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Abstract We discuss a new strategy for the computation of the Hopf-cyclic coho-
mology of the Connes—Moscovici Hopf algebra H,. More precisely, we introduce
a multiplicative structure on the Hopf-cyclic complex of H,,, and we show that the
van Est type characteristic homomorphism from the Hopf-cyclic complex of H,, to
the Gelfand-Fuks cohomology of the Lie algebra W,, of formal vector fields on R”
respects this multiplicative structure. We then illustrate the machinery for n = 1.
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1 Introduction

The van Est type isomorphism

kn: @ HGp(Wa.C) — HP*(H,.5.1)
i=x% (mod?2)

of [8, Thm. 11], see also [10, (4.12)], and its relative version

knsom: @ Hep(Wa, SO(),C) — HP*(H,, SO(n), 8, 1)
i=x% (mod?2)

between the Hopf-cyclic cohomology (with trivial coefficients) of the Connes—
Moscovici Hopf algebra H,, and the Gelfand—Fuks cohomology of the infinite
dimensional Lie algebra W,, of formal vector fields over R” allowed a link between the
characteristic classes of foliations and the total index class of the hypoelliptic signature
operator [7]. This way, the scope of the theory of characteristic classes was broadened
even further, [9]. As such, a considerable amount of research on the Hopf algebra H,,,
and the (periodic) Hopf-cyclic cohomology of Hopf (co)module (co)algebras has been
initiated.

The first explicit computations on the Hopf-cyclic cohomology of the Connes—
Moscovici Hopf algebras has been carried out by [8,43] for H, using the bicrossprod-
uct structure on H,,. Those results were then followed by [51] for H>, in the presence
of a cup product construction with an equivariant extension of the Hopf-cyclic coho-
mology. Finally, using a van Est type characteristic homomorphism through the Bott
complex [4] and the simplicial de Rham complex [13] of Dupont, Moscovici showed
in [42] that the elements of the Vey basis for the Gelfand—Fuks cohomology of W,
can be transferred to the Hopf-cyclic cohomology of H,,.

We, on the other hand, introduce in the present paper a multiplicative structure on the
Hopf-cyclic cohomology complex of H,, (and in the presence of a highly non-trivial
coefficients), and show that the van Est type characteristic homomorphism of [49]
between the Gelfand—Fuks cohomology of W, and the Hopf-cyclic cohomology of
'H,, respects the multiplicative structures on its domain and range. Thus, we can move
the characteristic classes to the Hopf-cyclic cohomology by transfering only the mul-
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tiplicative generators, and thus obtain a (Vey) basis for the Hopf-cyclic cohomology
of H,.

The Hopf algebra ,, is introduced in [8], foreachn € N, as an organisational device
in the computation of the index of the tranversally elliptic operators on foliations. By
its very nature, H, is a Hopf algebra of differential operators on the bundle F+ (M)
of orientation preserving frames on a flat n-manifold M, and it thus acts naturally
on the cross-product algebra Ar := C*(FT) x T, for any pseudogroup I" of partial
diffeomorphisms on F*. The structure of ,, has been investigated extensively through
[15,16,26,43,44].

It was first observed in [26] that H; is a bicrossproduct Hopf algebra. Then in
[43,44] the authors showed, using its module algebra action on the algebra Ar :=
C®(F™) x T, that this is in fact the case for any n € N.

The domain of the van Est type map, Hopf-cyclic cohomology, is introduced in [8] as
a cyclic cohomology theory associated to a Hopf algebra and a pair of elements (called
the modular pair in involution, or MPI in short) consisting of a grouplike element in
the Hopf algebra, and a character of the Hopf algebra. The theory was then devel-
oped through [27,28,32] as a cyclic cohomology theory associated to a (co)algebra,
equipped with a Hopf algebra (co)action, and a particular (co)representation of that
Hopf algebra as the space of coefficients (called stable-anti- Yetter-Drinfeld modules,
or SAYD modules in short), so that [8]’s H P*(H,,, §, 1) is the (periodic) Hopf-cyclic
cohomology with trivial coefficients.

It turned out that the bicrossproduct structure of H,, was not only helpful in under-
standing its Hopf algebra structure, but is was also crucial to compute its Hopf-cyclic
cohomology. This point of view was taken in [44] to introduce a bicocyclic bicomplex
computing the Hopf-cyclic cohomology (with trivial coefficients) of H,,.

On the other hand, nontrivial examples of SAYD modules over bicrossproduct Hopf
algebras were developed through [48—50]. More precisely, given a bicrossproduct Hopf
algebra associated to a Lie algebra via semi-dualisation [36,37], a SAYD module was
associated to any representation of the Lie algebra. In [49], a concrete 4-dimensional
SAYD module over the Schwarzian quotient H;s of H; was constructed this way,
and the Hopf-cyclic cohomology of H;s with coefficients in this particular space
were computed. Furthermore, it was also observed in [49] that the Connes—Moscovici
Hopf algebra H,, is an example of a semi-dualisation Hopf algebra associated to the
Lie algebra W,, of formal vector fields on R", and since W,, has no nontrivial finite
dimensional representation, 1, does not admit any nontrivial finite dimensional SAYD
module.

It was this last result that prompted us to think about the Hopf-cyclic cohomology of
‘H,, with infinite dimensional coefficients. In fact, an example of an infinite dimensional
SAYD module over a Hopf subalgebra of H; was already introduced in [1]. However,
there appears to be no attempt in the literature regarding an explicit computation
of the Hopf-cyclic cohomology of Connes—Moscovici Hopf algebras with infinite
dimensional coefficients.

Now the range of the van Est type homomorphism of [49], the Gelfand-Fuks
cohomology of the Lie algebra W, of formal vector fields on R”, was the target of
a series of attempts [19,20,22-24]. It is known to be finite dimensional [23,25], and
provides a universal source for all characteristic classes of foliations [4]. On the other
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hand, the cohomology of W,, with nontrivial coefficients has been studied through
[18,21,35], see also [17]. In the present paper we shall consider the cohomology of
W, with coefficients in the space of formal differential forms.

In the case of the trivial coefficients, the van Est type characteristic map between
the Gelfand—Fuks cohomology of W, and the Hopf-cyclic cohomology of H, has
also been considered in [45,46] from the point of view of the integration of invariant
forms over simplexes in the spaces of jets of diffeomorphisms. In [49,50], however,
the transfer of classes was achieved via a characteristic isomorphism in the opposite
direction, i.e. from the Hopf-cyclic cohomology to the Gelfand—Fuks cohomology via
differentiation. Here we shall adopt this last point of view, introduce a multiplicative
structure on the Hopf-cyclic cohomology (with coefficients) bicomplex of H,,, and
show that the characteristic homomorphism respects the multiplicative structures on
its domain and the range.

In order to keep the paper in a reasonable length, and avoid tedious calculations, we
shall illustrate the machinery only for n = 1. We note, on the other hand, that the whole
argument works as well for the Hopf-cyclic cohomology (with any multiplicative
coefficients) of any bicrossproduct Hopf algebra associated to a matched pair of Lie
algebras, [49,50], as well as those associated to a matched pair of Lie groups, [36,37,
44,57]. We note also that we shall confine ourselves to the Connes—Moscovici Hopf
algebras in the present paper, and postpone the application on quantum groups (such
as the k-deformed Poincaré quantum algebra of [39], the quantum Weyl group of [40],
and the affine quantum groups of [38]) to a subsequent paper.

The plan of the paper is as follows. In Sect. 2 we consider the space Q;l of formal
differential O-forms together with 1-forms on R”. We review the bicrossproduct struc-
ture of the Connes—Moscovici Hopf algebra H,,, and then we illustrate the (induced)
SAYD module structure of £ ,?1 over H,. Section 3 is devoted to the Lie algebra coho-
mology, with coefficients. In particular, we recall the cohomology of a matched pair
Lie algebra, as well as the cohomology of W,, with coefficients in the space Q;l. In
Sect. 4 we recall the Hopf-cyclic cohomology, with coefficients, for Hopf algebras.
More importantly, it is Sect. 4 in which we introduce a multiplicative structure on the
Hopf-cyclic bicomplex. Finally, we show in Sect. 5 that the characteristic isomorphism
of [49] respects the multiplicative structures on the Hopf-cyclic complex of H,, and
the Lie algebra cohomology complex of W,. We illustrate the whole discussion in
the case n = 1. More explicitly, we transfer the generators of H*(Wy, 52151) to the

Hopf-cyclic cohomology HC*(H;, 521581 ).

2 The space of formal differential forms

2.1 The Connes—Moscovici Hopf algebra H,,

We recall, in this section, the Connes—Moscovici Hopf algebra H,,, and its bicrossprod-
uct structure from [8,44]. Referring the reader to [36,37,55] for a quick review of the
bicrossproduct Hopf algebras, as well as the matched pairs of Lie groups and Lie

algebras, we begin with the note that we are going to use the Sweedler’s notation [56]
for the coaction and the comultiplication.
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From the group decomposition point of view, the Connes—Moscovici Hopf algebra
‘H,, is constructed by the Kac decomposition, [31], of the group Diff(R") of diffeo-
morphisms of R". Accordingly, Diff(R") = G x N, where G = FR" = GL;“lff is the
group of affine transformations, and

N = {¢ € Diff(R") | ¢(0) = 0, ¢'(0) = 1d}.

We thus have the Hopf algebra U := U (g¢2T), where

n

gl = (X, ¥/ |1 <i, j.k <n}),
Y/, Xel =8 Xi, [Xe. Xe1=0, [Y/ Yl1=68,Y"-351Y;

is the Lie algebra of the group GL';‘lflc := R" x GL,, and the Hopf algebra F := F(N)
of regular functions on N is generated by the functions given by

oty W) = 00, D)xmo. 1 =i ki ke <0, Y EN,
or alternatively by the functions
Mernt, ) =, - 06, (W' 7D0;00" (@) ) Lo

The Hopf algebra F is a &/-module algebra by the action

z =4
(Ze W) =

f(W<exp(tZ)), feF, Zegh
=0

t

and U is a F-comodule coalgebra by the coaction

\ B ol Y -

S , , (2.1
YX) =X @1+Y @ny, YY) =Y/®1

which is extended to a coaction ¥V : U — U Q@ F.

Remark 2.1 In view of the non-degenerate pairing [49, (3.50)], see also [8, Prop. 3] or
[6, Prop. 3], F is isomorphic with the Hopf algebra R(n) of representative functions
on U (n), where n is the Lie algebra of the group N, and the coaction (2.1) dualizes
the left n-action on g¢T,

Finally, it follows from [44, Prop. 2.14] that (F, {{) is a matched pair of Hopf algebras,
and from [44, Thm. 2.15] that H,“°P = F »a1 U.

To review the bicrossproduct structure of H,, from the Lie algebra decomposition
point of view, we consider the Lie algebra W,, of formal vector fields on R”. Elements
of W, are expressed as Z?:l fi(xl, ..., x™0;, where fi(xl, ..., x™) is a formal
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932 B. Rangipour et al.

power series in the indeterminates xt ..., x", for any i = 1,...,n. Itis an infinite
dimensional vector space

W, = <{e,- =0 el =y, R = ik Rl 1<k ke < n}>,
with the Lie bracket given by

’

j j iky..k i ky..k
lei.ej1 =0, [ex.e]l=25lei. lee,e/ " 1=08]e' "

n g

J qelm[r 4 jelm[r L jqel...fm...lr J qllmer

lej, ep 1=2d;ep + E 3"ep — 8pe; ,
m=1

Jki.. ke qly..Ls
[e: e
i

' &p ]

S —
jky...kply...Lg b Jqky..kply..lp.. L J oqly..Lsky.. .k
=d'e] " + E 5:"e — §ye:;
i°p i °pP P=i

m=1

r —_—
iqly..Lsky...ky.. .k
_ Z 61{,116../‘] X m r'
p Ci
m=1

Setting
5= ({ei = 0;, e,j =x0 | 1<i,j< n}> = ggall,

and

0= <{e{"‘1""‘" =k k1<, ok k< n}>,

we obtain at once the matched pair decomposition W,, = s o< n. The mutual actions
are, via [37, Prop. 8.3.2],

J ki :
ki =8¢, ifr=1, T
el ey = e el el =0,
0, ifr > 2,
and
e-jkI“'kr<1€g= 0, . 1fr=1,
! —52(351"‘1“, ifr >2,
n _
Jki..ky q _ 4 jkl---kr J qkl-"kr k jqkl-ukm---kr
e; <ep=34;ep — 8pe; —Z(Spmei .
m=1

We next recall the concept of a Lie-Hopf algebra, [50] and see also [53].

Definition 2.2 LetaLiealgebra g act on acommutative Hopf algebra F by derivations,
and F coacts on g. Then F is said to be a g-Hopf algebra if
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1. the coaction ¥ : g — g ® F of F on g is a map of Lie algebras, where the bracket
on g ® F is given by

(XQ[,Y®g'=[X.Y]® fg+Y®e(/HHXpg—-XQe(@Y> [ (22)

forany X, Y € g,and any f, g € F,
2. the comultiplication and counit of F are g-linear, i.e. A(X > f) = X ¢ A(f), and
e(X > f) = 0, where the action “e” is given by

X.(fl Q- ® f9)
= X(l)<0> > fl ® X(1)<1>X(2)<0> > f2 ® U (23)
e ® Xy g - Xy X > f1,

foranyXeg,andanyf],...,fq e F.

The proof of the following proposition is similar to that of [52, Prop. 2.10], and hence
is omitted.

Proposition 2.3 The commutative Hopf algebra F = F(N) is an s-Hopf algebra.

As aresult, it follows from [52, Thm. 2.6], see also [53, Thm. 2.14], that (F(N), U (s))
is a matched pair of Hopf-algebras, and the bicrossproduct Hopf algebra F(N) »
U =FWN)w U (gﬁflﬂ) is isomorphic (as Hopf algebras) with H,,“°P.

2.2 SAYD structure over H,,

It was observed in [49] that the only finite dimensional AYD module over the Connes—
Moscovici Hopf algebra H,, is the trivial one, Cs. On the other hand, the dual of
the space of formal exterior differential 1-forms was considered in [1] as an infinite
dimensional nontrivial example, over a Hopf subalgebra of H;. In this section we
study the space of formal differential < 1-forms as an infinite dimensional coefficient
space for the Hopf-cyclic cohomology of the Hopf algebra H,,.

Let us recall from [27] that a vector space V is called a right-left stable-anti- Yetter-
Drinfeld (SAYD) module over H if it is a right H-module, a left H-comodule, and

V- -h)=She)v__,_h) Qv - he, Vg "U__. =V, 2.4)

forany v € Vandany h € H.
Adopting the notation of [17], we let Q! to denote the space of formal exterior differen-
tial g-forms on R". In particular, 92 is the space of formal power series in x Lo x",
and

Q,ll = {fidxi | fi is a formal power series of x', ..., x"}

is the space of formal differential 1-forms. The space Q,ll is an infinite dimensional
vector space, and it has a natural W,,-module structure, [17, Subsect. 2.2.4]. We shall,
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934 B. Rangipour et al.

in particular, consider the space Q=' := QY @ Q! which is naturally a U (n)-module.
Transposing the action U (n) ® Q=! — Q=!, we obtain

0" — (e o)
=)

n

which factors through the embedding
* <I* <1\*
Ve e — (Vmeer!)

see for instance [1, Sect. 5.3].
It then follows from Qi‘l* = Q,ll_)‘, see [47], and the nondegenerate pairing between
U (n) and F(N) that we have a (left, and then using the antipode) right coaction

v.ol oSl FWN), oo, ®w,., (2.5)

so that, given any v € U(n), w_,_ w_,_ (v) = v >, see also [1, (5.42)].

>

Remark 2.4 We remark that in the expense of passing to the topological vector spaces
(in the sense of [2,3]) and their tensor product (for which we refer the reader to [54,58])
we may always dualize the above left action to a right coaction.

Following [50,53], we shall observe that Q,?l is an induced SAYD module over the
Hopf algebra F(N) »< U(s). We therefore recall its definition.

Definition 2.5 Let g be a Lie algebra, and F a g-Hopf algebra. Let also M be a (left)
g-module, and a right 7-comodule via ¥V : M — M ® F. We then call M an induced
(g, F)-module if

V(X -m)=XeV(m) (2.6)
forany X € g,anym € M,and any f € F.
Lemma 2.6 The space Q,?] is an induced (s, F(N))-module.

Proof We first recall that F(N) being a s-Hopf algebra was observed already in
Proposition 2.3. We are thus left to show (2.6). To this end we observe that

<X ° (w<0> ® 60<1>)’ U)
= (X -0, XVaw__, v)+{w, X

<0> <1>>°

=@ X) - (wro)+Xav) - 0o=v- (X -0) =(V(X ), v)

v)

for any v € U(n), where the right coaction is the one given by (2.5), and the third
equality follows from [49, (3.35)]. The claim thus follows from the non-degeneracy
of the pairing between U (n) and F(N). O

As aresult of [50, Prop. 3.4], Q,?l is a left / right YD-module over the bicrossproduct
Hopf algebra F(N) »< U (s) via the action

FN»aU@G) @ — Q= (fwdu)-w:=¢e(fu-o,
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and the coaction
Q' S QIR FWN) A U®B), V) =w, @@, »l),

for any w € Qfl, any u € U(s), and any f € F(N). Finally, since (4, 1) is a MPI
on the Hopf algebra F(N) »<d U (s), see for instance [8,44] or [50, Thm. 3.2], we
conclude that Qfsl :=1Cs ® Q! is aright / left SAYD module over F(N) »< U (s)
via the action

<1 <1

Qs @FIN)»aUS) — Q5. - (f »Au) :=e(f)oun)Sue) - o,

and the coaction
<1

QY — FN UG QY. V) = (S, )»1)Qaw,..

3 Lie algebra cohomology H*(W,,, Sl,fl)

In this section we recall the Lie-algebra cohomology with coefficients. In particular,
we shall discuss the cohomology of the infinite dimensional Lie algebra of formal
vector fields, with coefficients in the space of formal differential 1-forms, [17,22].

3.1 Lie algebra cohomology with coefficients

Let g be a Lie algebra, and M a g-module. Then the graded space

C*(g. M) =D C*a. M),  C*(g. M) := Hom(n"g, M)
k>0

is a differential graded space via

dcg : CX(g, M) — C*l(g, M),
dcec(X1, ..., Xk+1)

= DT X X X K Xa)
1<r<s<k+1
k+1
+ Y DX eX e X Xi),

t=1

or alternatively via

dcg(m) =m - X; ®6',
deg(m @ ) =m - X; ® 0" A ju +m ® dpr (1),
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936 B. Rangipour et al.

where the basis {#" | 1 < i < n}of gfisdualto {X; | 1 <i < n} of g, and
dpr : APg* — AP +1g* is the deRham coboundary (which is a derivation of order 1)
given by
1 ) )
dpr (%) = EijG’ NS

The homology of the differential graded space (C*(g, M), dcg) is called the Lie alge-
bra cohomology of g, with coefficients in M, and is denoted by H*(g, M).

We shall recall from [30] the multiplicative structure on the Lie algebra cohomology.

Let M, M’, and P be g-modules. Then M and M’ are said to be paired to P if there
exists a bilinear mapping M x M’ — P, (m, m') — m U m’, such that

X-mUmH):=X-mUm'+mUX - -m,

forany m € M, any m’" € M’, and any X € g. Let also § = {sy,...,s,} be an
ordered subset of integersin {1,2, ..., p+gq},and T = {11, 12, ..., t,} be its ordered
complement. For each 1 < j < ¢, let S(j) denote the number of indices i for which

si > tj, and let v(S) := ‘]1.21 S(j). Then,

UKL Xprg) =Y (=1)"PeXgy, . X ) U Xy, X)) (Bl
S
defines an element ¢ U ¢’ € CPT4(g, P), called the cup product of ¢ € C”(g, M) and
¢’ € C9(g, M), with the property that
dce(cUc") =dcg(c) U + (=1)Pc Udce(c).

Alternatively, if c = m ® u € CP(g, M) and ¢’ = m' @ ' € C9(g, M"), the cup
product is given by

cUd =mUm' @unau eCPtig, P), (3.2)

see for instance [5].

In particular, the spaces Q0 and Q! of formal differential forms are paired into 3/,
and thus the cohomology H*(W,, QE‘) possess a multiplicative structure, and a basis
of H*(W,, Q=')is givenby ix € H*=1(W,,, Q0), 1 <k <n,and A € H'(W,, Q)),
subject to the relations

AiUA = —A; U, MUA=AUA. 3.3)
In particular, for n = 1, the generators may be represented by

L&) = div(§), 34

and
A(§) = ddiv(§), (3.5)

see [17, Thm. 2.2.7].
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3.2 Lie algebra cohomology H*(s b« n, 23))

In this subsection we recall the bicomplex associated to the matched pair decom-
position W,, = s >< n, computing the Lie algebra cohomology of the Lie algebra
W.

Along the lines of [50, Sect. 4.3], we consider the bicomplex

ek 1dcE tdce

dce dcg dcg
Qngl ® /\25* o Qngl ® /\25* ® ne b Qr?l ® AZH* ® /\211* L

1dcg 1dce tdce
dcE dce dce
Q5! ®@s* Qs @ st @n* O R Y —
reg 1dcE tdce
— — —
dcg dce dce

Q@ Alnt ——F ..

(3.6)
The cohomology H*(W,, Q,?l) can be computed by the total complex of the bicom-
plex (3.6). This is achieved explicitly by

Q}?l Qngl ®n*

g:C"(san, Q1) — Tot"(Q5!, 5%, n*)

B@) X1,y Xp | &b &) = PX1 @0,..., X, ®0,08E,...,008,),
(3.7)

whose inverse is given by

TN o@u@VX1 @&, ..., Xprg ®Epig)

= Y DopKey s XopIVEa(piys - Eolpig))s
oeSh(p,q)

where Sh(p, q) denotes the set of (p, g)-shuffles. It follows from [45, Lemma 2.7]
that (3.7) is an isomorphism of complexes.

Finally, let us use (3.7), and its inverse, to carry the cup product construc-
tion (3.1) on C*(s >< n, Q=) to Tot*(Q5!, s*,n*). Given any a @ u @ v €
CP9(Q=!, 5%, n%) in TotP T4 (QS!, 5%, n*),and any 0@ ' ® V' € CP,*’I/(Q,?,s*,n*)
in Tot”/“’/(sz,?l, s*, %), we set

@u@MU@@eW V) =10 @eunrev) Ui o u ®v)).
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938 B. Rangipour et al.

Accordingly,
@epeVUeu ®v) =10 @euen Ut oeun @v))

=1(@@uAv)U(@@u AV)) =taw@uAvAu AV)) (3.8)
= (=D hao@pu A AvAY) = (=D a0 @A @v AV,

4 Hopf-cyclic cohomology H P (H,*°P, 9351 )

In this section we shall prove one of the main results of the paper, namely; a multi-
plicative structure on the bicomplex computing the Hopf-cyclic cohomology of H,,.

4.1 Hopf-cyclic bicomplex

Let V be a right-left SAYD module over H. Then,

C(H,V) :=@C‘1(H, V), Ci(H,V):=V®H® “4.1)
q=0

is a cocyclic module via

WO @ - @) =ve10h' ®- - - QhI,

RN Q@) =vRh' Q- QK1 @Koy Q- QhI,
Uyt @ @h)=v, W @ @hT@v_,_,

5N ® - @) =veh ® - @eh T @ n,

tweh'® - @h) =v hlHheShly) e - - hl @u__,).

Using these operators one defines the Hochschild coboundary

g+l
b:Ch(C. V)~ vy, b= (=D,
i=0

and the Connes boundary operator

q
B:CNC. V) > CL(C. V). B = (Z(—l)q"t;) sty (Id - (—1)q+1tq+1) .
i=0

The cyclic cohomology of (4.1) is called the Hopf-cyclic cohomology of the Hopf
algebra H, with coefficients in V, and it is denoted by HC*(H, V). Its periodized
version, on the other hand, is denoted by H P*(H, V).

Using the bicrossproduct structure of H,, it is shown in [44] that the Hopf-cyclic

<1

cohomology HC*(H,°P, Q) can be calculated by the diagonal subcomplex of the
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total of the bicomplex whose vertical coboundary 1Tot :=1b+ 1 B, and horizontal

— — —
coboundary Tot := b 4 B out of

Th| | 1B tb| | 1B TbT B
b b b
Q) @UP = @UP @ F = Q) QU @ FO —> .
E B T
o) |18 to| | 1B tb| | 1B
b b b
Q5 eu QS QU F oSl U FE — ...
B B B
to| | 1B to| | 1B TbT 1B
) [ [ 5
Q% —= Q5 0 F Q5 © Fo
B 3 Z

where U := U (s), and F := F(N). The identification is given by

Wpq : D"(U(s), F(N), Q55) —> C"(H, P, Q3),
Upi(w@u' @ .. " Q' @ - ® 1)
= w® fl > u1<0> ® f2M1<1> > M2<0> ® e ® fnul<n—1> "‘uﬂil

whose inverse is

Wl O (P, Q) — D' (U(s), F(N), @),
Vlwe fleu' ... " wau”)
—o@u | @ - u"  Qu'® f!

<1>

4.2)

< u",

(4.3)

® fZS(ul<n—l>) ® f3S(ul<n—2>u2<n—2>) ® e ® fnS(ul<l> ctt un_l<l>)'

It follows from [50, Prop. 4.4] that the application of

ant : Q5 @ APs @ F(N)®1 — Q=) @ U(s)®” ® F(N)®4
ant(w ® X /\.../\Xp®f1 ® - f1)

1
== (D0RX)® @ Xe(n® f' @+ ® [1

: o€Sy

(4.4)

4.5)
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reduces the bicomplex (4.2) to

dcE dce dce

b b b
Q5 @Al = QY @ AZs @ F(N) ——= Q5 @ A’s @ F(IN)®2 —% .

dce dcE OCE
ol @s— -0 @s@ F(\) — 2> 05 @ s @ FIN®2 —% ..
JCE ICE dcE
Q5 @il @ F(N) — sl @ F(N)®2 o

(4.6)

where
Ik : 2 ® APs @ F(N)®! — Q5 @ AP s @ F(N)®

is the Lie algebra homology boundary of the Lie algebra s, with coefficients in the
s-module Q7 ® F(N)®4, and

<l

by - Q5 ® APs @ F(N)®! — Q) ® APs @ F(N)®IH!
bN(a)®oz®fl®~'®f‘1)=a)®a®l®fl®~~®fq
q . .
+Y (“Hoee® f'® - @A(f)® - ® f4

i=1

+ (_1)(1+1w<0> ® a<0> ® fl ® e ® fq ® S(a<l>)S(w<l>)’

see [50, Prop. 4.4], or [44, Prop. 3.21]. We recall here that the right F (N )-coaction
on s is given by (2.1), and it is extended to A*s by multiplication.
Finally, by the Poincaré duality,

D, : Q5 @ APs* @ F(N)® —> Q) @ AV Ps @ F(N)®, @47
DU '@ @f) =0 (@ f & & fI,
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2 . . .
where w € A" ™5 is the covolume form and Ly @ A*s — A*7Ps is the contruction
by n € APs*, we identify the total complex of the bicomplex (4.6) with that of

dce dce dce

b b b
QY © A2 s QT @ A2t @ F(N) > Q5 @ A2s* @ F(N)®2 —> .

dcg dcg dcg
by bt b
Qs — - Q2 ST ®F(N) —— = Q5 @@ F(N)®? — > ..
dce dce dcg
<1 by <1 b N I
25 Q5 ® F(N) Q5 ® F(N)
4.8)
where
by Q5 @ AP ® F(N)®! — Q) @ APs* @ F(N)®IH!
bLo@u®fle @ fM=0uelefl @ - f
4.9)

q
+) (Dooue e Ao o f

i=1

+ (_1)q+1w<0> ® l’l’<0> ® fl ® T ® fq ® S(w<1>)/"l’<—]>’
see [50, Prop. 4.6], and

deg : Q55 @ APs* @ F(N)® — Q) @ APHls* @ F(N)®
dep@Ou® fHl=w®dpr(W Q@ f —Xi 0 @0 Au® f (4.10)
—w®9iAu®Xiof
is the Lie algebra cohomology coboundary of the Lie algebra s, with coefficients in the
s-module Q§1®}'(N)®q,seeforinstance [50,(4.1)]. Themapdpg : APs* — APTlg*

is the deRham differential of forms, and the left 7 (NN)-coaction on A*s* is obtained
by transposing the right F (N )-coaction

5 — F(N) ®s*,

i i i i i k (4.11)
'~ 16, 0j|—>1®6’j+njk®9,

which can be extended to A*s* multiplicatively.
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4.2 A multiplicative structure on C *’*(Slfsl , 5%, F(N))
In this subsection we introduce a multiplicative structure on the bicomplex
C** (@ 5" F(N)) = @ CP9Qy.s*. F(N)),

p.g=0 (4.12)
P.q <l % — o=l D ¥ ®q
cra@QI) s, F(N)) == Q) ® APs* @ F(N)

given by (4.8). To this end, f0ranya®n®fe Cl’*q(an, 5%, F(N)),andwo®@u' ®F €
cP QL 5%, F(N)) let

ns’
@Au® HU@ON ®F) =a,0@u, AW ®FRSa, I . -3 “13)

Proposition 4.1 The horizontal coboundary (4.9) acts as a graded derivation, i.e. for
anya@u® f € Cl”q(Qgs, s, F(N)),andowo @ ' ® g € CP 1 (91115’5*’ F(N)),

by(agneHuwen ep)

=b7\/(a®ﬂ®f)U(a)®u/®§)+(—l)q(a®u®f)Ub}kv(w®u’®§).
Proof Givena ® u ® f € CP4(Q0, 5%, F(N)), let
AH=rle - @AH® o fI.
We then note that
b*N((a®u®f)U(w®u’®§))
= a<0>6() ® H’<0> N I"L/ ® 1 ® f® S(a<l>)l’l‘<—]> : g
q . ~
+ Z(_l)la<0>w ® M<0> N M/ ® Al(f) ® S(a<l>)l’l’<71> : g
i=1
q+q'

+ Z (_l)ia<0>w ® /'L<0> A ,bL/ ® f® S(a<l>)l’L<—l> : Al(@
i=q+1

+ (_1)(1+(1/+1(a<0>w <0> ® I‘L<0> A /"L/<0> ® f
® S(a<l>)M<72> ' §® S((a<0>6())<1>)pb<71> I‘L/<7l>’
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which can be rewritten as

a<0>a) ® I’L<O> A I’L/ ® 1 ® f® S(a<l>)M<—l> . E

~

q
+ Z(_l)la<0>a) ® H‘<0> A M/ ® Al(f‘) ® S(a<]>)l‘l“<—l> : g
i=1

+ (_1)q+1a<0><0>a) ® /’L<0><0> A /'L/ ® ]’F
® S(a<l>)lbL<7l> ® S(a<0><1>)/1,<0><71> ' E)

+ (_l)q{a<0>w ® ,bL<0> A /'L/ ® f® S(a<1>)l’l“<—l> . (1 ® @

q/
+ Z(_l)la<0>w ® I’L<0> A M/ ® f ® S(a<l>)l’l’<fl> : A’(@
i=1

+ (_l)q/+1(aw)<0> ® Mo A /’L/<O> ® f

® S(a<l>)u“<72> ' §® S((a<0>(’u)<l>)I’L<—I>I'L/<*1> }’

the first three lines of which being b7}, (a QU f ) U(w® 1 ® ), and the last three
being (—l)q(a®u®f)ub*N(w®M/®§). u]

On the next move we deal with the vertical coboundary. To this end, we record a series
of lemmas below. The first one is about the action (2.3).

Lemma 4.2 For any X € s, any fe F(N)®", and any g € F(N)®%,
Xe(f@D=X, of®X, T+fOXe%F
Proof 1t follows at once from the definition of the action (2.3) that

Xe(f'®@--@fNH=0wX)-(fl® & f)
=X, o flOX, - (fP0--®f)
+OXe(fP @ ® [
The claim then follows immediately. 0

The rest of the lemmas point out some auxiliary results by the commutativity of the
horizontal and the vertical coboundary maps of the bicomplex (4.8).

Lemma 4.3 For any u € APs*,

dpr(1). ;. @ dpr(W_. = i, @dpr(iy.) — Xivpu_ . @6 A, .

Proof We use the commutativity of the horizontal and the vertical coboundary maps
of (4.8). Fixing a trivial coefficient, we have on one hand

bydce(n) = by (dpr(1)) = dpr(1) ® 1 — dpr(®)_o. ® dpr(1)__,_,
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and on the other hand

deeby () = dce(R @ 1 — . ® [1._,.)
= dDR(/J/) ® 1 - dDR(/"l’<0>) ® /"l’<—1> + ei A lu’<0> ® Xi > /"l’<—1>'

The result follows. O
Lemma 4.4 Foranya € Qg, and any p € APs*,
(Xi-a)g. ® (0" A ). ® SU(Xi-a)., )0 Ap)__,.

= Xi : a<0> ® Qi A I’L<()> ® S(a<1>)l’b<fl>
+ (1<0> ® ei A /’L<0> ® Xi > S(a<l>)l’l’<fl>'

Proof On one hand we have

iydee(a ® ) = by (a ® dor () — X -a ® 6" A )
=a®dpr(W) ® 1 —a_,. @dpr(p.,.) ® Sla_, )i,
+a, @0 Au, @S, ) Xivu_ . )—X;-a®0 Au
+ (X a). ® O Ap, ®SIXi-a), )0 Ap)__,_.

where we used Lemma 4.3 on the second equality, and on the other hand,

dCEbfV(a ® M) = dCE <ll ® /’L ® 1 - ll<0> ® u’<0> ® S(a<l>)u<fl>)

=aQdpr(W®1 —X; - a®0 Ap®1
—a_y. ®dpr(it,y.) ® S(a_ I _,.
+Xi-a, ® o' A Moo @ Sla_ ..
+a, @0 A, @Xiv (S, ),

In view of the commutativity of the horizontal and the vertical coboundaries of the
bicomplex (4.8), a comparison of the two equations yields the claim. O

Lemma 4.5 Forany f € F(N)®4,

0, XiefR0_,_ =0®@X ef®I.

<0>

Proof We have
bydee(H =by(-0'@Xief)=-0' 010X e [+0', ®X e foO_,
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and
desby(N=dex(10 - Fo1) =0 exe10H+0@X e (fo1)
=0 Q10X e f+0®@X e fR1,

where we used Lemma 4.2 on the last equation. The result then follows once again by
the commutativity of the horizontal and the vertical coboundaries of (4.8). O

Proposition 4.6 The vertical coboundary (4.10) acts as a graded differential, i.e. for
anya®@pn® f € CP4(Q0%, 5% F(N)), andw @ i’ ® § € CP-1(QL5, 5%, F(N)),

dee(@@re Hu@en ©7)
=dep(a@n® FlU@en @D+ aeune f)Udes(oou 8F).

Proof We first observe that

dee(@@re Hu@en ©7)
=a, 0@dpr(1y. AU ® F®S(a, I, -8+
— Xi (@00 @0 Ay Al ®F®Sa, I, -3+
— 00 Ay A @ X e (f® S, ) . - D).

Using the fact that the deRham coboundary is a graded differential we arrive at

dCE((a®M®f)U(w®M/®§))
=a, 0®dpr(y) AW ® f®S(a, I, -5+
(—DPa, o ® . Adpr(W) ® f @ Sta_, I, -3+
— Xi (a0 ®0 Apg A ®F®S(a, ., -5+
—a,0®0 Ay Al @Xie(f®Sa, I, -3

Next, we recall that the Lie algebra s € W, atcs on Qg by derivations. Thus,

dee(@@re Hu@en ©7)
=a, 0®dpr(y) AW ® f®Sa, I, -5+
(—DPay 0® o Ador(W) ® f ® Sa_, ., -3+
— (Xi ., )0@0 Ay Al ® F®S(a, I Z+
—a  (Xi ) ®0 Apu AW ® F®S(a, I, - §+
— a0 0! A g A WX e (f@ Sa_, .. - 8).
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Then using Lemma 4.2 we get

dep(@@re Hu@eun 87)
=a, 0®dpr(y) AW ® f®Sa, I, -5+
(—DPa 0 ® o Ador(W) ® f ® Sla_, ., -3+
- Xira, )0 o' A Hogo A w® f~® Sta_, .. 8+
—a, Xi 0)®60 Ay Al ® F®S(a, ). . -3+
—a, 0® LN Pogo A ® Xiy. ® f® Xi_,.Sta_, .. -8+
—a, 0@ Au, A ® FOX;e(Sa, ). - 2),

where

a_,. 0® 0 A Koo A w® f@ Xio(Sla, . -2
=4, 00 A, AR ®FO AP X)(Sa, ). »a1) -3+
=a, 0®0 Ay Al ®F®(XivSa, )u._,.) g+
ta, 00 Auy A ®FRSa, . - (Xie3).

As a result,

dee(@@re Hu@en ©7)
=a, 0@dpr(ty ) Al @ @S, Iu_,_ g+
(—DPa, o @ 1y Adpr() ® f @ Sa_, ), - §+
— (Xi a, )00 Auy A ®F®Sa, I, -3+
—a, (X 0)®0 Ay Al ®F®Sa, I, -3+
a, o® o' A Uogo A ® Xiy. ® f~® Xi . Sta_ ). -8+
—a, 00 Ay A ®FRXi>Sa, ) g+
a_, o® 0 A g A w® f® Sla_, .. - (Xi02).

(4.14)

On the other hand,

dep(a®u® f)u@ou ®F)
=@@®dr(W® f—Xi>a®0' Au® f
—a®0 AL@Xie HU(@® U ®F)
=a, o®@dpr(W) . AU ® f® S, )dpr(0)__,_ - §+
— (Xi )y 0@ O Ay A ® T S(Xiva), )0 A -+
—a,0®O AR, @Xief®Sa, )0 Ap)__,_ -3,
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from which we arrive, in view of Lemma 4.3, at

dCE(a®M®f>U(w®M/®§)
=a, o®dpr(io) Al @ @S, Ip_,. g+
— a4, 0®0 Ay A ®F @S, )(Xiv ) Z+
— (Xi @) 0@ O A A S FOS(Xi>a), )0 A, -3+
—a,0®O AP, ®Xie f®Sa, )0 Ap__,. -3

Invoking next Lemmas 4.4 and 4.5,

dee(a@pe [)U@en @7
=a, 0®dpr(ty) AW ® f®S(a, I, -3+
—a,0®0 Apy AR ®F®S(a, ) Xi>pn ) 3+
— (Xi a, )00 Apy AR ®F®Sa, I, -3+
—a,0® O AP A ®F®Xi>Sa, N, - F+
—a, w ® 0" A U @Xie f@ S(a_, ., - 8-

(4.15)

Finally we see that

@eure fuds(ver F)
=@®u® NHU(@B®dpr()®F— Xi -0 @60 Ap' ®F
~0@0' AL ®Xie]) (4.16)
= Cl<0>a)®ﬂ<0> /\dDR(M/) ® S(a<1>)l’l“<—l> : g+
- a<0> (Xl ! CL)) ® lu‘<()> /\Gi A lu‘/ ® S(a<1>)l’l’<—]> : §+
- a<0>a) ® I"L<0> A ei A I"L/ ® S(a<1>)/"l’<—l> : (Xl .g)

The claim now follows immediately from the comparison of (4.14), (4.15) and (4.16).
O

We are ready to express the main result of the section.

Theorem 4.7 The coboundary

deg + (=D)PbYy - PR, 8%, F(N) — CPH(QT 5%, F(N) @ cPati (@], s%, F(N))

of the total complex of the bicomplex (4.8) acts as a graded differential with respect
to the product structure given by

@RIUR H @R @) =D @en® HU L 7)
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foranya/@,u@fe QY @ APs* @ F(N)®4, andany 0o @ W' @ § € QL QA s* @
F(N)®9.

Proof We have

(e + (1" hi)(@@re Hx@an o)
= (—l)q”'dcxs((a U NHU@e N ®§>)

+ DT (@@ re HU@en @)
In view of Propositions 4.1, and 4.6,

(e + (D" ) (@@ e Hr@en @)
=" de(a@pne Flu@an @
+ (DT G @ u® f) Udcs (w U ® §)
+ b (agpe FUen ©F)
+ (DI e FUby (0o ©7)
= (dee+ (-1'b)(a@ne [)x@an @)

+ (D@ ® )+ (des + (-1 by (0 @ 1 ©F).

5 The transfer of classes

5.1 Multiplicativity of the characteristic homomorphism

We show that the chacracteristic homomorphism of [50, Thm. 4.10], identifying the
Hopf-cyclic cohomology of H,, with the Lie algebra cohomology of W,,, with non-

trivial coefficients, respects the multiplicative structures on its domain and the range.

Theorem 5.1 For the Lie algebra W,, = s < n, the Hopf algebra F(N) »< U(s),
and the induced F(N) »< U (s)-module Q=',

HP*(F(N)»aU(s), Q) = @ H" (W, 23,

m=+ mod 2
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Proof In view of [50, Thm. 4.10], we need to show that the van Est type map

VS @ APs* @ F(N)®! — Q5! @ APs* @ Adn*
Vw@u® fle-—® fDX1,....Xp | &1,..., &)
= pu(X1, .. Xp) D (D7 Ey, 1) g [

0ES,

6D

from the total complex of the bicomplex (4.8) to that of (3.6) is a quasi-isomorphism.
This, in turn, follows at once from [50, Lemma 4.1] given the non-degenerate pairing
[49, (3.50)], see also [8], between F(N) and U (n). O

The following is our main result.

Theorem 5.2 The quasi-isomorphism (5.1) is multiplicative, i.e.

V((a@,u@f)*(w@,u’@g))=V(a®u®f)UV(a)®pL/®§).

<1 <1

Proof Fora@u®fe CP1(Qy, 5%, F(N)),andw®@u' ®F € CP 4 (25, s*, F(N)),
we observe that

V(@@u® Hx @@ W @)Xt Xpip | 1o by
= (-D"V(ap 0@ n, AW ® @S, . 7
X (X1, Xpap LEL o Egrg)
= (—1)qP/<M<O> INTID X,,+,,,>

X Z (_1)J<f® S(a<l>)u“<—l> : g’ EU(I)’ R} SG(CI+q/)>a<0>w

aeSq+q/
= (—l)qp <MAIL,, X],...,Xp+p’> Z (_1)U<f®§7§0(1)9""EU(q+q/)>aw’
O'ESquq/

where on the last equality we used the fact that the Lie algebra elements are primitive,
and that the (non-identity) elements of F (N) are zero under the counit (when evaluated
on the identity). Employing the anti-symmetrization map ant : C"(F(N),V) —
C"(n, V), see for instance [20, Subsect. 4.1], and setting ant (f) := ant(fl) Ao A
ant (f9) corresponding to f := f! ® --- ® f9, we may rewrite the cup product as

V(@ene Hr@en ®d)=D"aweunun @ant(f) (g,

The claim now follows from (3.8). O

A few words on the above results are in order. We recall that the multiplicative gen-
erators of the cohomology on the range are already known, see [17, Thm. 2.2.7],
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and the Sect. 3.1 above. In addition, it is shown in Theorem 5.1 that the van Est
type map (5.1) is an isomorphism on the level of the cohomologies. Hence, by The-
orem 5.2 the (multiplicative) generators of the Gelfand—Fuks cohomology (which
are the characteristic classes of foliations) can be pulled back to the Hopf-cyclic
cohomology of H,. More explicitly, V=) € CHFHFWN) »a Uls), Qfél) and
V=I(A) € CHF(N) »a U(s), Qi;]), subject to the relations (3.3), form a basis for
the Hopf-cyclic cohomology of H,,, with coefficients in Qf;. In the next subsection
we shall illustrate this pull-back procedure for n = 1, and demonstrate the inverse
images under (5.1) of the classes (3.4) and (3.5).

5.2 The Hopf-cyclic classes

We illustrate the transfer of classes in the case of n = 1. For the ease of the presentation
we are going to work with the representatives in the completion of the Lie algebra W
with respect to the natural topology (the strict inductive limit topology of [2,3]), and
of the Hopf algebra 7, and of the projected tensor product ®; (to which we shall
keep referring as ®). For convenience, we refer the reader to [53] for the Hopf-cyclic
cohomology for the topological Hopf-algebras.

Let us first note that we shall adopt the basis {e; | i > —1} of the Lie algebra Wy, [17,
Subsect. 1.1.2], and the basis { f* | i > 0} of the Wj-module Q!, [1, Sect. 5.3], where
the (left) Wj-action is given by

ei- fl=G+j+Df™.

Below we shall also use the right action f/ - ¢; :== —¢; - f/.
As it is noted, the cohomology H* (W1, ngl) is generated by the classes (3.4) and
(3.5). More explicitly, if

& =c_je_1+coep+crer +---

— e epr et 4
_C_lax cOxBx cx ax

one has
ME) = co + 201x + 3cx% + - -

that is, setting {6 | i > —1} such that (9', ¢;) = 3;,

A=100°+) (+Dx' @0 e ™ (@' s* . n) @ Q! 5" 0, (52)

i>1
and similarly
A=)+ Dif '@ e @ 5% 0 (5.3)

i>1
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on the bicomplex (3.6). We note also that

dee(M)ep. eg) = ey, eg) — ey - Aleg) + ¢4 - Aley)
=(q — pP)A(eptq) —ep - Neg) + ey - Alep)
=@-pPP+a+DP+ P —e, (g+Daf +eg - (p+Dpfr!
=@-ppP+q+ D+ P —(g+Dap+q) frH
+(p+Dpp+q) frHi=o,

(5.4)
as well as,
tdeg(A) =p-e_1 @0+ A-eg® 0"
=Y G+ Dif e @07 @0+ (+Dif '@ @0 ey
i>1 i>1
Y G+ Dif T e @000+ > i+ Dif T ®0°®6 - e
i>1 i1
==Y (+Dii—Df 7?07 @0 +Y (+2(+Dif '@ @t +
i>2 i>1
=D G+ DT e+ (+Diff e’ =0
i>1 i>1
(5.5)

<l

As for A € CO’I(Q1 ,55, 1) @ CI’O(QIS],s*, n™), we observe that
1 dee1®60%) =11 00 'A0°+1-¢0®6° A0° +1Q dpr(6%) = 0. (5.6)
On the other hand,

_2aee7h, ifp=1,

dce1®6%(e,) =¢,- 106%) =-106"-¢, 0 o

that is,
dee1®0%) =210 '®0",
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and
TdCE<Z(i + Dx! ®9i)
i>1
=Y i+ Dx e ®07'®0+ ) (i+1x e’ @0
i>1 i>1
+Y D@00 e+ Y (+ DX’ ®0°®6 e
i>1 i>1
=—> (+ X' - (i +Dix'®°®0
i>1 i>1
+Y (+DGE+ DX @07 @0+ (i + Dix' @0° @0
i>1 i>1
=—2(1®9—1®91)—Z(i+1)ix"—1®9—1®9i—2(i+1)ix"®90®9"
i>2 i>1
+Y (+DGE+ DX @07 @0+ (i + Dix' @0° @0
i>1 i>1
=-20060 'e).
Finally,

ZCE<Z (+Dx ® 9i>(e,,, ¢g)

i>1
=D i+ Dx'0"(ep.eq) —ep- Y (i +Dx'0(eg) +eg- Y (i +Dx'0(e))
i>1 i>1 i>1
=@ —p)(p+q+Dx"T —(g+D(p+q+Dxl
+(p+D(p+q+DHxP =0.

Referring the reader to [41] for details on sPectral sequences, we now investigate the
generators of the cohomology H* (W, 5215 ) in the 1st page of the spectral sequence
associated to the natural filtration of the bicomplex (3.6).

Proposition 5.3 Onthe E|-term of the spectral sequence corresponding to the natural
filtration of the bicomplex (3.6), we have

N1®6°, e £V, Y i+nifitee | ek

i>1 1
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Proof The 0-page (Ey, dp) of the spectral sequence consists of the vertical cohomol-
ogy classes. As a result, we conclude from (5.6) and (5.5) that

Mee’lheEy'. |Y (+Dif '@ | ek’
i>1

0

On the E;-level we have d; : EJ"Y — EV +1.4 that is, horizontal coboundary map
acting on the vertical cohomology classes. We then note that

d1[1®9°]1=[ZCE(1®90)] =|—tdee | Y _(+Dx'®0 || =[0l.
1

i>1 ]
hence
N®6°, e Y.
On the other hand, (5.4) implies that

i+ niftee | eE”

i>1 1
a

We now pull these two classes back to the Hopf-cyclic bicomplex (4.2). Once again
we recall from [1, Subsect. 4.2] the affine coordinates {x; | i > 1} of N, which are
given by

1, if J = (),

X; = 5.7
i(es) 0, otherwise, 57

where ey :=ej, ...e;, for J = (j1, ..., ju).

Proposition 5.4 Onthe E|-term of the spectral sequence corresponding to the natural
filtration of the bicomplex (4.8), we have

Moo’ e EM | Y G+ Dif 'ox | £
i>1 \
Proof We have by [50, Thm. 4.10] that the characteristic homomorphism (5.1) is

an isomorphism on the Ej-level of the spectral sequences associated to the natural
filtrations of the bicomplexes (3.6) and (4.8). It already follows from (5.5) that

Y+ Diftexi | e Ey’,
i>1 0
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and since (5.1) is an isomorphism of the E;-terms,

by | D G+ Difi T ex e e’

i>1

is a vertical coboundary. But then, since it resides in the Oth row, we conclude that

by [ Do+ niff T ex | =0.

i>1

Furthermore, in view of [59, Mapping Lemma 5.2.4], (5.1) is also a map of E,-terms
as well, for any » > 1. Thus, from

by1®6%) = 21®0~ ®@x)) =dce | ) (i + D' ®x; |,

i>1

we conclude that

b Z(i+1)x"®x,- =0.

i>1
O

Corollary 5.5 The total cohomology of the bicomplex (4.8) is generated by the classes

Vi=100"@ ) i+ Dx' @x e CHQF. s F(V) @ CHOQF L sF F(V))
i>1
(5.8)
and .
A=)+ Df ®x e Q. 5" F)). (5.9)

i>1

Applying the Poincaré duality (4.7), we push the above classes to

1@e 1 ®) (i+Dx'®e_1Ae ® x; € CONQ s, F(N))

i>1
aChH(Qy, s, F(N)),

and

DG+ Df ®e i Aeg@xi € CHAQf 5, F(N)).

i>1
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We then observe that
IcE(l®e_1Aep) =1®[e_1, e0]l =1R@ ey
and that
bn(1®e—1 Nep) =0.

Hence the former class is cohomologous to

Y i+ Dx'®e 1 Aep @ x; € CHHQ s, F(N)).

i>1

On the next move, we apply the anti-symmetrization map (4.5) to get

1 ,
3 Y+ Dx @1 ®eo—eo®e_1) @x; € CHAQL, Us). F(N))

i>1

and

1 . B
32+ D @1 ®en—eo®er) ®xi € CHQy., Us), F(N)).

i>1

We next carry the classes from the total complex to the diagonal subcomplex via the
Alexander-Whitney map, see for instance [34]. This way we obtain

1 ; i
EZ(z+l)x R 1QepR@1—erQe_1®1)

i>1

®1®1®x; € Diag’(U(s), F(N), Q5),

and

L .
52(14-1)]‘ RE1Q®ep®1—eg®e_1®1)

i>1

®1®1®x; € Diag’(U(s), F(N), Q).

Finally, we apply (4.3) to get the Hopf-cyclic representatives of the classes (3.4) and
(3.5). As a result, we conclude the following.

Corollary 5.6 The classes (3.4) and (3.5) are represented, in the Hopf-cyclic coho-
mology of the Hopf algebra H with coefficients in 521581, by the 3-cocycles given
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by

1 .
hHops = 5 Y i+ Dx'®e 1 ®e®x;

i>0

. 1 .
— Y i+ D ®eo®xleo®xi—52(i+l)x’ ®eo®e_| @X;,

i>0 i>0

and

1 .
AHopf = 3 Z (+Df'®e 1 Qe ®X;

i>0
. i 1 . i
—Z(z—i—l)f ®eo®x]eo®xi—52(l+l)f Re)Qe_1 RX;.
i>0 i=0

Proof The claim follows from

1 .
Aopf = Wpa (22(1‘+1)x’®(e1®e0®1—e0®e1®1)®1®1®x,-)

i>1

1 ) .
=3 Z(z + DX @ (I pdem1 ) ® (e—1,. B eq,. ) ® (Xie—1,. eq,. »I1)

i>1
! , i
—3 Z (+Dx' @ »en,. ) (e, Pe—1,.) ® (Xiea, e—1,. B 1),

i>1

and the similar arguments for A g, € C 3(H,, Qlfal). O

5.3 Connection with the group cohomology

We shall now construct more compact representatives of the cocycles (5.8) and (5.9)
in the group cohomology of the group N. Let us consider the bigraded space

ChiN.s. 27 = @ (N s QY.

pol
r.q=0
ChI(N, s, QF) i= CL (N, Q' ® APs™) (5.10)

where Cgol (N, 91551 ® APs*) refers to the space of polynomial g-cochains of the group

cohomology of N, with coefficients in the N-module Qlf; ® APs*, see for instance
[29, Sect. 2]. Namely, the set of (homogeneous) polynomial cochains

¢:N><-~-><N—>lel®/\p5*,

(g+1)—many
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satisfying
¢(‘(//‘(//0’ SRR I/qu) = 1/f ' ¢(1//07 e wq)v

together with the coboundary

by : Cly (N, Q' ® APs*) — CITI (V. @F' @ APs"),

0l

g+l (5.11)

-~

DN @ Wou oo Vs ) = 3 (=D G Wou oo T Ygr)-

i=0
The action of the group N on Q% is given explicitly by

fx)dx -y = f(Y )Y (0)dx,
see [47, Sect. 1]. In addition, we introduce the coboundary

bs : Cly(N, Q5! @ APs*) — Cl (N, @F' @ APHls"),

0
bs(@)(Vo, - .. Yg) 1= dE(B (W, ..., ¥g)) — Y 0 Alej=$)Wo, ..., ),
j=—1
(5.12)

where dZ; : Q7' @ AP s* — Q7' @ AP+ 5% is the Lie algebra cohomology cobound-
ary (with coefficients in 52151), and forany X € s and ¢ € CY(N, lel ® APs*),

q

d
Xo Q)W) = ) o
j=0

S0, ... Yj aexptX), ..., V).

t=0

We thus have the following.

Proposition 5.7 The coboundaries (5.11) and by commute, that is,

by obs = bs oby.
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Proof On one hand we have

(bn 0 bs)(@) (Yo, ..., Yg+1) = D (bs(P)) (W0, - .., Yg+1)
q+1

=D (=D bs(@ W0, - Vi V1)
i=0
q+1 R

=Y =D (A& @ W0, - Vis - Y1)

i=0

—07 A (e $YW0. o i i)
and on the other hand,

(bs 0 bN)(@) (Y0, - -, Ygs1) = bs(bn (D) (Yo, - - -, Ygr1)
= d& (N (@) (W0, - - Ygr1)) — 07 A (ej > b (@) (Wo, -+, Yy)

q+1
Q i -
=d& | D=1 W0, - s Wgr)
i=0
g+1
=) =D A W0, Vi Ygp).
i=0
O
As a result, we arrive at the bicomplex
bs bs bs
<1 2% by 1 <1 g 2% by 2 <1 20 N
Ql— ® A°s %—CPOI(N,QI— ® NS )%—Cpol(N,Ql— R NANET) ———> ...
bs bs bs
by by by
of'@st —————>cl v efles) ——————= 2 V. of @5 ——— ..
bs bg bs
<1 by 1 <1 by 2 <l N
Q; Choa (V. 27H) CZ N, Q7 ) ——— ..
The bicomplex (5.10) is evidently a sub-bicomplex of
*, % <l ._ Psq <1
Ccont(N’s’ Q1 ) = @ Ccont(N’ﬁ’ Q1 ),
p.q=0
P-4 <INy ._ 49 <1 Pk
Coont(N, 8, Q7)) i= Clon (N, Q7 @ APs™) (5.13)
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of continuous group cochains. Furthermore, CZ (N, 215 ® APs*) may be considered
as the set of continuous (inhomogeneous cochains)

E:an-xN—)Q]S]@/\ps*,
—_——

g—many

via the identiﬁcation$(1/f1, s U) =Wy Y2 Yy, ., Wy, e). This way,
the horizontal coboundary transforms into

by : CU(N, QF' @ APs*) — CTH(N, 7! @ APs"),
EN(E)(WL ceey "pq—i-l) = E(WL ) Wq-&-l)

q
+ ) D W i Y1)

i=1

+ DWWy - Vg

Proposition 5.8 We have the van Est-type isomorphism

HZ, (Diff(R), Q) = H*(Wy, QF').

Proof In view of the van Est isomorphism [13, Prop. 1.5] on the vertical level, we
note from [29, Lemma 1] that the E'-term of the spectral sequence, associated to the
natural filtration of the bicomplex (5.13), is identified with the E I_term of the Cartan-
Leray spectral sequence which computes, by [29, Prop. 5], the group cohomology
H (Diff(R), Qfl ), regarding the decomposition Diff(R) = S - N.

The claim now follows from the identification of the bicomplex (5.13) with the Lie
algebra cohomology bicomplex (3.6), which requires the commutativity of the inverse
limit and the cohomology as follows. The (profinite) group N is given as an inverse
limit, see [45, Eqn. (1.52)]:

N = lim Np.

k— 00

We have projections m;; : N; — N, from the group N; of invertible i-jets at 0 € R
to the group N; of invertible j-jets at 0 € R, for any i > j, see for instance [33, Sect.
IV.13]. Therefore, the inverse system (N;, 7;;) satisfies the Mittag-Leffler condition,
[14], see also [12, Thm. 1]. Hence

Hc*ont(N’ Q1Sl ®5*) = Hc*ont lim Nk’ Q1Sl ®5* = lim Hct)nt (Nk’ Qlﬁl ®5*> ’
k— 00 k— 00
On the other hand, ny := ({e = k}) being the Lie algebra of the group N, [33,

Sect. IV.13], on the infinitesimal level we have the inverse system (n;, 7r;;) of Lie
algebras with the projections 7;; : n; — n; forany i > j. As such,
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. % <1 *\ ~ 1: * <1 *
1(31 Hione (NlﬁQl ®s ) = {Ei Hiont (nk’Ql ®s )
k— 00 k— 00

= Hipy | lim ny, Q'@ | = H n, Q7' @59,
k— 00

where we note for the first (van Est) isomorphism that the maximal compact subgroup
of Ny, forany k > 1,is SO(1). We refer the reader to [11, Thm. 2.4 & Thm. 2.5] for
further identifications of these cohomologies. O

On the next step, let us consider the (coinvariant) bigraded space

Come(Q5 . 87 F(N) = €D i (. s F(N)), (5.14)

coinv
p.g=0

where

F)
Chi (@ &5 FIV) = (2] ® A7s* @ FIV)®H)

coinv

== {U®M®f| U<0>®I,L<O>®f®S(U<1>M<l>)=U®M®J?‘<O> ®f21>}’

and

J?;o> ® sz = fo(l) Q- fly® f0(2> oo .
As in [45, Prop. 1.15], (5.14) can be identified with the bicomplex (4.12).

Proposition 5.9 The mapping

T:CPIQS) ", F(N) — Cli (@) s, F(N))

coinv

given by

Iweu® fle---® f9)
=1, @u,y @ flo®S(flo) @ @S ) fl
®S('U<l>l’l/<l>.fq(z))

is an isomorphism.
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Proof We first show that the image is indeed in the coinvariant bicomplex. To this end
we note that

(Vg ® 1) o ® fly @ S(flo) fAn @+
® ST 0) [l ® Sy ey f12) ® S(vap. @ 1))
=v, ®un, ®flo@Sflo) e -
® S(f17 ) fl) ® S(v_,_ 11, fl0) ® S(u_,_pi,.)
=V, ® Ly @ flo @ S(flw) fin @+ @ S(F47 W) ) ® S(v, iy fa)
® floS(flo) . ST ) flo S, . f)

=V, @y @ <f1<1>)<1> ® (S(f1<z>)f2<1>)<1> ®---
® (S(fq_l<2>)fq<1>)(1) ® S [l

® (flm)(z) (S(f1(2>)f2<1>><2> . (S(fq_1(2>)fqu>><2>S(U<1>M<1>fq<2>)<2).
Next, we observe the invertibility by introducing

IT'weue @@ fH=veue e fofv
Q- ® ... 1% f17 e(f9).

Indeed,

ICT'veue f - ® f)
=Zweu® o ffofve & ff... 1% 1 e (f)
= v, ® iy ® fom ® S(Fme) o flon & -
® S(f-ve - f17%00) flom - .. F1 %0 f17 )
® Sy oo - f1T00 f7 0)e(fD)
=v, ®u, ® e
(/NS 0. [0 [ ) (. i)
=vu® o ® @ f17 ) @e(fl)
Sl 12 o) O 1 fl)
=veue f'® - [

where we used the coinvariance condition in the fourth equality. Similarly we may
observe

I'Coeon f'® @ f)=vu® f'e---a .

O
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As aresult, by the transfer of structure, we obtain

d&™ =T odep o I7': CLA (5 6" F(N)) — CLE4 (@5 5%, F(N))

coinv coinv

o™ = Tobly o' ClE (@ 5" F(N) — Lt @g . s*, F(V))

coinv coinv

Now we identify, just as [45, Prop. 1.16] the coinvariant bicomplex (5.14) with the
bicomplex (5.10).

Proposition 5.10 The map
T 1 Chr Q5 5" F(N)) > Coy(N. Q7' ® A*s"),
given by
TJo@u® 0@ @ fNW0,.... %) =v®pu fOW0) ... [y,

is an isomorphism of bicomplexes.

Proof We begin with the well-definedness. Indeed,

TJwu® 2@ ® fH(WYoy, ..., Vg¥)
=TJ00u® e - ® fln® O ... flo)Wo, ..., ¥)
=T W @ty @ [0 @+ ® f1Q Sty ) (W0, - Vo )
= v ®py fO0) .. fIW) S o, ) ()
= v ® g fOW0) ... LW (v, )
=V ® g fOW0) . W, (D, ()
=v e w ). 1) = (e w W) .. 1) ¥
=Jweud '8 & fHWo, ..., ¥y - V.

Let us now check the compatibility with the coboundaries. To begin with, we have

NTOU® [O® - @ fD) (Yo, ..., Ygs1)
q+1
=Y (D' T '@ ® fNWo0, ... Vir -, Yg41)
i=0
q+1

=Y D v @ 0@ W) W)

i=0

@ Springer



Hopf-cyclic cohomology of the Connes—Moscovici... 963

On the other hand,

O™ eue 08 @ f)=TobyoI 'weu® ' & f9)
=Tob} (U®M®f0(|> @l fly® e fl -~fq_2(2)fq_18(fq)>
=I<U®M® 1® % @ flflo®@ @ fl ... f972% 17 e (f)

q
+Z(—1)l vu® % ® Pl floe- A% flioy ... il @ -
i=0

® .. 1% f17 e (f7)
+ =D, @, ® o ® ffoflo®- -

® [ [ () @ S K )
Now we note, in view of the coinvariance property, that

I(U uele® ffne ffoflve - ...fq_za)fq_ls(fq))
=v, @, @101 on @ SU0e) flon flon ®---
® S(fo%-v2 . F17%00) fom - .. fT7%0m f1 ne(f9)
® S,y oo - [T e f17 )
=1eu®l1® f'® - f4,

that
0 0,1 0 ;1. i1
I<v®,u®f<1> Qf of @ - QA(fTofi-n... 1) -
® ... f1 % fq_IE(fq))
=1 ® . ® oo ® S0 fam flon @ -
® S(flma fli-voe - .. T ome) oo e ... F ven ® -
® S(U<]>M<]> f()(q)(Z) s fq—2<2)(2) fq_1(2))
=vu®f'® - 1 f® - fI,
and that
I(”<0> Oty ® 0 ® flafle- -
® Y 7R [T () ® S . )
=00 ® oo ® o0 ® S0 flom flan @
® S0 ... f1 %00 f1 e (f)) S, 1,

® S(U<0><]>H’<0><]>S(U<I>M<]>)(2))
=vu®f'® - ®f1xl.
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As a result,

TJOFE™weu® fO'0---@ fN))Wo, ..., Ygr1)
q+1

=Y (D@ u W) Win1) - f W)

i=0

We thus observe that 7 o b’;\,c"inv =byoJ.LetusproceedtobsoJ = J o dé‘gnv,
that is, bs 0 J = J o Z o dcg o Z~ !, the compatibility with the vertical coboundary
maps. To this end, we shall verify

T "o g VobsoJ =dcgoZ™ .
On the one hand we have

deg o' v@u® fO® - ® f9)
=dcg (v eue flne flofve e . --fq_2<2>fq_18(fq)>
=d&wew @ ffne ffoflv® @ 0. f17% 1 e (f)
—v®9jAM®€j‘(f0<l>®f0<2>fl<1>®~-~®f0<q)---fq_2(2)fq_18(fq)),

and on the other hand
T 0T obso T u® f0®---® f9)
=1 (drewe e o )
—7! <v®9j/\,u®ejl>(f0®-~'®fq))
=d&wemw @ % ffoflv® @ ... f17 % f1 e (f)
R0 AuURe; e (fom Qo flve--® fl. -~fq_2(2>fq_18(fq)) ,
where the last equality is a direct consequence of [45, Eq. (1.50)]. O

As a result, we now have the classes

JoT(Neeh)e £, ToT[|Y a+nifex| |ek’

i>1 1

in the bicomplex (5.10). We note further that, since they are not coboundaries of
continuous 0-cochains, they survive in the continuous bicomplex (5.13) which is the
E;-term of the Cartan—Leray spectral sequence computing the group cohomology
HE  (Diff (R), Q7).
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Proposition 5.11 The cochain
dt e CL L (N, Q5 @ A%,
given by

v (x)
Y (x)

de : Y > dlog(y' (x))dx = dx,

is a cocycle in the bicomplex (5.13).

Proof Let us first observe that

by (dO) (Y1, ¥2) = (dO)(Y2) — (dOW1Y2) + (dO) - V2
_ w%/(x) gy = Y1'@ lﬂ{//(X) dx
v, (x) W12)' (x) v (x)

_ww ., [‘”{’wz(x))wg(xﬂ + Y] (2P () dx}

= Uo AT
Vo)
_— dx = 0.
Wty V2O

Next, we see that

be(dO)(W) = dE (L)) — 07" A (e—1 = dO)(W) — 6° A (eo > dO) ()
=dl(Y) - e.1 ®07 +dl() - eo®0°
—dt(fae_) @07 —de(y <aep) ®6°
= (L) e —db(Y e 1) @6
+ (L) - eo — ALY <)) ® 6°.

We thus have to recall that
exp(te_1) : R — R, exp(te_1)(x) = x +1t,
and
exp(tep) : R — R, exp(tep)(x) = tx,
and on the other hand, for any ¢ € Diff (R),
=¥, ¢ = Ox+90). Y=¢"¢.
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Then since the mutual actions satisfy ¥ ¢ = (¥ > ¢) (¥ < @), we have

WYo)x)  We)(0)

V=90 =00~ ey )

In particular,

Y+ Y0
IR ZC)

and keeping ¥ (0) = 0 and v'(0) = 1 in mind,

(¥ <exp(te—1))(x) =

(¥ aexp(reg)) (x) = ‘”(t”‘).

Hence, we have

Ve
dl(y <exp(te—1))(x) = ICET)
and
ey <exp(ren)(x) = tz/(f;x))-
As a result,

d
bs(dO)(W) = — (x+0)

[wﬁ(x‘i‘t) w//(x+t):|®9_l
0

v T e
i w//(tx) o tw//(tx) .
dt =0 |:‘/f/(fx) (@) ) :| Q6% =0.

Proposition 5.12 The cochain

(N, Q' ® Als*) @ Cloy (N, @F' ® A's),

cont

106°+2eC?

cont

where

€y > log(y' (x)),
is a cocycle in the bicomplex (5.13).

Proof To begin with, we already have

be(1®6% =1-¢;®67/ A6 +1® dpr(6°) =0.
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On the other hand, for the horizontal coboundary we observe from (4.11), and [1, Eqn.
(3.33)] that

bvA®)W) =106% ¥y =106 _1)6°,.
=108 W) ' =-10y" 00"

We proceed to £ € CL (N, 52151 ® AY%*). On one hand we have

bs(O) (W) = dE () — 07" A (e—1 > () — 6% A (eo > O) ()
= () e — LY ae 1)) @O+ (L) - eg — L(Y < ep)) ®6°

|:10g(¢/(x +1)(x +1) —log (Mﬂ ®6!

di| _, 0)
d / / / 0
+ [log(y/(tx))(tx) — log(¥'(tx))] ® 6
=0
=y" (00",

and on the other hand,

by (O) (Y1, ¥2) = L(Y2) — LW ¥2) + £(Y1) - 2
= log(¥(x)) — log (¥ (Y2(x)¥3(x)) +log(¥{ (¥2(x))) = 0.

O

Since there are the only two classes in H L(Diff (R), Qfl), by Proposition 5.8, we
conclude

[ToZ(W)h =060+, [T oZ(A)]=I[de].
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