
J. Homotopy Relat. Struct. (2018) 13:847–865
https://doi.org/10.1007/s40062-018-0200-z

The Picard group of motivic AC(1)

Bogdan Gheorghe1 · Daniel C. Isaksen1 ·
Nicolas Ricka1

Received: 24 June 2016 / Accepted: 13 February 2018 / Published online: 20 April 2018
© Tbilisi Centre for Mathematical Sciences 2018

Abstract We show that the Picard group Pic(AC(1)) of the stable category of mod-
ules over C-motivic AC(1) is isomorphic to Z

4. By comparison, the Picard group of
classical A(1) is Z2 ⊕ Z/2. One extra copy of Z arises from the motivic bigrading.
The joker is a well-known exotic element of order 2 in the Picard group of classical
A(1). The C-motivic joker has infinite order.

Keywords Picard group · Stable module category · Motivic homotopy theory ·
Steenrod algebra

Mathematics Subject Classification 14F42 · 20G05 · 14C22

1 Introduction

1.1 The Picard group of classical A(1)

Let A(1) be the subalgebra of the classical mod 2 Steenrod algebra generated by Sq1

and Sq2. The stable module category Stab(A(1)) is the category whose objects are
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848 B. Gheorghe et al.

the finitely generated graded left A(1)-modules, and whose morphisms are the usual
A(1)-module maps, modulo maps that factor through projective A(1)-modules.

The stable module category Stab(A(1)) is equipped with a tensor product over F2.
The unit of this pairing is F2, and an object M of Stab(A(1)) is invertible if there
exists another A(1)-module N such that M ⊗F2 N is stably isomorphic to F2. The
Picard group Pic(A(1)) is the set of invertible stable isomorphism classes, with group
operation given by tensor product over F2.

In homological degree greater than zero, Ext groups over A(1) are invariants of
stable isomorphism classes ofA(1)-modules. Thus, Stab(A(1)) is the natural category
on which these Ext groups overA(1) are defined. These Ext groups are of topological
interest because of the Adams spectral sequence

E2 = ExtA(1)(HF
∗
2(X),F2) GG A ko∗(X)∧2 ,

converging to 2-completed ko-homology.
Adams and Priddy computed Pic(A(1)) while studying infinite loop space struc-

tures on the classifying space BSO [3, Section 3]. They found that the Picard group is
isomorphic to Z2 ⊕ Z/2. One copy of Z comes from the grading; this corresponds to
shifting the grading of an A(1)-module without changing its structure. The other copy
of Z comes from the algebraic loop functor that is a formal part of the stable module
category; see Definition 2.15 below for more details.

The copy of Z/2 in Pic(A(1)) is the most interesting part of the calculation. It
is exotic in the sense that it doesn’t follow from the formal theory of stable module
categories and Picard groups. The copy of Z/2 is generated by the joker J shown
in Fig. 1. It turns out that J ⊗F2 J is stably isomorphic to F2, so J has order 2 in
Pic(A(1)).

1.2 The C-motivic setting

There has been much recent work on the computational side of motivic homotopy
theory. In particular, the algebraic properties of the motivic Steenrod algebra have
come under close scrutiny. As part of this program, it is natural to ask about the Picard

Fig. 1 The classical
A(1)-module J . Dots indicate
copies of F2. The height of a dot
reflects its grading. The central
dot represents a class in degree
zero. Straight lines indicate the
Sq1 action. Curved lines
indicate the Sq2 action.
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The Picard group of motivic AC(1) 849

group of the motivic version of A(1). The goal of this article is to carry out this
computation for C-motivic AC(1), which is the simplest motivic case.

The fundamental difficulty in the motivic situation is that the ground ring M2, i.e.
the cohomology of a point, is not a field. Rather, it is a bigraded polynomial ring
F2[τ ], where |τ | = (0, 1), see for example [14]. Therefore, we must be careful to
insertM2-freeness hypotheses at the appropriate places.

We will show that Pic(AC(1)) is isomorphic to Z
4. Two copies of Z arise from

the motivic bigrading, and one copy of Z comes from the algebraic loop functor. This
leaves one copy of Z, which is generated by the motivic joker JC (see Fig. 4). It
turns out that the motivic joker has infinite order. The order of the motivic joker is the
essential new aspect of the motivic calculation. Our main result is:

Theorem (5.6) There is an isomorphism

Z
4
GG A Pic(AC(1))

sending (a, b, c, d) to the class of �a,b�c J d
C
.

In Theorem 5.6, � is the bigraded shift functor, while � is the algebraic loop
functor.

There are two main ideas in the proof. First, the Hopf algebra AC(1)/τ is iso-
morphic to the group algebra of the dihedral group D8 of order 8, so AC(1)/τ is
well-understood. In particular, the Picard group of AC(1)/τ is known.

Second, consider the functor that takes anAC(1)-module M to its quotient M/τ . In
general, quotienting is not an exact functor. However, it turns out to be well-behaved
for AC(1)-modules that are M2-free. Using this well-behaved functor, we can pull
back information about the Picard group of AC(1)/τ to information about the Picard
group of AC(1).

The difference between theC-motivic and classical Picard groups is a familiar one.
Frequently, motivic computations are larger than classical ones. However, they are
also often more regular. This situation is clearly displayed in our work, where the
motivic Picard group is free, while the classical Picard group has torsion.

There is an explicit way to compare the motivic and classical situations. Roughly
speaking, setting τ = 1 in the motivic setting recovers the classical setting.

Proposition (5.7) Setting τ = 1 induces the surjective group homomorphism

Pic(AC(1)) ∼= Z
4
GG A Pic(A(1)) ∼= Z2 ⊕ Z/2

[�a,b�c J d
C
] �G GA [�a�c J d ].

We do not consider the Picard group of motivicAk(1) over other base fields k. The
C-motivic phenomena described in this paper will occur over other base fields, but it
is possible that additional complications arise.

Our computation of the Picard group of motivic AC(1) is potentially useful for
the following problem. From our perspective, the most essential property of the C-
motivic spectrum koC is that its cohomology is isomorphic to AC//AC(1) [7]. One
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might ask whether such a C-motivic spectrum is unique. Suppose that X and Y are
C-motivic spectra whose cohomology modules are both isomorphic to AC//AC(1).
In order to construct an equivalence between X and Y , one could compute the maps
between X and Y via the motivic Adams spectral sequence, whose E2-page takes the
form ExtAC

(AC//AC(1),AC//AC(1)). By a standard change of rings theorem, this
E2-page is equal to ExtAC(1)(M2,AC//AC(1)). It is possible that this Adams spectral
sequence is analyzable, because A//AC(1) probably splits as an AC(1)-module into
summands that belong to the Picard group. We leave the details for future work.

2 Stable module theory of Hopf M2-algebras

2.1 Finite motivic Hopf algebras

Although the arguments and results of this paper can be understood in purely alge-
braic terms, the motivation for doing this computation comes from stable C-motivic
homotopy theory. This is the reason why the expression motivic appears often in our
terminology. Note however, that no background on motivic stable homotopy theory
is required to read this paper. For the reader who is more familiar with motivic stable
homotopy theory, note that our notations are consistent with [8].

The cohomology of any 2-local C-motivic spectrum is a module over the motivic
cohomology of the 2-local motivic sphere spectrum H∗,∗(S0,0;F2), which is our base
ring. We write M2 for this ring; it is isomorphic to F2[τ ] with τ in bidegree (0, 1).
Any such module is bigraded by indices (s, w), where s corresponds to the classical
internal degree and w is the motivic weight.

Let AC be the C-motivic Steenrod algebra at the prime 2. This bigraded Hopf
algebra overM2 was first computed in [15], and its structure is thoroughly understood.
In this paper, wewill be interested in its small Hopf subalgebraAC(1), whose structure
is recalled at the beginning of Sect. 4. As an algebra, it has a presentation

AC(1) ∼= M2[Sq1,Sq2]
Sq1 Sq1,Sq2 Sq2 +τ Sq1 Sq2 Sq1,Sq1 Sq2 Sq1 Sq2 +Sq2 Sq1 Sq2 Sq1

,

where |Sq1| = (1, 0), and |Sq2| = (2, 1).
This Hopf algebra over M2 is the motivic analogue of the subalgebra A(1) of the

classical modulo 2 Steenrod algebra. Indeed, the classical Hopf algebra A(1) has a
presentation

A(1) ∼= F2[Sq1,Sq2]
Sq1 Sq1,Sq2 Sq2 +Sq1 Sq2 Sq1

,

so that setting τ = 1 in AC(1) recovers A(1).
A fundamental difference betweenmotivicAC(1) and classicalA(1) is that the base

ringM2 is not a field. This is far from harmless, and wemust add freeness overM2 as a
hypothesis for most objects under consideration. For this reason, all HopfM2-algebras
under consideration in this paper will be assumed to satisfy the following hypothesis:
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The Picard group of motivic AC(1) 851

Hypothesis 2.1 A Hopf algebra over M2 will always be a cocommutative bigraded
Hopf algebra over M2 that is finitely generated and free as an M2-module.

Example 2.2 Recall the subalgebras A(n) and E(n) of the classical Steenrod algebra
[2]. These subalgebras have C-motivic analogues, and they satisfy Hypothesis 2.1.

Throughout the article, Awill represent a HopfM2-algebra (in particular, it satisfies
Hypothesis 2.1), while AC represents the C-motivic Steenrod algebra. Note that AC

is not finitely generated as anM2-module. However, we are primarily interested in the
subalgebraAC(1) ofAC generated by Sq1 and Sq2, andAC(1) is a finitely generated
M2-module.

Lemma 2.3 A finitely generatedM2-module M is free if and only if it has no τ -torsion
elements.

Proof The ringM2 is a graded principal ideal domain whose graded ideals are of the
form (τ k). Therefore, a finitely generatedM2-module is a direct sum of a free module
and cyclic modules of the formM2/τ

k . ��
Lemma 2.4 Let A be a finite Hopf M2-algebra.

(1) An A-module M is finitely generated if and only if it is finitely generated as an
M2-module.

(2) If M is a finitely generated projective A-module, then it is free as anM2-module.

Proof The first assertion follows since A is finitely generated as an M2-module, and
converselyM2 is finitely generated as an A-module (with the trivial A-module struc-
ture).

For the second assertion, suppose thatM is a finitely generated projective A-module.
Then it is a summand of a free A-module F , which is a free M2-module, since A is
M2-free. It follows that M isM2-free by Lemma 2.3. ��

2.2 The stable category

We now recall the basic framework of stable module categories, as applied to a finite
HopfM2-algebra A satisfying Hypothesis 2.1. The case of a finite HopfM2-algebra A
satisfying Hypothesis 2.1 is similar to the case when A is a finite dimensional graded
connected Hopf algebra over a field, for which a good reference is [10, Section 14.1].
However, since the base ring M2 of a Hopf M2-algebra is not a field, one has to
pay attention to the underlying theory of M2-modules, and observe that some results
require an additionalM2-freeness hypothesis. We explain below in Lemma 2.11 why
this is not restrictive for our goal, which is to compute the Picard group of stable
A-modules.

Definition 2.5 Let AMod be the category of bigraded finitely generated left A-
modules, and let AModf be the full subcategory of AMod consisting of left A-modules
that are free over M2.
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Definition 2.6 Let Stab(A) be the category whose objects are the same as in AModf ,
and whose morphisms are given by

HomStab(A)(M, N ) = HomA(M, N )
/
∼ ,

where two morphisms f and g are equivalent if their difference factors through a
projective A-module. If M and N are objects of AModf , then we write M 	 N if M
and N are stably equivalent, i.e., if they are isomorphic in the stable category Stab(A).

Remark 2.7 Insteadof restricting to AModf , one could consider the full stable category
of A-modules, without any M2-freeness hypothesis. Since projective A-modules are
M2-free by Lemma 2.4, a morphism between finitely generated M2-free A-modules
factors through a projective in AMod if and only if it factors through a projective
in AModf . Thus, the inclusion of the subcategory AModf in AMod induces a fully
faithful functor between stable categories.

Our main interest is the Picard group Pic(A) of the stable category of some Hopf
M2-algebra A. We will see below in Lemma 2.11 that all representatives of every
element in Pic(A) are actually free over M2 and thus captured by Stab(A). In other
words, the assumptions about M2-freeness in Definitions 2.5 and 2.6 are no loss of
generality.

In the same vein, it is essential that we use constructions that preserveM2-freeness.
For example for any finitely generated A-module M (not necessarily M2-free), the
algebraic loop �M (defined below in Definition 2.15) is free overM2 by Lemma 2.3,
as it is the kernel of a map from a finitely generated freeM2-module.

The stable category Stab(A) is naturally enriched over A-modules, since the equiva-
lence relation onmorphisms is A-linear. The category Stab(A) has additional structure
that we describe next.

Proposition 2.8 The category Stab(A) is a closed symmetric monoidal category,
where the monoidal structure is given by

M ⊗ N := M ⊗M2 N ,

with the A-module structure induced by the diagonal A GG A A ⊗M2 A, and the
internal hom is defined by hom(M, N ) = homM2(M, N ), with the A-module structure
given by conjugation at the source and target.

Proof When working over a field, this is a standard result from the theory of stable
modules; see [10, Proposition 15.2.19] for example. The proof goes as in the classical
case, with the M2-freeness assumption used in a crucial way. First, the unit M2 is
clearly M2-free. The tensor product of M2-free modules is M2-free, so the tensor
product over M2 induces a tensor product in AModf . Then, since finitely generated
projective A-modules are M2-free by Lemma 2.4, the classical argument using the
shearing isomorphism implies that the tensor product passes to the stable category.
This structure is symmetric monoidal since A is cocommutative. Finally, the M2-
module consisting ofM2-linear maps betweenM2-free A-modules isM2-free, so that
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The Picard group of motivic AC(1) 853

hom is well defined in AModf . Moreover, since our modules are finitely generated, it
is clear that

hom
AModf (M, N ) = hom

AModf (M2, homAModf (M,M2) ⊗ N ).

Since the tensor product descends to the stable category, the functor hom does as well.
Finally, the fact that the functors ⊗ and hom define a symmetric closed monoidal
structure is mutatis mutandis the same as the proof of this fact when working over a
field. ��

2.3 Picard groups

Definition 2.9 Let A be a finite Hopf M2-algebra satisfying Hypothesis 2.1. The
Picard group Pic(A) is the group (of isomorphism classes) of invertible objects of
Stab(A) under the monoidal structure, i.e., the group of stably invertible modules with
the tensor product as group law.

Note that Pic(A) is an abelian group because Stab(A) is symmetric monoidal.

Remark 2.10 In Definition 2.9, we are only considering finitely generated A-modules.
This is no loss of generality because every invertible object must be finitely generated.
This follows from [11, Proposition 2.1.3], for example.

Lemma 2.11 Let M be a finitely generated A-module. Suppose that there exists an
A-module N and two maps

M ⊗ N
f

GG A M2
g

GG A M ⊗ N ,

such that g f − idM⊗N factors through a projective A-module. Then M isM2-free.

The point of Lemma 2.11 is that there is no harm in considering only M2-free
modules in the Picard group.

Proof Let h : M⊗N GG A P be the first map appearing in the supposed factorization

of g f − idM⊗N . Then the morphism M ⊗ N
h⊕ f
GG A P ⊕ M2 is injective. By Lemma

2.4, the target isM2-free. This implies that M ⊗ N isM2-free as well. Finally, M ⊗ N
being M2-free implies that both M and N are M2-free as well by Lemma 2.3. ��
Definition 2.12 Let

D : AModop GG A AMod : M �G GA DM = HomM2(M,M2),

be theM2-linear dual functor. The A-module structure on DM is defined by a f (m) =
f (c(a)m), for a ∈ A, m ∈ M and f ∈ DM , where c denotes the conjugation in A.

Lemma 2.13 The M2-linear dual functor D induces a functor

D : Stab(A)op GG A Stab(A).
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Proof The dual functor D preserves M2-freeness because D is defined as Hom over
M2.

It suffices to check that if P is A-projective, then DP is A-projective. Since the
dual respects direct sums, it is enough to show that DA is projective. This follows as
in [10, Theorem 12.2.9] by considering a retraction

DA GG A DA ⊗ A GG A DA,

and observing that the “shearing map” [10, Proposition 12.1.4] makes DA ⊗ A into
a free A-module. ��

Lemma 2.14 shows that the dual functor D corresponds to inversion in the Picard
group.

Lemma 2.14 Let M be an A-module. The evaluation morphism DM ⊗ M
ev

GG A M2
is a stable equivalence if and only if M is invertible. In particular, the inverse of any
element [M] in Pic(A) is its dual [DM].
Proof This fact is standard in stable module theory; see [6, Proposition A.2.8]. ��

We next describe the algebraic loop functor that is part of the structure of a stable
module category.

Definition 2.15 Let � be the endo-functor of Stab(A) given by

�M = ker(ε) ⊗ M,

where ε : A GG A M2 is the augmentation of A. For k ≥ 0, define �kM inductively
to be �(�k−1M). For k < 0, define �kM to be D(�−k DM).

Note that �M isM2-free because it is a tensor product of M2-free A-modules.
As we will see, up to a stable equivalence �M can be constructed using any pro-

jective cover of M . First, recall Schanuel’s lemma (see for instance [9, Lemma 5.1]):

Lemma 2.16 (Schanuel’s lemma) Let R be a ring and M be an R-module. Let K →
P1 → M and L → P2 → M be two short exact sequences with P1 and P2 two
projective R-modules. Then K ⊕ P2 ∼= L ⊕ P1.

Let f : P GG A M be any projective cover of M . By Schanuel’s lemma, �M
is stably equivalent to ker( f ). The next result justifies the notation �−1 by showing
that �−1 is a stable inverse of �. This is the analogue of [4, Proposition 2.10] in our
setting.

Lemma 2.17 The functor � is stably invertible, and its inverse is �−1.

Proof Let P GG A M be a projective cover, so there is a short exact sequence

�M GG A P GG A M.
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The Picard group of motivic AC(1) 855

Apply D to obtain the short exact sequence

DM GG A DP GG A D�M.

Note that DP is free, since A is self-dual and A ⊗ M is free over A by the shearing
map. Therefore, DP GG A D�M is a projective cover, and DM 	 �D�M . This
gives a stable equivalence M 	 �−1�M . ��
Lemma 2.18 Let M be stably invertible with inverse M−1. Then �M is invertible.
Moreover, the inverse of �M is �−1M−1.

Proof This is a standard part of the theory of stable modules when working over a
field. Here the result follows from the chain of stable isomorphisms�M⊗�−1M−1 ∼=
�M2⊗�−1

M2⊗M⊗M−1. The latter is��−1
M2⊗M⊗M−1, and both��−1

M2
and M ⊗ M−1 are stably equivalent to M2 (the former by Lemma 2.17, the latter by
assumption). ��

Lemma 2.18 implies that there is a group homomorphism

η : Z3
GG A Pic(A),

sending (m, n, s) to the stable class of�m,n�s
M2. Here�m,n is the suspension functor

that shifts bidegrees by (m, n). This homomorphism constructs many elements in the
Picard group of A. Such elements exist for essentially formal reasons and do not really
reflect the structure of the underlying algebra A. In a sense, the image of η consists of
uninteresting invertible elements.

3 τ quotients

Let A be a Hopf M2-algebra satisfying Hypothesis 2.1. Then A/τ = F2 ⊗M2 A is a
bigraded Hopf F2-algebra. Since A/τ is defined over a field F2, it is generally easier
to understand than A itself. We shall use a change of basis functor that relates our
finite HopfM2-algebra A to the bigraded Hopf F2-algebra A/τ . Since A/τ is a Hopf
algebra over a field, one can consider the category A/τModf of finitely generated
A/τ -modules, and the usual stable category of bigraded A/τ -modules associated to
it. We will denote it by Stab(A/τ), and Pic(A/τ) is the group of invertible objects in
Stab(A/τ). Note that A/τ and Pic(A/τ) are still bigraded.

Proposition 3.1 Tensoring with theM2-module F2 induces a strongly monoidal func-
tor

AModf
(−)/τ
GGGG A A/τModf ,

between categories of bigraded modules that preserves exact sequences. This functor
passes to the stable category of bigradedmodules and thus induces a stronglymonoidal
functor

Stab(A)
(−)/τ
GGGG A Stab(A/τ).
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Proof The unit M2 of the monoidal structure of AModf is sent to the unit F2. The
functor is strongly monoidal since

M
/
τ ⊗ N

/
τ ∼= M ⊗ N

/
τ ,

for all bigraded M2-modules M and N .
Consider a short exact sequence in AModf . The sequence is split exact on the

underlying free M2-modules. It is still split exact as a sequence of F2-modules after
tensoring with F2. This shows that (−)/τ is exact.

The functor sends free A-modules to free A/τ -modules. By additivity, we conclude
that it sends projective A-modules to projective A/τ -modules and thus descends to
the stable categories. ��

We now come to the first major result that will allow us to understand the stable
module category of a HopfM2-algebra A. Lemma 3.2 identifies projective A-modules
in terms of their quotients by τ .

Lemma 3.2 Let A be a HopfM2-algebra, and let M be a finitely generated A-module
that isM2-free. The following conditions are equivalent:

(1) M is projective as an A-module.
(2) M/τ is projective as an A/τ -module.
(3) M/τ is free as an A/τ -module.

Proof Recall that A/τ is a Frobenius algebra since it is a finite dimensional Hopf alge-
bra over the field F2 [10, Theorem 12.2.9]. In particular, projective A/τ -modules and
free A/τ -modules are the same. This shows that conditions (2) and (3) are equivalent.

Now suppose that M is a projective A-module. Then M/τ is a projective A/τ -
module by Proposition 3.1. This shows that condition (1) implies condition (2).

To show that condition (3) implies condition (1), suppose that M/τ is a free A/τ -
module and fix an isomorphism f : ⊕A/τ GG A M/τ . The map ⊕A GG A ⊕A/τ

is a surjective map, with projective source. Therefore the composite ⊕A GG A

⊕A/τ GG A M/τ is also surjective with projective source. In particular, it lifts
through the surjective A-module map M GG A M/τ , giving a surjective morphism
f̃ : ⊕A GG A M . Finally, f̃ reduces to the isomorphism f modulo τ , so ker( f̃ ) is
zero. Thus, M is projective. ��
Lemma 3.3 Let M and N be finitely generated A-modules that are alsoM2-free, and
let f : M GG A N be a map such that f : M/τ GG A N/τ is injective. Then f is also
injective, and the cokernel of f isM2-free.

Proof Let y ∈ M such that f (y) = 0. One can write y = τ k x for k maximal, since
M is a finitely generated M2-free module. Then

0 = f (y) = f (τ k x) = τ k · f (x),

and so f (x) = 0 since N is M2-free. It follows that the corresponding element
x ∈ M/τ also satisfies f (x) = 0. By injectivity of f , we have x = 0, and thus x = 0
byM2-freeness of M . This shows that y = 0 and thus that f is injective.
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The Picard group of motivic AC(1) 857

Now consider the cokernel N/M of f . Since N/M is finitely generated, it suf-
fices by Lemma 2.3 to consider the annihilator of τ in N/M . We will show that this
annihilator is zero.

Let x be an element of N , and let x be the element of N/M that it represents.
Suppose that τ x is zero. Then τ x belongs to M . Since f/τ is injective and ( f/τ)(τ x)
is zero, we conclude as in the first paragraph that τ x equals τ y for some y in M . Since
N isM2-free, it follows that x equals y. In particular, x belongs to M . In other words,
x is zero. ��

The strong monoidal exact functor

−/τ : Stab(A) GG A Stab(A/τ),

of Proposition 3.1 induces a group homomorphism

Rτ : Pic(A) GG A Pic(A/τ).

Proposition 3.4 The map Rτ : Pic(A) GG A Pic(A/τ) is injective.

Proof Let M be a finitely generated A-module such that M is M2-free, and suppose
that [M] in Pic(A)belongs to the kernel of Rτ . Equivalently,M/τ is stably equivalent to
the A/τ -module F2 concentrated in bidegree (0, 0). Since A/τ is a finite dimensional
Frobenius algebra over F2, we can use [10, Proposition 14.11] to see that M/τ is
isomorphic to F2⊕F/τ , where F is a free A-module. Let j be the injection F/τ GG A

M/τ .
There is a commutative diagram

M M/τ

F

i

F/τ,

j

in which the dashed arrow exists because F is A-projective and M GG A M/τ is a
surjection. By Lemma 3.3, i is injective because j is injective.

We now compute the cokernel C of i . Lemma 3.3 implies that C is M2-free.
Then Proposition 3.1 says that C/τ is isomorphic to the cokernel of j , which is F2
by inspection. We conclude that C is isomorphic to the A-module M2 generated in
bidegree (0, 0).

Thus, there is a short exact sequence

F ↪→ M G GAA M2,

so M G GAA M2 is a stable equivalence and [M] is trivial in Pic(A). ��
Remark 3.5 The proof of Proposition 3.4 implicitly contains the appropriate general-
ization of the notion of a reduced module in the motivic setting. When working over a
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field, a module M over a Hopf algebra is said to be reduced if it contains no free sum-
mands. In the motivic setting, the correct notion seems to be: an M2-free A-module
M is free if it contains no free submodule F such that the cokernel of the inclusion
F ⊂ M is stillM2-free.

4 The Hopf M2-algebraAC(1)

In this section, we introduce the specific finite HopfM2-algebraAC(1) whose Picard
group we will compute.

Definition 4.1 The finiteHopfM2-algebraAC(1) is theM2-subalgebra of themotivic
Steenrod algebra generated by Sq1 and Sq2.

Lemma 4.2 The Hopf M2-algebra AC(1) is isomorphic to

M2[Sq1,Sq2]
Sq1 Sq1,Sq2 Sq2 +τ Sq1 Sq2 Sq1,Sq1 Sq2 Sq1 Sq2 +Sq2 Sq1 Sq2 Sq1

.

The element Sq1 is primitive, and �(Sq2) = Sq2 ⊗1 + τ Sq1 ⊗Sq1 +1 ⊗ Sq2.

Proof This follows immediately fromVoevodsky’s description of themotivic Steenrod
algebra [15]. ��

See Fig. 2 for a picture of AC(1).

Remark 4.3 Classical A(1) is obtained from motivic AC(1) by setting τ = 1 and
by supressing the weight grading. Setting τ = 1 gives a monoidal functor (−)/(τ −
1) : M2Mod GG A F2Mod, where M2Mod is the category of bigraded M2-modules,
and F2Mod is the category of graded F2-vector spaces. Indeed |τ | = (0,−1) and
|1| = (0, 0), so that the relation (τ − 1) is homogeneous in the internal degree (but
not in the motivic weight).

The functor (−)/(τ −1) sendsAC(1) toA(1), as a HopfF2-algebra. Consequently,
we get a monoidal functor

(−)/(τ − 1) : AC(1)Mod GG A A(1)Mod.

Since the image of a freeAC(1)-module is a freeA(1)-module, the functor (−)/(τ−1)
induces a monoidal functor

(−)/(τ − 1) : Stab(AC(1)) GG A Stab(A(1)),

on stable module categories. In particular, we get a group homomorphism

Pic(AC(1)) GG A Pic(A(1)).

We will explicitly describe this group homomorphism in Proposition 5.7.
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Fig. 2 The HopfM2-algebra
AC(1). Dots indicate copies of
M2. The height of a dot reflects
its internal degree. The class 1 is
in bidegree (0, 0). Straight lines
indicate the Sq1 action. Curved
lines indicate the Sq2 action. The
dashed curved line indicates that
Sq2 of anM2-generator equals τ

times an M2-generator, i.e., that
Sq2 Sq2 = τ Sq1 Sq2 Sq1.

1

Sq2

Sq1

When writing AC(1)-modules we use the following conventions. A straight line
represents the action of Sq1, a curved line represents the action of Sq2, and a dashed
line represents that a squaring operation hits τ times a generator. For example, the
dotted line in Fig. 2 shows the relation Sq2 Sq2 = τ Sq1 Sq2 Sq1 .

Lemma 4.4 As ungradedHopf algebras,AC(1)/τ is isomorphic to the group algebra
F2[D8] of the dihedral group D8 of order 8.

Proof Lemma 4.2 implies that AC(1)/τ is isomorphic to

F2[Sq1,Sq2]
Sq1 Sq1,Sq2 Sq2,Sq1 Sq2 Sq1 Sq2 +Sq2 Sq1 Sq2 Sq1

.

For our purposes, a convenient presentation of D8 consists of two generators x and y
with the relations x2, y2, and (xy)4. The isomorphism fromAC(1)/τ to F2[D8] takes
Sq1 to 1 + x and Sq2 to 1 + y. ��

Recall that a Hopf subalgebra B of a Hopf F2-algebra A is elementary if it is iso-
morphic to an exterior algebra. Note that Q0 = Sq1 and Q1 = Sq2 Sq1 +Sq1 Sq2 are
elements ofAC(1) whose squares are zero. These elements are the motivic analogues
of the first two Milnor primitives in the classical Steenrod algebra modulo 2.

Lemma 4.5 The maximal elementary sub-Hopf algebras ofAC(1)/τ are the exterior
algebras E(Q0, Q1) and E(Sq2, Q1).

Proof Lemma 4.4 says that A/τ is isomorphic to the group algebra F2[D8] of the
dihedral group of order 8. The elementary sub-Hopf algebras of F2[D8] correspond to
the elementary abelian 2-subgroups of D8. The group D8 has twomaximal elementary
abelian subgroups. Tracing back through the isomorphism of Lemma 4.4, one can
identify the two maximal elementary sub-Hopf algebras of AC(1)/τ . ��
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Fig. 3 TheAC(1)-module
ÃC(1)

x

y

4.1 Margolis homology

We now turn to an algebraic invariant detecting projectivity of AC(1)-modules, anal-
ogous to Margolis’s techniques using Ps

t -homology [10].

Definition 4.6 Let x be an element of A such that x2 is zero. For any A-module
M , define the Margolis homology H(M; x) to be the annihilator of x modulo the
submodule xM .

Classically, an A(1)-module M is projective if and only if H(M; Q0) and
H(M; Q1) are both zero [1, Theorem 3.1], which is a direct consequence of a more
general result [12, Theorem 1.2–1.4]. Our goal is to generalize this result to the
motivic situation. Unfortunately, the motivic situation is more complicated. If M is an
AC(1)-module and H(M; Q0) and H(M; Q1) both vanish, then M is not necessarily
projective.

Example 4.7 Let ÃC(1) be the AC(1)-module on two generators x and y of degrees
(0, 0) and (2, 0) respectively, subject to the relations Sq2 x = τ y and Sq1 Sq2 Sq1 x =
Sq2 y. Figure 3 represents Ã(1) as an AC(1)-module.

TheMargolis homology groups H(Ã(1); Q0) and H(Ã(1); Q1) both vanish. How-
ever, Ã(1) is not a projective AC(1)-module.

It turns out that we need two additional criteria for projectivity beyond Q0-
homology and Q1-homology. The presentation of AC(1) provided by Lemma 4.2
gives the relation (Sq2)2 = τ Sq1Sq2Sq1. In particular, (Sq2)2 = 0 modulo τ .

Proposition 4.8 Let M be a finitely generated AC(1)-module. Then M is projective
if and only if:

(1) M is free over M2; and
(2) H(M/τ ; Q0) = 0; and
(3) H(M/τ ; Q1) = 0; and
(4) H(M/τ ;Sq2) = 0.
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Proof First suppose that M is projective. By inspection, conditions (2) through (4) are
satisfied when M is AC(1). Therefore, these conditions are satisfied when M is free.
Using that a projective module is a summand of a free module, conditions (2) through
(4) are also satisfied for any projective M . Finally, Lemma 2.4 shows that condition
(1) is satisfied.

Now suppose that conditions (1) through (4) are satisfied. By Lemma 3.2, it suffices
to show that M/τ is AC(1)/τ -projective. By [12, Theorem 1.2–1.4], an AC(1)/τ -
module is projective if and only if its restrictions to the quasi-elementary sub-Hopf
algebras ofAC(1)/τ are. See [12, Definition 1.1] for the definition of quasi-elementary
sub-Hopf algebras.

For group algebras, quasi-elementary sub-Hopf algebras coincide with elementary
sub-Hopf algebras [13] (as observed in [12]). Since AC(1)/τ is isomorphic to the
group algebra F2[D8] by Lemmas 4.4, 4.5 shows that the quasi-elementary sub-Hopf
algebras of AC(1)/τ are the exterior algebra E(Q0, Q1) and the exterior algebra
E(Sq2, Q1). Conditions (2) and (3) imply that M/τ is E(Q0, Q1)-projective, and
conditions (3) and (4) imply that M/τ is E(Sq2, Q1)-projective. ��
Remark 4.9 The exterior algebra E(Q0, Q1) is the unique maximal quasi-elementary
sub-Hopf algebra of the classial Hopf algebra A(1). This explains why condition (4)
of Proposition 4.8 is absent from the classification of projective A(1)-modules.

Corollary 4.10 Let M and N be finitely generatedAC(1)-modules that areM2-free,
and let f : M GG A N be an AC(1)-module map. Then f is a stable equivalence if
and only if f/τ : M/τ GG A N/τ induces an isomorphism in Margolis homologies
with respect to Q0, Q1, and Sq2.

Proof Wemaychoose a freeAC(1)-module F and a surjectivemap g : M⊕F GG A N
that restricts to f on M . Then f is a stable equivalence if and only if g is a stable
equivalence, and f/τ induces isomorphisms in Margolis homologies if and only if
g/τ induces isomorphisms in Margolis homologies. In other words, we may assume
that f is surjective. (From a model categorical perspective, we have replaced f by an
equivalent fibration.)

Let K be the kernel of f . The AC(1)-module K is finitely generated and M2-free
because it is a subobject of the finitely generatedM2-free module M . The short exact
sequence

0 GG A K GG A M
f

GG A N GG A 0,

induces a short exact sequence

0 GG A K/τ GG A M/τ
f/τ

GG A N/τ GG A 0,

by Proposition 3.1. This last short exact sequence induces long exact sequences in
Margolis homologies with respect to Q0, Q1 and Sq2. The long exact sequence shows
that f/τ is an isomorphism in Margolis homologies if and only if K/τ has vanishing
Margolis homologies. Now, Proposition 4.8 implies that K/τ has vanishing Margolis
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homologies if and only if K is projective. Finally, K is projective if and only if f is a
stable equivalence. ��

We establish a Künneth theorem for Margolis homology.

Proposition 4.11 Let M and N be AC(1)-modules that are free over M2. Then

H(M/τ ⊗ N/τ ; x) ∼= H(M/τ ; x) ⊗ H(N/τ ; x),

when x is Q0, Q1, or Sq2.

Proof Lemma 4.2 gives the coproduct formula

�(Sq2) = Sq2 ⊗1 + τ Sq1 ⊗Sq1 +1 ⊗ Sq2 .

Therefore, Sq2 is primitive modulo τ . In particular, it acts as a derivation on M/τ ⊗
N/τ . The isomorphism in Sq2-homology follows from the classical Künneth formula
for chain complexes over F2.

The arguments for Q0 and Q1 are the same, except slightly easier because these
elements are primitive even before quotienting by τ . ��
Proposition 4.12 Let M be a finitely generated AC(1)-module that isM2-free. Then
M is invertible if and only if M/τ has one-dimensional Margolis homologies with
respect to Q0, Q1, and Sq2.

Proof First suppose thatM is invertible. In other words, there exists anAC(1)-module
N and a stable equivalence

M ⊗ N
	

GG A M2.

Proposition 3.1 implies that there is a stable equivalence

(M ⊗ N )/τ
	

GG A F2,

of AC(1)/τ -modules. Corollary 4.10 shows that

H((M ⊗ N )/τ ; x) GG A H(F2; x),

is an isomorphism when x is Q0, Q1, or Sq2. Now use Proposition 4.11 to deduce
that H(M/τ ; x) ⊗ H(N/τ ; x) is isomorphic to F2. It follows that H(M/τ ; x) is
one-dimensional.

Now assume that M/τ has one-dimensional Margolis homologies. Note that

H(D(M/τ); x) ∼= HomF2(H(M/τ ; x);F2),
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Fig. 4 TheAC(1)-module JC

y

x

when x is Q0, Q1, or Sq2. Therefore, D(M/τ) also has one-dimensional Margolis
homologies. By Proposition 4.11,M/τ ⊗D(M/τ) also has one-dimensionalMargolis
homologies. Hence the evaluation map

M/τ ⊗ D(M/τ) GG A F2,

induces an isomorphism in Margolis homologies because both sides are one-dim-
ensional. Note that M/τ ⊗ D(M/τ) is isomorphic to (M ⊗ DM)/τ by Proposition
3.1. Finally, Corollary 4.10 shows that the evaluation map

M ⊗ DM GG A M2,

is a stable equivalence. This shows that M is invertible with inverse DM . ��

5 The Picard group of AC(1)

Definition 5.1 Let JC be the AC(1)-module on two generators x and y of degrees
(0, 0) and (2, 0) respectively, subject to the relations Sq2 x = τ y, Sq1 Sq2 Sq1 x =
Sq2 y, and Sq1 y = 0.

Figure 4 represents JC as an AC(1)-module.

Lemma 5.2 TheAC(1)-module JC is invertible, and the order of [JC] in Pic(AC(1))
is infinite.

Proof Proposition 4.12 implies that JC is invertible. The Q0-homology and Q1-
homology of JC/τ are generated by x , while the Sq2-homology of JC/τ is generated
by y.

The degrees of x and y are different. Therefore, the Sq2-homology and the Q0-
homology of any tensor power J⊗n

C
of JC are in different degrees. On the other hand,

the Sq2-homology and the Q0-homology of M2 are in the same degree. This shows
that J⊗n

C
is not stably equivalent to M2. ��

Remark 5.3 The classical joker is self-dual as an A(1)-module. Therefore, it repre-
sents an element of order two in Pic(A(1)). On the other hand, Fig. 4 shows that the
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motivic joker is not self-dual. Indeed, DJC is, up to a suspension, the AC(1)-module
on one generator x of degree (0, 0) subject to the relation Sq1 Sq2 x = 0.

Lemma 5.4 There is an isomorphism

φ : Pic(AC(1)/τ)
∼=

GG A Z
2 ⊕ Pic(F2[D8]),

sending a class [M] to (a, b, [M]), where (a, b) is the bidegree of the unique non-zero
Margolis Q0-homology class of M, and M is the ungradedF2[D8]-module underlying
M.

Proof By Lemma 4.4, the Hopf algebras AC(1)/τ and F2[D8] are isomorphic as
ungraded Hopf algebras over F2.

Recall from [5, Theorem 5.4] that the ungraded Picard group of F2[D8] is iso-
morphic to Z

2, generated by �F2 and JC/τ (this F2[D8]-module is called �L in loc
cit).

Let [M] be an element of the kernel of φ. Then, as an ungraded F2[D8]-module,
M 	 F2. Equivalently, M 	 �a,b

F2 as graded modules. But deg(H(M, Q0)) =
(0, 0) since [M] ∈ ker(φ). We conclude that M 	 F2, where F2 is concentrated in
bidegree (0, 0). This shows that φ is injective.

Let (a, b, x) ∈ Z
2 ⊕ Pic(F2[D8]). We can always choose a representative of x of

the form�c(JC/τ)d by [5, Theorem 5.4] . Then φ(�a,b�c(JC/τ)d) = (a, b, x). This
shows that φ is surjective. ��
Remark 5.5 Another version of Lemma 5.4 considers the subgroup of Pic(AC(1)/τ)

consisting of modules whose Q0-homology is concentrated in degree (0, 0). This
subgroup is isomorphic to Pic(F2[D8]).
Theorem 5.6 There is an isomorphism

Z
4
GG A Pic(AC(1)),

sending (a, b, c, d) to the class of �a,b�c J d
C
.

Proof Recall the homomorphism

Rτ : Pic(AC(1)) GG A Pic(A/τ),

from Proposition 3.4. Consider the composition

Z
4
GG A Pic(AC(1))

Rτ

GG A Pic(AC(1)/τ)
∼=

GG A Z
4,

where the last isomorphism is the map φ of Lemma 5.4.
By direct computation, the first map sends (a, b, c, d) ∈ Z

4 to [�a,b�c J d
C
],

which is sent to [�a,b�c(JC/τ)d ] ∈ Pic(AC(1)/τ). Finally, φ([�a,b�c(JC/τ)d ]) =
(a, b, c, d) by construction of φ. Thus the composition is an isomorphism. This shows
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that Rτ is surjective. We already knew that Rτ is injective by Proposition 3.4. There-
fore, Rτ is an isomorphism, so the map

Z
4
GG A Pic(AC(1)),

is an isomorphism as well. ��
Recall the comparisonmap Pic(AC(1)) GG A Pic(A(1) constructed in Remark 4.3.

We can now describe it explicitly.

Proposition 5.7 Setting τ = 1 induces the surjective group homomorphism

Pic(AC(1)) ∼= Z
4
GG A Pic(A(1)) ∼= Z2 ⊕ Z/2

[�a,b�c J d
C
] �G GA [�a�c J d ].

Proof The motivic joker JC is sent to the classical joker J . Note also that, since
(−)/(τ − 1) forgets the second degree, the Picard element �a,b

M2 goes to �a
F2.

Finally, since freeAC(1)-modules are sent to freeA(1)-modules, the functor (−)/(τ −
1) is compatible with the functor � in both categories. ��
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