
J. Homotopy Relat. Struct. (2018) 13:867–925
https://doi.org/10.1007/s40062-018-0204-8

A simplicial foundation for differential and sector forms
in tangent categories

G. S. H. Cruttwell1 · Rory B. B. Lucyshyn-Wright1

Received: 2 October 2017 / Accepted: 28 March 2018 / Published online: 26 April 2018
© Tbilisi Centre for Mathematical Sciences 2018

Abstract Tangent categories provide an axiomatic framework for understanding var-
ious tangent bundles and differential operations that occur in differential geometry,
algebraic geometry, abstract homotopy theory, and computer science. Previous work
has shown that one can formulate and prove a wide variety of definitions and results
from differential geometry in an arbitrary tangent category, including generalizations
of vector fields and their Lie bracket, vector bundles, and connections. In this paper
we investigate differential and sector forms in tangent categories. We show that sector
forms in any tangent category have a rich structure: they form a symmetric cosimpli-
cial object. This appears to be a new result in differential geometry, even for smooth
manifolds. In the category of smooth manifolds, the resulting complex of sector forms
has a subcomplex isomorphic to the de Rham complex of differential forms, which
may be identified with alternating sector forms. Further, the symmetric cosimplicial
structure on sector forms arises naturally through a new equational presentation of
symmetric cosimplicial objects, which we develop herein.
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1 Introduction

Tangent categories [5,34] provide an axiomatization of one of the key structures in
differential geometry: the tangent bundle. Tangent categories are useful for a number
of reasons. First, constructions of objects like the tangent bundle appear in a variety
of categories, some related to the category of smooth manifolds, others to categories
in algebraic geometry, and others to categories in homotopy theory and computer
science. Thus, it is helpful to have a single axiomatization which can deal with all
these examples simultaneously. Secondly, a variety of definitions and constructions
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in differential geometry are closely linked to the tangent bundle. For example, vector
fields, the Lie bracket, connections, and differential forms can all be viewed as certain
maps in the category of smooth manifolds which take as domain or codomain the
tangent bundle (or bundles related to it). Thus, one can hope to give definitions and
prove results about these objects in an arbitrary tangent category.

This paper is a contribution to the second aspect of this program; in particular, in this
paper we are interested in determining how to define differential forms, their exterior
derivative, and the resulting cochain complex of de Rham in an arbitrary tangent
category. However, to do so requires a close inspection of the nature of differential
forms. This inspection reveals an interesting structure, a simplicial object of sector
forms, of which de Rham cohomology can be seen as a simple consequence.

There is a relatively straightforward analog of the notion of differential form in
any tangent category. Classical differential n-forms on a smooth manifold M can be
viewed as multilinear, alternating maps

TnM → R

where TnM is the object of consisting of all “n-tuples of tangent vectors at a common
point on M”. (That is, TnM is the fibre product of n copies of the tangent bundle
T M → M over M .) These objects exist in any tangent category, and thus one can
define (classical) differential forms in any tangent category as above, with R replaced
by a suitable coefficient object.

However, a difficulty arises when attempting to define a direct analog of the exterior
derivative of such forms in an arbitrary tangent category. In the category of smooth
manifolds, the exterior derivative of an n-form ω : TnM → R is an (n + 1)-form ∂ω,
which can be defined locally on open subsets U ∼= R

n . In the case where M = R
n

one can define ∂ω as an alternating sum of certain maps Tn+1M → R [20, 7.8], each
expressed in terms of the Jacobian derivative T (ω) : T (TnM) → TR ∼= R × R

by pre-composing with a certain canonical map κ : Tn+1M → T (TnM). A similar
definition applies in any Cartesian differential category [9]. However, in an arbitrary
tangent category, the objects need not be manifolds, and the local definition cannot
be mimicked globally for want of a suitable map κ to mediate between the intended
domain of ∂ω (namely Tn+1M) and the domain of T (ω) (namely T (TnM)).

One solution to this problem can be found by considering how synthetic differential
geometry (SDG) handles differential forms. In SDG one finds categories which have
representable tangent structure; these are categories with an object D for which there
is a tangent functor T defined by T M := MD . Various definitions and results have
been transplanted from classical differential geometry to models of SDG; see, e.g.,
[19,25,32]. In a typical model of SDG, as in a tangent category, the objects need
not be locally isomorphic to some Rn . Thus, for a general object in such categories,
the exterior derivative also cannot be defined by mimicking the classical definition
directly.
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870 G. S. H. Cruttwell, R. B. B. Lucyshyn-Wright

In SDG, the solution to this problem is to look at a different type of map: instead
of considering multilinear alternating maps from TnM → R, one instead considers
multilinear alternating maps

T nM �� R,

where T nM is the nth iterate of the tangent bundle of M . Such maps were first consid-
ered in [15,17] and referred to as singular forms in [25,Definition 4.1];we shall use that
name here to distinguish them from other notions of formwe shall consider. In contrast
to the classical case, the Jacobian derivative T (ω) of a singular n-formω does have the
expected domain, namely T n+1M . The references above show how to define an exte-
rior derivative for such forms; the definition involves an alternating sum of permuta-
tions of the Jacobian derivative.Moreover, it has been shown that for a particularmodel
of SDG which contains the category of smooth manifolds, if M is a smooth manifold
then singular forms are in bijective correspondence with classical differential forms,
and their exterior derivatives agree [32, IV, Proposition 3.7]. This shows that models
of SDG have a notion of de Rham complex which generalizes the classical notion.

Thus, for tangent categories, a natural point of investigation is to look at multilinear
alternating maps from T nM to some coefficient object E . We show in this paper that
such maps indeed have an exterior derivative that generalizes the definition from
SDG, and has the required properties (Proposition 8.13). Thus, this shows that tangent
categories have a notion of de Rham cohomology (namely, the cohomology of the
resulting complex) which generalizes the SDG notion, and hence also generalizes the
classical notion.

However, there is much more to say about maps from T nM to E in a tangent
category. In particular, none of the results that need to be proved to show that such
maps have an exterior derivative require that the maps from T nM be alternating;
multilinearity suffices. Thus, one is led to consider maps

ω : T nM → E

(for a suitable coefficient object E) which are multilinear but not necessarily alternat-
ing. Such maps do not appear in published accounts of SDG, but have appeared in
differential geometry [33,38]. They are known as sector forms (for some basic exam-
ples of sector forms, see Sect. 3). The exterior derivative of singular forms works for
sector forms, and so in addition to the complex of singular forms, tangent categories
have complexes of sector forms (8.2).

However, there ismuchmore structure to these sector forms than a cochain complex.
We show that for each n, there are n + 1 ‘derivative’ or co-face operations which take
sector n-forms to sector (n + 1)-forms (Theorem 7.7), there are n − 1 symmetry oper-
ations which take sector n-forms to sector n-forms, and there are n−1 co-degeneracy
operations which take sector n-forms to sector (n−1)-forms (Proposition 7.3).1 Taken

1 Note that while pre-composing with the projection or zero natural transformations gives an obvious way
to define co-face and co-degeneracy operations, these are not the operations we are using: see Sect. 3 for a
basic overview of the definitions of these operations.

123



A simplicial foundation for differential and sector. . . 871

together, these operations constitute the structure of an (augmented) symmetric cosim-
plicial object [1,11] of sector forms (Theorem 7.7); that is, there is a functor on the
category of finite cardinals. This is a remarkably rich structure, and has not previously
appeared in either ordinary differential geometry or synthetic differential geometry.2

Thus, we view the symmetric cosimplicial object of sector forms as the primary
object of interest in relation to the various notions of differential forms considered
above. In particular, from this cosimplicial object one can obtain as a simple corollary
the complex of sector forms and the complex of singular forms.3 Moreover, by gener-
alizing to maps which are not necessarily alternating, one also generalizes covariant
tensors (multilinear maps with domain Tn) which have numerous uses throughout
differential geometry [38, Section 3.1]. In other words, sector forms generalize three
important ideas in differential geometry: differential forms, covariant tensors, and
singular forms. Thus, it is important to understand the structure of sector forms, and
this paper represents a substantial advance in the study of these objects in the general
setting of tangent categories.

Alternating Not alternating

Domain Tn Differential form Covariant tensor
Domain T n Singular form Sector form

It is also worth noting that this paper contains two other points of independent inter-
est. First, to establish the symmetric cosimplicial structure of sector forms, it becomes
natural to give an alternative presentation of symmetric cosimplicial objects, and in
particular to give an alternative presentation of the category of finite cardinals. The
standard presentation [11] involves co-face maps, symmetry maps, and co-degeneracy
maps. However, for each n, the n+1 co-face maps from n to n+1 can all be obtained
by applying symmetries to a single co-face map, and thus one can show (Theorem 6.4)
that the category of finite cardinals can be presented by symmetries, co-degeneracies,
and a single co-face map for each n.

The second point of interest relates to methodology in tangent categories in general.
The definition of the symmetry and co-degeneracy maps of sector forms involves
various combinations of the lift natural transformation � : T �� T T and the canonical
flip transformation c : T T �� T T (which are part of the definition of a tangent
category). To establish the various identities that are required of the symmetries and
co-degeneracies, one then must perform various complicated calculations with these
maps. One way to handle the complexity of such calculations is to use string diagrams,
as was done in previous work on tangent categories [6]. Another way to handle the

2 The first person to write on sector forms in standard differential geometry, J.E. White, describes the
co-face and symmetry maps of sector forms, but does not describe the the co-degeneracy maps or any of the
equations these various maps must satisfy in order to yield a symmetric cosimplicial object [38, Definition
3.8, 3.12].
3 In the context of synthetic differential geometry, there is a different way of obtaining the deRham complex
from simplicial data, using the idea of infinitesimal cochains [19, Section I.18] [18]. However, this approach
is different from the approach via sector forms that we pursue here.
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complexity is to use a recently discovered embedding theorem for tangent categories
[10] (for more on this approach, see the discussion after 2.4). However, here we use
a different approach. Diagrams involving the maps � and c in a tangent category
X can be viewed as the application of a certain functor from the category of finite
cardinals and surjections (written as finCards) to the category of endofunctors onX
(Example 5.14). Thus, to establish the commutativity of such a diagram of natural
transformations, it suffices to establish the commutativity of a certain diagram in
finCards , and this is typically straightforward. For examples of this proof technique,
see Proposition 7.3 and Theorem 7.6.

The paper is laid out as follows. In Sect. 2, we review the definitions of tangent
categories and differential objects, which are the coefficient objects in which the forms
will take their values. Before going into the various details required of many of the
proofs, in Sect. 3 we give an overview of the key definitions and results of the paper,
providing more detail than in the discussion above, and also providing some exam-
ples of sector forms. In Sects. 4, 5, and 6, we study symmetric cosimplicial objects
and related notions, emphasizing their relations to categories of finite cardinals and
establishing equational presentations of some of these key categories. Throughout
these sections, we show how some of the structure of these categories is present in the
category of endofunctors on a tangent category. In Sect. 7, we look at sector forms,
their fundamental derivative, and how they have the structure of a symmetric cosim-
plicial object. In Sect. 8, we obtain the complexes of sector forms and singular forms
as simple consequences of the symmetric cosimplicial structure on sector forms. In
Sect. 9, we study forms in the presence of representable tangent structure, and we
show how our definitions of sector forms and singular forms in a tangent category
relate to existing definitions in classical and synthetic differential geometry. Finally,
in Sect. 10, we look at various ways to extend or add to the results we have presented.

2 Tangent categories and differential objects

2.1 Notation

Throughout this paper, composition in diagrammatic order is indicated with a semi-
colon, so that f , followed by g, is written as f ;g. When F and G are functors, we will
sometimes denote the composite F;G instead by GF , so that juxtaposition of func-
tors denotes classical right-to-left composition. Given an objectC of a categoryC , we
denote by AutC (C) the group of automorphisms of C in C . Rather than straying from
convention by defining multiplication in AutC (C) in terms of the diagrammatic com-
position order, we instead take the view that groups are certain one-object categories,
and we define composition in AutC (C) as in C .

2.2 Additive bundles

If M is an object in a category X , an additive bundle over M consists of a map
q : E ��M such that (i) q admits finite fibre powers, i.e., for each n ∈ N there is a fibre
product En → M ofn copies of (E, q)overM with projectionsπ1, . . . , πn : En → E ,
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and (ii) (E, q) is a commutative monoid in the slice categoryX /M . In particular, this
means there is an addition operation, which will often be written as σ : E2 �� E and
must satisfy the usual requirements of commutativity and associativity, and a unit for
this addition, which will often be written as ζ : M �� E . A map between such bundles
will, in general, just be a commutative square

E
e ��

q

��

E ′

q ′
��

B
b

�� B ′

written (e, b) : q �� q ′. If, in addition, such a map of bundles preserves the addition
– that is e2; σ ′ = σ ; e and b; ζ ′ = ζ ; e – then we shall say that (e, b) is an additive
bundle morphism.

2.3 Definition For a category X , tangent structure T = (T, p, 0,+, �, c) on X
consists of the following data:

• (tangent functor) a functor T : X ��X with a natural transformation p : T �� I
such that each pM : T (M) �� M admits finite fibre powers that are preserved by
each T n : X → X ;

• (additive bundle) natural transformations + : T2 �� T (where T2 is the second
fibre power of p) and 0 : I �� T making each pM : T M ��M an additive bundle;

• (vertical lift) a natural transformation � : T �� T 2 such that for each M

(�M , 0M ) : (p : T M �� M,+, 0) �� (T p : T 2M �� T M, T (+), T (0))

is an additive bundle morphism;
• (canonical flip) a natural transformation c : T 2 �� T 2 such that for each M

(cM , 1) : (T p : T 2M �� T M, T (+), T (0)) �� (pT : T 2M �� T M,+T , 0T )

is an additive bundle morphism;
• (coherence of � and c) c;c = 1 (so c is an isomorphism), �;c = �, and the
following diagrams commute:

T
� ��

�
��

T 2

T �
��

T 2
�T

�� T 3

T 3 T c ��

cT
��

T 3 cT �� T 3

T c
��

T 3
T c

�� T 3
cT

�� T 3

T 2

c
��

�T �� T 3 T c �� T 3

cT
��

T 2
T �

�� T 3
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• (universality of vertical lift) definingv : T2M ��T 2M byv := 〈π1;�, π2;0T 〉T (+),
the following diagram is a pullback that is preserved by each T n :

T2(M)

π1;p = π2;p
��

v �� T 2(M)

T (p)

��
M

0
�� T (M)

A category with tangent structure, (X ,T), is a tangent category.

2.4 Example Here are several important examples of tangent categories, the first four
of which are drawn from [5,7].

(i) Finite dimensional smooth manifolds with the usual tangent bundle structure.
(ii) Convenient manifolds with the kinematic tangent bundle [21, Section 28].
(iii) The infinitesimally and vertically linear objects in any model of synthetic differ-

ential geometry [19] form a tangent category: if D is the object of square-zero
infinitesimals, then we take T M := MD .

(iv) The opposite of the category of finitely presented commutative rings (or more
generally commutative rigs4) is another example of a category with representable
tangent structure: here D is the ‘rig of infinitesimals’,N[ε] := N[x]/(x2 = 0) and
again T A := AD .

(v) A very different example of a tangent category arises from abstract homotopy
theory, in particular in work on Abelian functor calculus [13]. In [2], the authors
show that a certain operation in abelian functor calculus gives rise to a Cartesian
differential category [3]. As every Cartesian differential category is a tangent cat-
egory [5, Section 4.2], this example is also a tangent category; this insight was
useful in providing a straightforward proof of the existence of certain higher-order
chain rules for abelian functor calculus (see the discussion at the top of page 5 in
[2]).

(vi) Other examples of tangent categories that arise as Cartesian differential categories
include the models of the differential λ-calculus that appear in computer science
(for example, see [8,30]).

More examples can be found in [5,7]. In addition to these examples, recent work
of Leung [27] and Garner [10] establishes certain equivalent formulations of tangent
categories that provide new perspectives on the axioms. Leung’s work shows that
tangent categories are closely related to categories of Weil algebras, while Garner’s
work builds on this result to show not only that tangent categories can be seen as certain
types of enriched categories, but also that every tangent category can be embedded in
a tangent category that is representable, in the sense that the functor T is representable
(for more on representable tangent categories, see [5, Section 5] and also 9.1 below).

This last point allows one to work in an arbitrary tangent category as if T was
representable, allowing for calculations in a tangent category which closely resemble

4 That is, unital rings without additive inverses, also known as unital semirings.

123



A simplicial foundation for differential and sector. . . 875

those in SDG. One may ask, for example, whether this could simplify the proofs of
some of the results in this paper. However, we have not found that this was the case.
Certain of our initial attempts at proofs of the main results of this paper indeed used
representable tangent categories, but the resulting calculations were no less lengthy
than those recorded herein; indeed, by observing that the transformations � and c
generate a model of a certain PROP, in Mac Lane’s sense [28], we have reduced many
of these calculations to showing that certain diagrams of finite sets commute. More
importantly still, it was only by working with the relatively restrictive stuctures of
tangent categories and associated PROPs that we discovered the main results of this
paper, including the result that sector forms carry cosimplicial structure.

2.5 Commutative monoids in a Cartesian tangent category

The coefficient objects of our forms will in particular be commutative monoids, so it is
useful to first make some remarks about commutative monoids in a tangent category.

A tangent category (X ,T) is said to beCartesian ifX has finite products that are
preserved by the tangent functor T : X → X . In this case we denote by cmon(X )

the category of commutativemonoid objects inX . For each object X ofX , the functor
X (X,−) : X → set preserves limits and so sends each commutative monoid E in
X to a commutative monoidX (X, E) in set.When X itself is a commutative monoid
in X , the hom-set cmon(X )(X, E) is a submonoid of X (X, E). Composition in
cmon(X ) preserves this monoid structure in each variable separately, so we say
that cmon(X ) is an additive category, which, following previous papers on tangent
categories, we take to mean a category enriched in commutative monoids. Moreover,
we have the following:

2.6 Proposition Let (X ,T) be a Cartesian tangent category. Then the tangent end-
ofunctor T : X → X lifts to an endofunctor cmon(T ) : cmon(X ) → cmon(X ).
Moreover, the endofunctor cmon(T ) is additive in the sense that it preserves the com-
mutativemonoid structure on the hom-sets of cmon(X ). Furthermore, ifφ : T i ⇒ T j

is a natural transformation between iterates of T (i, j ∈ N), then for each commutative
monoid E inX the morphism φE : T i E → T j E is a homomorphism of commutative
monoids inX .

Proof There is a 2-category Cart whose objects are categories with finite products,
wherein the 1-cells are functors preserving finite products and the 2-cells are arbi-
trary natural transformations. Letting C denote the Lawvere theory of commutative
monoids, there is an equivalence of categories Cart(C ,D) 	 cmon(D) for every
object D of Cart. But Cart(C ,−) : Cart → Cat is a 2-functor valued in the 2-
category of categories, and it follows that the assignment D 
→ cmon(D) underlies
a 2-functor cmon : Cart → Cat. We can apply this 2-functor to the 1-cell T and to
the 2-cell φ, thus proving two of the above claims. Lastly, cmon(X ) is an additive
category with finite products, which are therefore finite biproducts, and since T pre-
serves finite products it follows that cmon(T ) preserves finite biproducts and hence
is additive. ��

123



876 G. S. H. Cruttwell, R. B. B. Lucyshyn-Wright

2.7 Differential objects

Before we define sector forms and singular forms, we need to consider the objects
in which these forms will take their values. These will be differential objects, which
are certain objects E whose tangent bundle T E is simply a product E × E . This is
formulated more precisely as follows.

2.8 Definition Let (X ,T) be a Cartesian tangent category. A differential object in
(X ,T) consists of a commutative monoid (E, μ, η) in X (equivalently, an additive
bundle over 1) together with a map λ : E �� T E (known as the lift) such that

• (λ, η) is an additive bundle morphism from (E, !E , μ, η) to (T E, p,+, 0);
• λ is a homomorphism of commutative monoids from (E, μ, η) to (T E, T (μ),

T (η));
• the equation λ;T (λ) = λ;�E holds;
• the map

E × E
ν := 〈π1;λ, π2;0E 〉;T (μ) �� T E

is an isomorphism.

Say that (E, μ, η, λ) is a subtractive differential object if the commutative monoid
(E, μ, η) is an abelian group. In this case we denote the inverse operation by − :
E �� E .

2.9 Example Here are some important examples of differential objects from [7].

(i) In the category of smooth manifolds, each Cartesian space R
n is a differential

object, where λ : Rn → TRn = R
n × R

n sends x to (x, 0), construed as the
tangent vector x at the point 0.

(ii) Similarly, in the category of convenient manifolds, each convenient vector space
is a differential object.

(iii) In the category of affine schemes cRingop, polynomial rings Z[x1, x2, . . . , xn] are
differential objects.

(iv) Differential objects in a tangent category associated to a model of SDG are pre-
cisely the Euclidean R-modules [25, 1.1.4] (see [7, Theorem 3.9] for a proof of
this).

All of the above examples are subtractive.

2.10 Remark By definition, if E is a differential object, then T E ∼= E × E . Through
the isomorphism ν, one can show that the projection from the second component is pE :
T E ��E .Wewillwrite p̂ : T E → E for the projection to thefirst component, and refer
to it as the principal projection. Differential objects can be alternatively axiomatized
in terms of the principal projection p̂. For example, this was how differential objects
were originally presented [5, Definition 4.8]. It is a relatively straightforward exercise
to show the equivalence of the two definitions [7, Proposition 3.4].
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We will make use of both the lift λ : E �� T E and the principal projection p̂ :
T E �� E when investigating differential forms with values in E . In particular, the
following results about these maps will be useful.

2.11 Proposition If E is a differential object with lift λ and principal projection p̂,
then

(i) p̂ is a homomorphism of commutative monoids, where T E has the commutative
monoid structure as discussed in 2.6.

(ii) λ; p̂ = 1E .
(iii) 0E ; p̂ = !E ;ζ .
(iv) �E ;T ( p̂); p̂ = p̂.
(v) cE ;T ( p̂); p̂ = T ( p̂); p̂.
(vi) �E ;T ( p̂) = p̂;λ.
(vii) T (λ);cE ;T ( p̂) = p̂;λ.
Proof The first five parts are established in [7, Propositions 3.4 and 3.6, Definition
3.1]. For (vi), we regard T E as a product E × E with projections ( p̂, pE ). Then λ is
the morphism 〈1E , 0〉 induced by the identity morphism on E and the zero element 0
of the commutative monoid X (E, E) (2.5). Hence

p̂;λ; p̂ = p̂;1E = p̂ = �E ;T p̂; p̂

by (iv). Also, using the naturality of p, the equation �;c = �, and the fact that (�E , 0E )

and (cE , 1T E ) are bundle morphisms (2.3) we compute that

p̂;λ;pE = p̂;0 = 0 = pE ;0
= pE ;0E ; p̂ = �E ;T pE ; p̂ = �E ;cE ;pT E ; p̂
= �E ;pT E ; p̂ = �E ;T p̂;pE

where each unadorned 0 denotes the zero element of the relevant hom-set (2.5) while
0E = 〈0, 1E 〉 : E → T E ∼= E × E denotes the zero section, i.e. the component of
0 : I ⇒ T at E . Hence p̂;λ = �E ;T p̂ as needed.

For (vii), we again use the fact that T E is a product E×E with projections ( p̂, pE ).
Appending the first projection p̂ to the equation in question, we compute that

Tλ;cE ;T p̂; p̂ = Tλ;T p̂; p̂ = T (λ; p̂); p̂ = p̂ = p̂;λ; p̂

using (ii) and (v). Appending the second projection pE , we compute that

Tλ;cE ;T p̂;pE = Tλ;cE ;pT E ; p̂ = Tλ;T pE ; p̂ = T (λ;pE ); p̂ = T (0); p̂
= 0; p̂ = 0 = p̂;0 = p̂;λ;pE

using the naturality of p, the additivity of T (2.6), the fact that λ;pE = 0, the fact
that p̂ is a homomorphism of commutative monoids, and the fact that cE ;pT E = T pE
since (c, 1T E ) is a bundle morphism (2.3). ��
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3 Overview of main results, with examples of sector forms

To prove the main results of this paper we have used a variety of techniques and
definitions. However, we feel it is important to present many of the main results in a
single place so as to be easily locatable and so as to feature them prominently. In this
section we also look at some examples of sector forms, as they are perhaps much less
familiar to the general reader than differential forms.

Throughout this section, we work in a Cartesian tangent category (X ,T) with a
fixed object M and a fixed differential object (E, σ, ζ, λ).

We first define a number of natural transformations between powers of T which
will appear in the definitions of certain types of forms and their derivatives. Much of
the work of Sects. 4 and 5 deals with how to interpret these natural transformations
and handle them more efficiently.

3.1 Definition Define

�ni := T i−1�T n−i : T n → T n+1 (n, i ∈ N, 1 � i � n) (3.1.i)

cni := T i−1cT n−i−1 : T n → T n (n, i ∈ N, 1 � i � n − 1) (3.1.ii)

cn(i) := ci−1;ci−2; . . . ;c2;c1 : T n → T n (n, i ∈ N, 1 � i � n)

(3.1.iii)

ani := �ni ;cn+1
(i) : T n → T n+1 (n, i ∈ N, 1 � i � n) (3.1.iv)

The main object of study of this paper is the following notion of form, originally
due to White [38].

3.2 Definition A sector n-form on M with values in E is a morphismω : T nM → E
such that for each i ∈ {1, . . . , n}, ω is linear in the i th variable; that is, the following
diagram commutes:5

T n+1M T E
T (ω)

��

T nM

T n+1M

ani M ��
T nM E

ω �� E

T E
λ��

The set of sector n-forms on M with values in E will be denoted by �n(M; E) (often
abbreviated to �n(M)).

To help explore the similarities and differences between ordinary differential forms
and sector forms, we will briefly look at sector 1- and 2-forms on R in the category of
smooth manifolds.

3.3 Example Let us first consider what sector 1-forms on R with values in R consist
of. By definition, such a form consists of a map ω : TR �� R that satisfies the single
linearity equation

5 White instead states the definition in terms of a criterion of fibrewise linearity.
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T 2
R TR

Tω
��

TR

T 2
R

�R ��
TR R

ω �� R

TR
λ��

Recall that TR is simply R × R, via the two projections pR : TR �� R and
p̂ : TR ��R. Hence the commutativity of the above diagram is equivalent to its com-
mutation when post-composed with pR and p̂, respectively. Butω;λ;pR = ω; !R;ζ =
!TR;ζ by 2.8, and �R;Tω;pR = �R;pTR;ω = �R;cR;pTR;ω = �R;T pR;ω =
pR;0R;ω by the axioms for tangent categories (2.3). Hence ω;λ;pR = �R;Tω;pR ⇔
!TR;ζ = pR;0R;ω ⇔ pR; !R;ζ = pR;0R;ω ⇔ !R;ζ = 0R;ω since pR is a retraction
(of 0R). On the other hand, �R;Tω; p̂ = �R;Dω where Dω = Tω; p̂ : T 2

R → R

is the directional derivative of ω, so since λ; p̂ = 1 by 2.11 we find that the above
linearity equation holds if and only if the following equations hold:

�R;Dω = ω !R;ζ = 0R;ω.

But the first equation entails the second, since if the first holds then 0R;ω =
0R;�R;Dω = 0R;�R;Tω; p̂ = 0R;0TR;Tω; p̂ = 0R;ω;0R; p̂ = 0R;ω; !R;ζ = !R;ζ
by 2.3 and 2.11.

Hence the linearity equation is equivalent to the equation �R;Dω = ω. In order
to reformulate this equation more concretely, let us write ω : R × R → R as a
function ω(x, v) of two variables x, v, so that we may write its first and second
partial derivatives briefly as ∂ω

∂x and ∂ω
∂v
. We can write T 2

R = T (R×R) as a product
T 2

R = (R × R) × (R × R), whereupon Dω : T 2
R �� R is given by

〈x0, v1, v2, d〉 
→ ∂ω

∂x
(x0, v1) · v2 + ∂ω

∂v
(x0, v1) · d,

and � : TR �� T 2
R is given by

〈x, v〉 
→ 〈x, 0, 0, v〉.

Hence �;Dω, evaluated at 〈x, v〉, is
∂ω

∂x
(x, 0) · 0 + ∂ω

∂v
(x, 0) · v = ∂ω

∂v
(x, 0) · v.

So the linearity equation says

ω(x, v) = ∂ω

∂v
(x, 0) · v.

Thus, if we set f (x) = ∂ω
∂v

(x, 0), then

ω(x, v) = f (x) · v.
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It is easy to see that any map of this form is indeed a sector 1-form. So, in this case,
sector 1-forms are precisely the same as ordinary differential 1-forms (more generally,
this is true for any smooth manifold).

3.4 Example Despite 3.3, sector n-forms for n ≥ 2 are in general quite different
from ordinary differential n-forms, even for a simple smooth manifold such as R. For
example, for n = 2, a sector 2-form on R consists of a map ω : T 2

R �� R such that

T 3
R TR

Tω
��

T 2
R

T 3
R

�TR ��
T 2

R R
ω �� R

TR
λ�� and

T 3
R TR

Tω
��

T 2
R

T 3
R

T �R;cTR ��
T 2

R R
ω �� R

TR
λ��

Using similar reasoning to the previous example, it is straightforward to show that any
map of the form

ω(〈x, v1, v2, d〉) = f (x) · v1 · v2 + g(x) · d

(where f (x) and g(x) are smooth functions from R to itself) is an example of a
sector 2-form6 on R. This is very different from the general description of ordinary
differential 2-forms on R: there is only one, namely the zero form.

One of the key points of this paper is that the sector n-forms have a rich variety
of operations that can be performed on them. In particular, there are n + 1 different
derivative or co-face operations δni which take sector n-forms to sector (n+1)-forms:

δni (ω) := cn+1
(i) M;Tω; p̂ (Theorem 7.7)

there are n − 1 different co-degeneracy operations εn−1
i which take sector n-forms to

sector (n − 1)-forms:

εn−1
i (ω) := �n−1

i M;ω (Proposition 7.3)

and there are n − 1 different symmetry operations σ n
i which take sector n-forms to

sector n-forms:

σ n
i (ω) := cni M;ω (Proposition 7.3).

Muchof thework of this paper goes into proving the following result (Theorem7.7):

The operations δ, ε,σ together endow the set of sector forms on M with the structure
of an (augmented) symmetric cosimplicial commutative monoid, i.e. a functor from
the category of finite cardinals to the category of commutative monoids.

6 One can also show that all sector 2-forms on R are of this form. A general description of sector n-forms
on Rm was given by White [38].
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In particular, this means that for every function between finite cardinals f : n → m
there is an associated monoid homomorphism� f : �n(M) ���m(M) (given as some
composite of the above co-face, co-degeneracy, and symmetry operations), and this
entire assignment is functorial.

Moreover, if E is subtractive, then this structure forms a symmetric cosimplicial
abelian group. In general, any cosimplicial abelian group has an associated cochain
complex whose differential ∂ is given by taking an alternating sum of the co-face
maps:

∂(ω) :=
n+1∑

i=1

(−1)i−1δni (ω)

And so there is a complex of sector forms (8.2), whose differential we call the exterior
derivative. The fact that the sector forms constitute a cochain complex appears to be
a new result in differential geometry.

3.5 Example Let us consider the first several groups of this complex for M = E = R

in the category of smooth manifolds. By definition, a sector 0-form on R is simply
a smooth map ω : R �� R. By Example 3.3, a sector 1-form on R is the same as a
differential 1-form on R; that is, a map TR �� R of the form 〈x, v〉 
→ f (x) · v. By
Example 3.4, a sector 2-form on R is a map TR �� R of the form

〈x, v1, v2, d〉 
→ g(x) · v1 · v2 + h(x) · d.

The exterior derivative of a 0-form ω is the same as for ordinary differential forms:

∂(ω)(〈x, v〉) = ω′(x) · v.

For a sector 1-form ω : 〈x, v〉 
→ f (x) · v we have Tω; p̂ = Dω, the directional
derivative of ω, which in this case is

Dω : 〈x, v1, v2, d〉 
→ f ′(x) · v1 · v2 + f (x) · d.

So then the exterior derivative of ω is ∂(ω) = Dω − cR;Dω and hence is given by

∂(ω)(x, v1, v2, d) = ( f ′(x) · v1 · v2 + f (x) · d) − ( f ′(x) · v2 · v1 + f (x) · d) = 0,

since the effect of cR is simply to switch the middle two co-ordinates (v1 and v2).
So, in this case, every sector 1-form has exterior derivative 0. (Note that this is also
automatic since every 1-form is the exterior derivative of a 0-form and the sector forms
constitute a complex. However, it is useful to see how this works explicitly).

However, the exterior derivative of a sector 2-form is not typically zero. For a sector
2-form

ω : 〈x, v1, v2, d〉 
→ g(x) · v1 · v2 + h(x) · d,
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its directional derivative takes as input an 8-tuple 〈x, v1, v2, d1, v3, d2, d3, t〉, andmaps
it to

g′(x) · v1 · v2 · v3 + h′(x) · d1 · v3 + g(x) · v2 · d2 + g(x) · v1 · d3 + h(x) · t.

Now, the effect of cTR is

〈x, v1, v2, d1, v3, d2, d3, t〉 
→ 〈x, v1, v3, d2, v2, d1, d3, t〉

and the effect of T cR is

〈x, v1, v2, d1, v3, d2, d3, t〉 
→ 〈x, v2, v1, d1, v3, d3, d2, t〉

Hence since

∂(ω) = Dω − cTR;Dω + T cR;cTR;Dω,

∂(ω) maps 〈x, v1, v2, d1, v3, d2, d3, t〉 to

g′(x) · v1 · v2 · v3 + h′(x) · v3 · d1 + (2g(x) − h′(x)) · v2 · d2
+h′(x) · v1 · d3 + h(x) · t.

Note that if this is identically zero, then by setting all variables except t to 0, we get
h(x) = 0, and then by setting all variables but v2 and d2 to 0, we also get g(x) = 0.
Thus, a sector 2-form on R has exterior derivative 0 if and only it is identically zero.

Taken together, these results tell us the first three sector cohomology groups of R.
The 0th cohomology is the same as ordinary de Rham cohomology (namely, R, since
the constant functions are those with derivative 0). Similarly, the 1st cohomology is the
same (namely, 0), since every 1-form (sector or differential) is the image of a 0-form.
Finally, the second sector form cohomology group is also zero, but for a different
reason than for de Rham cohomology. In de Rham cohomology, it is zero since there
are no non-trivial 2-forms on R. For sector forms, it is zero since by the above, the
only closed sector 2-form is the zero form.

It is an open question whether sector form cohomology is always the same as de
Rham cohomology; the basic examples given above, however, at least show that the
complexes they form are quite different. We hope to explore the relationship between
sector form and de Rham cohomology in a future paper.

It is also important to note that the individual ‘derivative’ operations δni on sector
forms appear to have geometric significance: for more on this, see [38, Chapter 4].

Returning to our general setting, we shall consider the following further property
possessed by some sector forms:
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3.6 Definition If E is subtractive, a singular n-form onM with values in E is a sector
n-form ω : T nM → E such that ω is alternating; that is, for each 1 � i � n − 1,

T nM E
ω

��

T nM

T nM

cni M ��
T nM E

ω �� E

E
−��

The exterior derivative operation ∂ defined above restricts to such singular forms, and
so there is also a complex of singular forms (Proposition 8.13).

3.7 Example Let us consider which sector 2-forms onR are alternating. By the above,
a sector 2-form on R takes the form

ω : 〈x, v1, v2, d〉 
→ f (x) · v1 · v2 + g(x) · d.

For 2-forms, the condition of being alternating amounts to a single equation

cR;ω = −ω.

Since cR swaps v1 and v2, ω is alternating if and only if for all x, v1, v2, d,

f (x) · v2 · v1 + g(x) · d = −( f (x) · v1 · v2 + g(x) · d).

But this implies that f (x) = g(x) = 0, so ω is constantly zero. Hence the only
singular 2-form on R is the zero form.

In fact, we can showmuchmore generally that the complex of singular forms on any
smooth manifold (with values in R) is isomorphic to its de Rham complex. We shall
prove this in 9.25 after first comparing the above singular forms to those studied in
synthetic differential geometry [15,17,19]. Indeed, we shall show that in the tangent
category determined by a model of SDG, the above complex of singular forms is
isomorphic to its SDG counterpart (9.22), and in certain models of SDG the latter
complex is known to be isomorphic to the ordinary de Rham complex of differential
forms when M is a smooth manifold [32, IV, Proposition 3.7].

4 Symmetric monoids, semigroups, and finite sets

In working towards the symmetric cosimplicial structure on sector forms, we will
make use of an algebraic structure carried by the tangent endofunctor T , namely the
structure of a symmetric semigroup (4.7). Many of the results and ideas in this section
are due to previous authors [1,4,11,22,23], but the applications to tangent categories
are new.
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4.1 Monoids and semigroups

Given a strict monoidal category V , let us denote the unit object of V by I and write
the monoidal product in V as juxtaposition. By definition, a semigroup (S,m) in V
is an object S of V equipped with a morphism m : SS → S (called a multiplication)
that satisfies the following associative law

Sm;m = mS;m. (4.1.i)

Explicitly, this means that the composites SSS
Sm−→ SS

m−→ S and SSS
mS−→ SS

m−→ S
are equal. A monoid (S,m, e) is a semigroup (S,m) equipped with an additional
morphism e : I → S (called the unit) that satisfies the following unit laws

eS;m = 1S Se;m = 1S, (4.1.ii)

noting that I S = S = SI since V is strict monoidal.
If the given strict monoidal category V underlies a symmetric monoidal category,

then we say that a semigroup (S,m) or monoid (S,m, e) in V is commutative if it
satisfies the following commutative law

s;m = m (4.1.iii)

where s : SS → SS is the symmetry isomorphism carried by V .

4.2 Example: The tangent functor as (co)semigroup

Given a tangent category (X ,T), the tangent functor T : X → X carries the
structure of a semigroup in the monoidal category [X ,X ]op, i.e. the opposite of the
category [X ,X ] of endofunctors onX . Indeed the vertical lift � : T → T T serves
as an associative multiplication in [X ,X ]op. (Note that in general no unit exists to
make this semigroup into a monoid.)

4.3 Monoidal categories of finite cardinals

Writing set for the category of sets, let us denote by finCard the full subcategory of
set whose objects are the finite cardinals, which we identify with their corresponding
ordinals and also with the natural numbers n ∈ N. The sum n + m of a pair of
finite cardinals carries the structure of a coproduct in finCard, where the associated
mappings n → n + m and m → n + m are order preserving and injective and
send n and m, respectively, onto initial and final segments of the ordinal n + m. In
general, if a categoryC is equippedwith designatedbinary coproducts and adesignated
initial object, then C carries an associated structure of symmetric monoidal category.
In particular, finCard is therefore symmetric monoidal, with monoidal product +
and unit object 0. Further, (finCard,+, 0) is a strict monoidal category, but note
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that although n + m = m + n as objects of finCard, the symmetry isomorphism
σnm : n + m → m + n is not the identity map.

We shall consider several non-full subcategories of finCard with the same objects
as finCard itself:

(i) finCards , whose morphisms are surjections;
(ii) finCardb, whose morphisms are bijections, all of which are automorphisms;
(iii) finOrd, whose morphisms are order preserving maps;
(iv) finOrds , whose morphisms are order preserving surjections.

Each of these subcategories is closed under themonoidal product infinCard and hence
inherits the structure of a strict monoidal category. Note that finCards and finCardb
contain the symmetries σmn and so are symmetric strict monoidal categories, whereas
the other subcategories are merely strict monoidal categories.

4.4 Universal monoids and semigroups

The cardinal 1 carries the structure of a commutativemonoid (1, μ, η) in the symmetric
monoidal category finCard, where the associated multiplication μ and unit η are the
unique maps

μ : 1 + 1 → 1 η : 0 → 1.

Since these maps are order preserving, (1, μ, η) is also a monoid in finOrd. These
monoids and their underlying semigroups have the following universal properties:

4.5 Theorem Let V be a strict monoidal category.

(i) Given a monoid (S,m, e) in V , there is a unique strict monoidal functor S� :
finOrd → V with S�(1) = S, S�(μ) = m, and S�(η) = e.

(ii) Given a semigroup (S,m) in V , there is a unique strict monoidal functor S� :
finOrds → V with S�(1) = S and S�(μ) = m.

(iii) (Burroni [4, 2.2], Grandis [11, 4.1]) If V is symmetric, then given a commutative
monoid (S,m, e) in V , there is a unique symmetric strict monoidal functor
S� : finCard → V with S�(1) = S, S�(μ) = m, and S�(η) = e.

(iv) (Lafont [23, 2.3, p. 266]) If V is symmetric, then given a commutative semigroup
(S,m) inV , there is a unique symmetric strictmonoidal functor S� : finCards →
V with S�(1) = S and S�(μ) = m.

Proof (i) and (ii) are well-known, e.g. see [29, VII.5, Proposition 1 and Exercise 3].
We will defer the proofs of (iii) and (iv) until 4.11 below, where we will see that they
follow from more general results on the basis of the cited work of Burroni, Grandis,
and Lafont. ��

Hence, up to a bijection, monoids (resp. semigroups) in strict monoidal categories
are the same as strict monoidal functors on finOrd (resp. finOrds), and analogous
statements hold for the commutative variants of these notions. In the terminology of
[28], finOrd is therefore the PRO that defines the notion of monoid, and finCard is
the PROP that defines the notion of commutative monoid.
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4.6 Symmetric monoids and semigroups

One of the ramifications of 4.5(iii) is that it provides a way to generalize the notion
of commutative monoid to the context of non-symmetricmonoidal categories. Indeed,
work of Burroni [4, 2.2] and of Grandis [11, §2] shows that a strict monoidal functor
finCard → V valued in a mere strict monoidal category V is equivalently given by
a monoid in V equipped with a compatible symmetry isomorphism, per the following
definition:

4.7 Definition Let V be a strict monoidal category.

(i) A symmetry on an object S of V is a morphism s : SS → SS satisfying the
following equations:

s;s = 1SS Ss;sS;Ss = sS;Ss;sS. (4.7.i)

(ii) A symmetric semigroup (S,m, s) in V consists of a semigroup (S,m) in V
together with a symmetry s on the object S such that the following equation is
satisfied

Sm;s = sS;Ss;mS (4.7.ii)

and the commutativity law (4.1.iii) is also satisfied.
(iii) (Grandis [11, §2]) A symmetric monoid (S,m, e, s) in V consists of a monoid

(S,m, e) in V with a symmetry s on S such that (S,m, s) is a symmetric semi-
group and the following equation is satisfied:

eS;s = Se. (4.7.iii)

One can generalize each of the above notions to the setting of an arbitrary monoidal
category V by inserting associativity and unit isomorphisms as needed.

4.8 Remark It is readily verified that one obtains an equivalent definition of symmetric
semigroup by replacing the Eq. (4.7.ii) with the equation

mS;s = Ss;sS;Sm (4.8.i)

which appears in [4, 2.2], [23, p. 265], and [22, 3.3]. Similarly, we obtain an equivalent
definition of symmetric monoid by replacing the Eq. (4.7.iii) with

Se;s = eS (4.8.ii)

which appears in [4, 2.2] and [22, 3.3].

4.9 Remark Anycommutative semigroup (S,m) (resp. commutativemonoid (S,m, e))
in a symmetric strict monoidal category V carries the structure of a symmetric semi-
group (S,m, s) (resp. symmetric monoid (S,m, e, s)) in V when we take s to be the
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relevant component of the symmetry isomorphism carried by V . In particular, the
monoid (1, μ, η) in finCard carries the structure of a symmetric monoid (1, μ, η, σ )

in finCard, and its underlying symmetric semigroup (1, μ, σ ) is also a symmetric
semigroup in finCards .

4.10 Theorem Let V be a strict monoidal category.

(i) (Burroni [4, 2.2], Grandis [11, 4.1]) Given a symmetric monoid (S,m, e, s) in
V , there is a unique strict monoidal functor S� : finCard → V with S�(1) = S,
S�(μ) = m, S�(η) = e, and S�(σ ) = s.

(ii) (Lafont [23, 2.3, p. 266])Given a symmetric semigroup (S,m, s) in V , there is a
unique strict monoidal functor S� : finCards → V with S�(1) = S, S�(μ) = m,
and S�(σ ) = s.

(iii) (Lafont [22, 3.2]) The object 1 carries a symmetry σ in finCardb that is universal
in the sense that if S is an object of V and s is a symmetry on S, then there is
a unique strict monoidal functor S� : finCardb → V with S�(1) = S and
S�(σ ) = s.

Proof (i) is explicitly proved in the citedwork ofGrandis and also follows immediately
from the cited earlier result of Burroni. (ii) follows immediately from the cited result of
Lafont, which gives a presentation of the strict monoidal category finCards in terms of
the generators μ, σ and the relations for a symmetric semigroup (4.7, 4.8). Similarly,
(iii) follows from the cited result of Lafont, which presents the strictmonoidal category
finCardb in terms of the generator σ and the relations for a symmetry on an object
(4.7). ��
4.11 Remark We may apply the preceding theorem to commutative monoids in sym-
metric strictmonoidal categoriesV byway of 4.9, yielding a proof of 4.5(iii). Similarly
we obtain a proof of 4.5(iv).

4.12 Example: The tangent functor as symmetric (co)semigroup

Given a tangent category (X ,T), the tangent endofunctor T : X → X carries
the structure of a symmetric semigroup in the opposite [X ,X ]op of the endofunctor
category [X ,X ]. Indeed, within the definition of tangent structure (2.3), the axioms
under the heading coherence of � and c assert precisely that (T, �, c) is a symmetric
semigroup in [X ,X ]op, where � : T → T T is the vertical lift and c : T T → T T is
the canonical flip.

5 Symmetric cosimplicial objects

The category� of positive finite ordinals and order preserving maps admits a geomet-
ric interpretation that can be illustrated by way of a well-known functor from � to the
category of topological spaces, sending n to the standard geometric (n − 1)-simplex
�n−1 ⊆ R

n , i.e. the convex hull of the standard basis vectors in R
n . Consequently,

presheaves on � abound in topology and are called simplicial sets. A similar geo-
metric interpretation applies to each of the categories of finite cardinals that we have
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considered in 4.3, leading to several corresponding variants of the notion of simplicial
set:

5.1 Definition Let C be a category.

(i) (a) A degenerative object C in C is a functor finOrdops → C .
(b) A codegenerative object C in C is a functor C : finOrds → C .

(ii) (a) An (augmented) simplicial object C in C is a functor C : finOrdop → C .
(b) An (augmented) cosimplicial object C in C is a functor C : finOrd → C .

(iii) (a) A permutative object C in C is a functor C : finCardopb → C .
(b) A copermutative object C in C is a functor C : finCardb → C .

(iv) (a) A symmetric degenerative object C in C is a functor C : finCardops → C .
(b) A symmetric codegenerative objectC inC is a functorC : finCards → C .

(v) (Barr [1], Grandis [11])
(a) An (augmented) symmetric simplicial object7 C in C is a functor C :

finCardop → C .
(b) An (augmented) symmetric cosimplicial object C in C is a functor C :

finCard → C .

For brevity, we will omit the modifier “augmented” when employing these terms
within the present paper. The category of degenerative objects in C is defined as the
functor category [finOrdops ,C ]. Similarly, each of the listed notions determines an
associated category in which the morphisms are arbitrary natural transformations.

5.2 Remark Given a category C , any functor F : A → B determines a functor
[F,C ] : [B,C ] → [A ,C ] between the associated categories of C -valued functors.
In particular, the inclusions

finOrds� �

��

� � �� finOrd� �

��
finCardb

� � �� finCards
� � �� finCard

(5.2.i)

induce functors between the various functor categories defined in 5.1. For example,
every symmetric degenerative object carries the structure of a permutative object.

5.3 Remark By definition, a graded object C in a categoryC is a sequence of objects
Cn in C indexed by the finite cardinals n. Observe that a copermutative object C in C
is equivalently described as a graded objectC inC equipped with a sequence of group
homomorphisms Sn → AutC (Cn) from the symmetric groups Sn = AutfinCard(n)

into the automorphism groups AutC (Cn) of the objects Cn of C (§ 2.1). Dually, a
permutative object C in C is a graded object equipped with group homomorphisms
Sopn → AutC (Cn) where S

op
n is the opposite of the symmetric group. But every group

G is isomorphic to its opposite Gop via the map (−)−1 : G → Gop, so copermuta-
tive objects are in bijective correspondence with permutative objects. From another

7 The terminology is due to Grandis [11]; Barr [1] employed the term augmented FDP complex.
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perspective, this bijective correspondence is induced by an identity-on-objects iso-
morphism of categories

finCardb
(−)−1

−−−→ finCardopb

given on arrows by ξ 
→ ξ−1.

5.4 Example: the degenerative object of iterated tangent functors

Given a tangent category (X ,T), we saw in 4.12 that the tangent endofunctor T :
X → X carries the structure of a symmetric semigroup (T, �, c) in the opposite
[X ,X ]op of the category of endofunctors on X . Hence by 4.10, this symmetric
semigroup determines a corresponding strict monoidal functor T � : finCards →
[X ,X ]op sending each finite cardinal n to the n-th iterate T n of T . This functor is an
example of a symmetric codegenerative object in [X ,X ]op, equivalently, a symmetric
degenerative object finCardops → [X ,X ] in the category of endofunctors onX .

5.5 Symmetric simplicial objects by generators and relations

It is well-known that the category of finite ordinals has a convenient presentation by
generators and relations, leading to a familiar equivalent way of defining simplicial
sets in terms of face and degeneracy maps; see, e.g. [29, VII.5]. Barr [1] and Grandis
[11] gave an analogous presentation of the larger category of finite cardinals finCard
in terms of the following larger collection of generators:

5.6 Definition

(i) We denote by

εni : n + 1 → n (n, i ∈ N, 1 � i � n) (5.6.i)

themap (i−1)+μ+(n−i) : n+1 → n in the notation of 4.3,whereμ : 1+1 → 1
is the multiplication carried by 1 (4.4). We call these codegeneracy maps.

(ii) We denote by

δni : n → n + 1 (n, i ∈ N, 1 � i � n + 1) (5.6.ii)

the map (i − 1) + η + (n − i + 1) : n → n + 1 in the notation of 4.3, where
η : 0 → 1 is the unit carried by 1 (4.4). We call these coface maps.

(iii) We denote by

σ n
i : n → n (n, i ∈ N, 1 � i � n − 1) (5.6.iii)

the map (i − 1) + σ + (n − i − 1) : n → n in the notation of 4.3, where
σ : 1 + 1 → 1 + 1 is the symmetry carried by 1 (4.9). We call these symmetry
maps.
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We shall omit the superscripts n when they are clear from the context.

The following theorem is well-known; for example, a proof is given in [29, VII.5].

5.7 Theorem The category finOrd of finite ordinals and order preserving maps can
be presented by generators and relations (in the sense of [29, II.8]) as follows:

(i) Generators: The maps εni , δ
n
i of 5.6.

(ii) Relations: The following pure codegeneracy relations:

εi ;ε j = ε j+1;εi (i � j) (5.7.i)

together with the following pure coface relations:

δ j ;δi = δi ;δ j+1 (i � j) (5.7.ii)

as well as the following coface-codegeneracy relations:

δi ;ε j =

⎧
⎪⎨

⎪⎩

ε j−1;δi (i < j)

1 (i = j, i = j + 1)

ε j ;δi−1 (i > j + 1).

(5.7.iii)

5.8 Remark One can also present the category finOrds of finite ordinals and order
preserving surjections by generators and relations, namely the codegeneracies εni and
the pure codegeneracy relations [29, VII.5, Exercise 3].

By adding the symmetry maps as additional generators, together with further rela-
tions, Barr and Grandis established the following variation on the preceding theorem:

5.9 Theorem (Barr [1], Grandis [11, 4.2]) The category finCard of finite cardinals
and arbitrary maps can be presented by generators and relations as follows:

(i) Generators: The maps εni , δ
n
i , σ

n
i of 5.6.

(ii) Relations: The relations (5.7.i), (5.7.ii), (5.7.iii) together with the following
Moore relations

σi ;σi = 1 σi ;σi+1;σi = σi+1;σi ;σi+1 σ j ;σi = σi ;σ j (i < j − 1). (5.9.i)

as well as the following codegeneracy-symmetry relations:

ε j ;σi = σi ;ε j (i < j − 1) εi ;σi = σi+1;σi ;εi+1
ε j ;σi = σi+1;ε j (i > j) σi ;εi = εi .

(5.9.ii)

and the following coface-symmetry relations:

δ j ;σi = σi ;δ j (i < j − 1) δi ;σi = δi+1 δ j ;σi = σi−1;δ j (i > j).

(5.9.iii)
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5.10 Remark Grandis [11, §3] notes that for a fixed finite cardinal n, the maps σ n
i

generate the symmetric group Sn , and the Moore relations (5.9.i) constitute a classical
presentation of this group by generators and relations.

By discarding the coface maps and all the relations involving them, we shall now
establish an analogous presentation of finCards in terms of the codegeneracy and
symmetry maps:

5.11 Theorem The category finCards of finite cardinals and surjections can be pre-
sented by generators and relations as follows:

(i) Generators: The maps εni , σ
n
i of 5.6.

(ii) Relations: The pure codegeneracy relations (5.7.i), the Moore relations (5.9.i),
and the codegeneracy-symmetry relations (5.9.ii).

Proof Let C denote the category presented by the given (formal) generators and
relations (per [29, II.8]), with objects all finite cardinals. We will not distinguish
notationally between the morphisms εni , σ

n
i in finCards and the generators in C that

bear the same names.
First we show that C carries the structure of a strict monoidal category. In order to

define a functor + : C × C → C , given on objects by addition, it suffices to define
functors (−) + m : C → C and m + (−) : C → C for all m ∈ obC and check that
they satisfy the compatibility condition in [29, II.3.1]. On generators, we define

εni + m := εn+m
i , σ n

i + m := σ n+m
i , m + εni := εm+n

m+i , m + σ n
i := σm+n

m+i ,

and it follows immediately from the relations (5.7.i), (5.9.i), (5.9.ii) that these assign-
ments respect these relations (in the sense of [29, II.8.1]) and so define functors as
needed. We must prove that the compatibility condition

(α + m); (n′ + β) = (n + β); (α + m′)

holds for arbitrary morphisms α : n → n′ and β : m → m′ in C , but it suffices to
verify this equation in the cases where α, β are generators, and in each of these (four)
cases the needed equation reduces to an instance of one of the relations in (5.7.i),
(5.9.i), (5.9.ii).

The resulting functor + : C × C → C clearly satisfies the associativity law on
objects. The verification of the associativity law

(α + β) + γ = α + (β + γ ) : n + m + k → n′ + m′ + k′

for arrows α : n → n′, β : m → m′, and γ : k → k′ in C reduces to verification of
the equations

(α + m) + k = α + (m + k), (n′ + β) + k = n′ + (β + k),

(n′ + m′) + γ = n′ + (m′ + γ ).
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It suffices to consider the cases where α, β, γ are generators, and then the equations
are immediate from the definition of +. Verification of the unit laws for (C ,+, 0)
reduces to showing that the functors 0 + (−), (−) + 0 : C → C are merely the
identity functor, but this is trivially verified on generators.

We claim that the object 1 of C carries the structure of a symmetric semigroup
S = (1, μ̄, σ̄ ) with μ̄ := ε11 : 2 → 1 and σ̄ := σ 2

1 : 2 → 2. The associativity law
(1 + μ̄);μ̄ = (μ̄ + 1);μ̄ is precisely the equation ε22;ε11 = ε21;ε11, which is one of the
pure codegeneracy relations (5.7.i). The Eq. (4.7.i) making σ̄ a symmetry on 1 are
instances of the Moore relations (5.9.i). The Eq. (4.8.i) relating μ̄ and σ̄ is precisely
the equation ε21;σ 2

1 = σ 3
2 ;σ 3

1 ;ε22, which is one of the codegeneracy-symmetry relations
(5.9.ii). The commutative law for S is an instance of the last codegeneracy-symmetry
relation (5.9.ii).

Hence by 4.10(ii) there is a unique strict monoidal functor S� : finCards → C
with S�(1) = 1, S�(μ) = μ̄, and S�(σ ) = σ̄ . Note that S� is identity-on-objects
and sends the morphisms εni , σ

n
i in finCards to the similarly named generators in C .

Indeed, the definition (5.6) of the morphisms εni , σ
n
i in finCards entails that the strict

monoidal functor S� sends them to

S�(εni ) = (i − 1) + ε11 + (n − i) = εni : n + 1 → n

S�(σ n
i ) = (i − 1) + σ 2

1 + (n − i − 1) = σ n
i : n → n,

respectively (using the definitions of μ̄, σ̄ , and +).
Next we define an identity-on-objects functor M : C → finCards by sending the

generators εni , σ
n
i in C to the similarly named morphisms εni , σ

n
i in finCards . This

assignment respects the relations defining C , simply because the morphisms εni , σ
n
i

in finCards ↪→ finCard satisfy these relations (by 5.9).
The composite functor M;S� : C → C preserves the generators εni and σ n

i and so
(by the universal property of C ) must be the identity functor. Hence M is faithful. We
claim that M is also full (and hence is an isomorphism). Firstly, every morphism in
finCards can be expressed as a composite τ ;α : n → m where τ ∈ Sn is a permutation
and α : n → m is order preserving [11, §3], and then α is necessarily surjective. But
by 5.10 we can express τ as a composite of symmetry maps σ n

i , and by 5.8 we
can express α as a composite of codegeneracy maps. Therefore the symmetries and
codegeneracies σ n

i , εni generate finCards , so since they lie in the image ofM it follows
that M is full. ��

As corollaries to the above theorems, we obtain not only the classical description
of cosimplicial objects in terms of coface and codegeneracy morphisms but also anal-
ogous descriptions of symmetric cosimplicial objects and symmetric codegenerative
objects, as follows:

5.12 Corollary Let C be a category.

(i) A cosimplicial object C : finOrd → C is equivalently given by a graded object
C in C equipped with morphisms

εni : Cn+1 → Cn (n, i ∈ N, 1 � i � n) (5.12.i)
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δni : Cn → Cn+1 (n, i ∈ N, 1 � i � n + 1) (5.12.ii)

in C that satisfy the Eqs. (5.7.i), (5.7.ii), (5.7.iii).
(ii) (Barr [1], Grandis [11]) A symmetric cosimplicial object C : finCard → C is

equivalently given by a graded object C in C equipped with morphisms εni and
δni as in (5.12.i), (5.12.ii) as well as morphisms

σ n
i : Cn → Cn (n, i ∈ N, 1 � i � n − 1) (5.12.iii)

in C such that these morphisms satisfy the Eqs. (5.7.i), (5.7.ii), (5.7.iii), (5.9.i),
(5.9.ii), (5.9.iii).

(iii) A symmetric codegenerative object C : finCards → C is equivalently given by
a graded object C in C equipped with morphisms εni , σ

n
i as in (5.12.i), (5.12.iii)

such that these morphisms satisfy the Eqs. (5.7.i), (5.9.i), (5.9.ii).

We call the structural morphisms εni , δ
n
i , σ

n
i in 5.12 codegeneracies, cofaces, and

symmetries, respectively, just like their similarly notated counterparts in finCard.
Dually, a symmetric simplicial object C carries degeneracy morphisms εni : Cn →
Cn+1, face morphisms δni : Cn+1 → Cn , and symmetries σ n

i : Cn → Cn .

5.13 The codegenerative object determined by a symmetric semigroup

Given any symmetric semigroup (S,m, s) in a strict monoidal category V , the cor-
responding strict monoidal functor S� : finCards → V (4.10) is an example of a
symmetric codegenerative object in V . Its underlying graded object consists of the
n-fold monoidal powers Sn of S. Since S� is strict monoidal, the definitions of the
generators of finCards in 5.6 entail that the codegeneracies and symmetries carried
by S� can be expressed as

εni = Si−1mSn−i : Sn+1 → Sn

σ n
i = Si−1sSn−i−1 : Sn → Sn .

5.14 Example: the symmetric degenerative iterated tangent functor

As a special case of 5.13, we saw in 5.4 that the tangent functor T : X → X on a
tangent category (X ,T) carries the structure of a symmetric semigroup (T, �, c) in
[X ,X ]op and so determines a symmetric codegenerative object T � : finCards →
[X ,X ]op, or equivalently, a symmetric degenerative object

T (−) : finCardops → [X ,X ], n 
→ T n . (5.14.i)

By 5.13, the associated degeneracy and symmetry morphisms are the natural transfor-
mations

�ni = T i−1�T n−i : T n → T n+1 (n, i ∈ N, 1 � i � n) (5.14.ii)
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cni = T i−1cT n−i−1 : T n → T n (n, i ∈ N, 1 � i � n − 1). (5.14.iii)

5.15 Example: codegenerative sets induced by tangent structure

Let (X ,T) be a tangent category. By transposition, the functor T (−) of (5.14.i) deter-
mines a functor

X → [finCardops ,X ], M 
→ T (−)M (5.15.i)

valued in the category of symmetric degenerative objects inX . Explicitly, this functor
sends each object M of X to a symmetric degenerative object

T (−)M : finCardops → X , n 
→ T nM

whose underlying graded object consists of the total spaces T nM of the iterated tangent
bundles of M . The degeneracy and symmetry morphisms carried by T (−)M are just
the components �ni M , cni M at M of those carried by T (−) (5.14.ii, 5.14.iii).

Fixing an object E ofX , the functor (5.15.i) induces8 a functor

X op → [finCards, set], M 
→ X (T (−)M, E) (5.15.ii)

valued in the category of symmetric codegenerative sets. Explicitly, this functor sends
each object M ofX to a symmetric codegenerative setX (T (−)M, E) whose under-
lying graded set consists of the hom-setsX (T nM, E). The associated codegeneracies
and symmetries are the mappings

εni = X (�ni M, E) : X (T n+1M, E) → X (T nM, E), ω 
→ �ni M;ω
σ n
i = X (cni M, E) : X (T nM, E) → X (T nM, E), ω 
→ cni M;ω

given by precomposing with the degeneracies �ni M : T nM → T n+1M and the sym-
metries cni M : T nM → T nM .

Note that ifX is a Cartesian tangent catgory and E carries the structure of a com-
mutative monoid (resp. abelian group) object in X , then the representable presheaf
X (−, E) : X op → set lifts to a presheaf valued in the category cmon of commu-
tative monoids (resp. the category ab of abelian groups). Hence the functor (5.15.ii)
lifts to a functor

X op → [finCards, cmon], M 
→ X (T (−)M, E)

valued in the category of symmetric codegenerative objects in cmon (resp. ab).

8 Explicitly, (5.15.i) determines a functor X op → [finCards ,X op] which we can then compose with
the functor [finCards ,X (−, E)] : [finCards ,X op] → [finCards , set] given by composition with the
hom-functorX (−, E) : X op → set.
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6 Presenting symmetric cosimplicial objects by fundamental cofaces

The coface morphisms δni : Cn → Cn+1 carried by a symmetric cosimplicial object C
can be expressed in terms of the fundamental cofaces δn1 by repeated application of the
equation δi+1 = δi ;σi of (5.9.iii). This leads to the following new succinct equational
presentation of symmetric cosimplicial objects, which will be useful in establishing
the symmetric cosimplicial structure that engenders the de Rham complex:

6.1 Theorem A symmetric cosimplicial object C : finCard → C in a category C is
equivalently given by a graded object C in C equipped with morphisms εni , σ

n
i as in

(5.12.i), (5.12.iii) together with a sequence of morphisms

δn1 : Cn → Cn+1 (n ∈ N) (6.1.i)

such that the Eqs. (5.7.i), (5.9.i), (5.9.ii) are satisfied along with the following further
equations:

δ1;ε1 = 1 δ1;ε j+1 = ε j ;δ1 (6.1.ii)

δ1;δ1;σ1 = δ1;δ1 δ1;σi+1 = σi ;δ1. (6.1.iii)

Therefore, in view of 5.12(iii), a symmetric cosimplicial object C in C is equivalently
given by a symmetric codegenerative object C equipped with a sequence of morphisms
(6.1.i) satisfying the Eqs. (6.1.ii), (6.1.iii).

Before proving this, let us adopt the following notational conventions.

6.2 Notation

(i) By abuse of notation9 we write the elements of each finite ordinal n ∈ N in
ascending order as 1, 2, 3, . . . , n (rather than 0, 1, . . . , n − 1).

(ii) For each n ∈ N and each i ∈ n, let σ n
(i) denote the permutation

σ n
(i) = (

i(i − 1)(i − 2) . . . 321
) ∈ Sn

written in cycle notation (i.e., i 
→ i − 1, i − 1 
→ i − 2, etc.) on the elements
1, . . . , n of the ordinal n. We sometimes omit the superscript n, writing just σ(i).

Observe that σ(i) can be written as a composite

σ(i) = σ1;σ2; . . . ;σi−1

of the transpositions σ j = ( j ( j + 1)) defined in 5.6. When i = 1 we interpret the
resulting empty composite as the identity map on n, so that σ(1) = 1.

9 rather than a breach of the well-foundedness axiom of set theory
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6.3 Lemma Let C : finCards → C be a symmetric codegenerative object (5.1)
equipped with a sequence of morphisms δn1 : Cn → Cn+1 (n ∈ N) satisfying the
Eqs. (6.1.ii), (6.1.iii). Then C extends uniquely to a symmetric cosimplicial object
C ′ : finCard → C whose fundamental cofaces are the givenmorphisms δn1 . Explicitly,
the cofaces of C ′ can be expressed in terms of the fundamental cofaces as

δni = δn1 ;σ n+1
(i) (n ∈ N, 1 � i � n + 1) (6.3.i)

where we write σ n+1
(i) : Cn+1 → Cn+1 to denote the image of the automorphism

σ n+1
(i) : n + 1 → n + 1 (6.2) under the functor C : finCards → C .

Proof In view of 5.9, repeated application of the equation δni+1 = δni ;σ n+1
i of (5.9.iii)

shows that the maps δn1 , ε
n
i , σ

n
i generate finCard. Hence, in view of 5.11, the unique-

ness of C ′ is immediate if C ′ exists. Defining the coface morphisms δni for C ′ by way
of the equation (6.3.i), it suffices (by 5.12) to show that these satisfy the relations
(5.7.ii), (5.7.iii), (5.9.iii) when taken together with the morphisms εni , σ

n
i carried by

C .
In order to verify the first coface-codegeneracy relation δi ;ε j = ε j−1;δi (i < j),

we compute as follows, applying the second equation in (6.1.ii) and then repeatedly
applying the first equation in (5.9.ii):

ε j−1;δi = ε j−1;δ1;σ1; . . . ;σi−1 = δ1;ε j ;σ1; . . . ;σi−1
= δ1;σ1; . . . ;σi−1;ε j = δi ;ε j .

Next, we prove the second coface-codegeneracy relation δni ;εni = 1 by induction
on i (with n fixed). In the base case where i = 1, this holds by assumption. For the
inductive step, suppose that δni ;εni = 1 holds for a given index i . Then by applying one
of the codegeneracy-symmetry relations (5.9.ii) and the fact that (σi+1)

−1 = σi+1 we
compute that

δi+1;εi+1 = δ1;σ1; . . . ;σi−1;σi ;εi+1
= δ1;σ(i);σi ;εi+1 = δ1;σ(i);σi+1;εi ;σi .

in C . But σ(i);σi+1 = σi+1;σ(i) in C since the the permutations σ(i) = (i(i −
1) . . . 321) and σi+1 = ((i + 1)(i + 2)) are disjoint cycles. Hence we compute as
follows, applying the inductive hypothesis and one of the relations in (6.1.iii):

δi+1;εi+1 = δ1;σi+1;σ(i);εi ;σi = σi ;δ1;σ(i);εi ;σi
= σi ;δi ;εi ;σi = σi ;σi = 1.

The third coface-codegeneracy relation δ j+1;ε j = 1 now follows, using the last
codegeneracy-symmetry relation (5.9.ii): δ j+1;ε j = δ1;σ( j+1);ε j = δ1;σ( j);σ j ;ε j =
δ1;σ( j);ε j = δ j ;ε j = 1.

We next prove the last coface-codegeneracy relation δn+1
i ;εn+1

j = εnj ;δni−1 (i >

j + 1). By definition, the left-hand side is δ1;σ(i);ε j : Cn+1 → Cn+1, whereas
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by applying the second equation in (6.1.ii) we can express the right-hand side as
ε j ;δ1;σ(i−1) = δ1;ε j+1;σ(i−1). Hence it suffices to show that

σ(i);ε j = ε j+1;σ(i−1) : n + 2 → n + 1

in finCard, but it is straightforward to verify that the left- and right-hand sides of this
equation both denote the map φ given by

φ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i − 1 (x = 1)

x − 1 (1 < x � j + 1)

x − 2 ( j + 1 < x � i)

x − 1 (i < x).

Next we verify the first coface-symmetry relation δnj ;σ n+1
i = σ n

i ;δnj (i < j−1). By
definition, the left-hand side is δ1;σ( j);σi , whereas by applying the second equation
in (6.1.iii) we can express the right-hand side as σi ;δ1;σ( j) = δ1;σi+1;σ( j). Hence it
suffices to show that

σ( j);σi = σi+1;σ( j) : n + 1 → n + 1

in finCard, but it is straightforward to verify that the left- and right-hand sides of this
equation both denote the map φ given by

φ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j (x = 1)

i + 1 (x = i + 1)

i (x = i + 2)

x − 1 (1 < x � j and x /∈ {i + 1, i + 2})
x (x > j)

The second coface-symmetry relation δi ;σi = δi+1 is almost immediate from the
way that we have defined the cofaces, since δi ;σi = δ1;σ(i);σi = δ1;σ(i+1) = δi+1.

Next we establish the third coface-symmetry relation δnj ;σ n+1
i = σ n

i−1;δnj (i > j).
By definition δ j ;σi = δ1;σ( j);σi in C , but since i > j the permutations σ( j) =
( j ( j − 1) . . . 321) and σi = (i(i + 1)) are disjoint cycles and hence commute. Thus
σ( j);σi = σi ;σ( j) in C . Hence we can compute as follows, applying the second
equation in (6.1.iii) with the knowledge that i > 1 (since i > j � 1):

δ j ;σi = δ1;σi ;σ( j) = σi−1;δ1;σ( j) = σi−1;δ j .

Finally, let us verify the pure coface relations δnj ;δn+1
i = δni ;δn+1

j+1, where i � j . By
repeatedly applying the equations in (6.1.iii) we deduce that

δ j ;δi = δ1;σ1; . . . ;σ j−1;δ1;σ1; . . . ;σi−1

= δ1;δ1;σ2; . . . ;σ j ;σ1; . . . ;σi−1 = δ1;δ1;σ2; . . . ;σ j ;σ(i)
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δi ;δ j+1 = δ1;σ1; . . . ;σi−1;δ1;σ1; . . . ;σ j = δ1;δ1;σ2; . . . ;σi ;σ1; . . . ;σ j

= δ1;δ1;σ1;σ2; . . . ;σi ;σ1; . . . ;σ j = δ1;δ1;σ(i+1);σ( j+1)

in C , so it suffices to show that

σ2; . . . ;σ j ;σ(i) = σ(i+1);σ( j+1) : n + 2 → n + 2 (6.3.ii)

in finCard. Using the fact that σ2; . . . ;σ j = (( j + 1) j . . . 32) in cycle notation on the
elements 1, 2, . . . n+2 of the set n+2, it is straightforward to verify that the left- and
right-hand sides of (6.3.ii) both denote the map φ given by

φ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i (x = 1)

j + 1 (x = 2)

x − 2 (3 � x � i + 1)

x − 1 (i + 1 < x � j + 1)

x (x > j + 1).

��
Using the preceding lemma, we now establish the following equational presentation

of the category of finite cardinals, from which Theorem 6.1 then immediately follows:

6.4 Theorem The category finCard of finite cardinals and arbitrary maps can be
presented by generators and relations as follows:

(i) Generators: The codegeneracy and symmetry maps εni , σ
n
i of 5.6 together with

the fundamental coface maps δn1 (n ∈ N) of 5.6.
(ii) Relations: (5.7.i), (5.9.i), (5.9.ii), (6.1.ii), (6.1.iii).

Proof By 5.9, the morphisms εni , σ
n
i in finCard satisfy the relations (5.7.i), (5.9.i),

(5.9.ii), and it is straightforward to verify that the morphisms δn1 , ε
n
i , σ

n
i in finCard

also satisfy the relations (6.1.ii), (6.1.iii). Indeed, it is easy to check that these relations
follow from the coface-codegeneracy relations (5.7.iii), the coface-symmetry relations
(5.9.iii), and the pure coface relations (5.7.ii), all of which hold in finCard (5.9).

Hence it suffices to show that finCard has the relevant universal property [29, §8].
But in view of 5.12(iii) this universal property is equivalent to the extension property
established in Lemma 6.3. ��

7 The symmetric cosimplicial set of sector forms

Let E be a differential object in a Cartesian tangent category (X ,T), and let M be
an object of X . Recall that �n(M) (n ∈ N) denotes the set of all sector n-forms on
M with values in E . In the present section we show that the graded set (�n(M))n∈N
carries the structure of a symmetric cosimplicial commutative monoid.
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7.1 Remarks on the definition of sector form

Recall from Definition 3.2 that a sector n-form on M is a morphism ω : T nM → E
such that for each j ∈ {1, . . . , n} the equation anj M;Tω = ω;λ holds, where λ :
E → T E is the lift morphism carried by E . Using the results of the previous sections,
we can get a better understanding of this equation. In particular, anj is the composite
transformation

anj =
(
T n � j−→ T n+1 c( j)−→ T n+1

)

where � j = T j−1�T n− j is the degeneracy morphism carried by the symmetric
degenerative object T (−) : finCardops → [X ,X ] (5.14). The morphism c( j) is
the composite c j−1;c j−2; . . . ;c2;c1, where ci = T i−1cT n−i denotes the symmetry
carried by T (−) (5.14). Equivalently, c( j) is obtained by applying the functor T (−) :
finCardops → [X ,X ] to the permutation σ n+1

( j) = ( j ( j−1) . . . 321) : n+1 → n+1
(6.2).

Hence if we define αn
j as the composite morphism

αn
j :=

(
n + 1

σ n+1
( j)−→ n + 1

εnj−→ n

)

in finCards , then

anj : T n → T n+1 is the image of αn
j : n + 1 → n under the

functor T (−) : finCardops → [X ,X ].

Concretely, one can readily verify that αn
j is the mapping given by

αn
j (x) =

{
j (x = 1)

x − 1 (x �= 1).

7.2 Proposition For each n ∈ N, the set �n(M) of sector n-forms is a submonoid

�n(M) ↪→ X (T nM, E)

of the commutative monoid of all morphisms ω : T nM → E in X (2.5). If E is
subtractive, then �n(M) is a subgroup of the abelian group X (T nM, E).

Proof Given ω, τ ∈ �n(M), the sum ω + τ inX (T nM, E) is a sector n-form, since
for each j = 1, . . . , n we can compute as follows, using the fact that cmon(T ) :
cmon(X ) → cmon(X ) is an additive functor (2.6) and the fact that λ : E → T E
is a homomorphism of commutative monoids (2.8):
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a j M;T (ω + τ) = a j M;(T (ω) + T (τ )) = (a j M;T (ω)) + (a j M;T (τ ))

= (ω;λ) + (τ ;λ) = (ω + τ);λ.

Also, the zero element 0 of the commutative monoidX (T nM, E) is a sector n-form
since we compute that a j M;T (0) = a j M;0 = 0 = 0;λ, where each occurrence of 0
denotes the zero element of the relevant hom-set, again using the additivity of T and
the fact that λ is a monoid homomorphism. The remaining claim is verified similarly.

��

Recall that the graded commutativemonoid (X (T nM, E))n∈N carries the structure
of a symmetric codegenerative commutative monoid (5.15). We now show that this
structure restricts to sector forms:

7.3 Proposition The codegeneracy and symmetry maps

εni = X (�ni M, E) : X (T n+1M, E) → X (T nM, E), ω 
→ �ni M;ω
σ n
i = X (cni M, E) : X (T nM, E) → X (T nM, E), ω 
→ cni M;ω

carried by the symmetric codegenerative commutative monoidX (T (−)M, E) (5.15)
restrict to yield homomorphisms

εni : �n+1(M) → �n(M) σ n
i : �n(M) → �n(M)

between the commutative monoids of sector forms.

Proof Letting ω ∈ �n+1(M), we shall show first that εni (ω) = �ni M;ω is a sector
n-form on M . It suffices to show that for each j ∈ {1, . . . , n} there is some k ∈
{1, . . . , n + 1} such that the following diagram commutes.

T nM

aj M
��

�i M �� T n+1M

akM
��

ω �� E

λ

��
T n+1M

T �i M
�� T n+2M

Tω
�� T E

But the rightmost square commutes since ω is a sector (n + 1)-form, so it suffices to
obtain the commutativity of the following diagram.

T n �i ��

a j

��

T n+1

ak
��

T n+1
T �i

�� T n+2
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In view of 7.1, 5.4, and 5.14, this diagram is obtained by applying the strict monoidal
functor T (−) : finCardops → [X ,X ] to the following diagram in finCards

n n + 1
εni��

n + 1

α j

��

n + 2

αk

��

1+εi = εi+1

��

(7.3.i)

so it suffices to find k such that this diagram commutes. In the case where i < j we
can take k = j + 1, whereas in the case where i � j we can take k = j , for in each
case it is straightforward to verify that both composites in (7.3.i) are then equal to the
map φ given by

φ(x) =

⎧
⎪⎨

⎪⎩

j (x = 1)

x − 1 (1 < x � i + 1)

x − 2 (x > i + 1).

Next we prove that if ω is a sector n-form on M then σ n
i (ω) = cni M;ω is a sector

n-form on M . Letting j ∈ {1, . . . , n}, it suffices to show that the following diagram
commutes:

T nM

aj M
��

ci M �� T nM
ω �� E

λ

��
T n+1M

Tci M
�� T n+1M

Tω
�� T E

Again since ω is a sector n-form it suffices to show that there is some k such that the
following diagram commutes:

T n

a j
��

ci �� T n

ak
��

T n+1
T ci

�� T n+1

But as above, we reason that this diagram is obtained by applying T (−) : finCardops →
[X ,X ] to the following diagram in finCards

n n
σi��

n + 1

α j

��

n + 1
1+σi=σi+1

��

αk

�� (7.3.ii)
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and so it suffices to show that this diagram commutes for some k.
In the case where j /∈ {i, i +1}we can take k = j , whereas in the case where j = i

we can take k = i + 1, while in the case where j = i + 1 we can take k = i , for in
each of these three cases it is straightforward to verify that both composites in (7.3.ii)
are then equal to the mapping φ given by

φ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j (x = 1)

i + 1 (x = i + 1)

i (x = i + 2)

x − 1 (x /∈ {1, i + 1, i + 2}).

��

7.4 Corollary There is a symmetric codegenerative commutative monoid

�(M) : finCards → cmon, n 
→ �n(M)

where �n(M) is the commutative monoid of sector n-forms on M.

Proof By 7.3, the graded commutative monoid (�n(M)) is equipped with code-
generacy and symmetry homomorphisms εni and σ n

i . These are restrictions of the
codegeneracy and symmetry maps carried by the symmetric codegenerative set
X (T (−)M, E), so they satisfy the equations listed in 5.12(iii). Hence an applica-
tion of 5.12(iii) yields the needed result. ��

By the results of Sect. 6, in order to show that the symmetric codegenerative structure
on sector forms is part of a symmetric cosimplicial structure, it suffices to define the
fundamental cofacemaps δn1 : �n(M) → �n+1(M) and check that they satisfy certain
equations (6.3). We now proceed to define these maps.

7.5 The fundamental derivative of a sector form

Given a sector n-form ω : T nM → E on M , we define the fundamental derivative
δ1(ω) of ω as the following composite morphism

δ1(ω) =
(
T n+1M

Tω−→ T E
p̂−→ E

)

where p̂ denotes the principal projection associated to the differential object E (2.10).

7.6 Theorem The fundamental derivative of a sector n-form ω on M is a sector
(n + 1)-form δ1(ω) on M.
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Proof Letting j ∈ {1, . . . , n + 1}, it suffices to show that the following diagram
commutes.

T n+1M

aj M
��

Tω �� T E
p̂ �� E

λ

��
T n+2M

TTω
�� T T E

T p̂
�� T E

(7.6.i)

To this end, we proceed in two cases. First consider the case where j = 1. Then
an+1
j = an+1

1 = �n+1
1 ;cn+2

(1) = �T n , so it suffices to show that the following diagram
commutes.

T n+1M

a1M = �T nM
��

Tω �� T E

�E
��

p̂ �� E

λ

��
T n+2M

TTω
�� T T E

T p̂
�� T E

But the leftmost square commutes by the naturality of �, and the rightmost square
commutes by properties of differential objects (Proposition 2.11(v)).

Now consider the case where j > 1. We want to show that the periphery of the
following diagram commutes.

T n+1M

aj M
��

Tω �� T E

Tλ;cE
��

p̂ �� E

λ

��
T n+2M

TTω
�� T T E

T p̂
�� T E

(7.6.ii)

The rightmost square again commutes by properties of differential objects, namely
2.11(vi).

In order to show that the leftmost square in (7.6.ii) also commutes, it suffices to
show that the following diagram commutes.

T n+1M
Tω ��

a j M

��

Ta j−1M

����
���

���
��

T E

Tλ

��
T n+2M

cTnM

�����
���

���
�

T Tω �� T T E

cE
��

T n+2M
TTω

�� T T E
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The upper-right cell commutes since ω is a sector n-form, and the lower-right cell
commutes by the naturality of c. Hence it suffices to show that the following diagram
commutes.

T n+1
Ta j−1 ��

a j ����
���

���
���

�� T n+2

cT n = cn+2
1��

T n+2

In view of 7.1, 5.4, 5.14, this diagram is obtained by applying the strict monoidal
functor T (−) : finCardops → [X ,X ] to the following diagram in finCards

n + 1 ��
1+α j−1

		

α j ���
���

���
���

n + 2��
σ1

n + 2

which commutes, as one readily verifies directly, using the fact that 1+ α j−1 is given
by 1 
→ 1 and 1 + x 
→ 1 + α j−1(x) for all x ∈ n + 1. ��
7.7 Theorem There is a symmetric cosimplicial commutative monoid

�(M) : finCard → cmon, n 
→ �n(M)

where�n(M) is the commutative monoid of sector n-forms on M. The codegeneracies
and symmetries carried by �(M) are those obtained in 7.3, and the fundamental
cofaces of �(M) are the maps

δn1 : �n(M) → �n+1(M) (n ∈ N)

that send a sector n-form ω to its fundamental derivative δ1(ω) = Tω; p̂ (7.6).

Proof By 7.6, the maps δn1 are well-defined, and they are homomorphisms of com-
mutative monoids since T is additive (2.6) and p̂ : T E → E is a homomorphism of
commutative monoids (2.11). By 7.4 we have already defined a symmetric codegen-
erative object �(M) : finCards → cmon, so by 6.3 it suffices to verify the equations
(6.1.ii) and (6.1.iii), which govern the interaction of the fundamental coface maps δn1
with the codegeneracies and symmetries.

The first equation δ1;ε1 = 1 in (6.1.ii) holds, since for each ω ∈ �n(M) we
compute that

εn1 (δ
n
1 (ω)) = �n1M;Tω; p̂ = an1M;Tω; p̂ = ω;λ; p̂ = ω

using the fact that ω is a sector form as well as the equations an1 = �n1, λ; p̂ = 1E .
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The second equation δ1;ε j+1 = ε j ;δ1 in (6.1.ii) holds, since for eachω ∈ �n+1(M)

we compute that

δn1 (ε
n
j (ω)) = T �nj M;Tω; p̂ = �n+1

j+1M;Tω; p̂ = εn+1
j+1(δ

n+1
1 (ω))

using the fact that T �nj = T j�T n− j = �n+1
j+1.

The first equation δ1;δ1;σ1 = δ1;δ1 in (6.1.iii) holds, since for each ω ∈ �n(M)

we compute that

σ n+2
1 (δn+1

1 (δn1 (ω))) = cn+2
1 M;T Tω;T p̂; p̂ = cT nM;T Tω;T p̂; p̂

= T Tω;cE;T p̂; p̂ = T Tω;T p̂; p̂ = δn+1
1 (δn1 (ω))

using the naturality of c and the fact that cE;T p̂; p̂ = T p̂; p̂ (2.11).
The second equation δ1;σi+1 = σi ;δ1 in (6.1.iii) holds, since for each ω ∈ �n(M)

we compute that

δn1 (σ
n
i (ω)) = T cni M;Tω; p̂ = cn+1

i+1 M;Tω; p̂ = σ n+1
i+1 (δn1 (ω))

using the fact that T cni = T icT n−i−1 = cn+1
i+1 . ��

7.8 Remark By 6.3, the cofaces carried by the symmetric cosimplicial set of sector
forms �(M) are the maps

δni = δn1 ;σ n+1
(i) : �n(M) → �n+1(M) (n ∈ N, 1 � i � n + 1)

that send a sector n-form to the sector (n + 1)-form

δi (ω) =
(
T n+1M

c(i)−→ T n+1M
Tω−→ T E

p̂−→ E

)

which we call the derivative of ω in position i .

7.9 Corollary If E is a subtractive differential object inX , then there is a symmetric
cosimplicial abelian group

�(M) : finCard → ab, n 
→ �n(M)

where �n(M) is the abelian group of sector n-forms on M with values in E.

Proof This follows from the preceding theorem and 7.2. ��
7.10 Corollary Let E be a differential object in a Cartesian tangent category (X ,T).

(i) There is a functor

� : X op → [finCard, cmon], M 
→ �(M)

that sends each object M of X to the symmetric cosimplicial commutative
monoid �(M) of sector forms on M with values in E.
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(ii) If E is a subtractive differential object, then the functor� lifts to a functor valued
in the category [finCard, ab] of symmetric cosimplicial abelian groups.

Proof Recall from 5.15 that we have a functor X op → [finCards, cmon] that
sends each morphism f : M → N in X to the natural transformation
X (T (−) f, E) : X (T (−)N , E) ⇒ X (T (−)M, E) whose componentsX (T n f, E) :
X (T nN , E) → X (T nM, E) are given by precomposition with T n f : T nM →
T nN . It follows immediately from the naturality of the transformations anj : T n ⇒
T n+1 thatX (T n f, E) restricts to yield a homomorphism�n( f ) : �n(N ) → �n(M)

between the submonoids consisting of sector n-forms. We claim that the homomor-
phisms �n( f ) constitute a natural transformation �( f ) : �(N ) ⇒ �(M). It suffices
to verify the naturality condition on the generators εni , σ

n
i , δn1 of finCard (6.4). But

for the generators εni , σ n
i this naturality condition follows from the naturality of

X (T (−) f, E), so it suffices to show that

�n(N )

δn1
��

�n( f ) �� �n(M)

δn1
��

�n+1(N )
�n+1( f )

�� �n+1(M)

commutes, but this follows immediately from the definitions. ��

8 Complexes of forms and the exterior derivative

Given an (augmented) cosimplicial abelian group C : finOrd → ab, it is well-
known [37, Definition 8.2.1] that the underlying graded abelian group (Cn)n∈N carries
the structure of a (non-negatively graded) cochain complex C• when we define the
differential ∂n : Cn → Cn+1 by

∂n(c) =
n+1∑

i=1

(−1)i−1δni (c) (c ∈ Cn).

In particular, we therefore have that ∂n;∂n+1 = 0. We call C• the cochain complex
associated to C .

In the present section, we show that when C is a symmetric cosimplicial abelian
group one also obtains a subcomplexCalt• ↪→ C• consisting of the alternating elements
of C . Applied to the symmetric cosimpicial object of sector forms (7.9), we obtain
complexes of sector forms (C•) and singular forms (Calt• ) in tangent categories.

8.1 Sector forms and the exterior derivative

Let E be a subtractive differential object in a Cartesian tangent category (X ,T), and
let M be an object of X .
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8.2 Definition

(i) The complex of sector forms on M is defined as the cochain complex �•(M)

associated to the cosimplicial abelian group �(M) of sector forms on M with
values in E (7.9).

(ii) Given a sector n-form ω : T nM → E on M , the exterior derivative of ω is
defined as the sector (n + 1)-form

∂ω = ∂n(ω) =
n+1∑

i=1

(−1)i−1δni (ω)

where ∂n : �n(M) → �n+1(M) is the differential carried by the complex
�•(M), recalling that the sector (n+1)-form δni (ω) = cn+1

(i) ;Tω; p̂ is the deriva-
tive of ω in position i (7.8).

The following theorem is now immediate, but it would be difficult to prove if we
had just defined the exterior derivative directly without first proving Theorem 7.7:

8.3 Theorem Let ω be a sector n-form on M. Then ∂n+1(∂n(ω)) = 0.

8.4 Remark It is well known that the the assignment C 
→ C• extends to a functor
(−)• from the category of cosimplicial abelian groups to the category cochain+ of
non-negatively graded cochain complexes10.Hence by 7.10we can form the composite
functor

�• =
(
X op �−→ [finCard, ab] → [finOrd, ab] (−)•−−→ cochain+

)

whose middle factor is the evident forgetful functor. This functor�• sends each object
M of X to the complex of sector forms on M .

8.5 The complex of alternating elements

Given a symmetric cosimplicial abelian groupC , we now define a certain subcomplex
Calt• of C•.

8.6 Definition Let n ∈ N.

(i) We say that an element c of Cn is an alternating element of C if σ n
i (c) = −c

for all i ∈ {1, . . . , n − 1}, recalling that σ n
i : Cn → Cn is the symmetry map

carried by C .
(ii) We denote by Calt

n ⊆ Cn the subset consisting of all alternating elements.

10 Although it is well known, the authors are unable to find an explicit statement of precisely this fact in
the literature. However, it can be verified almost immediately, and it can be seen also as a corollary to [36,
Tag 0194], in view of [36, Tag 018F].

123

http://stacks.math.columbia.edu/tag/0194
http://stacks.math.columbia.edu/tag/018F


908 G. S. H. Cruttwell, R. B. B. Lucyshyn-Wright

8.7 Theorem Given a symmetric cosimplicial abelian group C, the alternating ele-
ments of C constitute a subcomplex Calt• of the cochain complex C• associated to
C.

Proof Calt
n ↪→ Cn is an intersection of equalizers in ab and hence is a subgroup

inclusion. Letting c ∈ Calt
n ⊆ Cn , it suffices to show that the associated element ∂(c) =

∂n(c) of Cn+1 is alternating. Letting i ∈ {1, . . . , n} we must show that σ n+1
i (∂(c)) =

−∂(c). Since σ n+1
i is a homomorphism of abelian groups we compute that

σ n+1
i (∂(c)) =

n+1∑

j=1

(−1) j−1σ n+1
i (δnj (c)).

Using the coface-symmetry relations (5.9.iii) and the fact that σ n+1
i is self-inverse, we

compute that

σ n+1
i (δnj (c)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δnj (σ
n
i−1(c)) = δnj (−c) = −δnj (c) ( j < i)

δni+1(c) ( j = i)

δni (c) ( j = i + 1)

δnj (σ
n
i (c)) = δnj (−c) = −δnj (c) ( j > i + 1)

since c is alternating. Hence, recalling that ∂(c) = ∑n+1
j=1 t j where t j = (−1) j−1δnj (c),

we compute that

σ n+1
i (∂(c)) =

⎛

⎝
∑

j<i

−t j

⎞

⎠ − ti+1 − ti +
⎛

⎝
∑

j>i+1

−t j

⎞

⎠ = −∂(c)

since i and i + 1 are of opposite parity. ��
8.8 Definition Given a symmetric cosimplicial abelian group C , we call the subcom-
plex Calt• of C• the complex of alternating elements of C .

8.9 Proposition There is a functor

(−)alt• : [finCard, ab] → cochain+ C 
→ Calt•

from the category of symmetric cosimplicial abelian groups to the category of (non-
negatively graded) cochain complexes, sending a symmetric cosimplicial abelian
group C to the complex of alternating elements Calt• of C.

Proof Given a morphism of symmetric cosimplicial abelian groups f : C → D, we
claim that the associated morphism of chain complexes f• : C• → D• restricts to
a morphism f alt• : Calt• → Dalt• between the subcomplexes of alternating elements.
Indeed, given c ∈ Calt

n ⊆ Cn , the associated element fn(c) of Dn is alternating, since
for each i ∈ {1, . . . , n − 1}, we compute that σ n

i ( fn(c)) = fn(σ n
i (c)) = fn(−c) =

− fn(c) since f is natural and c is alternating. The result now follows from 8.4. ��
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8.10 The complex of singular forms

Again let us fix a subtractive differential object E in a Cartesian tangent category
(X ,T). Letting M be an object of X , recall that �(M) denotes the symmetric
cosimplicial abelian group of sector forms on M (7.9).

8.11 Definition 1. We call a sector n-form ω on M a singular n-form if ω is an
alternating element of �(M). Equivalently, a morphism ω : T nM → E is a
singularn-form iffω is a sectorn-formand cni M;ω = −ω for every i ∈ {1, . . . , n−
1}, recalling that cni M = T i−1cT n−i−1M : T nM → T nM is the symmetry
carried by T (−)M (5.15).

2. We denote the complex of alternating elements of �(M) (8.8) by

�•(M) := (�(M))alt•

and call it the complex of singular forms on M with values in E .

Since�•(M) is a subcomplex of�•(M), the following theorem is now immediate:

8.12 Theorem The exterior derivative ∂ω of a singular n-form on M is a singular
(n + 1)-form.

8.13 Proposition There is a functor

�• : X op → cochain+ M 
→ �•(M)

sending each object M ofX to the complex of singular forms on M with values in E.

Proof This follows from 7.10 and 8.9. ��

9 Relationship to de Rham in synthetic and classical differential
geometry

Synthetic differential geometry (SDG) is an approach to differential geometry in terms
of infinitesimals that was initiated in a lecture of Lawvere in 1967 and developed
by several authors, starting with work of Wraith and of Kock [16] in the 1970s. The
reader is referred to the books [19,25] for a comprehensive introduction to SDG. An
approach to differential forms in SDG was developed in [15,17,31] (see [19,25]), and
in the present section we compare this work to the development of differential forms
given above, recovering the classical de Rham complex of a smooth manifold as a
corollary (9.25). This comparison involves specializing our treatment of sector forms
to the case in which the tangent structure is representable (9.1), an exercise that is
illuminating in its own right.

In the most prevalent formulation of SDG, one begins with a topos E and a commu-
tative ring object R in E , and then one defines D to be the subobject of R described by
the equation x2 = 0, so that D is the part of R that consists of square-zero ‘infinitesimal
elements’. Writing [M, N ] for the internal hom between objects M and N of E , one
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910 G. S. H. Cruttwell, R. B. B. Lucyshyn-Wright

construes the object [D, M] as the space T M of all tangent vectors on M . One postu-
lates that R should satisfy the Kock-Lawvere axiom (see Sect. 9.15), and sometimes
further axioms, on the basis of which one can develop much differential geometry in
E . One can define specific toposes E into which the categorymf of smooth manifolds
embeds, via an embeddingmf ↪→ E that sends the real numbers R to R; see [32] and
Sect. 9.23 below.

The approach of defining D as the square-zero part of R was put forward in Kock’s
1977 paper [16], wherein it is indicated that Lawvere’s 1967 lecture did not define D
in this way but rather postulated that an object D of infinitesimals should exist and that
[D, M] for each object M should have properties expected of the tangent bundle of
M . Evidently tangent categories provide an axiomatics of such properties, and indeed
Rosický’s 1984 paper [34] considers in particular those tangent categories (X ,T) for
which there is an exponentiable object D with T ∼= [D,−] : X → X . This leads
to an axiomatics for structure and properties that should be possessed by an object of
infinitesimals D [34, §4], [5, 5.6]. The following definition was given in [5] and is
a variation on a similar definition given in [34]. Herein, we say that an endofunctor
F on a category X with finite products is representable if it is isomorphic to an
endofunctor of the form [X,−] : X → X for some exponentiable object X of X ,
and we then say that F is represented by X .

9.1 Definition A category X carries representable tangent structure if X has
finite products and carries a tangent structure T in which the endofunctors T n and Tn
(n ∈ N) are representable.

It is proved in [5, Prop. 5.7] that a category X with finite products carries repre-
sentable tangent structure if and only if there is an exponentiable object D ofX that
carries the structure of an infinitesimal object in the sense of [5, Def. 5.6]. In this case
the tangent endofunctor T is represented by D, and its iterates T n are represented by
the n-th powers Dn of D. In particular, representable tangent structure is necessarily
Cartesian in the sense of 2.5.

Let us now fix a categoryX with representable tangent structureT, represented by
an infinitesimal object D inX . Throughout,we shall assumewithout loss of generality
that T = [D,−] on the nose. We shall not assume however that T n = [Dn,−] for
n > 1, but rather we now define specific isomorphisms T n ∼= [Dn,−] for use in the
sequel.

9.2 Definition Let us define isomorphisms

ψn : [Dn,−] ∼−→ T n (n ∈ N)

by recursion on n, as follows. Firstly,ψ0 is defined as the canonical isomorphism from
[1,−] to the identity functor onX . Next, the components of ψn+1 are defined as the
composites

ψn+1M :=
(

[Dn+1, M] φn+1M−−−−→ [D, [Dn, M]] [D,ψnM]−−−−−→ [D, T nM] = T n+1M

)

(M ∈ obX )
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where φn+1M is the isomorphism whose transpose [Dn+1, M] × D → [Dn, M] is in
turn defined as the transpose of the evaluation morphism

[Dn+1, M] × D × Dn = [Dn+1, M] × Dn+1 −→ M.

Note that ψ1 is therefore the identity transformation on [D,−] = T .

9.3 Simple type theory and lambda calculus

In synthetic differential geometry one often makes use of the internal language of a
given topos E in order to define morphisms in E by means of ‘elementwise’ formulae,
to show that diagrams commute just by chasing elements, and so on; see, e.g., [19,
Part II]. After all, the internal language of E is a restricted form of set theory, or rather
higher-order intuitionistic type theory [24].

Even though our given tangent category X is not assumed to be a topos, it still
possesses an internal language, albeit a rather restricted one, namely the simple type
theory of X [12, Chapter 2], considered as a category with finite products. We now
informally review some basic elements of this language and one of its extensions, the
simply typed lambda calculus; readers who are familiar with the latter may safely skip
this section.

Given anymorphism f : X1×· · ·×Xn → Y inX , we can form a typing judgment
or term-in-context

x1 : X1, . . . , xn : Xn � f (x1, . . . , xn) : Y

in which each expression xi : Xi indicates that xi is a formal variable of type Xi .
The typing judgment asserts that the expression f (x1, . . . , xn) is a term of type Y .
The part of the typing judgement to the left of the turnstile � is called the context.
The simple type theory of X includes various term formation rules which allow us
to construct new terms-in-context from others [12, 2.1]. For example given terms-in-
context x : X � f (x) : Y and y : Y � g(y) : Z associated to morphisms f : X → Y
and g : Y → Z in X , we can form a term-in-context x : X � g( f (x)) : Z . Every
term-in-context denotes an associated morphism in X , and in particular, the latter
term-in-context denotes the composite morphism f ;g : X → Z . The simple type
theory of X carries also a calculus of equations

x1 : X1, . . . , xn : Xn � t1 = t2 : Y

where t1, t2 are terms in the same context �, namely x1 : X1, . . . , xn : Xn , and we
say that such an equation holds in X if the morphisms in X denoted by � � t1 : Y
and � � t2 : Y are equal. We shall often omit typing indications “y : Y ” within
terms-in-context and equations when the intended typing is clear.

Having assumed that X has an infinitesimal object D, which is exponentiable,
we would also like to employ an internal language in reasoning about exponential
transposition of morphisms. In the case whereX is Cartesian closed, we can employ
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the simply typed lambda calculus of X [12, 2.3] [24], which extends the simply
type theory ofX by adding term-formation rules corresponding to exponential trans-
position, together with corresponding rules governing equality. For example given a
morphism f : X × Y → Z in X , the associated transpose X → [Y, Z ] is denoted
by the term-in-context

x : X � λy : Y. f (x, y) : [Y, Z ]

where the construct “λy : Y.” serves to bind the variable y within the scope of the
expression λy : Y. f (x, y). We will often write just λy. f (x, y).

Although the given tangent category X is not assumed Cartesian closed, we can
clearly11 still employ simply typed lambda calculus and its interpretation in X as
long as the instances of exponential transposition and evaluation employed are those
permitted by the exponentiable objects Dn . Given objects X,Y, Z of X with X,Y
exponentiable, we shall write f : [X,Y ], g : [Y, Z ] � f ;g to denote the composition
morphism [X,Y ] × [Y, Z ] → [X, Z ] inX .

As a first application of this type-theoretic notation, we record the following:

9.4 Proposition For each n � 1 and each object M of X , the isomorphism ψn :
[Dn, M] → T nM = [D, [D, . . .]] defined in 9.2 is characterized by the following
equation:

τ : [Dn, M] � ψn(τ ) = λd1.λd2. . . . λdn .τ (d1, d2, . . . , dn) : T nM

9.5 Symmetric degenerative structure induced by D

Again fixing a category X with representable tangent structure, the representing
infinitesimal object D carries a structural morphism � : D × D → D that makes
D a commutative semigroup in X [5, Def. 5.6]. Hence D carries the structure of a
symmetric semigroup (D,�, s) inX (4.7, 4.9), where s : D2 → D2 is the symmetry
in X . Within the simple type theory of X , we shall denote the multiplication � by
d1 : D, d2 : D � d1d2 : D.

Recalling that the vertical lift � : T → T 2 and the canonical flip c : T 2 → T 2

together equip T with the structure of a symmetric semigroup (T, �, c) in [X ,X ]op
(4.12), it is clear from the discussion in [5, §5.2] that this symmetric semigroup struc-
ture is inducedby the semigroup structure (D,�, s)onD in the sense that the following
diagrams commute.

11 One way of justifying this claim is to embedX into the Cartesian closed category of presheaves onX
taking values in some universe with respect to whichX is small. But clearly more elementary approaches
are possible.
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[D,−] [�,−] �� [D2,−]
ψ2�
��

[D2,−]
ψ2 �

��

[s,−] �� [D2,−]
ψ2�
��

T
�

�� T 2 T 2
c

�� T 2

(9.5.i)

Whereas X is not a strict monoidal category, we can construe (D,�, s) as a
symmetric semigroup in a Cartesian strict monoidal category XD that is defined as
follows. Define obXD = N and XD(n,m) = X (Dn, Dm), with composition as in
X . Informally, we will write Dn for the object n ofXD , noting thatXD is equivalent
to the full subcategory of X on the objects Dn . One encounters no complication in
defining a Cartesian strict monoidal structure onXD , and it is for this reason that we
work withXD rather than the latter full subcategory of X .

By 4.10, the symmetric semigroup (D,�, s) in XD induces a strict monoidal
functor

D� : finCards → XD, n 
→ Dn,

and we will also write D� to denote the functor D� : finCards → X obtained by
composing with the canonical fully faithful functorXD → X .

9.6 Proposition (i) The codegeneracies and symmetries carried by the symmetric
codegenerative object D� inX are the following morphisms, respectively:

�n
i := Di−1 × � × Dn−i : Dn+1 → Dn,

sni := Di−1 × s × Dn−i−1 : Dn → Dn .

(ii) Writing D f : Dm → Dn for the morphism inX induced by a mapping f : n →
m between finite cardinals n,m, the functor D� : finCards → X sends each

permutation ξ : n ∼−→ n to the automorphism Dξ−1 : Dn → Dn inX .

Proof (i) is immediate from 5.13. For (ii) it suffices to show that the copermutative
object finCardb → XD underlying D� is equal to the composite

finCardb
(−)−1

−−−→ finCardopb
D(−)−−→ XD

whose first factor is the identity-on-objects isomorphism given in 5.3. But these two
functors finCardb → XD are both strict monoidal, and they both send 1 to D and
send the symmetry σ : 2 → 2 to the symmetry s : D2 → D2 in XD , so by 4.10(iii)
they are equal. ��
9.7 Proposition For each object M ofX , the isomorphisms ψn : [Dn, M] → T nM
constitute an isomorphism of symmetric degenerative objects

[D�(−), M] ∼= T (−)M : finCardops → X .
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Proof Since the codegeneracies εni and symmetries σ n
i generate the category finCards

(5.11), it suffices to show that the isomorphisms ψn commute with the degeneracies
and symmetries carried by [D�(−), M] and T (−)M . By 9.6, the degeneracies and sym-
metries carried by [D�(−), M] are the morphisms [�n

i , M] : [Dn, M] → [Dn+1, M]
and [sni , M] : [Dn, M] → [Dn, M], and by 5.14, 5.15 those carried by T (−)M are (the
components at M of) the transformations �ni = T i−1�T n−i and cni = T i−1cT n−i−1.
We can now use (9.5.i) and 9.4 to compute that the following equations hold inX :

τ : [Dn, M] � �ni (ψn(τ )) = λd1. . . . λdn+1.τ (d1, . . . , di−1, didi+1, di+2, . . . , dn+1)

= ψn+1(�n
i ;τ)

τ : [Dn, M] � cni (ψn(τ )) = λd1.λd2. . . . λdn .τ (d1, . . . , di−1, di+1, di , di+2, . . . , dn)

= ψn(s
n
i ;τ)

��

9.8 Some infinitesimal left actions

For eachn ∈ N and each j = 1, . . . , nwehave amorphismαn
j = σ n+1

( j) ;εnj : n+1 → n

in finCards (7.1). Using 9.6 and the definition of σ n+1
( j) = ( j ( j − 1) . . . 321) (6.2),

we compute that the morphism D�(σ n+1
( j) ) : Dn+1 → Dn+1 carried by the symmetric

codegenerative object D� is characterized by

(d0, d1, . . . , dn) : Dn+1 � (D�(σ n+1
( j) ))(d0, . . . , dn)

= (d1, . . . , d j−1, d0, d j , d j+1, . . . , dn). (9.8.i)

Again applying 9.6 we therefore compute that the morphism

D�(αn
j ) : D × Dn = Dn+1 → Dn

is characterized as follows:

(d0, d1, . . . , dn) : Dn+1 � (D�(αn
j ))(d0, . . . , dn)

= (d1, . . . , d j−1, d0d j , d j+1, . . . , dn) : Dn

In effect, D�(αn
j ) is the left action of D on the j-th factor of Dn .

Now fixing a differential object E inX , the third axiom in 2.8 entails that E carries
an associative action of D, namely the transpose • : D× E → E of the lift morphism
λ : E → [D, E] = T E carried by E . As with the multiplication carried by D, we
will denote this left action on E by juxtaposition within the lambda calculus.

9.9 Definition Let M be an object of X , and let n ∈ N.
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(i) For each j = 1, . . . , n, let •nj : D × [Dn, M] → [Dn, M] denote the transpose of
the composite

[Dn, M] [D�(αn
j ),M]−−−−−−−→ [Dn+1, M] φn+1−−→ [D, [Dn, M]]

where φn+1 is the isomorphism defined in 9.2. Writing •nj in infix notation in the
lambda calculus, this morphism •nj is characterized by the following equation:

d : D, τ : [Dn, M] � d •nj τ = λ(d1, . . . , dn).τ (d1, . . . , d j−1, dd j , d j+1, . . . , dn)

(ii) We say that a morphism ν : [Dn, M] → E inX is a synthetic sector n-form on
M with values in E if

d : D, τ : [Dn, M] � ν(d •nj τ) = dν(τ) : E (9.9.i)

holds inX for each j = 1, . . . , n, i.e. if the following diagram commutes:

D × [Dn, M]
•nj

��

D×ν �� D × E

•
��

[Dn, M]
ν

�� E

(9.9.ii)

9.10 Theorem For each object M ofX , there is a symmetric cosimplicial commuta-
tive monoid�syn(M) in which�

syn
n (M) is the set of all synthetic sector n-forms on M

with values in E (n ∈ N). Further, there is an isomorphism of symmetric cosimplicial
commutative monoids

�(M) ∼= �syn(M)

between sector forms on M and synthetic sector forms on M. The codegeneracies and
symmetries carried by �syn(M) are given by pre-composition with the degeneracies
and symmetries carried by [D�(−), M] (9.7).
Proof For each n ∈ N, the isomorphism ψn : [Dn, M] → T nM induces a bijection
between morphisms ν : [Dn, M] → E and morphisms ω : T nM → E . Given a pair
of morphisms ν, ω that correspond under this bijection, so that ν = ψn;ω, we claim
that ν is a synthetic sector n-form if and only if ω is a sector n-form. To prove this,
first observe that the following diagram commutes, by the inductive definition of the
isomorphisms ψn (9.2).

[Dn+1, M]

ψn+1 ����
���

���
���

φn+1

∼ �� [D, [Dn, M]]
Tψn
��

T ν = [D,ν]
����

���
���

���
��

T n+1M
Tω

�� [D, E] = T E
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Next recall that ω is a sector n-form if and only if anj ;Tω = ω;λ for all j =
1, . . . , n (3.2). Here anj : T nM → T n+1M is obtained by applying the functor

T (−)M : finCardops → X to the morphism αn
j : n + 1 → n in finCards (7.1),

so the naturality of the isomorphism ψ : [D�(−), M] ∼−→ T (−)M (9.7) entails that
ψn;anj = [D�(αn

j ), M];ψn+1 : [Dn, M] → T n+1M . Using these facts we readily
deduce that ω is a sector n-form if and only if the following diagram commutes for
each j = 1, . . . , n.

[Dn, M]
[D�(αn

j ),M]
��

ν �� E

λ

��
[Dn+1, M]

φn+1

∼ �� [D, [Dn, M]] [D,ν]
�� [D, E]

But the two composites in this diagram are the exponential transposes of the two
composites in the diagram (9.9.ii) whose commutativity characterizes synthetic sector
n-forms.

Hence we have a bijection �n(M)
∼−→ �

syn
n (M) given by ω 
→ ψn;ω, and since

�n(M) is a submonoid of X (T nM, E) it follows that �
syn
n (M) is a submonoid of

X ([Dn, M], E) and the given bijection is an isomorphism of commutative monoids.
Hence in view of 7.7 there is a unique functor �syn(M) : finCard → cmon given
on objects by n 
→ �

syn
n (M) such that the given isomorphisms �n(M) ∼= �

syn
n (M)

are natural in n ∈ finCard. The naturality of these isomorphisms together with the
naturality of the isomorphism ψ : [D�(−), M] ∼−→ T (−)M (9.7) entails the remaining
claim. ��

9.11 Proposition Given a synthetic sector n-form ν : [Dn, M] → E and any
i = 1, . . . , n + 1, the i-th coface of ν is the synthetic sector (n + 1)-form δni (ν) :
[Dn+1, M] → E characterized by the following equation:

τ : [Dn+1, M] � (δni (ν))(τ )

= p̂
(
λd0 : D.ν(λ(d1, . . . , dn) : Dn .τ (d1, . . . , di−1, d0, di , . . . , dn))

)

where p̂ : [D, E] = T E → E is the principal projection (2.10).

Proof By 6.3 we know that δni (ν) = σ n+1
(i) (δn1 (ν)) where σ n+1

(i) : �
syn
n+1(M) →

�
syn
n+1(M) is the automorphism induced by the permutation σ n+1

(i) : n + 1 → n + 1 in
finCard.

Given any synthetic sector (n + 1)-form γ : [Dn+1, M] → E , we deduce by 9.10
that σ n+1

(i) (γ ) is the composite

[Dn+1, M] [D�(σ n+1
(i) ),M]−−−−−−−−→ [Dn+1, M] γ−→ E,
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so by using (9.8.i) we compute as follows:

τ : [Dn+1, M] � (σ n+1
(i) (γ ))(τ )

= γ (λ(d0, . . . , dn).τ (d1, . . . , di−1, d0, di , . . . , dn)) (9.11.i)

Let ω : T nM → E be the sector n-form corresponding to ν, so that

ν =
(

[Dn, M] ψn−→ T nM
ω−→ E

)
.

In view of the proof of 9.10, δn1 (ν) : [Dn+1, M] → E is the composite

[Dn+1, M] ψn+1−−−→ T n+1M
δn1 (ω)−−−→ E

where δn1 (ω) = Tω; p̂ is the fundamental derivative of ω (7.5, 7.7). Hence since
ω = ψ−1

n ;ν we compute that

δn1 (ν) = ψn+1;T (ψ−1
n );T ν; p̂ = φn+1;T ν; p̂ = φn+1;[D, ν]; p̂

by the inductive definition of ψ (9.2). Hence we compute as follows:

τ : [Dn+1, M] � (δn1 (ν))(τ ) = p̂(φn+1(τ );ν)

= p̂(λd0.ν(λ(d1, . . . , dn).τ (d0, d1, . . . , dn)))

Applying this together with (9.11.i) in the case where γ = δn1 (ν), we obtain the needed
result. ��

Now let us assume that E is a subtractive differential object inX , and again let M
be an object of X .

9.12 Definition 1. We call a synthetic sector n-form ν on M a synthetic singular
n-form if ν is an alternating element of the symmetric cosimplicial abelian group
�syn(M) (8.6).

2. We define the cochain complex �
syn• (M) as the complex of alternating elements

(8.8) of �syn(M), and we call �syn• (M) the complex of synthetic singular forms
on M with values in E .

By 9.10 and 9.6, the symmetry σ n
i : �

syn
n (M) → �

syn
n (M) (i = 1, . . . , n − 1)

sends each synthetic sector n-form ν to the composite

[Dn, M] [sni ,M]−−−−→ [Dn, M] ν−→ E

in the notation of 9.6. Hence we obtain the following:
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9.13 Proposition A morphism ν : [Dn, M] → E is a synthetic singular n-form iff ν
is a synthetic sector n-form and

τ : [Dn, M] � ν
(
λ(d1, . . . , dn).τ (d1, . . . , di−1, di+1, di , di+2, . . . , dn)

)

= −ν(τ) : E (9.13.i)

holds for each i = 1, . . . , n − 1, where − : E → E is the negation morphism.

9.14 Theorem There is an isomorphism of cochain complexes

�•(M) ∼= �syn• (M)

between the complex of singular forms and the complex of synthetic singular forms.

Proof This follows immediately from 9.10, 8.9, and 8.11. ��

9.15 Relationship to de Rham in SDG

Let E be a topos equipped with a commutative ring object R. Writing the multipli-
cation in R as juxtaposition in the lambda calculus, let (−)2, 0 : R → R denote the
morphisms in E denoted by the terms-in-context x : R � xx : R and x : R � 0 : R,
respectively. Let D ↪→ R denote the equalizer of these morphisms (−)2, 0.

An R-module object E in E is said to be a Kock-Lawvere R-module, or satisfy
the Kock-Lawvere axiom, if the morphism

E × E
κ−→ [D, E] (9.15.i)

denoted by

(e1, e0) : E × E � λd : D . de1 + e0

is an isomorphism, where we have written the action of R on E as juxtaposition. R
is said to be a ring of line type if R itself satisfies the Kock-Lawvere axiom when
considered as an R-module.

Let us now assume that R is a ring of line type. The books [19, I.14], [32, IV],
[25, Ch. 4] treat differential forms valued in a Kock-Lawvere R-module E , following
[15,17,31]. We now recall the definition of the notion of differential form employed
in the cited sections of these books.We shall soon show that these are exactly the same
as the synthetic singular forms defined in 9.12 above.

9.16 Definition Let M be an object of E , and let n ∈ N. For each j = 1, . . . , n,
define a morphism ∗nj : R × [Dn, M] → [Dn, M] by

r : R, τ : [Dn, M] � r ∗nj τ = λ(d1, . . . , dn).τ (d1, . . . , d j−1, rd j , d j+1, . . . , dn)
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where we have written ∗nj in infix notation. We say that a morphism ν : [Dn, M] → E
is an SDG singular n-form on M with values in E if the Eq. (9.13.i) holds for all
i = 1, . . . , n − 1 and the following equation holds for all j = 1, . . . , n:

r : R, τ : [Dn, M] � ν(r ∗nj τ) = rν(τ) : E (9.16.i)

9.17 Remark Observe that the axioms for an SDG singular form are almost exactly
the same as those for a synthetic singular form as defined in 9.12 above, except that
for SDG singular forms the axiom (9.16.i) applies to arbitrary scalars r : R rather than
just d : D. We shall show that these notions of form are identical in a suitable setting.
The key idea is as follows.

9.18 Proposition If a morphism h : E → F in E between Kock-Lawvere R-modules
E, F satisfies the equation d : D, e : E � h(de) = dh(e), then h satisfies the equation
r : R, e : E � h(re) = rh(e).

Proof Let ρ, τ : R × E → F be the morphisms denoted by r : R, e : E � h(re) and
r : R, e : E � rh(e), respectively. Note that the multiplicative action D × R → R
factors through the inclusion D ↪→ R since d : D, r : R � (dr)2 = d2r2 = 0r2 = 0
holds. Denoting the resulting morphism D × R → D by d : D, r : R � dr : D, we
compute that

d : D, r : R, e : E � dh(re) = h(dre) = drh(e) : F

since h preserves the actions by D. Letting λ : F → [D, F] be the morphism denoted
by f : F � λd.d f , we compute that

r : R, e : E � λ(ρ(r, e)) = (λd.dh(re)) = (λd.drh(e)) = λ(τ(r, e)) : [D, F]

so ρ;λ = τ ;λ. But λ is the composite F
(1F ,0)−−−→ F × F

κ−→ [D, F] in the notation of
(9.15.i), so λ is a split monomorphism and hence ρ = τ . ��

9.19 The tangent category of microlinear objects

In order to be able to use certain results given in [25], we shall now assume that R
satisfies the Kock-Weil axiom (K-W) of [25, 2.1.3]. This axiom entails the above
Kock-Lawvere axiom, and it also entails that the object R of E is microlinear [25,
2.3.1] (that is, R perceives finite quasi-colimits of infinitesimal objects as colimits).

Let

X ↪→ E

denote the full subcategory ofE consisting of themicrolinear objects, and letEiv ↪→ E
denote the full subcategory consisting of those objects that are both infinitesimally
linear and vertically linear in the sense used in [5, 5.2, 5.3]. Note thatX is contained
in Eiv . By [5, 5.4] Eiv carries representable tangent structure, with representing object
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D. BothX and Eiv are closed under finite limits and exponentials in E ( [25, 2.3.1],
[5, 5.4]). Hence the tangent structure on Eiv restricts toX , and

X is a Cartesian closed category with representable tangent
structure, represented by D.

Now let us fix an object M ofX and a Kock-Lawvere R-module E that lies inX .
By [7, 3.9], E carries the structure of a subtractive differential object in X , where
the associated lift morphism λ : E → T E = [D, E] is the transpose of the restricted
action D × E → E , so that the latter is the morphism written as • in 9.8.

Given any object X of E , let X∗ : E = E /1 → E /X denote the functor given by
pullback along ! : X → 1. Since X∗ is a logical functor between toposes [14, 1.42],
X∗ sends R to a ring of line type X∗(R) = (π2 : R × X → X) in E /X , and X∗ sends
E to a Kock-Lawvere X∗(R)-module X∗(E) in E /X .

9.20 Proposition (i) Given any object X ofX , the tangent bundle (T X, pX ) carries
the structure of a Kock-Lawvere X∗(R)-module in E /X.

(ii) For each n ∈ N and each j = 1, . . . , n + 1, the morphism

p j : [Dn+1, M] → [Dn, M]

given by

τ : [Dn+1, M] � p j (τ ) = λ(d1, . . . , dn).τ (d1, . . . , d j−1, 0, d j , . . . , dn)

carries the structure of a Kock-Lawvere ([Dn, M])∗(R)-module in E /[Dn, M].
The associated action of ([Dn, M])∗(R) is given by the morphism

∗n+1
j : R × [Dn+1, M] → [Dn+1, M]

of 9.16.

Proof (i) is established in [25, 3.1.2, Prop. 4], noting that Lavendhomme’s universal
quantification over points of the base space is interpreted in an internal sense in E ,
cf. [19, II.6]. Letting X = [Dn, M] and Y = [Dn+1, M], we have an isomorphism
φn+1 : Y ∼−→ [D, X ] = T X (9.2) that commutes with the projections p1 and pX to X .
Hence by (i), (Y, p1) carries the structure of a Kock-Lawvere X∗(R)-module in E /X ,
and in view of [25, 3.1.1] the associated action of X∗(R) is ∗n+1

1 . By (9.8.i) we have

an automorphism �( j) = [D�(σ n+1
( j) ), M] : Y ∼−→ Y inX ↪→ E characterized by

τ : [Dn+1, M] � �( j)(τ ) = λ(d1, . . . , dn+1).τ (d2, . . . , d j , d1, d j+1, . . . , dn+1).

Observe that �( j) is in fact an isomorphism �( j) : (Y, p j )
∼−→ (Y, p1) in E /X . Hence

there is a unique X∗(R)-module structure on (Y, p j ) such that�( j) is an isomorphism

of X∗(R)-modules (Y, p j )
∼−→ (Y, p1). Hence (Y, p j ) is a Kock-Lawvere X∗(R)-

module, and the result follows. ��
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9.21 Theorem A morphism ν : [Dn, M] → E is an SDG singular n-form if and only
if ν is a synthetic singular n-form in the sense of 9.12.

Proof If n = 0 then the result is immediate, so we may assume that n � 1. Since
the morphisms •nj of 9.9 are restrictions of the morphisms ∗nj of 9.16, it suffices to
assume that ν is a synthetic singular n-form and show that (9.16.i) holds for each
j ∈ {1, . . . , n}. Letting Y = [Dn, M] and X = [Dn−1, M], we deduce by 9.20 that
(Y, p j ) is a Kock-Lawvere X∗(R)-module with action morphism ∗nj : R × Y → Y .
Also X∗(E) = (E × X, π2) is a Kock-Lawvere X∗(R)-module, and ν induces a
morphism ν̄ := (ν, p j ) : (Y, p j ) → X∗(E) in E /X . Note that since X∗ preserves
limits, X∗ sends D ↪→ R to the square zero part X∗(D) ↪→ X∗(R) of X∗(R). But the
axiom (9.9.i) entails that ν̄ preserves the X∗(D)-actions carried by the Kock-Lawvere
X∗(R)-modules (Y, p j ) and X∗(E), so ν̄ preserves the X∗(R)-actions by 9.18. Hence
(9.16.i) holds. ��
9.22 Theorem The complex of singular forms �•(M) is isomorphic to the complex
�

sdg• (M) of SDG singular forms on M with values in E, as defined in [15,17], [25, Ch.
4]. Further, �sdg• (M) is identical to the complex of synthetic singular forms �

syn• (M).

Proof By 9.14, it suffices to prove the second claim. By 9.21, the complexes�
sdg• (M)

and �
syn• (M) have the same underlying graded abelian group. The differential ∂n :

�
syn
n (M) → �

syn
n+1(M) is given by ∂n(ν) = ∑n+1

i=1 (−1)n−1δni (ν), and by consulting
the formula for δni (ν) in 9.11 we find that ∂n(ν) is precisely the exterior derivative of
ν described in [15, §1, (1.3)] and [25, 4.2.3, Prop. 4]. ��

9.23 Relationship to de Rham for smooth manifolds

Let mf denote the category of (Hausdorff, second-countable) smooth manifolds, and
letM be an object ofmf. Sincemf is a Cartesian tangent category andR is a subtractive
differential object in mf, we can consider the complex of singular forms �•(M) on
M with values in R (8.11). In order to show that �•(M) is isomorphic to the classical
de Rham complex of M12, we shall consider an embedding of mf into a topos E
modelling SDG, and then we shall invoke 9.22 and a result on differential forms
within this specific topos [32, IV.3.7].

In particular, we shall take E to be the Dubuc topos, i.e., the topos denoted by G
in [32] and by B̃op in [19]. Explicitly, E is the topos of sheaves on the opposite of the
category of germ-determined, finitely generated C∞-rings, with respect to the open
cover topology. But more to the point, E is a topos equipped with an embedding

ι : mf ↪→ E

such that R = ι(R) is a ring of line type satisfying the Kock-Weil axiom [25, 8.3.3],
and ι has several further pleasant properties making (E , ι) a well-adapted model (see

12 The relationship between singular forms and classical differential forms is also briefly discussed in an
exercise in White’s book; see [38, pg. 116, exercise 7].
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[19, III.3, III.4, III.8.4]). We now show that any well-adapted model gives rise to an
embedding of tangent categories:

9.24 Proposition Let ι : mf ↪→ E be a well-adapted model of SDG.

(i) The embedding ι factors as mf
ι′

↪→ X ↪→ E , where X is the full subcategory of
E consisting of microlinear objects.

(ii) The embedding ι′ : mf ↪→ X carries the structure of a strong morphism of
Cartesian tangent categories (in the sense of [5, 2.7, 2.8]).

Proof For any manifold M ∈ obmf, the object ι(M) of E is a formal manifold [19,
I.17] (by [19, III.3.4, III.4.C]), so by [19, I, Notes 2006, Footnote 27; Appendix D]),
ι(M) is microlinear and (i) is proved. Letting T denote the tangent endofunctor onmf,
it is proved in [19, III.4.1] that there is an isomorphism αM : ι(T M)

∼−→ [D, ι(M)]
natural in M ∈ mf, recalling that [D,−] : X → X is the tangent endofunctor on
X (9.19). Also, by [19, III.3.A], ι preserves finite products as well as the (iterated)
pullbacks that are given as part of the tangent structure on mf (2.3), since these are
all transversal pullbacks (as each can be described as a pullback of a submersion; see
[7]). But X is closed under finite limits in E (9.19), so it remains only to show that
α satisfies the diagrammatic axioms13 of [5, 2.7].

Letting cart ↪→ mf denote the full subcategory consisting of the Cartesian spaces
R
n , we know that the Cartesian tangent structure onmf restricts to a Cartesian tangent

structure on cart, wherein T (Rn) = R
n × R

n . Indeed, cart is a particularly simple
kind of tangent category, namely (the tangent category associated to) a Cartesian
differential category [5, 4.1, 4.2]. The embedding ι sends the Cartesian spaces Rn to
Kock-Lawvere R-modules ι(Rn) ∼= Rn in E , where R = ι(R) is the line object in E .
The microlinear Kock-Lawvere R-modules in E are precisely the differential objects
of X [7, 3.9] and so constitute a Cartesian differential category Diff(X ) [5, 4.11],
such that the inclusion Diff(X ) ↪→ X carries the structure of a strong morphism
of Cartesian tangent categories [5, 4.12]. The restriction ι′′ : cart ↪→ Diff(X ) of
ι′ preserves finite products, and ι′′ preserves the Jacobian derivative [19, III.3.3] and
therefore preserves Cartesian differential structure. Therefore ι′′ is a strong morphism
of Cartesian tangent structure, so the composite cart ↪→ Diff(X ) ↪→ X is a strong
morphism of Cartesian tangent structure whose structural isomorphisms

ι(Rn × R
n) = ι(TRn)

∼−→ [D, ι(Rn)]

are the isomorphisms αM with M = R
n as constructed in [19, III.4.1].

Hence the restriction of ι′ : mf ↪→ X to cart is a strong morphism of Cartesian
tangent structure. Now for an arbitrary manifold M ∈ obmf, we can choose a covering
by open embeddings e j : Uj ↪→ M ( j ∈ J ) where the Uj are Cartesian spaces. It
follows that the families (T e j ) j∈J , (T 2e j ) j∈J , and (T2ei ) j∈J (in the notation of 2.3)
are coverings by open embeddings. For each of the structural transformations t ∈
{p, 0,+, �, c} carried bymf, with corresponding transformation t ′ inX , we can now

13 Note that composition of functors is written in diagrammatic order in the cited source.
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use the fact that αUj commutes with tU j , t
′
Uj

for each j ∈ J to show that αM commutes

with tM , t ′M . ��
9.25 Theorem The classical de Rham complex �dR• (M) of a smooth manifold M is
isomorphic to the complex �•(M) of singular forms on M with values in R (8.11),
where M is considered as an object of the tangent category mf. In symbols,

�dR• (M) ∼= �•(M).

Proof Taking E to be the Dubuc topos, we deduce by 9.24 that the associated embed-
ding ι′ : mf ↪→ X is a strong morphism of Cartesian tangent structure, and we can
invoke 9.22 and [32, IV.3.7] in order to compute that

�•(M) ∼= �•(ι′(M)) ∼= �
sdg• (ι(M)) ∼= �dR• (M)

as complexes, where �•(ι′(M)) is the complex of singular forms on ι′(M) inX with
values in R = ι′(R). ��

10 Conclusions and future work

In this paper, we have shown that not only do tangent categories support a gener-
alization of de Rham cohomology, but that they support a second cohomology, the
cohomology of sector forms; furthermore, sector forms have a rich algebraic structure
that goes beyond this cohomology. There are many possible extensions of this work.

• Wehave shown that tangent categories possess a cohomology of sector forms. Even
in the canonical case of smoothmanifolds, thismay be distinct from the ordinary de
Rham cohomology of classical differential forms; further investigation is required
to compare these cohomologies.

• The relationship between classical differential forms and singular forms in an
arbitrary tangent category needs to be better understood. In general, one would
expect that any object M which is “locally a differential object” would have the
property that classical differential forms on M and singular forms on M would be
in bijective correspondence, but this requires detailed work to check. Another
possibility is that differential forms and singular forms may correspond if M
possesses a “symmetric n-connection” [26], suitably defined in a tangent category.

• An important operation on differential forms is the wedge product. Since this
involves multiplication in R, in the setting of tangent categories, one would need
the coefficient object E to have ring structure. Once such a generalized wedge
product is defined, one could consider how such an operation interacts with the
co-face, symmetry, and co-degeneracy maps.

• It is a well-known result that the exterior derivative is the unique map from n
forms to n+1 forms satisfying certain algebraic properties [35, Proposition 7.11].
It would be interesting to determine for which tangent categories this uniqueness
result holds.
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• It is not clear to what cohomology theories the cohomologies found here cor-
respond in algebraic geometry (for example, in the category of schemes). The
cohomologies may recover an existing cohomology theory or represent a new
one; further investigation is required.

Finally, as mentioned in the introduction, sector forms generalize covariant tensors,
and because of this, White writes that “the calculus of [sector forms] can serve as a
unified framework for the presentation of classical local Riemannian geometry, and
that it can lead to new methods of analysis in modern differential geometry” [38, pg.
x]. The results presented here on sector forms contribute to this calculus by means of
a methodology that is applicable more generally.
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