mod(R) of R-modules, where R is an associative ring with unity. By R-modules we
will mean left R-modules. In a few occasions, wewill consider the categoryMod(Rop)

of right R-modules. The term “subcategory” will mean a full subcategory. Any class
of objects in a category will be thought as a (full) subcategory. Finally, the definitions
and results presented in this paper have their corresponding dual statements, which
will be omitted for simplicity.

1.2 Notations

The symbol X ⊆ C will mean that X is a class of objects of C. On the other hand,
M ∈ C will mean that M is an object of C. In the case we are given another subcategory
Y ⊆ C, then M ∈ Y and X ⊆ Y have a similar meaning.
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2 Auslander–Buchweitz approximation theory, revisited

We start this section by collecting all the background material that will be necessary in
the sequel. First, we recall the notions of relative projective dimension and resolution
dimension of a given class of objects in an abelian category C. Later, we also recall
definitions and basic properties we need from AB theory. In all that follows, we are
taking as the main reference for consulting approximation theory the paper [2] by
Auslander and Buchweitz.

Auslander and Buchweitz, in some of their results in [2], worked with a resolving
and additively closed subcategoryX ⊆ C, which is also closed under direct summands
(in C). In a very carefully revision of some of these results, one can see that some of
these properties assumed for X are not used. In order to give nice applications of AB
theory to Gorenstein homological algebra and to more general contexts, we give a
review by putting in each statement the minimum needed hypotheses. For instance,
subcategories X ⊆ C need not be additive or closed under isomorphisms either, and
there are results in which it is not necessary to assume that X is closed under direct
summands or resolving.

2.1 Preliminaries from relative homological algebra

Let M and N be two objects of C, X and Y be subcategories of an abelian category
C, and i > 0 be a positive integer. We set the following notation:

1. Orthogonality relative to Ext: We set ExtiC(X ,Y) = 0 whenever ExtiC(X, Y ) =
0 for every X ∈ X and Y ∈ Y . In the cases X := {M} and Y := {N }, we write
ExtiC(M,Y) = 0 and ExtiC(X , N ) = 0, respectively.

2. Relative projective and injective dimensions: We recall from [1,2,37] the
notions and notations of relative projective and injective dimensions. Denote by
pdX (M) the X -projective dimension of M (or the projective dimension of M
relative to X ), defined as

pdX (M) := inf{n ≥ 0 : ExtiC(M,X ) = 0 for every i > n}.

In the case X := C, we obtain the absolute projective dimension of M , denoted
pd(M). For relative dimensions of a subcategory Y , we denote by pdX (Y) the
X -projective dimension of Y , defined as

pdX (Y) := sup{pdX (M) : M ∈ Y}.

The notions of X -injective dimension of M , injective dimension of M and X -
injective dimension of Y are defined similarly, and denoted by idX (M), id(M)

and idX (Y), respectively. In the case X := C, we just write pd(Y) and id(Y) for
the projective and injective dimension of Y , respectively. It can be seen that

pdX (Y) = idY (X ),
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6 V. Becerril et al.

which turns out to be a very useful property to shift between relative dimensions,
and which will be used a lot in the sequel.

2. Resolution and coresolution dimension: We recall also from [1, Sect. 1] the
notions of resolution and coresolution dimensions. Denote by resdimX (M) the
X -resolution dimension of M , that is, the smallest non-negative integer n such
that there is an exact sequence

ξ : 0 → Xn → Xn−1 → · · · → X1 → X0 → M → 0

with Xi ∈ X for every 0 ≤ i ≤ n. The sequence ξ is said to be a finite X -resolution
of M . If such n does not exist, we set resdimX (M) := ∞. The X -resolution
dimension of a subcategory Y ⊆ C is defined as

resdimX (Y) := sup{resdimX (Y ) : Y ∈ Y}.

Dually, we have the X -coresolution dimension of M and Y , denoted by
coresdimX (M) and coresdimX (Y), respectively.
We denote byX∧ the full subcategory of objects in C having a finiteX -resolution.
The subcategory X∨ of objects having a finite X -coresolution is defined dually.

The proof of the following lemma, relating the injective and resolution dimensions,
can be found in Mendoza and Saenz [37].

Lemma 2.1 For any two subcategories X ,Y ⊆ C, the equality idX (Y∧) = idX (Y)

holds.

4. Orthogonal classes: We denote by

X⊥i := {N ∈ C : ExtiC(X , N ) = 0} and X⊥ :=
⋂

i>0

X⊥i

the partial and total right orthogonal subcategories of X . Dually, we have the
partial and total left orthogonal subcategories of X , denoted⊥iX and⊥X , respec-
tively.

5. Right and left approximations: The notions of pre-covering and pre-enveloping
classes were first introduced, for the category of finitely generatedmodules over an
Artin R-algebra, in [4, p. 81] byAuslander and Smalø, where they are referred to as
contravariantly finite and covariantly finite classes, respectively. For a modern and
detailed approach to pre-covers and pre-envelopes, we refer the reader to Enochs
and Jenda [14, Definitions 5.1.1, 7.1.6]. Although these concepts are presented
in [14] for the category Mod(R) of R-modules, they carry over to the context of
abelian categories.
Recall that a morphism f : X → M with X ∈ X is said to be an X -pre-cover (or
a right X -approximation) of M if for every morphism f ′ : X ′ → M with X ′ ∈ X ,
there exists a morphism h : X ′ → X such that f ′ = f ◦h. If in addition, in the case
X ′ = X and f ′ = f the equality f = f ◦h can only be satisfied by automorphisms
h of X , then theX -pre-cover f is called anX -cover. Furthermore, anX -pre-cover
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f : X → M is special if CoKer ( f ) = 0 and Ker ( f ) ∈ X⊥1 . A subcategory X is
said to be pre-covering if every object of C has an X -pre-cover. Similarly, we can
define covering and special pre-covering subcategories of C. Dually, we have the
notions of X -pre-envelopes (or left X -approximations), X -envelopes and special
X -pre-envelopes in C, along with the corresponding notio ns of pre-enveloping,
enveloping and special pre-enveloping subcategories.

6. We will frequently consider several closure properties for classes of objects in
an abelian or an exact category. Namely, given a class X of objects of C, we
may ask that: (1) X is closed under direct summands, (2) X is closed under
extensions, (3) X is closed under taking kernels of epimorphisms between its
objects, or that (4)X is closed under taking cokernels of monomorphisms between
its objects. For the reader convenience and simplicity, below we suggest some new
terminology for certain special subcategories X ⊆ C which will be employed in a
lot of descriptions.

Let us denote by Proj(C) and Inj(C) the classes of projective and injective objects
of C, respectively.
Definition 2.2 (subcategories of interest) Let X be a subcategory of C. We say that
X is a pre-resolving subcategory of C if it is closed under extensions and under taking
kernels of epimorphisms between its objects. If in addition Proj(C) ⊆ X , then X is
said to be a resolving subcategory of C. If the dual properties hold true, then we get
the concepts of pre-coresolving and coresolving subcategory (that is, pre-coresolving
+ Inj(C) ⊆ X ).

We say that a pre-resolving subcategoryX of C is left thick if it is also closed under
direct summands in C. Dually, we get the concept of right thick subcategory of C. If
X is both left and right thick, then X is said to be a thick subcategory of C.

We say that a left thick subcategory X of C is left saturated if also Proj(C) ⊆ X .
Dually, we get the concept of right saturated subcategory of C. Finally, we say that X
is saturated if X is both left and right saturated.

X is Closed under X contains
Direct smds. Exts. Kernels of epis. Cokernels of monos. Proj(C) Inj(C)

Pre-resolving � �
Resolving � � �
Pre-coresolving � �
Coresolving � � �
Left thick � � �
Right thick � � �
Thick � � � �
Left saturated � � � �
Right saturated � � � �
Saturated � � � � � �

If X is a subcategory of C, we will denote by Thick−(X ) the smallest left thick
subcategory of C that contains X . The notations Thick+(X ) and Thick(X ) will have
a similar meaning.
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8 V. Becerril et al.

Remark 2.3 1. The concepts from 1. to 6. have their analogues in the context of
exact categories, and as such will be also used in Sects. 3 and 4. For an approach to
these notions in additive categories, we recommend Beligiannis [6]. With respect
to the X -(co)resolution dimension, Beligiannis uses a more general notion of X -
(co)resolutions in [6, Sect. 2], but with the restriction that such resolutions have to
be covariantly (resp., contravariantly) X -exact. For our purposes, it will suffice
to consider X -(co)resolutions as in Angeleri-Hügel and Mendoza [1, Sect. 1].
(Co)resolutions, as considered in this work, coincide with Beligiannis’ in the
abelian or exact cases if the subcategory X is pre-covering (resp., X is pre-
enveloping). This coincidence occurs, for instance, if X is part of a left Frobenius
pair (X , ω), where X is pre-covering in X∧ (see Definition 2.5 below).

2. This paper deals with partial and total orthogonal subcategories, ⊥iX and ⊥X (or
X⊥i and X⊥), separately, especially the case i = 1. Other studies on relative
homological algebra only consider total orthogonal subcategories (see [6], for
instance).

2.2 Fundamental results from AB theory

Keeping in mind the terminology and notation we have presented so far, we are ready
to recall the necessary background from AB theory.

LetX andω be two subcategories of C. It is said thatω isX -injective if idX (ω) = 0.
The subcategory ω is a relative cogenerator in X if ω ⊆ X and for any X ∈ X there
exists a short exact sequence 0 → X → W → X ′ → 0 with W ∈ ω and X ′ ∈ X .
Dually, we have the notions of X -projective subcategories and relative generators in
X .

Remark 2.4 • X -injective relative cogenerators are also known as injective cogen-
erators or Ext-injecti-ve cogenerators in part of the literature. To avoid confusion
with the absolute injective dimension, we have preferred to use the adjective “X -
injective” instead.

• Relative generators and cogenerators are also considered in [6, Definition 2.9] for
additive categories, although in a slightly different way. These notions provide the
setting to define a sort of Frobenius category in a relative sense. Let us be more
specific about this in what follows.

Definition 2.5 Let X and ω be two subcategories of C. We say that (X , ω) is a left
Frobenius pair in C if the following three conditions are satisfied:

1. X is left thick, that is, X = Thick−(X ).
2. ω is closed under direct summands in C.
3. ω is an X -injective relative cogenerator in X .

If in addition,ω is also anX -projective relative generator inX , thenwe say that (X , ω)

is a strong left Frobenius pair in C.
We refer to the dual concept as (strong) right Frobenius pair, for which we use the

notation (ν,Y), where ν ⊆ Y .
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Remark 2.6 Let (X , ω) be a strong left Frobenius pair in C. Then, X is a Frobenius
category in the usual sense, that is,X is an exact category with enough projectives and
injectives, where the subcategories of projective and injective objects in X coincide.
In this case:

• The exact structure onX is “inherited” from C sinceX is closed under extensions.
Specifically, if τX is the class of (admissible) short exact sequences 0 → A →
B → C → 0 with A, B, C ∈ X , then (X , τX ) is an exact category.

• The projective = injective objects are given by the objects in ω.

The proof of the following result can be found in Mendoza and Saenz [37,
Lemma 2.13]. Part 1. follows by Lemma 2.1, and part 2. is a consequence of Auslander
and Buchweitz [2, Lemmas 3.7, 4.3].

Proposition 2.7 Let X and ω be two subcategories of C such that ω is X -injective.
Then, the following conditions hold true:

1. ω∧ is X -injective.
2. If in addition ω is a relative cogenerator in X which is closed under direct sum-

mands in C, then the following equalities hold:

ω = {X ∈ X : idX (X) = 0} = X ∩ ω∧, (1)

X ∩ ω∨ = {X ∈ X : idX (X) < ∞}. (2)

Furthermore, we have that idX (M) = coresdimω(M), for every M ∈ X ∩ ω∨.

In the following result, the expression resdimω(K ) = −1 just means that K = 0.
A proof can be found in [2, Theorem 1.1]. On the other hand, Holm gives a different
proof in [27, Theorem 2.10] in the particular setting where X and ω are the classes of
Gorenstein projective and projective R-modules, respectively (see Sect. 6.1 for more
details).

Theorem 2.8 Let X and ω be subcategories of C such that X is closed under exten-
sions, 0 ∈ X , and ω is a relative cogenerator in X . Then, for any C ∈ C with
resdimX (C) = n < ∞, there exist short exact sequences

0 → K → X
ϕ−→ C → 0, (3)

0 → C
ϕ′
−→ H → X ′ → 0, (4)

in C with X, X ′ ∈ X , resdimω(K ) = n − 1 and resdimω(H) ≤ n. Moreover, if ω is
X -injective, then the following statements hold true:

1. ϕ : X → C is an X -pre-cover and K ∈ X⊥.
2. ϕ′ : C → H is a ω∧-pre-envelope and X ′ ∈ ⊥(ω∧).

Corollary 2.9 Let X and ω be two subcategories of C such that X is closed under
extensions and direct summands in C, and ω is a relative cogenerator in X . If
resdimX (C) ≤ 1 and C ∈ ⊥1ω, then C ∈ X .
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10 V. Becerril et al.

Proof For every C ∈ ⊥1ω with resdimX (C) ≤ 1, we have from Theorem 2.8 a short
exact sequence as (3), say 0 → W → X → C → 0 with W ∈ ω and X ∈ X , which
is split since C ∈ ⊥1ω. Hence, C ∈ X since X is closed under direct summands. ��

The following result, whose proof can be found in [2, Proposition 2.1], relates
the concepts of relative projective and resolution dimensions for relative injective
cogenerators.

Theorem 2.10 Let X ⊆ C be a subcategory closed under extensions and direct sum-
mands in C, and ω ⊆ C be an X -injective relative cogenerator in X that is closed
under direct summands in C. Then, the equality

pdω∧(C) = pdω(C) = resdimX (C)

holds for every object C ∈ X∧.

So far the reader may have already noticed that for any left Frobenius pair (X , ω)

in C, the subcategories X∧ and ω∧ have special properties related to the existence of
approximations, and so to the computation of relative projective and injective dimen-
sions. The former subcategory will turn out to be an exact subcategory of C in which
we will get cotorsion pairs and model structures involving the subcategory X∧ itself,
along withω∧. For this reason, it is important to devote the rest of this section recalling
some descriptions of X∧ and ω∧, from which one can deduce, among other things,
that X∧ is indeed exact.

In what follows, given a class X ⊆ C of objects of C, we will denote by add (X )

the subcategory of all objects isomorphic to direct summands of finite direct sums of
objects in X . The following two results can be found in [2, Propositions 3.4, 3.5 and
3.6].

Theorem 2.11 Let X ⊆ C be a pre-resolving subcategory and ω ⊆ C be an X -
injective relative cogenerator in X . Then, the following conditions hold true:

1. X∧ is the smallest pre-resolving and pre-coresolving subcategory of C containing
X .

2. If ω and X are closed under direct summands, then add (X∧) = X∧.

In particular, if (X , ω) is a left Frobenius pair, then X∧ = Thick (X ).

Remark 2.12 It follows from the previous theorem that if (X , ω) is a left Frobenius pair
in C, then X∧ is an exact category with the class of admissible short exact sequences
given by τX∧ (see Remark 2.6 above).

Proposition 2.13 Let X and ω be subcategories of C such that X is closed under
extensions and ω is closed under direct summands in C. If ω is X -injective relative
cogenerator in X , then the equality

ω∧ = X⊥ ∩ X∧ (5)

holds.
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Frobenius pairs in abelian categories. . . 11

Given a left Frobenius pair (X , ω) in C, from the previous proposition we can note
that the subcategory ω∧ is closed under direct summands, extensions and cokernels
of monomorphisms between its objects. However, ω∧ is not necessarily closed under
kernels of epimorphisms. The following three results sort of measure how far is ω∧
from being thick.

Proposition 2.14 The equalities

X∧ ∩ ⊥ω = X = X∧ ∩ ⊥(ω∧). (6)

hold for every left Frobenius pair (X , ω) in C.

Proof By part 1. in Proposition 2.7, we know thatX ⊆ ⊥ω andX ⊆ ⊥(ω∧).We assert
thatX∧∩⊥(ω∧) ⊆ X . Indeed, letC ∈ X∧∩⊥(ω∧). Then, by Theorem2.8 there exists
a short exact sequence as (3), say 0 → C → Y → X → 0 where X ∈ X ⊆ ⊥(ω∧)

and Y ∈ ω∧. Since C ∈ ⊥(ω∧), it follows that Y ∈ ⊥(ω∧). Now using Theorem 2.10,
we get that resdimX (Y ) = pdω∧(Y ) = 0, and thus Y ∈ X . Hence, C ∈ X since X
is pre-resolving. The inclusion X∧ ∩ ⊥ω ⊆ X follows similarly. ��

We get a description of the subcategory Thick(ω).

Theorem 2.15 Let X be a pre-resolving subcategory of C, and ω ⊆ C be an X -
injective relative cogenerator in X . Then, the equality

(ω∧)∨ = {C ∈ X∧ : idX (C) < ∞} (7)

holds. If in addition,X and ω are closed under direct summands in C, then the equality

Thick(ω) = (ω∧)∨ (8)

is also true.

Proof The equality (7) follows by [2, Proposition 4.2]. To show (8), first note by
Theorem 2.11 that X∧ = Thick(X ), and thus (ω∧)∨ = {C ∈ X∧ : idX (C) < ∞} is
a thick subcategory of C. Now assume that B is a thick subcategory of C containing ω.
Since B is closed under cokernels of monomorphisms in B, it follows that ω∧ ⊆ B,
which in turn implies, using now that B is closed under kernels of epimorphisms in
B, that (ω∧)∨ ⊆ B. Therefore, (8) follows. ��

The next theorem is originally due to Auslander, Buchweitz and Reiten [2,3]. The
statement given below is a simplification of the one given in [26, Theorem 1.12.10]
by M. Hashimoto, and adapted to our terminology and notation.

Theorem 2.16 Let X ⊆ C be a left thick subcategory of C, and Y ⊆ C be a right thick
subcategory of C contained in X∧, such that ω := X ∩ Y is an X -injective relative
cogenerator in X . Then, the following equalities hold:

Y = ω∧ = X∧ ∩ X⊥ = X∧ ∩ X⊥1 = {C ∈ X∧ ∩ ω⊥ : idX (C) < ∞}.
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Proof We split the proof into several parts.

• By Proposition 2.13, we have the equality ω∧ = X∧ ∩ X⊥.
• Wenow show thatω∧ = Y . Indeed, sinceω ⊆ Y we have thatω∧ ⊆ Y∧, and since
Y is pre-coresolving we obtain Y∧ = Y . Thus, the inclusion ω∧ ⊆ Y follows.
Now let Y ∈ Y . Knowing that Y ⊆ X∧, we get a short exact sequence as (3) in
Theorem 2.8, say

0 → K → X → Y → 0

with X ∈ X and K ∈ ω∧ ⊆ Y . Since Y is closed under extensions, we have that
X ∈ X ∩Y =: ω. It follows that Y ∈ ω∧, that is, Y ⊆ ω∧. So far, we have proven
the equalities Y = ω∧ = X∧ ∩ X⊥.

• For the third equalityX∧∩X⊥ = X∧∩X⊥1 , note that the containmentX∧∩X⊥ ⊆
X∧ ∩X⊥1 is clear. Now let C ∈ X∧ ∩X⊥1 . By Theorem 2.8 (4), there is a short
exact sequence

0 → C → W → X → 0

with W ∈ ω∧ and X ∈ X . Since Ext1C(X, C) = 0, we have that C is a direct
summand of W ∈ ω∧ = Y , and so C ∈ Y = X∧ ∩ X⊥. Hence, the equality
X∧ ∩ X⊥ = X∧ ∩ X⊥1 holds.

• It is only left to prove the equality Y = {C ∈ X∧ ∩ ω⊥ : idX (C) < ∞}. Note
that we already have Y ⊆ X⊥ ⊆ ω⊥, and by the equality (7) in Theorem 2.15 we
know that Y = ω∧ ⊆ (ω∧)∨ = {C ∈ X∧ : idX (C) < ∞}. So it follows that the
containment Y ⊆ {C ∈ X∧ ∩ ω⊥ : idX (C) < ∞} holds. Now consider an object
M ∈ X∧ ∩ ω⊥ with idX (M) = k < ∞. We use induction on k to prove M ∈ Y .
Suppose k ≤ 1. Given X ∈ X , there is a short exact sequence

0 → X → W → X ′ → 0

with W ∈ ω and X ′ ∈ X . Then, we have an induced sequence

Ext1C(W, M) → Ext1C(X, M) → Ext2C(X ′, M)

of abelian groups where Ext1C(W, M) = 0 since M ∈ ω⊥ , and Ext2C(X ′, M) = 0
since idX (M) ≤ 1. It follows that M ∈ X∧ ∩ X⊥1 = Y . Now if idX (M) = k,
then in a similar way we can show that Extk−1

C (X, M) = 0 for every X ∈ X .
Repeating this procedure, we finally get that M ∈ X⊥1 .

��

3 Relative cotorsion pairs

This section is devoted to present the notion of cotorsion pairs relative to a thick
subcategory S of an abelian category C. We begin this section recalling the concept
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of cotorsion pairs in exact categories, and then we introduce the relative S-cotorsion
pairs as complete cotorsion pairs in S ⊆ C. Later, we provide a characterization for
this concept which, along with the results presented in Sect. 2, allows us to construct
relative cotorsion pairs from Frobenius pairs.

The notion of cotorsion pairs was first introduced by Salce in [42]. It is the analog
of a torsion pair where the functor HomC(−,−) is replaced by Ext1C(−,−). Roughly
speaking, two classesA andB of objects in C form a cotorsion pair if they are complete
with respect to the orthogonality relation defined by the vanishing of the functor
Ext1C(−,−).

An important part of the homological algebra done for abelian categories carries
over to exact categories, and this can be appreciated in the detailed survey [11] of
exact categories written by Bühler. So it is not surprising that the notion of cotorsion
pairs, among others, has sense in the context of exact categories (see Definition 3.2).

3.1 Cotorsion pairs in exact categories

Let (E, τ ) be an exact category, that is, an additive category E with a class τ of
admissible short exact sequences satisfying a series of axioms (as in Bühler [11]).
Given two objects A, C ∈ E , we denote by Ext1τ (C, A) the collection of equivalence
classes of admissible short exact sequences

ε : 0 → A → B → C → 0

in τ , where the zero element is given by the class of the split exact sequence

0 → A → A ⊕ C → C → 0.

Every morphism A → B appearing in short exact sequences in τ , as ε, is called
an admissible monomorphism. Dually, we have the admissible epimorphisms. The
collection of i-extensions Extiτ (C, A) has a similar description, and the reader can
check Sieg’s thesis [44, Chapter IV] for a detailed explanation. For any class X of
objects of E , we denote its orthogonal subcategories with respect to Ext1τ (−,−) by
X⊥1,τ ,⊥1,τX , which are defined in the sameway as in the context of abelian categories.
Recall that an object I ∈ E is τ -injective if any admissible monomorphism I →
B splits, or equivalently, if Ext1τ (E, I ) = 0. τ -Projective objects in E have a dual
description. An exact category (E, τ ) is said to have enough τ -injectives if for every
object X ∈ E there exists an admissible monomorphism X → I , where I is a τ -
injective object of E . If E satisfies the dual property, E is said to have enough τ -
projectives. We will denote by Proj(E) the class of τ -projective objects of E . Note
that Proj(E) = ⊥1,τ C. The next example presents the main two exact categories that
we will be using in the sequel.

Example 3.1 Let C be an abelian category.

1. C is exact with τ formed by the family of all short exact sequences in C. Note that
in this case, Proj(C) is the class of projective objects of C.
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2. Let Y ⊆ C be a subcategory of C that is closed under extensions. Then, Y is an
exact subcategory of C, with the exact structure (Y, τY ) from Remark 2.6. In this
case, for anyX ⊆ C, we denote the orthogonal subcategories by ⊥1,τY X = ⊥1,YX
and X⊥1,τY = X⊥1,Y . Note that

⊥1,YX = ⊥1X ∩ Y and X⊥1,Y = X⊥1 ∩ Y .

In the particular case where Y := S is a thick subcategory of C, we have that S is
also an exact category. However, S is not necessarily abelian. In fact, S is abelian
if, and only if, S is an admissible subcategory of C, in the sense of Marcos et al.
[35, Proposition 2.3].

We recall the concept of cotorsion pairs in exact categories, due to Krause and
Solberg [34].

Definition 3.2 Let (E, τ ) be an exact category. Two subcategories F and G of E are
said to form a cotorsion pair (F ,G) in E if F = ⊥1,τG and G = F⊥1,τ .

A cotorsion pair (F ,G) in E is said to be complete if for every object X ∈ E , there
exist short exact sequences

0 → G → F → X → 0 and 0 → X → G ′ → F ′ → 0

with F, F ′ ∈ F and G, G ′ ∈ G.
Finally, we say that a cotorsion pair (F ,G) in E is left hereditary if F is resolving

in E . Dually, we have the notion of right hereditary cotorsion pair in E . A hereditary
cotorsion pair in E is a cotorsion pair that is both left and right hereditary.

Proposition 3.3 Let (F ,G) be a cotorsion pair in an exact category (E, τ ) with
enough τ -projectives and τ -injectives. Then, the following conditions are equivalent:

(a) (F ,G) is left hereditary.
(b) (F ,G) is right hereditary.
(c) Ext2τ (F ,G) = 0.
(d) Extiτ (F ,G) = 0 for every integer i ≥ 2.

3.2 Cotorsion pairs relative to thick subcategories

From now on, we focus on a special type of complete cotorsion pairs in a thick
subcategory S of an abelian category C.

Definition 3.4 Let S be a thick subcategory of an abelian category C, and F and G
be two subcategories of S (thought as an exact category). We say that (F ,G) is a left
S-cotorsion pair in C if F = ⊥1,SG and if for every object S ∈ S there exists a short
exact sequence

0 → G → F → S → 0
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with F ∈ F and G ∈ G. Similarly, we have the definitions of right S-cotorsion pair
in C. Finally, by an S-cotorsion pair (F ,G) in C we mean that (F ,G) is both a left
and right S-cotorsion pair in C.

Proposition 3.5 Let S, F and G be subcategories of C, where S is thick. Then, (F ,G)

is a left S-cotorsion pair in C if, and only if, the following conditions hold true:

1. F and G are subcategories of S, and F is closed under direct summands in C.
2. Ext1C(F ,G) = 0.
3. For every S ∈ S, there exists an epic F-pre-cover ϕ : F → S with Ker(ϕ) ∈ G.

Proof The “only if” part is clear. For the “if” part, suppose that F ,G ⊆ C satisfy
conditions 1., 2. and 3. It is clear that F ⊆ ⊥1,SG. Now let S ∈ ⊥1,SG and ϕ : F → S
as in condition 3. Then, we have that Ext1C(S,Ker(ϕ)) = 0, which implies that ϕ

splits. It follows that S is a direct summand of F ∈ F , and so we have S ∈ F by
condition 1. Hence the inclusion ⊥1,SG ⊆ F follows. ��

3.3 Relative cotorsion pairs from Frobenius pairs

The characterization of (left and right) S-cotorsion pairs given in Proposition 3.5
allows us to construct easily cotorsion pairs from Frobenius pairs. (Recall Defini-
tion 2.5). Later on, we will study correspondences between these two notions.

Theorem 3.6 If (X , ω) is a left Frobenius pair in C, then (X , ω∧) is an X∧-cotorsion
pair in C. Moreover, the equalities ω = X ∩ ω∧ and ω∧ = X⊥ ∩ X∧ from Proposi-
tions 2.7 (1) and 2.13 (5) hold true. In particular, ω∧ is a right thick subcategory of
C.

Proof We check conditions 1., 2. and 3. in Proposition 3.5, along with their dual
statements, to show that (X , ω∧) is an X∧-cotorsion pair in C. By Theorem 2.11,
X∧ ⊆ C is a thick subcategory. On the other hand, we have idX (ω∧) = idX (ω) = 0
by Lemma 2.1, and so condition 2. follows. Furthermore, Proposition 2.13 gives us
that ω∧ = X⊥ ∩ X∧, and hence ω∧ is closed under direct summands. Then, the
dual of condition 1. follows, while 1. holds since X is closed under direct summands.
Note that condition 3. and its dual hold by Theorem 2.8, and hence we conclude that
(X , ω∧) is an X∧-cotorsion pair in C. ��

If we impose an exact condition on (X , ω) in the previous theorem, then it is
possible to construct another X∧-cotorsion pair in C.

Theorem 3.7 Let (X , ω) be a strong left Frobenius pair in C. Then, the following
assertions hold true:

1. (ω,X∧) is a X∧-cotorsion pair in C.
2. ω∧ = Thick(ω).

Proof For part 1., we check again conditions 1., 2. and 3. in Proposition 3.5, along
with their duals statements. Conditions 1. and its dual are straightforward. To show
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condition 2., it suffices to use Lemma 2.1 and the property pdX (ω) = 0, so that we
have the equalities idω(X∧) = idω(X ) = pdX (ω) = 0. Moreover, note that the dual
of condition 3. is trivial. Finally, for 3. let Y ∈ X∧. By Theorem 3.6, there exists an
epimorphism β : X → Y with Ker(β) ∈ ω∧ and X ∈ X . On the other hand, there
exists an epimorphism p : W → X with Ker(p) ∈ X and W ∈ ω, since ω is a relative
generator in X . By Snake Lemma and the fact that p is epic, we obtain a short exact
sequence

0 → Ker(p) → Ker(β ◦ p) → Ker(β) → 0,

where Ker(p) ∈ X and Ker(β) ∈ ω∧ ⊆ X∧. Then, Ker(β ◦ p) inX∧ since X∧ is
thick. Hence, we have a short exact sequence

0 → Ker(β ◦ p) → W
β◦p−−→ Y → 0,

where W ∈ ω and Ker(β ◦ p) ∈ X∧.
We now focus on showing the equality ω∧ = Thick(ω) in part 2. Indeed, by the

equalities (7) and (8) in Theorem 2.15, we have that X ∩ Thick(ω) = {X ∈ X :
idX (X) < ∞}. On the one hand, by (2) in Proposition 2.7 we have the equality
X ∩ Thick(ω) = X ∩ ω∨. On the other hand, since ω is an X -projective relative
generator in X , we can use the dual version of the equality (1) in Proposition 2.7,
that is, X ∩ ω∨ = ω. Hence, X ∩ Thick(ω) = ω holds. Setting Y := Thick(ω) in
Theorem 2.16, it follows that ω∧ = Thick(ω). ��

Knowing that a strong left Frobenius pair (X , ω) gives rise to the complete cotorsion
pair (ω,X∧) in the exact category X∧, allows us to write ω = ⊥1,X∧ (X∧), and thus
proving the following result.

Corollary 3.8 If (X , ω) is a strong left Frobenius pair in C, then ω is the subcategory
of projective objects in the exact subcategory X∧ ⊆ C. Moreover, X∧ has enough
τX∧-projectives, that is, for every C ∈ X∧ there exists an epimorphism W → C in C
with W ∈ ω and kernel in X∧.

So far we know that the concept of S-cotorsion pair is a description of the com-
pleteness of cotorsion pairs in S. As many complete cotorsion pairs in the literature
are hereditary, we will introduce in the next section the corresponding property of
“being strongly hereditary” for S-cotorsion pairs, and compare it with the standard
definition of hereditary cotorsion pairs in S (that is, Definition 3.2).

3.4 Hereditary relative cotorsion pairs

We now study two notions of hereditary cotorsion pairs in the relative context, one of
them corresponding to the standard one, and the other one being stronger. These two
notions are not always equivalent. Some of the results appearing later on in this work
will provide some conditions under which the X∧-cotorsion pairs obtained in Theo-
rems 3.6 and 3.7 are hereditary and strongly hereditary in the sense of the following
definition.
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Definition 3.9 Let (F ,G) be an S-cotorsion pair in C. We say that (F ,G) is:

1. left hereditary if F is a resolving subcategory of S;
2. left strongly hereditary if F is a resolving subcategory in C.
The notions of right (strongly) hereditary and (strongly) hereditary S-cotorsion

pairs in C are defined similarly.

Note in Definition 3.9 that in both concepts 1. and 2., F is closed under extensions
and under taking kernels of epimorphisms between its objects. The difference between
them is that Proj(S) ⊆ F is valid in 1., while Proj(C) ⊆ F holds for 2.

As noticed, the fact that causes that the notions of left hereditary and left strongly
hereditaryS-cotorsion pairs are not the same is that the projective objects ofS, thought
as an exact subcategory, are not necessarily the projective objects of C. So it is natural
to ask whether it is possible to establish conditions under which the projective objects
of C and S coincide. This question is settled in the following result, whose proof is
straightforward.

Proposition 3.10 Let S ⊆ C be a thick subcategory of C. If Proj(C) ⊆ S and C has
enough projectives, then Proj(S) = Proj(C).

As a consequence, we have the following.

Remark 3.11 Let (F ,G) be a cotorsion pair in S. If C has enough projectives, then F
is resolving in C if, and only if, F is resolving in S and Proj(C) ⊆ F .

The following theorem presents a method to obtain left and right Frobenius pairs
from a left strongly hereditary S-cotorsion pair. Before giving its statement and proof,
we need to introduce the notation we will use for syzygies and cosyzygies.

Suppose C has enough projectives. Let C ∈ C and

P = · · · → P1 → P0 → C → 0

be a projective resolution of C . We denote by Ω i (C) := Ker(Pi−1 → Pi−2) the i th
syzygy of C occurring in P for any integer i ≥ 1, where P−1 := C . For i = 0, we set
Ω0(C) := C .

Theorem 3.12 Let (F ,G) be a left strongly hereditary S-cotorsion pair in C, and set
ω := F ∩ G. If C has enough projectives, then the following statements hold true:

1. ExtiC(F ,G) = 0 for every i ≥ 1.
2. (F , ω) is a left Frobenius pair in C.
3. (ω,G) is a right Frobenius pair in C.
4. If G ⊆ F∧, then (F ,G) is an F∧-cotorsion pair in C. Moreover, the following

equalities hold:

G = ω∧ = F∧ ∩ F⊥, (9)

F = F∧ ∩ ⊥ω = F∧ ∩ ⊥(ω∧). (10)
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Proof 1. For every F ∈ F , G ∈ G and i ≥ 1, we have a natural isomorphism
ExtiC(F, G) � Ext1C(Ω i−1(F), G) = 0 whereΩ i−1(F) ∈ F sinceF is resolving
in C.

2. The subcategory F = ⊥1G ∩ S is resolving and closed under direct summands
in C. On the other hand, note also that ω is closed under direct summands. So it
remains to check that ω is anF-injective relative cogenerator inF . Part 1. implies
that ω is F-injective, since idF (ω) ≤ idF (G) = 0. Now let F ∈ F . By the dual
of condition 3. in Proposition 3.5, there exists a short exact sequence

0 → F → W → F ′ → 0

in C with F ′ ∈ F and W ∈ G. Since F is closed under extensions, we obtain that
W ∈ F ∩ G =: ω, proving that ω is a relative cogenerator in F .

3. The equality G = F⊥1 ∩ S implies that G is closed under extensions and direct
summands in C. Now consider an admissible exact sequence

0 → A → B → C → 0

in S, with A, B ∈ G. We have an induced exact sequence

Ext1C(F, B) → Ext1C(F, C) → Ext2C(F, A)

of abelian groups for each F ∈ F , where Ext1C(F, B) = 0 and Ext2C(F, A) = 0
by part 1. Hence, it follows that C ∈ F⊥1 ∩ S = G. Thus, we have that G is pre-
coresolving and closed under direct summands in C. The rest of the proof follows
as part 2.

4. Note that F and G are subcategories of F∧ with F closed under direct summands
in C, and we already know that Ext1C(F ,G) = 0. On the other hand, since F is
resolving in C and F ⊆ S, we have that F∧ ⊆ S. So every S ∈ F∧ has an epic
F-pre-cover with kernel in G, and a monic G-pre-envelope with cokernel in F .
Hence, (F ,G) is an F∧-cotorsion pair in C.
To show the equalities (9) and (10), we start noting by part 2. and by Theorem 3.6,
the equalities ω∧ = F∧ ∩ F⊥ and F∧ ∩ ⊥ω = F = F∧ ∩ ⊥(ω∧), thus having
(10). We assert that G = ω∧. Indeed, by part 3. we get that ω∧ ⊆ G. And in order
to prove that G ⊆ ω∧, it suffices to see that G ⊆ F∧ ∩F⊥, which follows by part
1. since G ⊆ F∧. Hence, (9) also follows.

The following result, whose proof is straightforward, shows how to obtain strongly
hereditary relative cotorsion pairs fromhereditary cotorsion pairs in abelian categories.

Corollary 3.13 Let (F ,G) be a left hereditary complete cotorsion pair in C and set
ω := F ∩G. If C has enough projectives, then (F ,G∩F∧) is a left strongly hereditary
F∧-cotorsion pair in C.

We close this section presenting some conditions under which the X∧-cotorsion
pairs (X , ω∧) and (ω,X∧) are strongly hereditary.
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Theorem 3.14 Let (X , ω) be a strong left Frobenius pair in C. Then, the following
conditions are equivalent:

(a) Proj(C) ⊆ ω and Inj(C) ⊆ X∧.
(b) (ω,X∧) is a strongly hereditary X∧-cotorsion pair in C.
(c) (X , ω∧) is a strongly hereditary X∧-cotorsion pair in C.

Proof We know by Theorems 3.6 and 3.7 that (X , ω∧) and (ω,X∧) areX∧-cotorsion
pairs in C, where the class ω∧ is thick. These facts, along with the equalities ω =
X ∩ ω∧ = ⊥1(X∧) ∩ X∧ and ω∧ = X⊥ ∩ X∧, suffice to note the corresponding
equivalences. ��

4 Model category structures in approximation theory

Given a strong left Frobenius pair (X , ω) in C, recall from Example 3.1 that X∧ is
an exact subcategory of C. We will obtain an exact model structure on X∧ whose
homotopy category represents, in a certain sense that specified below, a generalization
of the stable module category of a ring.

4.1 Exact model structures from Frobenius pairs

Our first goal in this section is to show the following result.

Theorem 4.1 Let (X , ω) be a strong left Frobenius pair in C. Then, there exists a
unique exact model structure onX∧, referred as the (projective) Auslander–Buchweitz
model structure associated to (X , ω), such that X is the subcategory of cofibrant
objects, X∧ is the subcategory of fibrant objects, and ω∧ is the subcategory of trivial
objects. We will denote this model structure by

Mproj
AB (X , ω) := (X , ω∧,X∧).

The concept of model category structure was introduced by Quillen [39] in 1967.
There are two modern approaches to this definition considered nowadays: one given
by Hovey in [31, Chapter 1], and the other one by Beligiannis and Reiten in [7,
Chapter VIII]. These two approaches are slightly different between them, and differ
from the original definition given by Quillen. Due to the purpose of this paper, model
structures will always be considered on exact categories (unless otherwise specified),
although the definition given below covers more general situations.

We recall from [7] that a model structure on an exact category E is given by three
classes F, C and T of morphisms of E , called fibrations, cofibrations and weak equiv-
alences, respectively, that satisfy a series of axioms, which we recall for the reader’s
convenience:

[M1] T has the 2-out-of-3 property with respect to the composition.
[M2] F, C and T are closed under retractions.
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[M3] Given a commutative diagram

A X

B Y

u

f g

v

in E , if either f is a trivial cofibration (that is, f ∈ C∩T) and g is a fibration,
or f is a cofibration and g is a trivial fibration (that is, g ∈ F ∩ T), then there
exists a morphism d : B → X such that d ◦ f = u and g ◦ d = v.

[M4] Every morphism f in E admits a factorization f = p ◦ i = q ◦ j , where i ∈ C,
j ∈ C ∩ T, p ∈ F ∩ T and q ∈ F.

For more details concerning these axioms, see [31, Definition 1.1.3] or [7, Sect. 1 of
Chapter VIII]. By a model category we will mean an exact category E equipped with
a model structureM = (C,T,F) on E .

Remark 4.2 We need to point out some considerations about this definition of model
category. In the sense of Hovey, a model category is a category E with (small) limits
and colimits, that is equipped with a model structure such that factorizations in axiom
[M4] are functorial. In Beligiannis and Reiten’s definition, on the other hand, E is only
assumed to be an additive category with kernels and cokernels.

So our definition of model category is more similar to that of Beligiannis and
Reiten,with the only detail that exact categoriesmaynot have all kernels and cokernels,
according to the definition proposed byQuillen in [40].However, thiswill not represent
a problem in our setting. Indeed, the particular part of the theory of model categories
considered in this paper will only require ground categories E such that: (1) E has
terminal and initial objects, (2) the product X

∏
X and coproduct X

∐
X of any

object X ∈ E with itself exist, and (3) the pushouts of all cofibrations and pullbacks
of all fibrations exist. This is in particular the case of exact categories. With only these
three requirements, it will be possible to use some important basic results of homotopy
theory. Let us be more specific about this.

A model structure provides to the category on which it is defined a general setting
for doing homotopy theory. By this we mean that every model category (E,M) has an
associated homotopy category, denoted HoM(E), that is defined by formally inverting
the weak equivalences ofM. In other words, HoM(E) is obtained after localizing E at
the class T of weak equivalences (see Hovey [31, Sect. 1.2] for details). It is important
to mention that the construction of HoM(E) does not require that E has finite limits
and colimits, but only conditions (1), (2) and (3) in Remark 4.2, as explained again by
Gillespie in [19, Sect. 1 and Fact 4.2].

We are interested in a particular family of model structures on exact categories
that are called exact. For such models, the classes of cofibrant, fibrant and trivial
objects play a more important role than the classes of cofibrations, fibrations and
weak equivalences. On the one hand, recall that an object X ∈ E in a model category
(E,M) is said to be:
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• cofibrant if the only morphism 0 → X is a cofibration.
• fibrant if the only morphism X → 0 is a fibration.
• trivial if the only morphism 0 → X is a weak equivalence.

We will denote the classes of cofibrant, fibrant and trivial objects by Q, R and T ,
respectively, and in some occasions the model structure M may be displayed as the
triple M = (Q, T ,R). On the other hand, exact model structures were defined by
Gillespie in [19, Definition 3.1] as those model structures on an exact category E such
that:

1. f is a cofibration if, and only if, f is an admissible monomorphism and
CoKer( f ) ∈ Q.

2. g is a fibration if, and only if, g is an admissible epimorphism and Ker(g) ∈ R.

Suchmodel structures have an appealing interplay with certain triples of subcategories
of E . Three subcategories F ,G,W ⊆ E form a Hovey triple (F ,W,G) in E if (F ∩
W,G) and (F,G ∩W) are complete cotorsion pairs in E , and ifW is thick. Gillespie
proved in [19, Theorem 3.3] that there is a one-to-one correspondence between exact
model structures on E and Hovey triples in E , provided that E is a weakly idempotent
complete exact category, that is, every split monomorphism has a cokernel and every
split epimorphism has a kernel (see [19, Definition 2.2]). This result is a generalization
of a similar correspondence proved by Hovey in the context of abelian categories [32,
Theorem 2.2], and will be referred to as the Hovey–Gillespie correspondence. It is
worth mention ing that a similar approach to this interplay between model structures
and cotorsion pairs in the abelian case was developed independently by Beligiannis
and Reiten in [7, Chapter VIII] but in a different context, and giving rise to different
results. We will also consider this other point of view later on in Sect. 5 due to its
applications to basic cotilting modules.

Now given a strong left Frobenius pair (X , ω) in an abelian category C, the exact
subcategory X∧ ⊆ C is weakly idempotent complete. We then have by Theorems 3.6
and 3.7 two X∧-cotorsion pairs (X , ω∧) and (ω,X∧) with ω = X ∩ ω∧. These are
complete cotorsion pairs in the thick (and so exact) subcategoryX∧ ⊆ C, thus forming
a Hovey triple (X , ω∧,X∧). Then, the Hovey–Gillespie correspondence produces the
exact model structureMproj

AB (X , ω) = (X , ω∧,X∧) onX∧ described in Theorem 4.1.
This model structure is projective, in the sense that every object in X∧ is fibrant.

Remark 4.3 Another observation about our definition of model category is that we
do not consider functorial factorizations. In fact, we are not aware if factorizations
in the AB model structure from Theorem 4.1 are functorial. As this model structure
is exact, and exact model structures are in one-to-one correspondence with Hovey
triples, we can note thatMproj

AB (X , ω) = (X , ω∧,X∧) has functorial factorizations if,
and only if, the associated cotorsion pairs (X , ω∧) and (ω,X∧) inX∧ are functorially
complete in the sense of Hovey [32]. The latter condition occurs, for instance, when
these cotorsion pairs are cogenerated by a set. In many cases, to show that a cotorsion
pair (F ,G) in an exact category E is cogenerated by a set requires to construct for
every direct summand of every object in F a filtration by a set, and this in t urn needs
the existence of small colimits in E . Notice that this is not necessarily the case of X∧.
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The following result provides an easy method to get exact model structures from
certain strongly hereditary S-cotorsion pairs.

Corollary 4.4 Let (F ,G) be anS-cotorsion pair in an abelian categoryC with enough
projectives and injectives. If F is resolving in C, G coresolving in C and G ⊆ F∧, then
(F ,G) and (F ∩ G,F∧) are F∧-cotorsion pairs in C. In other words, (F ,G,F∧) is
a Hovey triple in F∧.

4.2 Some remarks on submodel structures

We begin this section with the following definition.

Definition 4.5 We say that a Hovey triple (F ,W,G) in an exact category E is left
hereditary if the cotorsion pairs (F ,G ∩W) and (F ∩W,G) are both left hereditary,
that is, the subcategories F and F ∩ W are both resolving in E . Similarly, we have
the definition of right hereditary and hereditary Hovey triples.

In the case where E is an exact subcategory of an abelian category C, we say that a
Hovey triple (F ,W,G) in E is left strongly hereditary if the cotorsion pairs (F ,G∩W)

and (F∩W,G) in E are left strongly hereditary.Right strongly hereditary and strongly
hereditary Hovey triples are defined similarly (see Definition 3.9).

Let us recall from Gillespie [19, Definition 5.3] the notion of submodel structure.
Given an exact category E with an exact model structureM = (Q, T ,R) on it, and a
fully exact subcategory E0 ⊆ E , an exact model structure M0 = (Q0, T0,R0) on E0
is a submodel structure of M if the following two conditions hold:

1. The inclusion functor i : E0 ↪→ E preserves the model structureM0, that is, every
cofibration, fibration and weak equivalence in M0 is a cofibration, fibration and
weak equivalence in M, respectively.

2. The induced functor Ho(i) : HoM0(E0) −→ HoM(E) is an equivalence of cate-
gories.

Condition 1. above is equivalent to saying that Q0, R0 and T0 are full subcategories
of Q,R and T , respectively.

In [19], Gillespie constructs from a hereditary Hovey triple (F ,W,G) in E , sub-
model structures (of the unique model structure on E resulting from (F ,W,G)) on
the full subcategories Q = F , R = G and Q ∩ R = F ∩ G of cofibrant, fibrant, and
cofibrant-fibrant objects, respectively. The first property obtained after assuming that
(F ,W,G) is hereditary, is that the resulting subcategoriesQ,R andQ∩R are exact
and weakly idempotent complete (see [19, Lemma 5.1, Proposition 5.2]). The result-
ing submodel structures onQ,R andQ∩R are described in [19, Proposition 5.2]. In
this section, we apply this result to check which are the submodel structures obtained
from a strong left Frobenius pair.

Proposition 4.6 Let (X , ω) be a strong left Frobenius pair in C. Then, (X , ω∧,X∧)

is a hereditary Hovey triple in X∧. Moreover, (X , ω∧,X∧) is a strongly hereditary
Hovey triple in X∧ if, and only if, Proj(C) ⊆ ω and Inj(C) ⊆ X∧.
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Proof The fact that (X ,X∧, ω∧) is a hereditary Hovey triple in X∧ follows easily
from the properties of the two cotorsion pairs (X , ω∧) and (ω,X∧) in the exact
subcategory X∧ ⊆ C. The characterization of (X , ω∧,X∧) as a strongly hereditary
Hovey triple is a consequence of Theorem 3.14. ��
Remark 4.7 If C has enough projectives, the inclusion Proj(C) ⊆ ω in the previ-
ous statement can be replaced by Proj(C) ⊆ X∧, since Proposition 3.10 asserts
Proj(C) = Proj(X∧), and so Proj(C) ⊆ ω. Notice that Proj(X∧) ⊆ ω since (ω,X∧)

is a cotorsion pair in X∧.

After applying Proposition 4.6, along with [19, Proposition 5.2], we obtain the
following submodel structures from a strong left Frobenius pair.

Proposition 4.8 Let (X , ω) be a strong left Frobenius pair in C. Then, there exist a
submodel structure of Mproj

AB (X , ω), defined on the subcategory X of cofibrant-fibrant
objects, where the cofibrant and fibrant objects are given by X , and the trivial objects
by ω.

In [19, Proposition 5.2], the resulting submodel structure on R := X∧ coincides
withMproj

AB (X , ω). This happens becauseMproj
AB (X , ω) is a projectivemodel structure.

On the other hand, the resulting submodel structures onQ := X and onQ∩R := X
coincide.

Example 4.9 The model structure in Proposition 4.8 is an example of what Gillespie
[19] calls a Frobenius model structure, that is, every object in the corresponding
exact category is cofibrant and fibrant. Note that in every Frobenius category E ,
(E,Proj(E), E) is a Hovey triple, which gives rise to a Frobenius model structure
with Proj(E) as the subcategory of trivial objects.

4.3 The homotopy category of an Auslander–Buchweitz model structure

Let (X , ω) be a strong left Frobenius pair in C. For simplicity, let uswrite the homotopy
category of the AB model structure on X∧ as

HoprojAB (X∧) := HoMproj
AB (X ,ω)

(X∧).

In this section, we present an explicit description of HoprojAB (X∧), and note how this
homotopy category is equivalent to the stable category of a Frobenius subcategory of
C.

Exact model structures serve as descriptions, from a homotopical point of view,
of several important categories considered in relative homological algebra, such as
derived categories and stable categories. For instance, it is well known that the derived
category of a ring is equivalent to the homotopy category of the projective model
structure on the category of chain complexes over an arbitrary ring R, described
by Hovey in [31, Sect. 2.3]. Another example occurs in case R is quasi-Frobenius,
where the stable module category of R is equivalent to the homotopy category of

123



24 V. Becerril et al.

the stable model structure on Mod(R) described in [31, Sect. 2.2]. So we can note
that exact model structures can contain several types of homological and homotopical
information depending on which class of weak equivalences we are localizing at.

In this occasion, our theoretical framework favors the construction of models of
more general stable categories. Let us be more specific about this assertion by comput-
ing the homotopy category associated to the Auslander–Buchweitz model structure of
a strong left Frobenius pair (X , ω).

Recall that given an exact model structure M = (Q, T ,R) on an exact category
E , two morphisms f, g : X → Y in E are right homotopic if, and only if, g − f factors
through an object inQ ∩ T . Dually, f and g are left homotopic if, and only if, g − f
factors through an object in R ∩ T . This was proven by Gillespie in [19, Proposi-
tion 4.4]. If the Hovey triple (Q, T ,R) is hereditary, then the submodel structures on
Q,R and Q ∩ R are fully equivalent submodel structures of E , that is:

1. The inclusions iQ : Q ↪→ E , iR : R ↪→ E and iQ∩R : Q ∩ R ↪→ E preserve the
corresponding model structures.

2. The induced functors in homotopyHo(iQ) : Ho(Q) → Ho(E),Ho(iR) : Ho(R) →
Ho(E) and Ho(iQ∩R) : Ho(Q ∩ R) → Ho(E) are equivalences of categories.

These two results were proven in [19, Proposition 5.2, Corollary 5.4], and we can
apply them to the Hovey triple associated to the AB model structure Mproj

AB (X , ω).
Indeed, by Proposition 4.6 it follows that if X∧ is equipped with the projective AB
model structure Mproj

AB (X , ω), then the subcategory of cofibrant-fibrant objects Q ∩
R = X is equipped with the submodel structure Mcf = (X , ω,X ) of Mproj

AB (X , ω)

described in Proposition 4.8, and the corresponding homotopy categories HoprojAB (X∧)

and HoMcf (X ) are equivalent. One advantage of this fact is that HoMcf (X ) is easier

to describe than HoprojAB (X∧). First of all, on the subcategory Q ∩ R = X ⊆ X∧, the
relations of being left and right homotopic (denoted ∼) coincide. On the other hand,
by Hovey [31, Theorem 1.2.10 (i)], there is an equivalence of categories HoMcf (X ) ∼=
(Q ∩ R)/ ∼ = X / ∼. By Remark 2.6, X is a Frobenius category, and for any two
morphisms f, g : X → Y , we have that f ∼ g if and only if g − f factors through a
projective object in X (that is, an object in ω). Hence, the quotient X / ∼ is the stable
category of X .

The description ofHoprojAB (X∧) involves some knowledge about cofibrant and fibrant
replacements. If X is an object in an exact category E with an exact model structure
M, we can factor the morphism 0 → X as a cofibration 0 → Q X followed by a
trivial fibration Q X → X . The object Q X is then cofibrant, and it is called a cofibrant
replacement of X . Dually, one has the notion of fibrant replacements of X , usually
denoted as R X . In case M is the AB model structure Mproj

AB (X∧), we have by [31,
Theorem 1.2.10 (ii)] that for every X, Y ∈ X∧ there is a natural isomorphism

Hom
HoprojAB (X∧)

(X, Y ) ∼= HomX∧(Q X, RY )/ ∼ .

Since every object in X∧ is fibrant, we can take RY = Y . We summarize these facts
in the following result.
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Proposition 4.10 Let (X , ω) be a strong left Frobenius pair inC. For the projective AB
model structure Mproj

AB (X , ω) = (X , ω∧,X∧) on X∧, there is a natural isomorphism

Hom
HoprojAB (X∧)

(X, Y ) ∼= HomX∧(Q X, Y )/ ∼

for every X, Y ∈ X∧, where f ∼ g if and only if g − f factors through an object in
ω. Moreover, HoprojAB (X∧) is equivalent to the stable category X / ∼.

Remark 4.11 Given a strong left Frobenius pair (X , ω) in C, we know by Proposi-
tion 4.10 that HoprojAB (X∧) is equivalent to the stable category X / ∼. On the other
hand, by Remark 2.6 we also know thatX is a Frobenius category, and henceX / ∼ is
indeed triangulated by Happel [25, Theorem I.2.6]. This last fact aboutX / ∼ can also
be deduced from Beligiannis [6, Theorem 2.11], sinceX ⊆ ⊥ω andω is a cogenerator
of X .

It is important to declare that the concept of triangulated category employed
here is the classical one defined by Verdier [46]. One can be tempted to say that
(X∧,Mproj

AB (X∧)) is a stable model category in the sense of Hovey’s [31, Chapter 7],
that is, it is a model category whose homotopy category is triangulated. However,
one must be careful with this terminology. The definition of triangulated category in
[31] is relatively new and stronger than the classical one, and also requires the mod-
ern treatment of model categories that uses small (co)limits. We can only assert that
(X∧,Mproj

AB (X∧)) is an exact model category with projective model structure whose
homotopy category is a stable classical triangulated category, but not necessarily tri-
angulated in Hovey’s sense.

5 Auslander–Buchweitz contexts and their correspondence with relative
cotorsion pairs, Frobenius pairs and model structures

We continue this paper presenting one-to-one correspondences between Frobenius
pairs, relative cotorsion pairs and AB model structures. Auslander–Buchweitz con-
texts will play an important role in this section, as they will also appear in these
correspondences.

5.1 AB contexts vs. Frobenius pairs vs. relative cotorsion pairs

The following definition is taken from Hashimoto [26, Theorem 1.1.2.10], but it is
written according to the terminology we have been using so far.

Definition 5.1 Let (A,B) be a pair of classes of objects in C and ω := A∩B. We say
that (A,B) is a left weak Auslander–Buchweitz pre-context (left weak AB pre-context
for short) in C if:

1. (A, ω) is a left Frobenius pair in C.
2. B = Thick+(B), that is, B is right thick.

If in addition:
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• (A,B) satisfies B ⊆ A∧, then we say that (A,B) is a left weak AB context in C;
• (A,B) satisfies A∧ = C, then we say that (A,B) is a left AB context in C.

The notions of right weak AB pre-context, right weak AB context and right AB
context in C are defined dually.

Example 5.2 In Theorem 2.16, the pair (X ,Y) is a left weak AB context.

Remark 5.3 There are slightly different notions of AB contexts in the literature, such
as the one considered in Beligiannis [6, Definition 4.4]. For example, Beligiannis
works withA beingω-resolving andB being closed under extensions of ω-admissible
sequences. Another difference is that we ask A = Thick−(A) and B = Thick+(B).
Although in Definition 5.1, the class A is Proj(C)-resolving and B is closed under
extensions of Proj(C)-admissible sequences in the sense of [6], it is not true in general
that the subcategories Proj(C) and ω coincide, as we will see in Sect. 6.4.

The goal of this section is to study the relation that left weak AB contexts have
with left Frobenius pairs and relative cotorsion pairs. Specifically, we will focus on
proving the following correspondence theorem.

Theorem 5.4 Let C be an abelian category. Consider the following classes of objects
in the product category C × C:

F := {(X , ω) ⊆ C × C:(X , ω) is a left Frobenius pair in C},
C := {(A,B) ⊆ C × C:(A,B) is a left weak AB context in C},
P := {(F ,G) ⊆ C × C:(F ,G) is a Thick(F)-cotorsion pair in C with idF (G) = 0}.

Then, the following conditions hold true:

1. There exists a one-to-one correspondence

Φ : F −→ C given by (X , ω) �→ (X , ω∧),

with inverse

Ψ : C −→ F given by (A,B) �→ (A,A ∩ B).

2. C = P.

First, we show how to obtain relative cotorsion pairs from left weak AB contexts.

Proposition 5.5 Let (A,B) be a left weak AB context in C, and set ω := A∩B. Then,
the following assertions hold true:

1. (A,B) is a A∧-cotorsion pair in C with idA(B) = 0.
2. ω = A ∩ A⊥ and B = ω∧.
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Proof On the one hand, by Theorem 3.6 we have an A∧-cotorsion pair (A, ω∧) with
ω = A ∩ ω∧ = A ∩ (A⊥ ∩ A∧) = A ∩ A⊥. On the other hand, ω ⊆ B and
B = Thick+(B) imply ω∧ ⊆ B. We now show the remaining inclusion. Let N ∈ B.
Then N ∈ A∧ since B ⊆ A∧, and so we can obtain an exact sequence

0 → K → A → N → 0

with A ∈ A and K ∈ ω∧, that is, as (3) in Theorem 2.8. Since ω∧ ⊆ B, we have
that A ∈ B. Then A ∈ ω since B is closed under extensions. It follows that N ∈ ω∧.
Hence, we obtain B = ω∧, and so (A,B) is an A∧-cotorsion pair in C. Finally, the
latter equality B = ω∧ and Lemma 2.1 imply that idA(B) = 0. ��

The following lemma is straightforward.

Lemma 5.6 If (F ,G) is a left S-cotorsion pair in C such that idF (G) = 0, then the
equality F = Thick−(F) holds.

Proposition 5.7 If (F ,G) is an S-cotorsion pair in C with idF (G) = 0, then (F ,G)

is a left and right weak AB pre-context in C.

Proof The equalitiesF = Thick−(F) and G = Thick+(G) follow by Lemma 5.6 and
its dual. Now setω := F ∩G. Let us show thatω is anF-injective relative cogenerator
in F . On the one hand, idF (G) = 0 implies idF (ω) = 0. On the other hand, for each
F ∈ F ⊆ S there exists a short exact sequence

0 → F → G → F ′ → 0

with F ′ ∈ F and G ∈ G. SinceF is closed under extensions, we get G ∈ F ∩G =: ω.
Dually, one can show that ω is a G-projective relative generator in G. Notice that
pdG(F) = idF (G) = 0 and ω ⊆ F imply pdG(ω) = 0. ��

The previous proposition, along with Theorem 2.11, provide the following way to
obtain left weak AB contexts from relative cotorsion pairs.

Theorem 5.8 Let (F ,G) be a Thick(F)-cotorsion pair in C with idF (G) = 0. Then,
the following conditons hold true:

1. (F ,G) is a left weak AB context in C.
2. Thick(F) = F∧.

Proof By Proposition 5.7, (F ,G) is a left weak AB pre-context in C. Then, (F , ω)

is a left Frobenius pair, and so Theorem 2.11 implies F∧ = Thick(F). Finally, note
that G ⊆ Thick(F) = F∧. ��
Proof of Theorem 5.4 We first show that the mappingΦ is well defined. Let (X , ω) ∈
F and setA := X and B := ω∧. By (1) in Proposition 2.7, we have that (A,A∩B) =
(X ,X ∩ ω∧) = (X , ω), and so (A,A ∩ B) is a left Frobenius pair in C. Thus, it is
only left to show that B = Thick+(B) and that B ⊆ A∧. By (5) in Proposition 2.13,
we have that B = ω∧ = X⊥ ∩ X∧, where X⊥ and X∧ are both pre-coresolving and
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closed under direct summands. Then B = Thick+(B), and the inclusion B ⊆ A∧
follows.

With respect to the inverse ofΦ, first note thatΨ is well defined by the definition of
left weak AB context. We show that Ψ ◦Φ = idF and Φ ◦Ψ = idC. On the one hand,
if (X , ω) is a left Frobenius pair, then Ψ ◦ Φ(X , ω) = (X ,X ∩ ω∧) = (X , ω) where
X ∩ ω∧ = ω by (1) in Proposition 2.7. On the other hand, if (A,B) is a left weak AB
context, we have that Φ ◦ Ψ (A,B) = (A, (A∩B)∧) = (A,B) where (A∩B)∧ = B
by Proposition 5.5. Hence, we have a one-to-one correspondence between F and C.

Now we focus on showing part 2. Let (A,B) ∈ C be a left weak AB context.
Then by part 1. in Proposition 5.5, we have that (A,B) is a A∧-cotorsion pair with
idA(B) = 0, where A∧ = Thick(A) by Theorem 2.11. Hence (A,B) ∈ P, and
C ⊆ P. The remaining inclusion C ⊇ P follows directly by Theorem 5.8. ��

5.2 Relative cotorsion pairs vs. covering subcategories

It is important to recall at this point how cotorsion pairs are related to covering and
enveloping classes.A cotorsion pair (F ,G) inC is said to beperfect ifF is covering and
G is enveloping. In this section, we propose the relative analogue of perfect cotorsion
pairs, and show its relation with covering and enveloping classes.

Definition 5.9 A left S-cotorsion pair (F ,G) in C is said to be perfect if every object
in S has a F-cover. Perfect right S-cotorsion pairs and perfect S-cotorsion pairs in
C are defined similarly.

As perfect cotorsion pairs can be obtained from certain complete cotorsion pairs, it
is not surprising that their analogues relative to a thick subcategory S ⊆ C come from
special classes which are pre-covering and pre-enveloping in S. Indeed, the class

G :=
{
F ⊆ C : F is a resolving subcategory of C and closed under

direct summands, and pre-covering in Thick(F)

}
.

plays an important role in Theorem 5.4 when we impose some extra conditions on C
that make C into a Krull–Schmidt category. For such categories, it is possible to study
some interplay between G and the class

P′ :=
{
(F ,G) ⊆ C × C : (F ,G) is a perfect left Thick(F)-cotorsion

pair in C, with idF (G) = 0 and Proj(C) ⊆ F

}
⊆ P.

For, we first show how tomap elements fromP′ toG. LetΘ be the projectionmapping

Θ : P′ −→ G given by (F ,G) �→ F .

This mapping Θ is well defined by the following result, which is a consequence of
Proposition 3.5 and Lemma 5.6.

Proposition 5.10 Let (F ,G) be a left Thick(F)-cotorsion pair in C such that
idF (G) = 0. Then, F is a left thick and a pre-covering subcategory of Thick(F).
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A right inverse for Θ can be constructed in the case where C is Krull–Schmidt.
Recall that a category is Krull–Schmidt if it is additive and if every object decomposes
into a finite direct sum of objects having local endomorphism rings.

Theorem 5.11 Let C be an abelian Krull–Schmidt category with enough projectives.
Then, there is an injection

Ω : G −→ P′ given by F �→ (F ,G),

where G := F⊥ ∩ Thick(F).

Indeed, the mapping Ω satisfies the equality Θ ◦ Ω = idG. So Ω will define an
injection from G to P′ as long as it is well defined. This is a consequence of the
following result.

Proposition 5.12 Let C be a Krull–Schmidt abelian category with enough projectives,
and S be a thick subcategory of C. If F is a pre-covering subcategory of S, and a left
saturated subcategory of C, then the following conditions hold:

1. For each S ∈ S, there exists an exact sequence

η : 0 → Ker(ϕ) → F
ϕ−→ S → 0

where ϕ is an F-cover and Ker(ϕ) ∈ F⊥1 .
2. F⊥ = F⊥1 .
3. The subcategories F and G := F⊥ ∩S form a perfect left S-cotorsion pair (F ,G)

in C with idF (G) = 0.

Proof Part 2. follows by the fact that C has enough projectives and that F is resolving
in C, while part 3. is a direct consequence of 1. and 2. So we only focus on proving
1. Let S ∈ S. On the one hand, S has an F-pre-cover. Since C is a Krull–Schmidt
category, by Krause [33, Corollary 4.4] we have that the endomorphism ring EndC(S)

is semi-perfect. On the other hand, usingGöbel and Trlifaj [24, Corollary 2.1.10 (b)], it
follows that S has anF-cover, say ϕ, which also can be taken epic sinceProj(C) ⊆ F .
Thus, we obtain a short exact sequence as η. Finally, by using Wakamatsu Lemma,
we can conclude that Ker(ϕ) ∈ F⊥1 . (For a proof of this lemma that works in any
abelian category, see [24, Lemma 5.12]). ��

It is natural to ask whether it is possible to restrict Θ on a subclass ofP′, in such a
way that this restriction defines a one-to-one correspondence to a subclass of G. We
settle this in the following result.

Theorem 5.13 Let C be a Krull–Schmidt abelian category with enough projectives
and injectives. Consider the following classes:

P̃ :=
{
(F ,G) ⊆ C × C : (F ,G) is a perfect Thick(F)-cotorsion pair in C with

idF (G) = 0,Proj(C) ⊆ F , and Inj(C) ⊆ Thick(F)

}
⊆ P′,

G̃ :=
{
F ⊆ C : F is a left saturated subcategory of C, pre-covering

in Thick(F), and such that Inj(C) ⊆ Thick(F)

}
⊆ G.
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Then, there is a there is a one-to-one correspondence Θ̃ := Θ|P̃ : P̃ −→ G̃ given by

the restriction of Θ on P̃, with inverse given by the restriction Ω̃ := Ω|G̃ : G̃ −→ P̃

of Ω on G̃.

Proof First, it is clear that every pair (F ,G) in P̃ is mapped to G̃ via Θ . On the other
hand, let F ∈ G̃. By Proposition 5.12 we have that (F ,G) is a perfect left Thick(F)-
cotorsion pair in C with idF (G) = 0, the inclusion Inj(C) ⊆ Thick(F) is true by
hypothesis, and Proj(C) ⊆ F holds since F is resolving in C. It is only left to show
that (F ,G) is a perfect right Thick(F)-cotorsion pair in C. We split the rest of the
proof into several parts:

• First, note that for G := F⊥ ∩ Thick(F) the containment Inj(C) ⊆ G is clear.
• Now we prove that (F ,G) is a right Thick(F)-cotorsion pair in C. Note that we
only verify the pre-envelope condition in the dual of Proposition 3.5, that is, we
show that for any S ∈ Thick(F) there exists a short exact sequence

ε : 0 → S → G → F → 0

where F ∈ F and G ∈ G. On the one hand, since C has enough injectives and
Inj(C) ⊆ Thick(F), there exists a short exact sequence

ι : 0 → S → I → C → 0

where I ∈ Inj(C) ⊆ G and C ∈ Thick(F). On the other hand, since (F,G) is a left
Thick(F)-cotorsion pair, for C ∈ Thick(F) we can find a short exact sequence

ρ : 0 → G ′ → F → C → 0

with F ∈ F and G ′ ∈ G. Taking the pullback of I → C in ι and F → C in ρ, we
obtain a short exact sequence as ε.

• Finally, we show that G is a right saturated subcategory of C. We already know that
G contains the injective objects of C. Note also that G := F⊥∩Thick(F) is clearly
closed under direct summands in C, extensions and cokernels of monomorphisms
between its objects.

Having proved the previous three facts, note also thatG is pre-enveloping inThick(F).
Then, by the dual of Proposition 5.12, it follows thatG is the right half of a perfect right
Thick(F)-cotorsion pair in C, and so G is actually enveloping in Thick(F). Therefore,
(F ,G) is a perfect Thick(F)-cotorsion pair in C, and thus Ω̃ is well defined. The proof
that Ω̃ is the inverse of Θ̃ is straightforward. ��

Using Theorem 5.13, the correspondence from Theorem 5.4 can be extended in
the case where C is a Krull–Schmidt abelian category with enough projectives and
injectives. Specifically, we have the following result.
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Corollary 5.14 Let C be a Krull–Schmidt abelian category with enough projectives
and injectives. Then, there exists a one-to-one correspondence between the classes P̃,
G̃ and

F̃ :=
{
(X , ω) ⊆ C × C : (X , ω) is a left Frobenius pair in C,

with Proj(C) ⊆ X , and Inj(C) ⊆ X∧
}

.

Moreover, P̃ is equal to the class

C̃ :=
{
(A,B) ⊆ C × C : (A,B) is a left weak AB context in C,

with Proj(C) ⊆ A, and Inj(C) ⊆ Thick(A)

}
.

5.3 Some remarks on perfect cotorsion pairs

The problem of obtaining covers by subcategories of modules has had an increasing
interest recently in homological algebra and representation theory of algebras. This
in part has been motivated by the Flat Cover Conjecture, settled by Bican et al. [9],
which states that every module over an arbitrary ring has a flat cover. Several authors
have studied conditions under which it is possible to obtain covers. For example, it
is known that every module over a perfect ring has a projective cover. This result is
also valid in the category mod(Λ) of finitely generated modules over an Artin R-
algebra Λ, where R is a commutative Artinian ring with identity. In a more general
context, Holm and Jørgensen have established in [29, Theorem 3.4] certain conditions
under which a subcategory F of R-modules is covering. Namely, if F contains the
ground ring R and is closed under extensions , direct sums, pure submodules, and pure
quotient of modules, then (F ,F⊥1) is a perfect cotorsion pair inMod(R), and hence
F is covering. In the following result, which is a consequence of Proposition 3.3 and
Theorem 5.13, we provide other conditions under which a subcategory of objects in
an abelian category is covering.

Corollary 5.15 Let C be a Krull–Schmidt abelian category with enough projectives
and injectives. Then, there is a one-to-one correspondence between the following
classes:

P̃(C) :=
{
(F ,G) ⊆ C × C : (F ,G) is a perfect hereditary cotorsion

pair in C with Thick(F) = C

}
,

G̃(C) :=
{
F ⊆ C : F is a left saturated and a pre-covering subcategory of C,

such that Thick(F) = C

}
.

Remark 5.16 As an application, consider the case C := mod(Λ), whereΛ is an Artin
algebra. Auslander and Reiten proved in [3, Proposition 3.3] that (F ,F⊥) is a perfect
and hereditary cotorsion pair in mod(Λ) with F∧ = mod(Λ), whenever F is a left
saturated and a pre-covering subcategory of mod(Λ) such that F∧ = mod(Λ). The
previous corollary states that these two assertions are in fact equivalent.
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5.4 Relationship with some Auslander–Reiten correspondence theorems

We give some remarks on the relation between perfect cotorsion pairs, pre-enveloping
subcategories, and cotiltingmodules, within the framework of the correspondences we
have studied so far. Our motivation for this comes from the following correspondence
theorem proved by Auslander and Reiten in their seminal paper [3].

For every C ∈ mod(Λ), we denote by [C] the isoclass of C .

Theorem 5.17 Let Λ be an Artin R-algebra. Then, there exist one-to-one correspon-
dences between:

(a) the isoclasses of basic finitely generated cotilting Λ-modules;
(b) the pre-covering and left saturated subcategories F ⊆ mod(Λ) with F∧ =

mod(Λ);
(c) the complete cotorsion pairs (F ,G) with F left saturated and F∧ = mod(Λ);
(d) the pre-enveloping and right saturated subcategories of inj∞(Λ), where inj∞(Λ)

denotes the subcategory of finitely generated left Λ-modules with finite injective
dimension.

The correspondence (a) ↔ (b) is given by [C] �→ ⊥C , with inverse F �→ [CF ],
where CF is the finitely generated basic cotilting Λ-module defined as the direct
sum of indecomposable F-injective finitely generated Λ-modules. The proof of this
can be found in [41, Theorem VIII.2.2 (c)] or in [3, Theorem 5.5 (a)]. On the other
hand, we have a mapping (a) → (c) given by [C] �→ (⊥C,add(C)∧), with inverse
(F ,G) �→ [CF∩G], where CF∩G is the direct sum of pairwise non-isomorphic inde-
composable finitely generated Λ-modules in F ∩ G. This fact is proven in [41,
Corollary VIII.2.3 (b)]. Finally, in [3, Theorem 5.5 (b)] or [41, Theorem VIII.2.2 (d)],
one can check that the correspondence between (a) and (d) is defined by mappings
[C] �→ add(C)∧ and G �→ [CG], where CG is the di rect sum of pairwise non-
isomorphic indecomposable G-projective finitely generated Λ-modules.

Remark 5.18 In the case the Artin algebra Λ is basic, the correspondence (a) ↔ (b)
↔ (c) in Theorem 5.17 can be extended to a class of model structures onmod(Λ) sat-
isfying a series of four conditions (see Beligiannis and Reiten [7, Theorem VIII 5.8]
for details). We tackle this point of model structures again and in a different way
in Sect. 5.5, where we establish a one-to-one correspondence between projective
AB model structures, strong left Frobenius pairs, and certain S-cotorsion pairs. The
approach in Sect. 5.5 will be different to the one presented in this section, as these
S-cotorsion pairs will be relative to S := Thick(F) and satisfying idF (G) = 0 and
F ∩ G = Proj(C), and so not necessarily in P̃(C).

Theorem 5.17 is one of the motivations of Corollary 5.15. This can be more appre-
ciated if we explain how to present this theorem in a more general context. Before that,
recall that if Λ is an Artin R-algebra, a finitely generated Λ-module M ∈ mod(Λ) is
called:

• cotilting provided that:
1. id(C) < ∞,
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2. ExtiR(C, C) = 0 for every i > 0, and
3. resdimadd(C)(I ) < ∞ for any finitely generated injective Λ-module I ;

• basic if in a direct sum decomposition of C , no indecomposable module appears
more than once.

Let Inj∞(C) denote the class of objects of C with finite injective dimension. Let us
present the following definition in order to simplify some statements and notations.

Definition 5.19 We say that an abelian category C with enough projectives and injec-
tives is an IP-finite category if for any right saturated and special pre-enveloping
subcategory X ⊆ C, the following equivalence holds true:

X ⊆ Inj∞(C) if, and only if, (⊥X )∧ = C.

Proposition 5.20 For any IP-finite category C, the following statements hold:

1. For the classes

G̃IP(C) :=
{
G ⊆ Inj∞(C) : G is a right saturated and a special

pre-enveloping subcategory of C

}
,

P̃IP(C) :=
{
(F ,G) ⊆ C × C : (F ,G) is a complete hereditary cotorsion

pair in C with Thick(F) = C

}
,

there is a one-to-one correspondence

Ω̃IP : G̃IP(C) −→ P̃IP(C) given by G �→ (⊥G,G),

with inverse given by the projection (F ,G) �→ G for any (F ,G) ∈ P̃IP(C).
2. For the class

C̃IP(C) := {(A,B) ⊆ C × C:(A,B) is a left AB context in C},

the equality P̃IP(C) = C̃IP(C) holds true.
3. For the class

F̃IP(C) := {(X , ω) ⊆ C × C:(X , ω) is a left Frobenius pair in C such that X∧ = C},

there is a one-to-one correspondence

Ψ̃IP : C̃IP(C) −→ F̃IP(C) given by (A,B) �→ (A,A ∩ B)

with inverse

Φ̃IP : F̃IP(C) −→ C̃IP(C) given by (X , ω) �→ (X , ω∧).

Proof 1. Let us check that the mapping Ω̃IP is well defined. It suffices to show that
(⊥G,G) is indeed a cotorsion pair in C for any G ∈ G̃IP(C) with Thick(⊥G) = C.
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The fact that (⊥G,G) is complete and hereditary will follow from the hypothesis
that C has enough projectives and injectives, and from the properties of G.
First, note that the subcategories ⊥G and G are left thick and right thick, respec-
tively, where G ⊆ C = (⊥G)∧ since G ⊆ Inj∞(C) and C is an IP-finite category.
On the one hand, ⊥G∩G is clearly a ⊥G-injective relative cogenerator in ⊥G. Thus,
using Theorem 2.16 we have that the equality G = (⊥G)∧ ∩ (⊥G)⊥1 = (⊥G)⊥1 ,
that is, (⊥G,G) is a cotorsion pair in C. On the other hand, Theorem 2.11 implies
that that (⊥G)∧ = Thick(⊥G).

2. The containments P̃IP(C) ⊇ C̃IP(C) and P̃IP(C) ⊆ C̃IP(C) follow by Proposi-
tion 5.5 and Theorem 5.8, respectively.

3. Finally, it is not hard to see that the mappings Φ̃AR and Ψ̃AR are well defined and
inverse to each other.

��
Remark 5.21 Consider the category mod(Λ) of finitely generated left modules over
an Artin algebraΛ. In [3, Propositions 5.3, 5.5], Auslander and Reiten proved that if G
is a coresolving and pre-enveloping subcategory ofmod(Λ), closed under direct sum-
mands in mod(Λ), and ⊥G is the associated resolving and pre-covering subcategory
of mod(Λ), then (⊥G)∧ = mod(Λ) if and only if G ⊆ inj∞(Λ).

The following result is a categorical version of Theorem 5.17. It is a consequence
of Proposition 5.20 and Corollary 5.15. Recall from Corollary 5.15 the definitions of
the classes P̃(C) and G̃(C).

Corollary 5.22 Let C be an IP-finite and Krull–Schmidt category. Then, the following
conditions hold true:

1. P̃IP(C) = P̃(C).
2. There exists a one-to-one correspondence between the classes G̃IP(C) and G̃(C).

Proof By Corollary 5.15 and Proposition 5.20, we have already established one-to-
one correspondences G̃IP(C) ↔ P̃IP(C) and P̃(C) ↔ G̃(C). On the other hand, it is
clear that P̃(C) ⊆ P̃IP(C), while the remaining inclusion P̃IP(C) ⊆ P̃(C) holds by
Proposition 5.12 and its dual, by setting S := C. Hence, 1. and 2. follow. ��

The following result gives us a characterization of perfect and hereditary cotorsion
pairs inmod(Λ) as cotilting cotorsion pairs, as a consequence of Corollary 5.22.

Corollary 5.23 Let Λ be an Artin R-algebra. Then, a cotorsion pair (F ,G) in
mod(Λ) is perfect and hereditary with F∧ = mod(Λ) if, and only if, it is of the
form (⊥C, (⊥C)⊥) for some finitely generated cotilting Λ-module C. Moreover, for
every finitely generated cotiltingΛ-module C, one has the equalityadd(C)∧ = (⊥C)⊥
in mod(Λ).

5.5 Strong Frobenius pairs vs. Hovey triples vs. AB model structures

We devote the last part of this section to complement the correspondences studied
before, now involving theABmodel structures in the interplay.We restrict out attention
to the following subclass of F,
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sF :=
{
(X , ω) ⊆ C × C : (X , ω) is a strong left Frobenius pair in C

such that Proj(C) ⊆ X∧
}

,

and show how this class is in one-to-one correspondencewith theABmodel structures.

Proposition 5.24 Let C be an abelian category with enough projectives. If (X , ω) is
a strong left Frobenius pair in C with Proj(C) ⊆ X∧, then the X∧-cotorsion pairs
(X , ω∧) and (ω,X∧) in C are both left strongly hereditary in C.

Proof By Proposition 4.6, we already know that (X , ω∧) and (ω,X∧) are hereditary
X∧-cotorsion pairs in C. On the one hand, by Proposition 3.10 we have Proj(C) =
Proj(X∧). On the other hand, Proj(X∧) ⊆ X , ω. Hence, Proj(C) ⊆ X , ω. The fact
that X and ω are resolving in C follows by Remark 3.11. ��

Consider the following class:

T :=
⎧
⎨

⎩(X , ω) ⊆ C × C :
ω ⊆ X is closed under direct summands in X ,

X∧ is an exact subcategory of C, and (X , ω∧,X∧)

is a left strongly hereditary Hovey triple in X∧

⎫
⎬

⎭ .

In the next lines, we prove that the classes sF and T coincide. We begin with the
following property of Hovey triples.

Proposition 5.25 Let C be an abelian category with enough projectives, and S ⊆ C
be a thick subcategory of C. If (F ,W,S) is a left strongly hereditary Hovey triple in
S, then (F ,F ∩ W) is a strong left Frobenius pair in C where F ∩ W = Proj(C).

Proof Set ω := F ∩ W . By hypothesis, (F ,W) is a left strongly hereditary S-
cotorsion pair in C. Now by part 2. in Theorem 3.12, (F , ω) is a left Frobenius pair
in C. On the other hand, by condition 3. in Proposition 3.5 applied to the S-cotorsion
pair (ω,S), we have that for every F ∈ F ⊆ S there exists a short exact sequence

0 → F ′ → W → F → 0

where W ∈ ω and F ′ ∈ S. Using that F is closed under kernels of epimorphisms
between its objects, we have F ′ ∈ F . It follows that ω is a relative generator in F .
It is only left to show pdF (ω) = 0 in order to conclude that (F , ω) is a strong left
Frobenius pair in C. This will follow after proving F ∩ W = Proj(C).

From the left strongly hereditary S-cotorsion pair (ω,S) in C, it is clear that
ω = Proj(S). On the other hand, since C has enough projectives, we have by Propo-
sition 3.10 that Proj(S) = Proj(C). Therefore, the result follows. ��
Remark 5.26 The previous proposition is also valid if we replace S by an exact sub-
category E ⊆ C. However, it is stated and proven in terms of S due to the simplicity
of its proof and the purposes of this paper.
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Theorem 5.27 The equality sF = T holds true in any abelian category C with enough
projectives.

Proof Let (X , ω) ∈ sF, that is, (X , ω) is a strong left Frobenius pair in C such that
Proj(C) ⊆ X∧. By Proposition 5.24, the X∧-cotorsion pairs (X , ω∧) and (ω,X∧) =
(X ∩ ω∧,X∧) are left strongly hereditary. Then the Hovey triple (X , ω∧,X∧) is left
strongly hereditary, and hence (X , ω) ∈ T.

Now let (X , ω) ∈ T, that is, (X , ω∧,X∧) is a left strong hereditary Hovey triple in
the exact category X∧ such that ω ⊆ X is closed under direct summands in X . Then
by Proposition 5.25, we have that (X ,X ∩ ω∧) is a strong left Frobenius pair in C.
It is only left to show that ω = X ∩ ω∧. The inclusion ω ⊆ X ∩ ω∧ is clear. Now
suppose X ∈ X ∩ ω∧. Since X ∈ ω∧, there exists a short exact sequence

0 → W ′ → W → X → 0

with W ∈ ω and W ′ ∈ ω∧. On the other hand, X ∈ X and (X , ω∧) is a cotorsion pair
in X∧, and so the previous sequence splits (as a short exact sequence in X∧), which
implies that X is a direct summand of W ∈ ω, and so X ∈ ω. Therefore,X ∩ω∧ ⊆ ω.

��
The following result is a consequence of Proposition 5.25 and Theorem 5.27.

Corollary 5.28 Let (X , ω) be a strong left Frobenius pair in an abelian category C
with enough projectives. If Proj(C) ⊆ X∧, then ω = Proj(C).

To conclude this section, we show that there exists a one-to-one correspondence
between sF = T and the following collection of exact model structures:

M :=
⎧
⎨

⎩(S,M) :
S is a thick subcategory of C and M = (Q, T ,R) is
a projective exact model structure on S such that Q is
resolving in C, and T ⊆ Q∧

⎫
⎬

⎭ .

Theorem 5.29 Let C be an abelian category with enough projectives. Then, the map-
ping

Ξ : sF −→ M given by (X , ω) �→ (X∧,Mproj
AB (X , ω))

defines a one-to-one correspondence, with inverse

Γ : M −→ sF given by (S,M) �→ (Q,Q ∩ T ).

Proof First, note that the map Ξ is well defined since the exact model structure
Mproj

AB (X , ω) on X∧ is unique by Hovey–Gillespie correspondence. Also, we have
that X is resolving in C by Theorem 5.27.

We now check Γ is well defined. If M = (Q, T ,R) is a projective exact model
structure on S, then R = S, and by Hovey–Gillespie correspondence we have that
(Q, T ,S) is a Hovey triple. On the other hand, the cotorsion pair (Q ∩ T ,S) in
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S is clearly left hereditary in S, and (Q, T ) is also a left hereditary cotorsion pair
in S since Q is resolving in S. Since S is thick, we have Q and Q ∩ T are both
pre-resolving in C. In order to show that the Hovey triple (Q, T ,S) is left strongly
hereditary in S and apply Proposition 5.25 to conclude that (Q,Q∩T ) is a strong left
Frobenius pair in C, it is only left to show that Proj(C) ⊆ Q,Q ∩ T . By definition of
M, we haveProj(C) subseteqQ. On the other hand, by Proposition 3.10, we have that
Proj(C) = Proj(S), where Proj(S) = Q∩ T since the pair (Q∩ T ,S) is a cotorsion
pair in S. It follows that (Q,Q ∩ T ) ∈ sF.

Finally, to check that Ξ and Γ are inverse to each other, we first need to check the
equalities S = Q∧ and T = (Q ∩ T )∧, for every (S, (Q, T ,R)) ∈ M.

• To prove S = Q∧, note that we have Q∧ ⊆ S since S is thick. Now let S ∈ S.
Since the pair (Q, T ) is complete in S, there exists an exact sequence

0 → T → Q → S → 0

with Q ∈ Q and T ∈ T ⊆ Q∧. It follows that S ∈ Q∧.
• Now for the proof of T = (Q∩T )∧, note that (Q, T ) is aS-cotorsion pair in C and
that Q is revolving subcategory of C. Then, Q ∩ T ⊆ T = Q⊥1 ∩ S = Q⊥ ∩ S.
In particular, ExtiC(Q,Q ∩ S) = 0 for every i > 0. Thus, the hypothesis in
Proposition 2.13 hold for X := Q and ω := Q ∩ T . Therefore, (Q ∩ T )∧ =
Q⊥ ∩ Q∧ = Q⊥ ∩ S = T .

Thus, the equalitiesΞ◦Γ (S, (Q, T ,R)) = (Q∧,Mproj
AB (Q,Q∩T )) = (S, (Q, T ,S))

follow. Now if (X , ω) ∈ sF, we have that Γ ◦ Ξ(X , ω) = (X ,X ∩ ω∧) = (X , ω),
whereX ∩ω∧ = ω holds by Theorem 3.6. Therefore,Ξ ◦Γ = idM andΓ ◦Ξ = idsF.

��
We close this section by complementing the correspondence given in Theorem 5.4

for abelian categories with enough projectives, when we restrict to the subclass sF.

Corollary 5.30 Let C be an abelian category with enough projectives. Then, there
exists a one-to-one correspondence between the classes sF, M and

sP :=
{
(F ,G) ⊆ C × C : (F ,G) is a Thick(F)-cotorsion pair in C

with idF (G) = 0 and F ∩ G = Proj(C)

}
⊆ P.

Namely, the restriction of the mapping Φ from part 1. in Theorem 5.4 on sP defines
a one-to-one correspondence

sΦ := Φ|sF : sF −→ sP given by (X , ω) �→ (X , ω∧),

with inverse

sΨ := Ψ |sP : sP −→ sF given by (F ,G) �→ (F ,F ∩ G).

Proof ByTheorems 5.4 and 5.29, we only need prove that sΦ and sΨ are well defined.
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Consider (X , ω) ∈ sF ⊆ F. We show that Φ(X , ω) = (X , ω∧) ∈ sP. First, we
already know that (X , ω∧) is a X∧-cotorsion pair in C with idX (ω∧) = 0. On the
other hand, since C has enough projectives, we can apply Corollary 5.28 and obtain
X ∩ ω∧ = ω = Proj(C), thus proving (X , ω∧) ∈ sP.

Now let (F ,G) ∈ sP. On the one hand, we already know that Ψ (F ,G) = (F ,F ∩
G) is a left Frobenius pair in C. Then, it is only left to show that ω := F ∩ G is an
F-projective relative generator in F with Proj(C) ⊆ F∧. This follows by the facts
that F ∩ G = Proj(C), that C has enough projectives, and that F is pre-resolving and
closed under direct summands. ��

6 Examples in relative Gorenstein homological algebra

In this section, we present a series of examples in relative Gorenstein homological
algebra, in order to see the scope of the theory of Frobenius pairs and its connections
with model category theory and Auslander–Buchweitz contexts.

The following concept will comprise several types of Gorenstein modules. Let us
consider a class X of objects in an abelian category C. It is said that a chain complex
C = (Cm, ∂C

m : Cm → Cm−1)m∈Z of objects and morphisms in C is HomC(X ,−)-
acyclic if the induced complexHomC(X,C) = (HomR(X, Cm),HomC(X, ∂C

m ))m∈Z
of abelian groups and group homomorphisms is exact for any X ∈ X . There is also a
dual notion of HomC(−,X )-acyclic complexes.

6.1 A generalization of Gorenstein abelian model structures

Recall that an R-module M is Gorenstein projective if M = Z0(P) = Ker(∂ P
0 ) for

some HomR(−,Proj(R))-acyclic and exact complex P of projective R-modules. Let
us denote by GProj(R) the subcategory of Mod(R) formed by all the Gorenstein
projective R-modules.

It is easy to note from the previous definition that Proj(R) is a GProj(R)-injective
relative cogenerator in GProj(R). On the other hand, Proj(R) is clearly also a
GProj(R)-projective relative generator in GProj(R). Moreover, in Holm [27, The-
orem 2.5] it is proven thatGProj(R) is a resolving subcategory ofMod(R) that is also
closed under direct summands. Hence, we have the following result.

Proposition 6.1 (GProj(R),Proj(R)) is a strong left Frobenius pair in Mod(R), for
an arbitrary ring R.

Let us review some facts aboutGorenstein projective R-modules from the properties
of left Frobenius pairs applied to the pair (GProj(R),Proj(R)) from the previous
proposition.

• First, we note that the pair (Proj(R),GProj(R)) is not necessarily a right Frobenius
pair inMod(R), since GProj(R) is not coresolving in general. However, in some
particular cases one can assert that GProj(R) is closed under taking cokernels
of monomorphisms. Specifically, setting X := GProj(R) and ω := Proj(R) in
Corollary 2.9 gives another way to show Holm [27, Corollary 2.11]. That is, if
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0 → A → B → C → 0

is a short exact sequence inMod(R)with A, B ∈ GProj(R), andExt1R(C, P) = 0
for every projective R-module P , then C ∈ GProj(R).

• The pair (GProj(R),Proj(R)) satisfies the hypotheses in Proposition 2.7. So
part 1. implies that idGProj(R)(Proj(R)∧) = 0. Note also that Proj(R)∧ coin-
cides with the subcategory of R-modules with finite projective dimension. Thus,
we obtain the well known fact that if M is a Gorenstein projective R-module,
then ExtiR(M, W ) = 0 for every R-module W with finite projective dimension
and every integer i > 0. This property is also stated in Holm [27, Proposi-
tion 2.3]. On the other hand, part 2. of Proposition 2.7 implies another important
relation between the classes GProj(R) and Proj(R), namely, that Proj(R) =
GProj(R) ∩ Proj(R)∧. In other words, the projective dimension of a Gorenstein
projective R-module is either 0 or infinite. Thus, we have another proof of Enochs
and Jenda [14, Proposition 10.2.3]. These conclusions can also be obtained from
the exact category approach present ed by Beligiannis in [6, Theorem 4.3].

• Using Theorem 2.11 and the fact that (GProj(R),Proj(R)) is a left Frobenius
pair in Mod(R), we have that GProj(R)∧ is a thick subcategory of Mod(R).
Recall from Enochs and Jenda [14, Chapter XI] that the Gorenstein projective
dimension of an R-module M is defined as Gpd(M) := resdimGProj(R)(M).
So GProj(R)∧ is precisely the subcategory of Mod(R) formed by the modules
with finite Gorenstein projective dimension. In the case where R is an Iwanaga–
Gorenstein ring (that is, R is a two-sided noetherian ring with finite self-injective
dimension at both sides) it is known that (GProj(R),Proj(R)∧) is a complete
cotorsion pair inMod(R). One way to see this is noticing that for such R one has
GProj(R)∧ = Mod(R), and then apply Theorem 2.8.

• Certain homological dimensions are defined as projective or injective dimensions
relative to a certain subcategory of modules, such as the FP-injective (or absolutely
pure) dimension. There are others, such as theGorenstein projective dimension just
mentioned, which are defined as a resolution dimension relative to a subcategory
of modules. In the former case, the FP-injective dimension cannot be expressed as
a coresolution dimension, unless we assume R is a coherent ring. This is not an
inconvenience for the Gorenstein projective dimension, as indicated in Holm [27,
Theorem 2.20]. This result can be obtained as a consequence of Theorem 2.10.
Specifically, if we are given an R-module M with finite Gorenstein projective
dimension, then

Gpd(M) = pdProj(R)(M) = pdProj(R)∧(M).

In other words, we have that the following conditions are equivalent for every
n ≥ 0:
(a) Gpd(M) ≤ n.
(b) ExtiR(M, L) = 0 for every i > n and every R-module L such thatpd(L) < ∞.
(c) ExtiR(M, P) = 0 for every i > n and every projective R-module P .
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Concerning cotorsion pairs and model structures involving the classGProj(R), we
have by Proposition 6.1 andTheorems 3.6 and 3.7 that the pairs (GProj(R),Proj(R)∧)

and (Proj(R),GProj(R)∧) areGProj(R)∧-cotorsion pairs inMod(R). These pairs are
not in general right strongly hereditary, since the inclusions Inj(R) ⊆ GProj(R)∧ and
Inj(R) ⊆ Proj(R)∧ are not necessarily true. However, note that these pairs are (left and
right) hereditary as cotorsion pairs in the exact subcategory GProj(R)∧ ⊆ Mod(R).
Moreover, these two notions of hereditary cotorsion pairs coincide in the case R
is an Iwanaga–Gorenstein ring, where the equalities GProj(R)∧ = Mod(R) and
Proj(R)∧ = Inj(R)∨ hold. Then, we have another way to obtain Enochs and Jenda
[14,Remark 11.5.10].Namely, ifGProj(R)∧ = Mod(R), then (GProj(R),Proj(R)∧)

is a hereditary complete cotorsion pair inMod(R).
We close our summary of Gorenstein homological algebra presenting an example

of Auslander–Buchweitz model structures, which turns out to be a generalization of a
well known projective abelian model structure on Mod(R).

From the strong left Frobenius pair (GProj(R),Proj(R)) in Mod(R), we obtain
the projective AB model structure

Mproj
AB (GProj(R),Proj(R)) = (GProj(R),Proj(R)∧,GProj(R)∧)

on the subcategoryGProj(R)∧ ⊆ Mod(R). This model structure generalizes Hovey’s
projective abelian model structure [32, Theorem 8.6] on Mod(R), in the case where
R is an Iwanaga–Gorenstein ring. Notice we have not imposed any condition on the
ground ring R in order to getMproj

AB (GProj(R),Proj(R)). However, we do not get an
abelian but an exact model structure onGProj(R)∧, an exact subcategory ofMod(R).
On the other hand, we have alreadymentioned that if R is an Iwanaga–Gorenstein ring,
thenGProj(R)∧ coincides withMod(R), and in this case,Mproj

AB (GProj(R),Proj(R))

is precisely the abelian model structure described in [32, Theorem 8.6].
Now consider the homotopy category HoprojAB (GProj(R)∧) of Mproj

AB (GProj(R),

Proj(R)). By Proposition 4.10, we have that two morphisms f, g : X → Y in
GProj(R)∧ are homotopic if, and only if, their difference g − f factors through
a projective module. The homotopy category of this model structure is the projec-
tive stable module category GProj(R)/ ∼, which is also the homotopy category of
the Hovey’s projective abelian model structure (GProj(R),Proj(R)∧,Mod(R)) on
Mod(R), when R is an Iwanaga–Gorenstein ring (see [32, Sect. 9]). This stable mod-
ule category coincides with the usual stable module category Stmod(R) in the case
where R is a quasi-Frobenius ring, that is, a 0-Iwanaga–Gorenstein ring. The latter is a
well known example of a Frobenius category. In the case R is arbitrary, another exam-
ple of such categories is given byGProj(R). As amatter of fact,GProj(R) = Mod(R)

if R is quasi-Frobenius. It follows that there is a unique Frobenius model structure
on GProj(R) with Proj(R) as the subcategory of trivial objects, which can also be
obtained by setting C := Mod(R), X := GProj(R) and ω := Proj(R) in Proposi-
tion 4.8.

Note that we can follow a dual approach to the previous results and comments,
by considering the strong right Frobenius pair (Inj(R),GInj(R)) in Mod(R), where
GInj(R) denotes the category of Gorenstein injective R-modules. The correspond-
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ing injective AB model structure Minj
AB(Inj(R),GInj(R)) := (GInj(R)∨, Inj(R)∨,

GInj(R)) on GInj(R)∨, coincides with Hovey’s injective model structure [32, Theo-
rem 8.6] in the case where R is an Iwanaga–Gorenstein ring.

6.2 Left Frobenius pairs from Gorenstein subcategories

This example represents a slight generalization of the previous one and is motivated
by the paper entitled “Stability of Gorenstein categories” by Sather-Wagstaff et al.
[43]. We will show that (G(ω), ω) is a strong left Frobenius pair in an abelian category
C. Here, ω is a subcategory of C satisfying a series of conditions specified below,
and G(ω) denotes the Gorenstein subcategory associated to ω, defined as the class
of objects M ∈ C such that M � CoKer(∂W

1 ) for some HomC(ω,−)-acyclic and
HomC(−, ω)-acyclic chain complex W such that Wm ∈ ω for every integer m ∈ Z.

We list from [43] some conditions on ω that make (G(ω), ω) into a strong left
Frobenius pair in C. First, by [43, Corollaries 4.5, 4.7, and Proposition 4.11] we have
that if ExtiC(ω, ω) = 0 for every integer i ≥ 1, then G(ω) is closed under extensions
and direct summands, and ω is a G(ω)-injective relative cogenerator and a G(ω)-
projective relative generator in G(ω). If in addition ω is closed under taking kernels of
epimorphisms between its objects, by [43, Theorem 4.12] we have the same closure
property for G(ω).

Proposition 6.2 Let ω be a class of objects in an abelian category C that is closed
under direct summands and under taking kernels of epimorphisms between its objects,
and such that ExtiC(ω, ω) = 0 for every integer i ≥ 1. Then, (G(ω), ω) is a strong left
Frobenius pair in C.

We can deduce several properties from the previous result, complementing thus
the properties of Gorenstein subcategories already discovered in [43]. Suppose ω is
a class of objects in C satisfying the hypotheses of the previous proposition. First,
we know by Propositions 2.7, 2.13 and 2.14 the following interactions between the
classes G(ω) and ω.

Proposition 6.3 Let ω be a class of objects in C satisfying the conditions in Proposi-
tion 6.2. Then, the following conditions hold true:

1. ω = G(ω) ∩ ω∧ = G(ω) ∩ ω∨.
2. G(ω)∧ ∩ ⊥ω = G(ω) = G(ω)∧ ∩ ⊥(ω∧).
3. ω∧ = G(ω)⊥ ∩ G(ω)∧.

Concerning cotorsion pairs and exact model structures, we have the following result
from Theorem 4.1 and Proposition 4.10.

Proposition 6.4 Let ω be a class of objects in C satisfying the conditions in Proposi-
tion 6.2. Then, (G(ω), ω∧) and (ω,G(ω)∧) are complete cotorsion pairs in the exact
subcategory G(ω)∧. Moreover, there exists a unique exact model structure on G(ω)∧
given by the Hovey triple

Mproj
AB (G(ω), ω) := (G(ω), ω∧,G(ω)∧),
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whose homotopy category is equivalent to the stable category G(ω)/ ∼.

In what remains of this example, let R be a commutative noetherian ring, so that the
category mod(R) of finitely generated R-modules is abelian. We apply the previous
result in order to obtain finitely generated versions of the Frobenius model structure
(see [31, Sect. 2.2] or Example 4.9 setting E := Mod(R) with R a quasi-Frobenius
ring) and the Gorenstein projective model structure (see [32, Theorem 8.6]).

Let proj(R) denote the class of finitely generated projective R-modules. It is an
easy exercise to note that proj(R) is closed under direct summands and under kernels
of epimorphisms in proj(R), while the condition ExtiR(proj(R),proj(R)) = 0 is clear
for every integer i > 0. Thus, by Proposition 6.4 we have the exact model structure

Mproj
AB (G(proj(R)),proj(R)) := (G(proj(R)),proj(R)∧,G(proj(R))∧)

onG(proj(R))∧ from the strong left Frobenius pair (G(proj(R)),proj(R)) inMod(R).
Moreover, by [47, Proposition 1.4] we have that G(proj(R)) = GProj(R) ∩mod(R),
and so the existence ofMproj

AB (G(proj(R)),proj(R)) represents somehowHovey’s [32,
Theorem 8.6] in the context of finitely generated modules.

Remark 6.5 If in addition R is a local nonregular Iwanaga–Gorenstein artinian
ring, we have by [43, Example 5.7] that G(proj(R)) = mod(R). Then, by Propo-
sition 6.4, we have the Frobenius model structure Mproj

AB (mod(R),proj(R)) :=
(mod(R),proj(R)∧,mod(R)) onmod(R). Note in this case, by Proposition 6.3, that
proj(R) = proj(R)∧. In particular, the (left) little finitistic dimension of R, defined as
the value

fin.dim(R) := sup{pd(M) : M ∈ mod(R) with pd(M) < ∞},

is zero. By a result due to Bass and Foxby [5,17], we have that R is a self-injective
ring. This in turn implies that R must be a 0-Iwanaga–Gorenstein ring, and so, R is a
quasi-Frobenius ring by [14, Theorem 9.1.10]. On the other hand, using Matsumura’s
[36, Theorem 19.2], we also have that R has infinite global dimension. The following
characterization holds.

Corollary 6.6 Let R be a local commutative ring. Then, the following conditions are
equivalent.

(a) R is nonregular Iwanaga–Gorenstein and artinian.
(b) R is quasi-Frobenius with infinite global dimension.

Moreover, if one of the above conditions holds, then fin.dim(R) = 0.

6.3 Exact model structures from Gorenstein modules relative to duality pairs

We construct examples of Frobenius pairs involving relativizations of Gorenstein pro-
jective and Gorenstein injective modules with respect to duality pairs, a concept due
to Holm and Jørgensen [30]. Two classes L ⊆ Mod(R) and R ⊆ Mod(Rop) form a
duality pair (L,R) over R if the following two conditions hold:
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1. L ∈ L if, and only if, L+ ∈ R, where L+ := HomR(L ,Q/Z).
2. R is closed under direct summands and finite direct sums.

If in addition,L contains R and is closed under coproducts and extensions, then (L,R)

is said to be a perfect duality pair. One can also interchange the roles of the classes L
and R and say that (R,L) is a (perfect) duality pair over R.

For the relative versions of Gorenstein modules, one considers a particular type of
duality pairs firstly studied by Bravo, Gillespie and Hovey in [10, Appendix A] in the
context of model structures. Namely, a symmetric duality pair over R is given by a
pair of classes {L,R} with L ⊆ Mod(R) and R ⊆ Mod(Rop) such that (L,R) and
(R,L) are duality pairs over R. If in addition (L,R) is perfect, then the symmetric
duality pair {L,R} is said to be complete.

Example 6.7 1. By Enochs and Jenda [14, Sect. 3.2], if R is a right coherent ring,
then we can note that {Flat(R), Inj(Rop)} is a complete duality pair over R, where
Flat(R) denotes the class of flat R-modules. By [16], we can assert that the same
holds for the pair {Flat(R),FP-Inj(Rop)}, where FP-Inj(Rop) denotes the class of
FP-injective (or absolutely pure) right R-modules (see Stenström [45]).

2. Let us recall the notions of level and FP∞-injective R-modules introduced in [10,
Definition 2.6]. These are flat and injective R-modules relative to modules of type
FP∞. Specifically, an R-module Q is of type FP∞ if there is an exact sequence

· · · → F1 → F0 → Q → 0

where Fk is finitely generated and free, for every k ≥ 0 (see [10, Definition 2.2]).
Then, an R-module E is FP∞-injective (or absolutely clean) if Ext1R(Q, E) = 0
for every R-module Q of type FP∞. Similarly, an R-module L is level if
TorR

1 (Q, L) = 0 for every right R-module Q of typeFP∞. Let us denote byLev(R)

and FP∞-Inj(R) the classes of level and FP∞-injective R-modules, respectively.
In [10], it is proved that {Lev(R),FP∞-Inj(R op)} is a complete duality pair over
R.

Gorenstein modules relative to duality pairs were recently introduced by Gillespie
in [21, Definitions 4.1, 4.2]. Let {L,R} be a complete duality pair over R. An R-
module M is Gorenstein (L,R)-projective if M = Z0(P) for some exact complex P
of projective R-modules that is also HomR(−,L)-acyclic. There is a dual notion of
Gorenstein (L,R)-injective R-modules, defined as cycles of exact andHomR(R,−)-
acyclic complexes of injective right R-modules. Let us denote these classes ofmodules
by GProj(L,R)(R) and GInj(L,R)(Rop).

Example 6.8 1. If we set L := Flat(R) and R := FP-Inj(Rop) in the definition
of Gorenstein (L,R)-projective and (L,R)-injective modules, we obtain the
concepts of Ding-projective left R-modules and Ding-injective right R-modules,
introduced by Gillespie in [18, Definitions 3.2, 3.7]. Although we need R to be
a right coherent ring so that the pair {Flat(R),FP-Inj(Rop)} can be a complete
duality pair, these concepts hold for any arbitrary ring R.
Ding projective and Ding injective modules are generalizations of Gorenstein pro-
jective and Gorenstein injective modules, respectively. If we denote by DProj(R)
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the class of Ding projective left R-modules and by DInj(Rop) the class of Ding
injective right R-modules, it is clear thatDProj(R) ⊆ GProj(R) andDInj(Rop) ⊆
GInj(Rop), although the converse containments do not necessarily hold true for
arbitrary rings. So far it is known from Gillespie [18, Remarks 3.3, 3.8] that
DProj(R) = GProj(R) when R is a Gorenstein ring, and DInj(Rop) = GInj(Rop)

when R is noetherian.
2. Further generalizations of Gorenstein projective and Gorenstein injective mod-

ules, that cover Ding projective and Ding injective modules, were defined by
Bravo, Gillespie and Hovey in [10, Sects. 5, 8]. They are known as Gorenstein
AC-projective and Gorenstein AC-injective (left and right) R-modules, and are
obtained after setting L := Lev(R) and R := FP∞-Inj(Rop) in the definition of
Gorenstein (L,R)-projective and (L,R)-injective modules. In what follows, we
denote byGProjAC(R) the class of Gorenstein AC-projective left R-modules, and
by GInjAC(Rop) the class of Gorenstein AC-injective right R-modules.

Remark 6.9 Gorenstein-projective R-modules are an example of what Beligiannis
[6, Definition 2.12] calls X -Gorenstein objects, if we set X := Proj(R). However,
this general approach cannot be applied to either Ding-projective or Gorenstein AC-
projective R-modules.

Let us check how GProj(L,R)(R) is part of a left Frobenius pair.

Proposition 6.10 The pair (GProj(L,R)(R),Proj(R)) is a strong left Frobenius pair
in Mod(R) for every complete duality pair {L,R} over R.

Proof By the projective version of [21, Lemma 4.5], we have that the class
GProj(L,R)(R) is left thick. The rest of the conditions in Definition 2.5 are imme-

diate. We only mention that ExtiR(M, P) = 0 holds for every M ∈ GProj(L,R)(R),
P ∈ Proj(R) and every integer i > 0, since Proj(R) ⊆ L by [21, Proposition 2.3]. ��

As a consequence of Theorem 4.1 and Proposition 4.10, we have an exact projective
model structure on GProj(L,R)(R)∧ given by

Mproj
AB (GProj(L,R)(R),Proj(R)) = (GProj(L,R)(R),Proj(R)∧,GProj(L,R)(R)∧),

whose homotopy category is equivalent to the stable category GProj(L,R)(R)/ ∼.
Let us comment some applications derived from Example 6.8 and concerning the

works [10,18] by Bravo, Gillespie and Hovey. First, we have the following conse-
quence of Proposition 6.10.

Corollary 6.11 For every arbitrary ring R, (GProjAC(R),Proj(R)) is a strong left
Frobenius pair in Mod(R).

Although another immediate consequence of Proposition 6.10 and Examples 6.7
and 6.8 is that (DProj(R),Proj(R)) is a strong left Frobenius pair if R is a right
coherent ring, this can be proved for any arbitrary ring by using a similar reasoning
as in Sect. 6.1. In fact, the results from Holm [27] we cited in Sect. 6.1, along with
the arguments proving them, carry over to the subcategoriesDProj(R) andDInj(Rop).
We have the following result.
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Proposition 6.12 For any arbitrary ring R, (DProj(R),Proj(R)) is a strong left
Frobenius pair in Mod(R).

From the definition of Ding-projective R-modules, one could be tempted to set
ω := Flat(R) and assert incorrectly that (DProj(R),Flat(R)) is a left Frobenius pair
inMod(R). For, one can note that the pair (DProj(R),Flat(R)) satisfies almost all of
the conditions in Definition 2.5. Specifically, (DProj(R),Flat(R)) is a left Frobenius
pair in Mod(R) if, and only if, the inclusion Flat(R) ⊆ DProj(R) holds true. In
[18, Proposition 3.8] it is proven that a Ding projective R-module is either projective
or has infinite flat dimension, that is, the equality Proj(R) = DProj(R) ∩ Flat(R)∧
holds. It follows that non-projective flat modules are not Ding projective, and so the
containment Flat(R) ⊆ DProj(R) is not necessarily true. For this reason, we have
set ω := Proj(R) instead of ω := Flat(R) in order to obtain the left Frobenius pair
(DProj(R),Proj(R)). However, we can get the following characterization of perfect
rings in terms of the pair (DProj(R),Flat(R)).

Proposition 6.13 Let R be an arbitrary ring. Then, R is left perfect if, and only if, the
pair (DProj(R),Flat(R)) is a left Frobenius pair in Mod(R).

Proof The “only if” part is clear since Flat(R) = Proj(R) holds for every perfect ring
R.

Now let us assume that (DProj(R),Flat(R)) is a left Frobenius pair in Mod(R)

and let F ∈ Flat(R). On the one hand, since F is Ding projective, we have that there
is a short exact sequence

0 → F → P → M → 0

where P is projective and M is Ding projective. On the other hand, since
idDProj(R)(Flat(R)) = 0 by Gillespie [18, Lemma 3.9]), we have that this sequence
splits and so F is a direct summand of the projective R-module P . It follows that every
flat R-module is projective, and hence R is a left perfect ring. ��

With respect to relative cotorsion pairs, we obtain from Proposition 6.12 and The-
orems 3.6 and 3.7 (not necessarily strongly) hereditary DProj(R)∧-cotorsion pairs
in Mod(R) of the form (DProj(R),Proj(R)∧) and (Proj(R),DProj(R)∧), where
DProj(R)∧ is the subcategory of R-modules with finite Ding projective dimension
(defined as the DProj(R)-resolution dimension). In the case where R is a Ding–Chen
ring, Gillespie obtained in [18, Proof of Theorem 4.7] another cotorsion pair involving
the classDProj(R). Recall first from [18, Definition 4.1] that a ring R is a Ding–Chen
ring if R is both left and right coherent and the FP-injective dimensions of R as a
left and right R-module coincide. For such rings, Gillespie constructed in [18, Proof
of Theorem 4.7] a complete and hereditary cotorsion pair (DProj(R),Flat(R)∧) in
Mod(R).

At this point, we can note a difference between the study of Gorenstein homological
algebra andDing–Chen homological algebra from the point of view of Frobenius pairs.
Namely:
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• We are not aware if the DProj(R)∧-cotorsion pair (DProj(R),Proj(R)∧) and the
cotorsion pair (DProj(R),Flat(R)∧) inMod(R) coincide when R is a Ding–Chen
ring. It is known that for such rings, Flat(R)∧ coincides with the class FP-Inj(R)∨
of R-moduleswith finite FP-injective dimension, butwe do not know if the equality
Flat(R)∧ = Proj(R)∧ holds in this case. Another inconvenience is that we do not
know if DProj(R)∧ = Mod(R) when R is a Ding–Chen ring.

Open problem 6.14 In the case R is a Ding–Chen ring, do the equalities Flat(R)∧ =
Proj(R)∧, DProj(R)∧ = Mod(R) and DProj(R)∧ = DInj(R)∨ hold true?

• For an arbitrary ring R, the strong left Frobenius pair (DProj(R),Proj(R)) in
Mod(R) yields the projective AB model structure

Mproj
AB (DProj(R),Proj(R)) = (DProj(R),Proj(R)∧,DProj(R)∧)

on DProj(R)∧. In the case where R is a Ding–Chen ring, there is an abelian
model structure (DProj(R),Flat(R)∧,Mod(R)) on Mod(R) found by Gillespie
in [18, Theorem 4.7]. For such rings, we are not aware if the latter model structure
coincide with the exact structure Mproj

AB (DProj(R),Proj(R)). That would be the
case if Problem 6.14 had a positive answer.
Dually, there exists a unique exact model structure

Minj
AB(Inj(R),DInj(R)) := (DInj(R)∨, Inj(R)∨,DInj(R))

onDInj(R)∨ obtained from the right Frobenius pair (Inj(R),DInj(R)) inMod(R).
This structure generalizes Gillespie’s injective model structure [18, Theorem 4.7]
in case there were a positive answer for the dual of Problem 6.14.

Regarding the subcategory GProjAC(R), we obtain from Corollary 6.11 and
Theorems 3.6 and 3.7 two hereditary GProjAC(R)∧-cotorsion pairs (GProjAC(R),

Proj(R)∧) and (Proj(R),GProjAC(R)∧) in Mod(R), which produce the projective
model structure

Mproj
AB (GProjAC(R),Proj(R)) = (GProjAC(R),Proj(R)∧,GProjAC(R)∧)

on GProjAC(R)∧. Let us compare this structure with the abelian Gorenstein AC-
projective model structure on Mod(R) (with R an arbitrary ring) described in [10,
Theorem 8.5]. For the latter model structure, the subcategory of trivial objects has a
description (see [10, Lemma 5.4]) that is not necessarily the same that the one given
above for the structureMproj

AB (GProjAC(R),Proj(R)). On the other hand, the authors
are not aware if the subcategory GProjAC(R)∧ coincides with the whole category
Mod(R) for an arbitrary ring R. If this turned out to be true, we would know another
way to obtain the abelian Gorenstein AC-projective model structure.

Open problem 6.15 Let R be a ring. Under which conditions on R do the following
statements hold true?
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1. Mod(R) = GProjAC(R)∧.
2. Any R-module has finite Gorenstein AC-projective dimension if, and only if, it has

finite Gorenstein AC-injective dimension.

The homotopy category of the AB model structure Mproj
AB (GProjAC(R),Proj(R))

is exactly the homotopy category obtained in [10, Theorem 8.7]. So we can say that
the model Mproj

AB (GProjAC(R),Proj(R)) and the Gorenstein AC-projective model
structure “coincide” in the sense that they have the same homotopy category.

Remark 6.16 The model structures Mproj
AB (GProj(R),Proj(R)), Mproj

AB (DProj(R),

Proj(R)) andMproj
AB (GProjAC(R),Proj(R)) can also be obtained from Corollary 4.4.

Dually, one can obtain the injective AB model structure

Minj
AB(Inj(R),GInjAC(R)) = (GInjAC(R)∨, Inj(R),GInjAC(R))

on GInjAC(R)∨, with the same homotopy category as the Gorenstein AC-injective
model structure in [10, Theorem 5.5].

6.4 Frobenius pairs from Gorenstein flat modules

In this last example, we will show that the class GFlat(R) of Gorenstein flat R-
modules, and the class Flat(R)∩ (Flat(R))⊥1 of flat-cotorsion R-modules form a left
Frobenius pair inMod(R), under the assumption that R is a GF-closed ring.

Let us recall that an R-module M is Gorenstein flat if M = Z0(F) where F is an
exact complex of flat R-modules such that I ⊗R F is an exact complex of abelian
groups for every injective right R-module I ∈ Inj(Rop). For the latter condition,
one says that the complex F is (Inj(Rop) ⊗R −)-acyclic. Nowadays, it is an open
problem to determine if the class GFlat(R) is always closed under extensions. Some
advances in this direction are achieved by D. Bennis in [8], where he introduces the
concept of (left) GF-closed rings, that is, rings R such that GFlat(R) is closed under
extensions. Examples of such rings include right coherent rings and rings with finite
weak dimension (see [8, Proposition 2.2]). Moreover, in [8, Example 3.6] Bennis
constructs an example of a GF-closed ring that is not right coherent and with weak
dimension equal to ∞.

The goal of this section is to show the following characterization of GF-closed
rings.

Proposition 6.17 A ring R is GF-closed if, and only if, (GFlat(R),Flat(R) ∩
(Flat(R))⊥1) is a left Frobenius pair in Mod(R).

Proof The “if” part is clear, so let us assume that R is a GF-closed ring for the rest
of this section. Thus, the first implication is thatGFlat(R) is closed under extensions.
Now applying [8, Theorem 2.3], this is equivalent to saying thatGFlat(R) is resolving.
On the other hand, by [8, Corollary 2.6], we have that GFlat(R) is also closed under
direct summands, while the same property is clearly satisfied by the class Flat(R) ∩
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(Flat(R))⊥1 of flat-cotorsionmodules. In order to conclude that (GFlat(R),Flat(R)∩
(Flat(R))⊥1) is a left Frobenius pair inMod(R), it is only left to show that Flat(R) ∩
(Flat(R))⊥1 is a GFlat(R)-injective relative cogenerator in GFlat(R).

First, we show that ExtiR(M, W ) = 0 for every M ∈ GFlat(R), W ∈ Flat(R) ∩
(Flat(R))⊥1 and i > 0. We only argument the case i = 1, as the rest follows
inductively. We have that there is an exact complex F of flat R-modules with
M = Z0(F) and such that I ⊗R F is an exact complex of abelian groups for every
I ∈ Inj(Rop). By [38, Theorem 4.18], the latter condition is equivalent to saying that
F is HomR(−,Flat(R) ∩ (Flat(R))⊥1)-acyclic. Thus, we can assert that there exists
a short exact sequence

η : 0 → M ′ → F → M → 0

with M ′ ∈ GFlat(R) and F ∈ Flat(R) such that HomR(η, W ) is exact. Using this
along with the fact that Ext1R(F, W ) = 0, we can get an exact sequence

0 → HomR(M, W ) → HomR(F, W )
ϕ−→ HomR(M ′, W ) → Ext1R(M, W ) → 0

where the morphism ϕ is surjective. It follows that Ext1R(M, W ) = 0. Therefore, we
can conclude that idGFlat(R)(Flat(R) ∩ (Flat(R))⊥1) = 0.

Nowconsider again M ∈ GFlat(R). On the one hand, there is a short exact sequence

0 → M → F → M ′ → 0

with F ∈ Flat(R) and M ′ ∈ GFlat(R). On the other hand, for F ∈ Flat(R) we can
consider another short exact sequence

0 → F → C → F ′ → 0

with F ′ ∈ Flat(R) and C ∈ (Flat(R))⊥1 . An standard argument shows that taking the
pushout of C ← F → M ′ yields a short exact sequence

0 → M → C → N → 0,

where C ∈ Flat(R) ∩ (Flat(R))⊥1 since Flat(R) is closed under extensions, and
N ∈ GFlat(R) by [8, Lemma 2.5]. Hence, the existence of this sequence implies that
Flat(R) ∩ (Flat(R))⊥1 is a relative cogenerator in GFlat(R). ��

The authors are not aware if Flat(R) ∩ (Flat(R))⊥1 is a GFlat(R)-projective rela-
tive generator inGFlat(R), so we cannot assert the existence of a projective ABmodel
structure onGFlat(R)∧ with R a GF-closed ring. However, there is already an abelian
model structure on Mod(R), called the Gorenstein flat model structure, where the
(trivially) cofibrant objects are given by the class GFlat(R) (resp., Flat(R)) and the
(trivially) fibrant objects by the class (Flat(R))⊥1 (resp., (GFlat(R))⊥1 ). This model
structure was first obtained in [23, Theorem 4.8] under the assumption that R is a
Gorenstein ring, where it is possible to describe the trivial objects as those R-modules
with finite injective dimension. A slightly more general result by Gillespie [18, The-
orem 4.10] asserts the existence of the Gorenstein flat model structure assuming that
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R is a Ding–Chen ring. In this case, the trivia l objects are given by the class of mod-
ules with finite FP-injective dimension. Gillespie later proves in [22, Theorem 3.3]
that this model also exists on modules over coherent rings by using a general method
he developed in [20] for producing Hovey triples from certain hereditary complete
cotorsion pairs in abelian categories. However, in this case one has a less explicit
description for the trivial objects. Finally, it was recently proved in [15, Corollary 4.3]
by Estrada, Iacob and the third author, using a method different from Gillespie’s, that
the Gorenstein flat model structure also exists on modules over GF-closed rings.

We close this section mentioning a more general context in where the present
example also holds.

Remark 6.18 Under certain conditions, it is possible to obtain a left Frobenius pair in
Mod(R) of the form (GFlatR(R),Flat(R)), whereGFlatR(R) is the class of Goren-
stein flat modules relative to a duality pair (L,R), that is, cycles of exact complexes
F of flat R-modules such that B ⊗R F is exact for every B ∈ R. See [15] for details.
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