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Abstract We study the subcategory of topological operads P such that P(0) = ∗ (the
category of unitary operads in our terminology). We use that this category inherits a
model structure, like the category of all operads in topological spaces, and that the
embedding functor of this subcategory of unitary operads into the category of all
operads admits a left Quillen adjoint. We prove that the derived functor of this left
Quillen adjoint functor induces a left inverse of the derived functor of our category
embedding at the homotopy category level.We deduce from this result that the derived
mapping spaces associated to our model category of unitary operads are homotopy
equivalent to the standard derived operadmapping spaces, whichwe form in themodel
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category of all operads in topological spaces.We prove that analogous statements hold
for the subcategory of k-truncated unitary operads within the model category of all
k-truncated operads, for any fixed arity bound k ≥ 1, where a k-truncated operad
denotes an operad that is defined up to arity k.

Keywords Operads · Unitary operads · Mapping spaces · Homotopy

Introduction

Let Op be the category of all operads in topological spaces. Throughout this paper,
we use the terminology ‘unitary operad’, borrowed from the book [7], to refer to the
category of operads P satisfying P(0) = ∗, and we adopt the notation Op∗ ⊂ Op for
this subcategory of operads. Recall that this categoryOp∗ is isomorphic to the category
of �-operads �Op∅, whose objects are operads satisfying P(0) = ∅, but which we
equip with restriction operators u∗ : P(n) → P(m), associated to the injective maps
u : {1 < · · · < m} → {1 < · · · < n}, and which model composition operations with
an arity zero operation at the inputs j /∈ {u(1), . . . , u(m)} (see [7, §I.3]).

Let ι : Op∗ ↪→ Op be the obvious category embedding. This functor has a left
adjoint τ : Op → Op∗, which we call the unitarization in what follows. In short, for
an operad P ∈ Op, the operad τP is defined by collapsing P(0) to a one-point set
τP(0) = ∗, andby taking the quotient of the spacesP(r)under appropriate equivalence
relations in order to make all composites p ◦i e of a given element p ∈ P(r + 1) with
an arity zero element e ∈ P(0) equivalent to the same point p◦i ∗ in the operad τP(r).

We use that both categories Op∗ and Op can be equipped with a model structure
in order to do homotopy theory. We can use the model structure defined in [2] for the
categoryOp. We then assume that the weak-equivalences and the fibrations of operads
are created arity-wise in the base category of spaces. We refer to this model structure
on our category of operadsOp as the projective model structure. We can use the same
construction to get a model structure on the category of unitary operads Op∗ (see
also [2], where the terminology ‘reduced operad’ is used for our category of ‘unitary
operads’). We can also consider the Reedy model structure of [7, §II.8.4], which is
defined for the category of�-operads�Op∅, but whichwe canmerely transport to the
category of unitary operads Op∗ by using the isomorphism of categories �Op∅ �
Op∗. Both choices are equivalent for our purpose, and we can equip Op∗ with the
projective model structure or with the Reedy model structure without any change in
our arguments. Recall simply that the Reedy model structure has less fibrations than
the projective structure, but the identity functor gives a Quillen equivalence between
these model structures on Op∗ (see again [7, §II.8.4]).

Both categories Op∗ and Op are used in homotopy computations. To be specific,
the authors use the model category Op∗ to compute mapping spaces of En-operads
in [8], whereas the model category Op is used in the Goodwillie-Weiss calculus, in
the expression of the relationship between the mapping spaces of En-operads and the
embedding spaces of Euclidean spaceswith compact support (see for instance [5,6,9]).
The approach of [8] is to use an operadic enhancement of the Sullivan model, which
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The homotopy theory of operad subcategories 691

can be handled in the category Op∗ (see [7, §II.12]), in order to perform rational
homotopy computations in the category of operads.

The main purpose of this paper is to establish the following comparison statement,
where we consider the derived mapping spaces Maph

C(−,−) associated to our model
categories of operads C = Op,Op∗:

Theorem 1 The functor ι : Op∗ ↪→ Op induces a weak-equivalence on derived
mapping spaces:

Maph
Op∗(P,Q) ∼ Maph

Op(ιP, ιQ),

for all operads P,Q ∈ Op∗.

The derived mapping spaces of this theorem can be defined as usual, by taking
the ordinary mapping spaces associated to a cofibrant resolution of our source object
and a fibrant resolution of our target object in our model categories. For instance, we
have Maph

Op∗(P,Q) := MapOp∗(R,S), where R
∼−→ P is a cofibrant resolution of the

operad P inOp∗, whereasQ
∼−→ S is a fibrant resolution of the operadQ. We proceed

similarly in the case of the mapping space Maph
Op(ιP, ιQ). But we do not really need

to make these mapping space constructions more explicit, because we deduce our
statement from another approach which involves the left adjoint τ : Op → Op∗ of
our category embedding ι : Op∗ ↪→ Op.

In brief, we readily see that these functors define a Quillen adjunction τ : Op �
Op∗ : ιwhatever choice wemake for themodel structure onOp∗ (the projectivemodel
structure or the Reedy model structure). This Quillen adjunction relation implies that
we have a weak-equivalence at the derived mapping space level

Maph
Op(ιP, ιQ) ∼ Maph

Op∗(Lτ(ιP),Q),

where Lτ denotes the left derived functor of the left Quillen adjoint τ : Op → Op∗.
Then we can reduce the proof of Theorem 1 to the verification that we have the
relation Lτ(ιP)

∼−→ P when we consider the augmentation morphism of the derived
adjunction relation associated to our functors. We have by definition Lτ(ιP) := τR,
where R

∼−→ ιP is any cofibrant resolution of the object ιP in the model category
Op. We are therefore left to verifying that we get a weak-equivalence τR

∼−→ P, for
a good choice of the resolution R

∼−→ ιP, when we pass to the category of unitary
operads Op∗. In what follows, we generally omit to mark the functor ι : P 
→ ιP in
our formulas.

We can assume that P is the geometric realization of an operad in simplicial sets,
whichwe abusively denote by the same letterP, because themodel category of operads
in simplicial sets isQuillen equivalent to themodel category of topological operads (see
for instance [7, §II.1.4]). We consider an arity-wise cartesian product E × P, where
E is an E∞-operad in simplicial sets, to get an operad in simplicial sets equipped
with a free action of the symmetric group and such that E × P

∼−→ P. (We make our
choice of this operadE explicit later on.) We takeR = W (E×P), the Boardman-Vogt
construction on this operadE×P, as a cofibrant resolution of the objectP in themodel
category of operads Op. We actually check that we have the following statement:
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Theorem 2 We have τW (E × P)
∼−→ E × P

∼−→ P, for any unitary operad P ∈ Op∗.

Thus, if we recap our arguments, then we can reduce the proof of Theorem 1 to the
verification of this claim, and we devote the next section to this objective. In short, we
mainly prove that the operad morphism τW (E × P) → E × P defines a homotopy
equivalence of simplicial sets arity-wise.We have a classical contracting homotopy on
the W -construction (see for instance [4, §III.1]). We can use this homotopy to check
that the objectR = W (E×P) is equivalent toE×P ∼ P in the homotopy category of
operads, but this homotopy does not pass to the quotient object τW (−) (see §1.4). We
introduce another contracting homotopy in order to work out this problem and to prove
our theorem. The consideration of the cartesian product E × P, where E is an E∞-
operad in simplicial sets, enables us to ensure, at first, that the objectR = W (E×P) is
cofibrant in the projective model category of operads. But, actually, we use a particular
choice of the operadE in order to get awell-defined contracting homotopy of simplicial
sets on the operad τW (E × P). We give more explanations on this technical point in
the course or our verifications.

To complete our results, we establish an analogue of our main theorems for the
categories of k-truncated operads, considered in the paper [8]. The category of k-
truncated operads, where we fix k ≥ 1, explicitly consists of the operads P that are
defined up to arity k. We check that our argument lines can be adapted to cover this
case. We devote a second section to this survey. We use mapping spaces of k-truncated
operads for the study of the Goodwillie-Weiss tower of embedding spaces in [8], and
the k-truncated refinement of our comparison result is involved in such applications.

1 Proof of the main statements

The goal of this section is to prove Theorem2, and as a follow-up Theorem1, aswe just
explained in the paper introduction. We make explicit our choice of the E∞-operad
E first. We review the definition of the W -construction afterwards and we eventually
give this proof of Theorem 2.

1.1 The extended Barratt–Eccles operad

We use the notation �r for the symmetric group in r letters all along this paper, for
any r ∈ N.

The operad E which we consider in our construction is a simple extension of the
classical Barratt–Eccles operad [1]. We define this operad as the classifying space
E = B(M) of a certain operad in the category of categories M. We first take:

Ob M = F(μ(x1, x2), μ(x2, x1), e)/〈μ ◦1 μ ≡ μ ◦2 μ,μ(e, e) ≡ e〉, (1)

the operad in sets generated by a non-symmetric operation μ = μ(x1, x2) in arity 2,
and an operation e in arity 0, togetherwith the associativity relationμ(μ(x1, x2), x3) ≡
μ(x1, μ(x2, x3)) and the idempotence relationμ(e, e) ≡ e as generating relations.We
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The homotopy theory of operad subcategories 693

then set:
MorM(r)(p, q) = pt, (2)

for any pair of elements p, q ∈ ObM(r). We define the composition operations of
this operad ◦i : M(k)×M(l) → M(k+l−1) by the natural composition operations
of the operad ObM at the object set level, and by the obvious identity maps at the
morphism set level. (We give brief explanations on an interpretation of this operad in
a remark at the end of the paper.)

If we use classical algebraic notation for the product operation x1x2 = μ(x1, x2),
then we can identify the elements of ObM(r) with monomials of the form:

p(x1, . . . , xr ) = eε0xσ(1)e
ε1 · · · eεr−1xσ(r)e

εr , (3)

where ε0, . . . , εr ∈ {0, 1}, and σ ∈ �r . The operadic composition operations are
given, at the object-set level, by the standard substitution operation of monomials
together with the Boolean multiplication rules:

eαeβ =
{
e0, if α = β = 0,

e1, otherwise.
(4)

The constant maps M(r) → pt trivially define equivalences of categories in all
arities r ∈ N, and as a consequence, these maps induce a weak-equivalence of operads
in simplicial sets when we pass to classifying spaces:

E = B(M)
∼−→ pt. (5)

Let En = B(M)n denote the collection of sets, where n ∈ N is a fixed simplicial
dimension, which we form by dropping (the degeneracies of) the vertex 1 ∈ ObM(1)
(the operadic unit) from B(M)n . The sets B(M)(1)n , n ∈ N, are not preserved by
the face operators of the classifying space B(M)(1). For instance, if we take the
morphism x1e → x1, which represents a one simplex in B(M)(1), then we have
d0(x1e → x1) = x1 = 1. But, on the other hand, we have the following lemma:

Lemma 1 The collections En = B(M)n, n ∈ N, are preserved by the operadic
composition operations of the operads in setsB(M)n, and hence, formoperadswithout
unit.

In fact, this statement gives the main property of the operad E = B(M) which we
use in our subsequent constructions.

Proof The algebraic description of the object-set operadObM shows that this property
holds for the collection of vertex sets ObM = B(M)0. The conclusion of the lemma
follows. ��
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694 B. Fresse et al.

1.2 The W -construction and its unitarization

We assume that P is an operad in topological spaces for the moment. Briefly recall
that the spaces W (P)(r) underlying the W -construction W (P) consist of collections
[T ; px , x ∈ VT ; le, e ∈ E̊T ], where T is an r -tree (a tree with r ingoing edges
numbered from 1 to r ), while px ∈ P(rx ) is an operation associated to each vertex
x ∈ VT (whose number of ingoing edges is denoted by rx ), and le ∈ [0, 1] is a length
associated to each inner edge e ∈ E̊T (see [3,4]). To represent such a collection, we
generally use a decoration of the tree T , with the elements px ∈ P(rx ) on the vertices
x ∈ VT , and the parameters le ∈ [0, 1] on the inner edges e ∈ E̊T . If we have lα = 0
for some internal edge α ∈ E̊T with v as target vertex and u as source vertex, then
we have the relation:

· · ·
· · · pv

lα=0

pu

· · ·

≡

· · · · · ·
pu ◦α pv

· · ·
, (6)

where we contract the edge α in T , and we perform the composition operation pw =
pu ◦α pv to get an element of W (P) shaped on the tree T/α. In W (P), we also
implement the relation:

· · ·
lβ

1
lα

· · ·
≡

· · ·
max(lα,lβ)

· · ·
(7)

when we have a vertex labeled by the unit element of the operad 1 ∈ P(1). The
operadic composite ◦i of elements shaped on decorated trees S and T in W (P) is
obtained by plugging the outgoing edge of the tree T in the i th ingoing edge of S,
and by assigning the length l = 1 to this new inner edge of the composite tree S ◦i T .
Recall that we have a weak-equivalence W (P)

∼−→ P, defined by forgetting about the
length of the edges and by performing the composition operations shaped on our trees
in the operad P.

In τW (P), we implement the extra reduction relation

∗ · · ·
S

∗

l0=1
· · ·

≡
∗
l=1

· · · , (8)

when we have a whole subtree S with an outgoing edge of length l0 = 1 in which all
chains of edges abut to an element of arity zero ∗ ∈ P(0).

123



The homotopy theory of operad subcategories 695

1.3 The cofibrant structure of the W -construction and the reduction to a
non-unital W -construction

We already mentioned that the model category of operads in simplicial sets is Quillen
equivalent to the model category of operads in topological spaces. Therefore, we now
assume (without loss of generality in our statement) that P is an operad in simplicial
sets, of which we can take the geometric realization |P| to pass to the category of
operads in topological spaces. Then we consider the operad E × P such that (E ×
P)(r) = E(r) × P(r), for any r ∈ N. We can still take the geometric realization of
this operad to get an operad in topological spaces |E × P|. We then have E ∼ pt ⇒
E×P ∼ P ⇒ |E×P| ∼ |P|. We moreover get that theW -construction of this operad
W (|E × P|) is cofibrant as an operad in topological spaces, which is not the case of
the operad W (|P|) in general (when the symmetric groups do not operate freely on
the components of the operad P). We just review the proof of a counterpart of this
claim in the category of operads in simplicial sets in the next paragraph. We refer [3]
for a more detailed study of the definition and properties of the W -construction in the
general setting of model categories.

We can actually stay in the category of operads in simplicial sets for our study,
becausewe have an identityW (|E×P|) = |W (E×P)|, wherewe consider a simplicial
version of the W -construction W (E×P) before passing to the geometric realization.
In order to adapt the definition of the W -construction to the simplicial setting, and
hence, in order to define this objectW (E×P), we just replace the interval [0, 1] by the
1-simplex�1 in the definitions of the previous paragraph (Sect. 1.2). Note simply that
the unit reduction relation (Eq. 7) involves the geometric realization of a simplicial
map m : �1 × �1 → �1, so that we can still give a sense to this relation within the
category of simplicial sets.

The operad W (E× P), which we obtain by taking this simplicial W -construction,
is cofibrant as an operad in simplicial sets (just like the topological W -construction
W (|E × P|) of the operad |E × P| is cofibrant as an operad in topological spaces).
This assertion can be deduced from the observation that the operad W (E×P) admits
a free structure in each simplicial dimension. To be more precise, we have an identity
W (E× P)n = F(W̊ (E× P)n) in every simplicial dimension n ∈ N, for a generating
collection W̊ (E × P) ⊂ W (E × P) which is preserved by the degeneracy operators
but not by the face operators of the simplicial structure onW (E×P). In what follows,
we say that our operad is quasi-free, rather than free, to single out such a structure
result. Nevertheless, for simplicity, we still writeW (E×P) = F(W̊ (E×P)), omitting
the simplicial dimension, and without specifying the category in which we form this
relation as long as this ismade clear by the context. This symmetric sequence W̊ (E×P)

consists of decorated trees such that le �= 1, for all inner edges e. The indecomposable
factors of the operadic decomposition of a decorated tree inW (E×P) are the subtrees
obtained by cutting all inner edges of length le = 1. The components W̊ (E×P)(r) of
the symmetric sequence W̊ (E × P) inherit a free action of the symmetric group (we
use the free symmetric structure of the cartesian product E× P at this point), and the
quasi-free operad W (E × P) = F(W̊ (E × P)) is cofibrant under this condition (see
for instance [7, Theorem II.8.2.])
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696 B. Fresse et al.

We can now regard the W -construction W (E × P) as an operad in bisimplicial
sets with one simplicial dimension inherited from the simplices �1, which we attach
to the inner edges of our decorated trees, and the other simplicial dimension given
by the internal simplicial grading of the operad E × P. We then take the diagonal
complexW (E×P) = DiagW•(( E× P)•) to retrieve an operad in simplicial sets from
this bisimplicial object. In the next lemma, we consider the operads in simplicial sets
W ((E × P)n), n ∈ N, which we form by fixing the internal simplicial dimension
of the operad E × P in this bisimplicial object. We use that the result of Lemma 1
extends to the collections of sets (E × P)n which we form by dropping the unit object
(1, 1) ∈ E(1) × P(1) from these operads in sets (E × P)n = En × Pn , n ∈ N. We
then get the following statement:

Lemma 2 We have an identity of simplicial operads W ((E×P)n) = W ′((E × P)n),
for each n ∈ N, where W ′ denotes a version of the W-construction for non-unital
operads which we define by forgetting about the unit reduction relation of the standard
construction (the relation of Eq. 7).

We now assume P(0) = ∗. We note that the operad E satisfies the relation E(0) =
∗ too, and as a consequence, so does the operad E × P. We accordingly get that
the augmentation of the W -construction W (E × P) → E × P induces a morphism
τW (E × P) → E × P in the category Op∗ by adjunction. We have an obvious
counterpart of the result of the previous lemma for the operad τW ((E×P)n). We use
this observation in the verification of the following claim:

Lemma 3 The augmentation map τW ((E×P)n)(r) → (E×P)n(r) defines a weak-
equivalence of simplicial sets, for each dimension n ∈ N and for any arity r ∈ N,
where we regard the set (E × P)n(r) as a discrete simplicial set.

Proof We set Nn = (E × P)n for short and we use the identity τW ((E × P)n) =
τW ′(Nn). We aim to prove that we have a weak-equivalence of simplicial sets ε :
τW ′(Nn)(r)

∼−→ Nn(r), for each dimension n ∈ N and for any arity r ∈ N. We can
take the geometric realization of this map ε : |τW ′(Nn)(r)| → Nn(r) to establish this
claim.Wehave an obviousmapgoing the otherway roundη : Nn(r) → |τW ′(Nn)(r)|,
which merely carries any element p ∈ Nn(r) to an r -corolla with p as label in
τW ′(Nn)(r). We have εη = id and we are left to verifying the relation ηε � id in the
homotopy category of spaces.

We proceed as follows. Let 
T = [T ; px , x ∈ VT ; le, e ∈ E̊T ] be a collection
which represents a point of the cell complex |τW ′(Nn)(r)|. Instead of assigning a
length to the internal edges le, e ∈ E̊T , we can equivalently assign a height hx ∈ [0,∞[
to each vertex x ∈ VT , with the following rules (Eq. 9), in order to parameterize the
elements of our complex:

hx =
{
0, if x is the source vertex of the outgoing edge of the tree (the root) ,

hy + le, if x is a source vertex of an inner edge e ∈ E̊T with y as target vertex.
(9)
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The homotopy theory of operad subcategories 697

For instance, in the case of the decorated 3-tree


T =

px2
l2

px3
l3

3

1 px1
l1

2 px4
l4

px5
l5

px0

, (10)

with VT = {x0, x1, x2, x3, x4, x5}, we get hx0 = 0, hx5 = l5, hx4 = l4, hx3 = l3 + l4,
hx2 = l2+l4, and hx1 = l1. In order to give a sense to this correspondence, we crucially
use that no unit reduction relation occurs in |τW ′(Nn)(r)|. Indeed, the height functions
would not be well-defined otherwise. (Thus, we use the result of Lemma 2 and the
structure properties of the cartesian product with the extended Barratt–Eccles operad
N = E × P at this point.)

We consider the continuous family 
 t
T ∈ |τW ′(Nn)(r)|, t ∈ [0,∞], defined by

making these height parameters vary by the formula:

htx = min(hx , t), (11)

for all x ∈ VT , with the obvious convention min(h,∞) = h. We readily check that
the mapping (t,
T ) 
→ 
 t

T is compatible with the identification relations of the cell
complex |τW ′(Nn)(r)|. We therefore get that this mapping (t,
T ) 
→ 
 t

T defines a
continuous family of maps ρt : |τW ′(Nn)(r)| → |τW ′(Nn)(r)| such that ρ∞ = id
and ρ0 = ηε, since making the assignment h0x = min(hx , 0) amounts to assigning the
length le = 0 to all inner edges e ∈ E̊T of the tree T , and hence, to contracting these
edges in |τW ′(Nn)(r)|.

We can compose the mapping t 
→ ρt with the function t 
→ t/(1 − t) to retrieve
a continuous family of maps defined for a value t ∈ [0, 1] of the time parameter t , as
in the usual definition of a homotopy. Note that we have htx ≡ hx for t � h, for a
bound h that only depends on the tree superstructure T , so that no continuity problem
occurs at t = ∞ in our construction. ��

We can now complete the:

Proof of Theorem 2 We use the general statement that a horizontal weak-equivalence
of bisimplicial sets φ : X•n

∼−→ Y•n , n ∈ N, induces a weak-equivalence when we
pass to the diagonal complex φ : DiagX••

∼−→ DiagY•• to conclude that the weak-
equivalences of the previous lemma τW ((E×P)n)(r)

∼−→ (E×P)n(r), n ∈ N, induce
a weak-equivalence of simplicial sets τW (E × P)(r)

∼−→ (E × P)(r), for each arity
r ∈ N, which is nothing but the claim of Theorem 2. ��

Recall that Theorem 1 is a corollary of Theorem 2. Thus, the previous verification
also completes the proof of Theorem 1. ��
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1.4 Remark

In the introduction of the paper, we mention that we need to adapt the classical proof
that the W -construction W (P) is equivalent to the given operad P in the case of the
unitary operad τW (P). In short, in the classical construction, authors use the same
definition as ours to define a section η : P(r) → W (P)(r) of the augmentation
map ε : W (P) → P in each arity. Then one makes the length of edges vary by the
formula lte = min(le, t) in a decorated tree in order to get a homotopy between the
identity map on W (P) and the composite ηε : W (P) → W (P), and the conclusion
that ε : W (P) → P defines a weak-equivalence follows (see for instance [4, §III.1]).
This construction does not work in the case of the unitary operad τW (P), because
the mapping le 
→ lte = min(le, t) does not preserve the extra reduction relation (Eq.
8) which we implement in τW (P). Therefore, in the proof of Lemma 3, we define a
homotopy by making the height of edges vary rather than the length.

1.5 Remark

In §1.1, we can identify the category of algebras associated to the operad M with
the category of categories C equipped with a strictly associative tensor product ⊗ :
C × C → C and an object e ∈ C, which is strictly idempotent e ⊗ e = e, but
which only satisfies the unit relations of tensor products up to natural isomorphisms
in general x ⊗ e � x � e ⊗ x (compare with the statement of [7, Theorem I.6.3.2–
6.3.3]). The tensor product ⊗ : C × C → C represents the image of the generating
operation μ ∈ ObM(2) under the functor φ : M → EndC that encodes the action
of the operad M on C, where EndC denotes the endomorphism operad of C in the
category of categories. The object e ∈ C represents the image of the zero-ary operation
e ∈ ObM(0). The natural transformations x ⊗ e � x � e⊗ x , for x ∈ C, are given by
the image of the corresponding isomorphisms x1e � x1 � ex1 in the morphism sets
of the category M(1). (We refer to [7, §I.6.3] for a detailed proof of several variants
of this correspondence.)

2 The case of k-truncated operads

We now examine the proof of the counterpart of our main statements for k-truncated
operads.Wemainly briefly check that our constructions and argument lines go through
(or can be adapted) in this setting.We recall the definition of the category of k-truncated
operads first. We review the proof of our main results afterwards.

We formally call “k-truncated operad” the structure formed by an operad P whose
components P(r) are only defined for r ≤ k, and where we restrict ourselves to
composition products ◦i : P(m) × P(n) → P(m + n − 1) that preserve this arity
bound. This condition is equivalent to the relation m + n − 1 ≤ k in the case n > 0,
and to the relation m ≤ k in the case n = 0. In the definition of a k-truncated operad,
we also restrict the application of the associativity relation of operads to the cases
where the composition products involved in the relation preserve the arity bound, so
that our relation makes sense.
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We use the notationOp≤k for this category of k-truncated operads, and the notation
Op≤k∗ ⊂ Op≤k for the associated subcategory of unitary operads, forwhichwe assume
P(0) = ∗. We can also adapt the definition of the notion of a �-operad to the k-
truncated setting. We then consider operads equipped with restriction operators u∗ :
P(n) → P(m) defined for all injective maps u : {1 < · · · < m} → {1 < · · · < n}
such that 1 ≤ m ≤ n ≤ k. We also restrict ourselves to the cases where the arity
bound is preserved in the expression of equivariance of composition products ◦i with
respect to these restriction operators in [7, Proposition I.2.2.16]. We use the notation
�Op≤k

∅
for this k-truncated analogue of the category of �-operads. We again have an

isomorphism of categoriesOp≤k∗ ∼= �Op≤k
∅

. We mostly deal with the categoryOp≤k∗
(rather than �Op≤k

∅
) in what follows.

The definition of free operads has an obvious counterpart in the k-truncated context,
which gives a left adjoint F≤k : Seq≤k → Op≤k of the obvious forgetful functor
ω : Op≤k → Seq≤k from the category of k-truncated operads Op≤k to the category
of k-truncated symmetric sequences Seq≤k (the category of symmetric sequences
M with components M(r) defined for r ≤ k). Recall that the ordinary free operad
F(M) generated by a symmetric sequence M consists of decorated trees T with r -
ingoing edges, numbered from 1 to r , and whose vertices x are labeled by elements
ξx ∈ M(rx ) of the symmetric sequenceM, where we again use the notation rx to denote
the number of ingoing edges of our vertex x in the tree T . In the case of k-truncated
operads F≤k(M), we just restrict ourselves to the case r ≤ k, and we assume rx ≤ k
for all vertices of our trees x ∈ VT . The adjunction morphism λ : F≤k(P) → P
carries any such decorated tree with M = P to a corresponding treewise composite
operation in the operad P. Let us mention that some care is necessary in the context
of k-truncated operads since some intermediate composites which we may form by
contracting subtrees in a treewise tensor product (see [7, §A.2.5]) go beyond our arity
bound. To avoid this problem, we can evaluate all composites with factors of arity zero
at first. Then we obtain a treewise tensor product shaped on a tree with r ≤ k ingoing
edges and in which all indecomposable factors have a positive arity rx > 0. This
property ensures that all partial composites which we may form inside our treewise
tensor product do not go above our arity bound.

We can adapt the definition of the projective model structure of operads (in simpli-
cial sets, in topological spaces) to the category of k-truncated operadsOp≤k . We again
assume that a morphism of k-truncated operads is a weak-equivalence (respectively,
a fibration) if this morphism forms a weak-equivalence (respectively, a fibration) in
the base category (of simplicial sets, of topological spaces) arity-wise, and we char-
acterize the cofibrations by the left lifting property with respect to the class of acyclic
fibrations. We take the morphisms of free objects F≤k(i) : F≤k(M) → F≤k(N)

induced by generating (acyclic) cofibrations of the category of k-truncated symmetric
sequences as a set of generating (acyclic) cofibrations in this model category Op≤k .
We can also adapt the definition of the Reedy model category of �-operads �Op∅

in [7, §II.8.4] to the category of k-truncated �-operads �Op≤k
∅

. We again use the

isomorphism of categories Op≤k∗ ∼= �Op≤k
∅

to transport this model structure to the

category of k-truncated unitary operads Op≤k∗ . For our purpose, we can equivalently
equip this categoryOp≤k∗ with a restriction of the projective model structure onOp≤k .
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We can still form a Quillen adjunction between our model categories of k-truncated
operads τ : Op≤k � Op≤k∗ : ι by taking the canonical category embedding ι :
Op≤k∗ ↪→ Op≤k on the one hand and the obvious k-truncated counterpart of our
unitarization functor τ : Op≤k → Op≤k∗ on the other hand.We then have the following
counterpart of the result of Theorem 1:

Theorem 1 The functor ι : Op≤k∗ ↪→ Op≤k induces a weak-equivalence on derived
mapping spaces:

Maph
Op≤k∗

(P,Q) ∼ Maph
Op≤k (ιP, ιQ),

for all k-truncated operads P,Q ∈ Op≤k∗ .

We still reduce the proof of this statement to the verification that we have a weak-
equivalence τR

∼−→ P, for a cofibrant resolution R
∼−→ ιP of the object ιP in the

category of all k-truncated operads Op≤k .
We take R = W≤k(E × P), where W≤k(−) denotes a k-truncated analogue of the

W -construction, and E × P denotes the k-truncated operad such that (E × P)(r) =
E(r)×P(r), for r ≤ k, withE defined as in Sect. 1.1. We use the same construction as
in Sects. 1.2, 1.3 to define this k-truncated version of the W -construction (in both the
topological setting and the simplicial setting). We just restrict ourselves to decorated
trees such that every subtree S that we may form within a component delimited by
edges of length le = 1 of our decorated tree has at most k ingoing edges. In particular,
we assume that the vertices of our trees x have at most k ingoing edges each, so that
the corresponding labels px ∈ P(rx ) satisfy our arity bound rx ≤ k. Our condition
also ensures that the edge contraction relations in the definition of our object (Eq.
6) produce allowable composition operations in our k-truncated operad P, and that
R = W≤k(E × P) forms a quasi-free object in the category of k-truncated operads
W≤k(E × P) = F≤k(W̊≤k(E × P)) with the same definition as in Sect. 1.3 for the
generating symmetric sequence W̊≤k(E×P) (our condition implies that the treewise
tensor products that form this symmetric sequence have an arity r ≤ k).We still deduce
from this observation that W≤k(E × P) forms a cofibrant object in the category of
k-truncated operads.

We moreover have a canonical morphismW≤k(E×P) → E×P, which we obtain
by contracting the edges of our decorated trees and by performing the corresponding
composites in E×P. We can still prove that this morphism is a weak-equivalence, but
some care is needed there, since we have to adapt our construction in order to ensure
that our contracting homotopy produces decorated trees that fulfill the arity bound
conditions of the operadW≤k(E×P). We can proceed in two steps. In a first step, we
can apply the contracting homotopy of the proof of Lemma 3 to the maximal subtrees
of the form ∗ · · ·

S
∗

l0
· · ·

in a decorated tree, where we now use the notation ∗ for any arity zero element of our
operad P (we do not necessarily assume that P belongs to the subcategory Op∗ for
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the moment). For instance, in the case of the tree of Eq. 10, we consider the subtrees:

S1 =
px1
l1 and S2 =

px2
l2

px3
l3

px4
l4

.

This operation has the effect of reducing the composites with operations of arity zero
in our object and of eliminating the vertices with no ingoing edge. Thus, as a result of
this first contracting homotopy operation, we get a decorated tree with r ≤ k ingoing
edges and of which all vertices x ∈ VT have rx > 0 ingoing edges. Then we can
apply our contracting homotopy a second time, to our whole decorated tree this time,
in order to abut to a corolla, which corresponds to an element of the operad E × P
inside W≤k(E × P). The condition rx > 0 ensures that all intermediate composites
which we form in this second retraction process fulfill our arity bound and define
allowable elements of the k-truncated W -construction. Thus, we eventually conclude
that our morphism W≤k(E×P) → E×P forms a homotopy equivalence arity-wise,
and hence, defines a weak-equivalence in the category of k-truncated operads, like the
canonical projection E × P → P, so that W≤k(E × P) forms a cofibrant resolution
of our object P in this category Op≤k .

We now assume that P is a unitary k-truncated operads in the category of simplicial
sets, so that P(0) = ∗. We can readily adapt the observation of Lemma 2 in the
k-truncated context, and we can also use the above two-step process to adapt the
definition of the contracting homotopy of the proof of Lemma 3 to the case of the
unitarization of the k-truncatedW -construction τW≤k(E×P). We therefore have the
following statement:

Theorem 2 We have τW≤k(E × P)
∼−→ E × P

∼−→ P, for any k-truncated unitary
operad P ∈ Op≤k∗ . ��

Recall again that this theorem gives the result of Theorem 1 when we take R =
W≤k(E×P) as a cofibrant resolution of the k-truncated operad P ∈ Op≤k∗ to compute
our derived mapping spaces. Thus, the proof of this first statement, Theorem 1’, is
complete. ��
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