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Abstract The derivatives of the identity functor on spaces in Goodwillie calculus
form an operad in spectra. Antolin-Camarena computed the mod 2 homology of free
algebras over this operad for 1-connected spectra. In this present paper we carry out
similar computations for mod p homology for odd primes p, also for non-connected
spectra.
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1 Introduction

It is known from [10] that if a spectrum is an algebra over an E∞ operad then it admits
certain operations on its mod p homology, the Dyer–Lashof operations. These have
proven to be of great use in many computations. A different operad that is of interest
to many topologists is the spectral Lie operad, ∂∗, and it has been shown in [6] that

Communicated by Hvedri Inassaridze.

The author thanks Mark Behrens for much help, as well as many personal conversations. Further the
communication with the referee was most helpful in getting a better article written, and the author is very
thankful for this. A frightening amount of typos and grammatical errors where removed with the help of
Bridget Schreiner. The author was partially supported by NSF DMS 1209387.

B Jens Jakob Kjaer
jkjaer@nd.edu

1 Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-017-0194-y&domain=pdf


582 J. J. Kjaer

algebras over this operad admit certain Dyer–Lashof-like operations, in this paper
called Lie power operations, on their mod 2 homology, as well as a Lie bracket.

A strategy for computing unstable homotopy groups is through the Goodwillie
tower (as defined in [12]) for the identity functor. This tower gives a spectral sequence
inputting π∗Dn(X) and converging to π∗X , for any 1-connected pointed space X ,
where Dn(X) are some collection of infinite loop spaces, Dn(X) = �∞

Dn(X), whose
homotopy we hope to be able to compute. The fact that the spaces Dn(X) appear as
0th spaces of spectra implies that we should be able to bring the full weight of stable
computations to bear, hopefully allowing us to compute unstable homotopy groups
from stable homotopy groups. An example of this program was carried out in [7].

The spectra Dn(X) have the form (∂n ∧ X∧n)h�n , where ∂n is the n’th spectrum of
the spectral Lie operad, since ∂n is in fact the n’th Goodwillie derivative of the identity
functor. In [3] the homology of Dn(Sl) was computed, and a basis was given in terms
of unadmissable sequences of Dyer–Lashof operations. It was shown in [6] that these
unadmissable sequences of Dyer–Lashof-like operations at the prime 2 are in a very
precise manner the same as the Lie power operations from above.

A different perspective on the symmetric sequence ∂∗ is given in [9], where the
operadic structure was constructed. There it is shown that ∂∗ is the Koszul dual of
the commutative cooperad, which in fact gives its name of spectral Lie operad, as the
Koszul dual of the algebraic commutative operad is the shifted algebraic Lie operad
[11]. These facts suggests that ∂∗ is an essential operad, and hence worthy of more
study.

In this paper we will study the odd primary homology of algebras over the spectral
Lie operad. The definition of the Lie power operations and Lie bracket studied in this
paper for the prime p = 2 was first given by Behrens in [6], and the computation
of the homology of free algebras of 1-connected spectra was carried out by Antolin-
Camarena in [4] (rewritten and expanded as a paper [5]). Much of what follows here
mirrors the strategies found in these references. A strengthening to computing homol-
ogy of free algebras of any spectrum is found in [8].

We will discuss in Sect. 2 the operadic structure of ∂∗, as well as give two different
cell structures to the spectra ∂n . The first is the arboreal cell structure, and comes
from the operadic structure in [9]. The second is the simplicial cell structure and was
leveraged in the homology computations of [3]. We will also briefly identify the first
differential in a certain spectral sequence that is of great use to us. In Sect. 3 we will
define the Lie power operations and Lie bracket, prove that the bracket in fact does
deserve its name, as well as the fact that all power operations bracket trivially with
everything. We will then move on, in Sect. 4, to give a basis for the free algebra on
an odd sphere using the computation in [3], and will then leverage this basis, as well
as the study of the EHP sequence in [7], to do the same for even spheres in positive
dimensions, and then use [8] to extend it to negative dimensions as well. Thereafter
we will be ready to state and prove our main result in Sect. 5. The result is a basis for
the homology of the free algebra over the spectral Lie operad on any spectrum. We
will finish by stating a conjecture: that the relations the Lie power operations satisfy
are the mixed Adem relations. This was shown in [7] for p = 2, unfortunately the
techniques used there to determine the relations are not known to generalize to odd
primes.
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On the odd primary homology of free algebra… 583

2 Preliminaries

Throughout this article, let p be a fixed odd prime. All homology is computed with
Z/p coefficients. We will need a good symmetric monoidal category of spectra, so
take spectra to mean the category of symmetric spectra as developed in [13], and let
HFp be the Eilenberg-Maclane spectra for the finite field with p elements, Fp.

2.1 The spectral lie operad

We will let {∂∗} denote the symmetric sequence of spectra of the derivatives of the
identity Top∗ → Top∗. Recall from [9] that {∂∗} has an operadic structure with
structure maps in spectra:

ξn,k1,...,kn : ∂n ∧ ∂k1 ∧ · · · ∧ ∂kn → ∂k1+···+kn .

By abuse of notation we will drop the indices on all of these maps throughout. As it
is Koszul dual to the commutative cooperad in spectra, we will call {∂∗} the spectral
Lie operad.

Our main target of computation is the homology of the following

Definition 2.1 Let X be any spectrum. Then the free algebra over the spectral Lie
operad generated by X , P(X), is given by

∨
n Dn(X), whereDn(X) := (∂n ∧X∧n)h�n

where �n permutes the copies of X∧n .

Clearly the free algebra over the spectral Lie operad is in fact an algebra over ∂∗.

Cell structures and trees As the goal is to do computations in homology, a good
understanding of the cell structure of ∂n is needed. We will employ two different such.
The first one, called the arboreal cell structure, comes from Ching’s description of the
topological operadic bar construction, and is thereforewell-behavedwith respect to the
operadic structure maps. The second, called the simplicial cell structure, comes from
the cosimplicial filtration of the operadic bar construction, this has proved valuable in
the homology computations carried out by Arone and Mahowald [3], but is not well
behaved with the operadic structure. In either case, the cells will be labelled by certain
trees.

When we write a general tree with labels in some finite set A, we will always mean
a rooted tree with the valence of the root and leaves being 1, and a fixed bijection from
A to the set of leaves. We will often suppress the set A from the notation. An internal
vertex is any vertex that is not a leaf or the root. We will call it a tree if the valence
of any internal vertex is greater than 2. Given a general tree T , we will use E(T ) to
denote the set of edges, and V (T ) to denote the set of vertices. Given u, v ∈ V (T )

we say that v is a descendant of u if there is an edge from u to v and u is closer to the
root than v.

Definition 2.2 A metric tree is a tree, T , together with a map
m : E(T ) → [0, 1] such that if e1, . . . , en is any path from the root to a leaf then
�n
i=1m(ei ) = 1.
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Fig. 1 An example of the
operadic structure on arboreal
cells. The dotted and dashed
edges indicate the gluing

∂2 ∂2 ∂3 ∂5
ξ∧ ∧

•
•

• •1 2
⊗

•
•

• •1 2
⊗

•
•

• ••1 32
ξ∗

•
•

• •
• •1 2 •• •43 5

Recall that [9, Definition 4.1] defines pointed topological spaces ∂n , such that the
Spanier-Whitehead dual of ∂n is ∂n . A point of ∂n is either given by a metric tree with
labels {1, . . . , n}, or the base point, where we identify a tree with an edge of metric 0
with the tree where we have collapsed this edge, if it is an internal edge or with the
basepoint if it is a root or leaf edge. Ching defined the operadic structure in the language
of metric trees. Ching’s arboreal construction of ∂n leads to a cell decomposition of
∂n , where each cell is labelled by an isomorphism class of a labelled trees, with labels
{1, . . . , n}. The dimension of the cell represented by such a tree is given by −k where
k is the number of internal vertices. We will call this cell decomposition the arboreal
cell decomposition. The operadic structure induces maps

ξ∗ : CCW∗ (∂n) ⊗ CCW∗
(
∂k1

) ⊗ · · · ⊗ CCW∗
(
∂kn

) → CCW∗
(
∂k1+···+kn

)

that take T ⊗ T (1) ⊗ · · · ⊗ T (n) to the cell labelled by the tree obtained by identifying
the root edge of T (i) with the edge attached to the leaf of T labelled i (see the example
in Fig. 1).

Definition 2.3 A levelled tree is a general tree, T , togetherwith a function l : V (T ) →
[0, 1] such that the root goes to 0, the leaves to 1, and if v is a descendant of u then
l(u) < l(v). The number of levels of a levelled tree is |l(V (T ))| − 2, where | − |
denotes cardinality.

We say that two levelled trees T and T ′ are isomorphic if there is an isomorphism
of the trees, and a strictly increasing function φ : [0, 1] → [0, 1] making the obvious
relations hold.

There is a different cell structure on ∂n where each cell is given by an isomorphism
class of levelled trees with labels {1, . . . , n}, as given in [7]. The cell represented by
the class of a levelled tree, T , is in dimension −k where k is the number of levels, and
the gluing data comes from collapsing levels. We will call this cell-decomposition the
simplicial cell decomposition.

Note that in both cell decompositions, ∂n has exactly one (−1)-cell, for n > 1. The
cell is given by the tree having exactly one internal vertex, we call this tree Tn .

G-cells Recall that a naiveG-CWcomplex is a naiveG-spectrum X whose underlying
spectrum is a CW-spectrum, such that if X (k) is the k-th skeleta, then X (k) is a naive
G-spectrum, and X (k−1) ↪→ X (k) is a G-map with G-cofiber

∨
i (G/Hi )+ ∧ Sk , for

some collection of subgroups {Hi } of G. For each i we say that X has a (k, Hi )-cell.
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On the odd primary homology of free algebra… 585

Goodwillie showed in [12] that ∂n is a naive �n spectrum. Clearly the �n action of
trees with leaves labelled by {1, . . . , n} induces an action on the cells of ∂n , making it
into a naive �n-CW complex. If G is any subgroup of �n , then clearly ∂n is a G-CW
spectrum. If �T ⊂ �n is the symmetry group of the tree T labelled by {1, . . . , n}, let
�′

T = G ∩ �T . Then ∂n has a (k, �′
T )-cell, where k is the number of internal vertices

of T . Note that if T ′ is any tree such that there is g ∈ G such that g · T ′ = T , then T ′
represents the same G-cell as T . This discussion works equally well with arboreal or
simplicial cells.

A small forest of examples

Definition 2.4 Let T j,i for 1 ≤ j ≤ i denote the labelled tree, with labels {1, . . . , i},
depicted below

•

•

••
j

1 · · · ĵ · · · i
• · · · · · · •

· · ·

where ĵ denotes that the label j is omitted.
In the arboreal structure this represents a −2 cell.

Definition 2.5 Let Tn,k be a levelled tree with labels {1, . . . , nk}, where each internal
vertex has n-descendants, and k-levels.

In the simplicial cell structure this represents a (−k)-cell.

Note that Tn,1 = Tn .

Example 2.6 The tree T3,2 is:

•

•

•• •

• • • • • • •••
1 2 3 4 5 6 987

where the dashed horizontal lines indicate levels.
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2.2 Computational methods

In this paper we will often need to calculate the homology groups H∗(∂n ∧hG X) for
some G ⊂ �n where X is a G-spectrum. We will use the following spectral sequence.

Lemma 2.7 There is a spectral sequence coming from the arboreal cell decompostion
of ∂n with

E1
k,∗ :=

⊕

T

H∗
(
�−k Xh�′

T

)
⇒ H∗ (∂n ∧hG X)

where the direct sum is over G equivalence classes of trees T with k internal vertices,
and �′

T := G ∩ �T , and differentials dr : Er
k,n → Er

k−r,∗−1.

The spectral sequence arising from the G-CW filtration of ∂n induces a filtration of
∂n ∧hG X , and we apply homology to this filtration to obtain the spectral sequence.

The following lemma allows us to identify the d1-differentials:

Lemma 2.8 Let G be a subgroup of �n, and X be a G-spectrum. In the spectral
sequence computing H∗(∂n ∧hG X), from the G-equivariant arboreal cell decompo-
sition of ∂n, we have that d1 is a sum of transfers and trivial maps.

Proof Recall that d1 is given by

⊕

T

H∗
(
S−s ∧ Xh�′

T

)
δ→ H∗−1

(
∂(−s−1)
n ∧hG X

)
→

⊕

T ′
H∗−1

(
S−s−1 ∧ Xh�′

T ′

)

where the first direct sum is over (−s)-G-cells of ∂n , labelled by orbits of trees T
under the G action, and the second is over (−s − 1) cells, labelled by orbits of trees
T ′ under the G action, and ∂

(−s−1)
n is the (−s − 1)-skeleton of ∂n . Then δ comes from

the cofiber sequence

∂
(−s−1)
n ∂−s

n
∨

T S−s δ
�∂

(−s−1)
n ,

and �′
T , �′

T ′ ⊂ G are as above. Let T be a tree obtained from T ′ be collapsing an
edge, and assume that T ′ has s+1 internal vertices (and hence T has s). Note that this
further implies that �T ′ ⊂ �T . Therefore our goal is now showing that the restriction

H∗
(
S−s ∧ Xh�′

T

)
d̄1→ H∗−1

(
S−s−1 ∧ Xh�′

T ′

)

is in fact the transfer map. If we run the spectral sequence computing H∗(∂n ∧ X) from
the cells of ∂n then the analogous map H∗(S−s ∧ X) → H∗−1(S−s−1 ∧ X), coming
from the attaching map between T and T ′, would be the identity. Note for all σ ∈ G,
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On the odd primary homology of free algebra… 587

the cell represented by σ · T is obtained from σ · T ′ by collapsing an edge. Note that
we can think of d̄1 as induced by applying (−)hG to

∨

σ∈G/�′
T

X →
∨

σ∈G/�′
T ′

X

which is equivalent to applying (−)h�′
T
to

X →
∨

σ∈�′
T /�′

T ′

X,

which is exactly the definition of the transfer. �

3 Homology operations

In this section we will define and prove certain relations for the Lie power operations,
as well as a Lie bracket. Let L be an algebra over the operad ∂∗, with structure maps
ξn : ∂n ∧ L∧n → L . We will again drop all indices, and thus use ξ for structure maps
for both the operad itself and its algebras.

3.1 Power operations

We wish to define Lie power operations

βεQi : H∗(L) → H∗+2(p−1)i−ε−1(L).

Recall from [10, Theorem I.1.1] that for any spectrum X , i ∈ N0, and ε equal to 0
or 1 we have maps qi,ε : H∗(X) → H∗+2(p−1)i−ε(X

∧p
h�p

), taking x �→ βεQi (x). This

map comes from a study of CCW∗ (E�p), which has certain elements ek of degree k,
such that when k = (p − 1) j − ε and x ∈ C∗(X) is a cycle then so is ek ⊗ x⊗p ∈
CCW∗ (E�p)⊗�p C∗(X)⊗p, when j has the same parity as |x |. This cycle represents the
class βεQ

j+|x |
2 (x) ∈ H∗(X∧p

h�p
). Ideally, one would wish to recreate this construction

by picking out explicit cycles in the chain complex for ∂p ∧h�p L∧p, unfortunately
this turns out not to be feasible, and we will instead attack the problem somewhat
indirectly.

Given an element x ∈ H∗(L) we wish to define an element Tp ⊗ βεQi (x) in the
homology group H∗+2(p−1)i−ε−1(∂p ∧h�p L

∧p), given by the cell represented by the
tree Tp in either cell description of ∂p.

Lemma 3.1 Let ι ∈ H∗(S j ) be the generator. The element σ−1βεQi (ι) in
H∗(�−1(S j )

∧p
h�Tp

) survives the spectral sequence from Lemma 2.7 used to compute

H∗(∂p ∧h�p (S j )∧p).
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588 J. J. Kjaer

Proof Assume that T is a tree representing a −k �= −1 cell of ∂p. Then T �= Tp, and
clearly p � |�T |. We can compute H∗(�−k(S j )

∧p
h�T

) by the usual homotopy orbits

spectral sequence with E2 page E2
s,t = Hs(�T ; Ht ((S j )∧p)).

Now if j is odd then H∗((S j )∧p) is the sign representation and hence
H∗(�−k(S j )

∧p
h�T

) is trivial by [16, Corollary 6.5.9]. Therefore the spectral sequence
from Lemma 2.7 collapses and the result holds.

If j is even, then H∗((S j )∧p) is the trivial representation and hence we see that
H∗(�−k(S j )

∧p
h�T

) is concentrated in degree j p − k. If T represents a (−2)-cell then
by Lemma 2.8 we know that

d1 : H∗�−1(S j )
∧p
h�Tp

→ H∗−1�
−2(S j )

∧p
h�T

is induced by the transfer coming from �T ⊂ �Tp = �p. Since p divides [�p : �T ]
we know that the transfer is trivial, since the inclusion,

H∗(�T ) → H∗(�p),

composed with the transfer induces the map multiplication by [�T : �p], and we
know the inclusion is non trivial. If T represents a (−k − 1)-cell, then by studying the
spectral sequence we see by induction that

dk : H∗�−1(S j )
∧p
h�Tp

→ Ek
k+1,∗−1.

Here the target is concentrated in degree j p − k − 2, since H∗−1�
−k−1(S j )

∧p
h�T

is,
but clearly the source is concentrated in higher degrees, and hence the map is trivial,
and therefore we are done. �

Given x ∈ Hi (L), we can represent it by a map Si → HFp∧L , which corresponds
to a map out of the free HFp-module �i HFp, which by abuse of notation we are also
going to call x , so x : �i HFp → HFp ∧ L . This gives us a map

x⊗p : (�i HFp)
⊗HFp p → (HFp ∧ L)

⊗HFp p

by smashing with ∂p, and taking homotopy orbits we get a map

x̃ : H∗
(
∂p ∧h�p S

pi
)

→ H∗
(
∂p ∧h�p L

∧p) .

We can now define an element Tp⊗βεQi (x) in H∗(∂p∧h�p L
∧p) by x̃(σ−1βεQi (ι)).

Definition 3.2 For x ∈ H∗(L), and ξ : ∂p ∧h�p L
∧p → L define:

βεQi (x) := ξ∗(Tp ⊗ βεQi (x)) ∈ H∗+2(p−1)i−ε−1(L).

123



On the odd primary homology of free algebra… 589

It is easy to see that if 2n − 1 ≤ |x |, then both βQi (x) and Q j (x) are trivial
for i, j < n. Since the same is true of βQi ι and Q j ι in H∗(Skph�p

), where k = |x |.
Furthermore the quotient on to the top cell, Tp, ∂p → S−1 induces a map H∗(∂p ∧h�p

X∧p) → H∗(�−1X∧p
h�p

), which maps Tp ⊗βεQi (x) to σ−1βεQi x , where σ−1 refers
to the desuspension.

3.2 The bracket

We can also define a Lie bracket on the algebra by the map ξ : ∂2 ∧ L ∧ L → L

Definition 3.3 For x ∈ Hi (L), and y ∈ Hj (L), define [x, y] ∈ Hi+ j−1(L) by
[x, y] := ξ∗(T2 ⊗ x ⊗ y).

Remark 3.4 Note this construction works equally well on stable homotopy groups but
studying these, and their possible connection with the Whitehead bracket, is beyond
the scope of this paper.

Proposition 3.5 The bracket satisfies the following relations for x, y, z ∈ H∗(L):

• [x, y] = (−1)|x ||y|[y, x] (Graded Commutativity)
• (−1)|x ||z|[x, [y, z]] + (−1)|y||z|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0 (The Graded
Jacobi Identity)

Remark 3.6 Note that our Lie bracket does not satisfy the usual conventions for either
the graded Lie bracket (due to dimension) or the shifted graded Lie bracket (due to
sign conventions, see for example [14] for a different sign convention). We will later
see in Corollary 4.7 that for p = 3 the usual axiom [x, [x, x]] = 0 still holds.

Proof of Proposition 3.5 We clearly see that [x, y] = (−1)|x ||y|[y, x] since ∂2 �
S−1 with the trivial �2 action. Since L is an algebra over ∂∗, the following diagram
commutes:

∂2 ∧ L ∧ (∂2 ∧ L ∧ L)
1∧ξ

�

∂2 ∧ L ∧ L
ξ

L

∂2 ∧ (∂1 ∧ L) ∧ (∂2 ∧ L ∧ L)

σ

∂2 ∧ ∂1 ∧ ∂2 ∧ L ∧ L ∧ L

∂3 ∧ L ∧ L ∧ L

ξ

Pick x, y, z ∈ H∗(L) and apply homology to the diagram. If we start with T2 ⊗ x ⊗
(T2 ⊗ y⊗ z) in the upper left corner, we get [x, [y, z]] in the upper right corner. In the
lower left cornerweget by theoperadic structureT 1,3⊗x⊗y⊗z.Using thepermutation
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590 J. J. Kjaer

action we see that (−1)|x ||y|+|x ||z|T 2,3⊗x⊗ y⊗zmaps to [y, [z, x]] since the diagram
above is �3-equivariant, and in the same manner (−1)|z||y|+|x ||z|T 2,3 ⊗ x ⊗ y ⊗ z.
Now, by abuse of notation, let the trees T3 and T i,3 i = 1, 2, 3 be the cells of ∂3 in the
arboreal cell decomposition. Then the chain differential is d(T3) = T 1,3+T 2,3+T 3,3,
so if we let x, y, z also denote cycles in the singular chain complex for L then the
following boundary d((−1)|x ||z|T3 ⊗ x ⊗ y ⊗ z) in the chain complex computing
H∗(∂3 ∧ L ∧ L ∧ L) enforces the relation:

(−1)|x ||z|[x, [y, z]] + (−1)|y||z|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0.

�
We have further the following interaction of the bracket and the Lie power operations:

Proposition 3.7 For all x, y ∈ H∗L, k ∈ N0, and ε = 0, 1, we have [x, βεQk y] = 0.

Proof This is the odd primary version of Lemma 6.5 in [4], and we will start out
similar.

Let x : �i HFp → HFp ∧ L and y : � j HFp → HFp ∧ L represent x and y. By
studying the arboreal cell structure we see that:

ξ∗ : CCW∗
(
∂2 ∧ ∂1 ∧ ∂p

) → CCW∗
(
∂1+p

)

T2 ⊗ T1 ⊗ Tp �→ T 1,1+p

and hence we get the following commutative 1 × �p equivariant diagram of

CCW∗ (∂2) ⊗ C∗(Si ) ⊗ CCW∗ (∂p) ⊗ C∗(S j )⊗p CCW∗ (∂2) ⊗ C∗(L) ⊗ CCW∗ (∂p) ⊗ C∗(L)⊗p

CCW∗ (∂1+p) ⊗ C∗(Si ) ⊗ C∗(S j )⊗p CCW∗ (∂1+p) ⊗ C∗(L) ⊗ C∗(L)⊗p

C∗(L)

If we start with T2 ⊗ x ⊗ Tp ⊗ y⊗p in the upper left corner, then it is mapped to a

class that represents [x, βεQk y] in H∗(L). By taking Borel homology, with respect to
1×�p, everywhere we get that it is enough to show that the image of T 1,1+p ⊗ x ⊗ y
in H∗(∂1+p∧Si ∧(S j )∧p)h1×�p is trivial. Nowwe are going to diverge from the proof
of Lemma 6.5 in [4], as we are not going to compute the homology groups in their
entirety. We will need the spectral sequence coming from the arboreal (1 × �p)-cell
decomposition of ∂1+p (see Fig. 2 for the example p = 3, with T 1,4 in bold), and its
d1-differentials.

There is exactly one (−1)-cell of ∂1+p corresponding to T1+p, which has symmetry
group (1 × �p), as for −2-cells, there are T 1,1+p with symmetry group 1× �p, and
cells with symmetry groups isomorphic to G where G ⊂ 1×�p, with p � |G|. So the
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Fig. 2 The
(1 × �3)-equivariant arboreal
cells of ∂4 with symmetry
groups −1 ••

• •••1

Σ3

−2
••

• ••• •1

Σ3
••

• ••• •1

Σ2
••

•• •••1

Σ2
••

•• •••1

Σ2

−3
••

• •• •••
1

Σ2
••

• •• •••1

Σ2
••

• •• •••1

1
••

• ••• ••1

Σ2

d1 in this spectral sequence goes from H∗(S−1
h1×�p

) → H∗(�S−2
h1×�p

)
⊕{other cells}.

Its image is entirely contained in H∗(�S−2
h1×�p

), which is representing the cell T 1,1+p,
by an argument similar to the one given in the proof of Lemma 3.1, since the other cells
have trivial homology except in one degree, but the map is trivial onto that degree. So
we need to study the map

H∗
(
S−1
h1×�p

)
→ H∗−1

(
�S−2

h1×�p

)
.

We know from Lemma 2.8 that this map is induced by the transfer
1 × �p ⊂ 1 × �p, and is therefore an isomorphism. Therefore we can now con-
clude that the cell T 1,1+p does not represent anything non-trivial in the homology of
∂1+p ∧h1×�p ∧Si+pj , and hence we are done. �

4 The computation for the spheres

As our goal is a computation of the free algebra over ∂∗, the first case will be the
algebras generated by a sphere. We will proceed by parity, in the sense that we will
compute H∗Dn(X) first in the case when X is an odd sphere, and then in the case
when X is an even sphere.

Computing H∗P(X), for X a sphere, will allow us to leverage standard homology
tricks, in our main result, Theorem 5.2 below, to compute H∗P(X) for any spectrum,
X .

4.1 The odd dimensional case

In [3, Theorem 3.16] there is the following result:

Theorem 4.1 (Arone–Mahowald, [3])
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H∗(Dpk (S
2l+1)) is the free graded Fp vector space on generators

{[βε1Qs1 � · · · � βεk Qsk ι]∣∣sk ≥ l, si > psi+1 − εi+1 ∀i},

where as usual si ∈ N0 and εi = 0, 1, and ι is a generator of H2l+1S2l+1. With∣
∣[βε1Qs1 � · · · � βεk Qsk ι]∣∣ = 2l + 1 + 2(p − 1)(s1 + · · · + sk) − ε1 − · · · − εk − k.

If i �= pk for any k then H∗Di (S2l+1) = 0.

We call integer sequences of the form (ε1, s1, . . . , εk, sk; l) completely unadmissable
if sk ≥ l, and si > psi+1 − εi+1 for all i . Recall that this description was found since
there is a surjective homomorphism

�−k H∗
((

S2l+1
)∧pk

h�
�k
p

)

→ H∗
(
Dpk

(
S2l+1

))

βε1Qs1 � · · · � βεk Qsk ι �→ [
βε1Qs1 � · · · � βεk Qsk ι

]

coming from the spectral sequence arising from the simplicial filtration of ∂∗, see
for example [7, Proof of Theorem 1.5.1]. They arise since in the (−k)-cell labelled
by Tp,k the element βε1Qs1 � · · · � βεk Qsk ι is always a cycle, and we therefore get a
group theoretical map. We are going to name this map Tp,k , as it comes from the cell
represented by the tree Tp,k in the simplicial filtration.

Note that for X a spectrum, we have that
∨

i Di (X) is an algebra over ∂∗, and hence
we can think of the Lie power operations as being:

βεQi : H∗(Dpk (X)) → H∗+2(p−1)i−ε−1(Dpk+1(X)).

Proposition 4.2 We have in H∗(Dpk (S
2l+1)) that

[βε1Qs1 � · · · � βεk Qsk ι] = βε1Qs1 · · ·βεk Qsk ι,

where ι ∈ H2l+1S2l+1 is a generator, for any completely unadmissable sequences
(ε1, s1, . . . , εk, sk; l).

Proof We prove this by induction by relating our Lie power operations to the compu-
tation in [3]. For ease of notation let X = S2l+1. For the induction base case let i ≥ l
and ε = 0, 1. Then the following diagram commutes

H∗+1(X)
βεQi

H∗+2(p−1)i−ε(Dp(X))

�−1H∗(X)
qi,ε

�−1H∗+2(p−1)i−ε(X
∧p
h�p

)

Tp
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by how we defined βεQi by the cell Tp, and by the fact that Tp in both of the cellular
filtrations of ∂p is the only (−1)-cell. This shows that the element called [βεQi ι] is
equal to βεQi (ι) for ι a generator of H2l+1(X).

By converting levelled trees to metric trees, then grafting, and converting back to

levelled trees, we can see that under the map ∂p ∧ ∂
∧p
pk

ξ→ ∂pk+1 we have in simplicial

cells that Tp ⊗ T⊗p
p,k �→ Tp,k+1. Pick I = (ε, i, εk, ik, . . . ε1, i1, l) to be a completely

unadmissable sequence and study the following diagram:

H∗+1Dpk (X)
βεQi

H∗(∂p ∧h�p Dpk (X))
ξ

H∗Dpk+1(X)

�−1H∗(�−k X∧pk

h�
�k
p
)
∧p
h�p

Tp∧(Tp,k )∧p

�−k−1H∗X∧pk

h�
�k
p

Tp,k

qi,ε
�−1�−k H∗(X∧pk

h�
�k
p
)
∧p
h�p

τ

�−k−1H∗X∧pk+1

h�
�k+1
p

Tp,k+1

where τ sends an element βεk+1Qik+1 � βεk Qik � . . . � βεk+1Qik+1 to the element
βεk+1Qik+1 �σ−k

(
βεk Qik � . . . �βεk+1Qik+1

)
, and where σ−k is the k-fold desuspension.

By the argument above this diagram commutes. Further, if we start in the lower left
corner with the element βε1Qi1 � · · · �βεk Qik ι, then chasing through the upper left cor-
ner gives us βεQi

(
βε1Qi1(· · ·βεk Qik (ι) . . .

)
in the upper right corner by the induction

hypothesis, and chasing through the lower right corner gives us [βε1Qi1 � · · · �βεk Qik ι]
in the upper right corner.

4.2 The even dimensional case

The direct computation in the odd dimensional case in [3, Theorem 3.16] does not
extend to the case of even spheres. We will therefore rely on the following result of
the EHP sequence in functor calculus.

From [7, Corollary 2.1.4] we know that the EHP sequence induces the following
result:

Proposition 4.3 (Behrens, [7]) Forn ≥ 1 the followingare fiber sequences of spectra:

D2m(Sn)
E→�−1

D2m(Sn+1)
H→ Dm(S2n+1) (1)

D2m−1(S
n)

E→�−1
D2m−1(S

n+1)
H→ ∗ (2)

Let F : Top∗ → Top∗ be a finitary homotopy functor, and let ∂∗(F) denote its
derivatives. Then as modules over ∂∗ we have from [1, Example 19.4] the following
identification ∂m(��) � �−1∂m ∧ Sm , so the suspension natural transformation
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E : X → ��X induces a map E : ∂m → �−1∂m ∧ Sm compatible with the ∂∗-
module structure. Therefore we get, for any spectrum X and m ∈ N0, natural maps
E : Dm(X) → �−1

Dm(�X) such that if x ∈ H∗Dm(X), then E : Dpm(X) →
�−1

Dpm(�X) satisfies E(βεQi (x)) = βεQi (E(x)). Similarly, the map H preserves
Lie power operations.

For some time it was unknown how to extend these relations between the odd
dimensional and even dimensional cases to the negative spheres. This was solved by
Brantner in his thesis [8, Sect. 4.1.3, Free Lie algebras on nonconnective spectra] from
which we have the following result:

Lemma 4.4 (Brantner, [8]) For any n we get long exact sequences:

· · · → H∗D2m(Sn)
E→H∗�−1

D2m(Sn+1)
H→ H∗Dm(S2n+1) → · · ·

and isomorphisms E : H∗D2m−1(Sn)
∼=→ H∗�−1

D2m−1(Sn+1).

In fact this holds even if we replace HFp with any complex oriented cohomology
theory. The proof comes from the fact that if E is complex oriented, and V is any
complex G-representation then E ∧ SV and E ∧ Sdim V are equivalent as naive G-
spectra. So in particular if n ≥ 0 then �2mnHFp ∧ ∂m ∧ (S−n)∧m , where �m acts
trivially on �mn , and by permuting the coordinates (S−n)∧m , is equivalent as a naive
�m-spectrum to HFp ∧ ∂m ∧ (Sn)∧m , which gives the result.

Lemma 4.5 H∗D2(S2l) is generated by the element [ι, ι], where ι ∈ H∗D1(S2l) ∼=
H∗(S2l) is a generator.

Proof Note that ∂2 consists of a single�2-fixed (−1)-cell labelled by T2, the same cell
that carries the bracket operation. A routine calculation shows that when l is positive
D2(S21) � �2l−1(RP∞/RP2l−1), which has homology concentrated in dimension
4l − 1. Furthermore it is easy to see that the map

∂2 ∧ S2l ∧ S2l = ∂2 ∧ D1(S
2l) ∧ D1(S

2l) → D2(S
2l)

is a homology isomorphism taking the generator T2 ⊗ ι ⊗ ι to [ι, ι].
Using the argument in Lemma 4.4 we can easily extend this to negative l’s as well.

�
We are now ready to give the full case for the even dimensional sphere:

Corollary 4.6 As a Fp vector space, H∗Dm(S2l) has a basis

• {
βε1Qs1 · · · βεk Qsk ι

∣
∣sk ≥ l, si > psi+1 − εi+1 ∀i} when m = pk for some k,

• {
βε1Qs1 · · · βεk Qsk [ι, ι]∣∣sk ≥ 2l, si > psi+1 − εi+1 ∀i} when m = 2pk for some
k, and

• ∅ when m �= 2pk, or m �= pk for any k.

where ι ∈ H∗D1(S2l) = H∗(S2l) is a generator.
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Proof This clearly follows from Proposition 4.3, Lemmas 4.4 and 4.5, Theorems 4.1
and 4.2.

�
Note that for p �= 3, both the Jacobi identity and Proposition 4.3 give us that

[ι2l , [ι2l , ι2l ]] is trivial in H∗(D3(S2l)). For p = 3 however we need to check
this by hand (note this is similar to the fact that in characteristic 3, there are two
different notions of Lie algebras dependent on whether or not to include the axiom
[x, [x, x]] = 0).

Corollary 4.7 Let p = 3. In H∗(D3(S2l)) the element [ι2l , [ι2l , ι2l ]] is trivial.

Proof In dimension 6l − 3, H∗D3(S2l−1) has one generator βQl ι2l−1. Under the
isomorphism H∗D3(S2l−1) � H∗�−1

D3(S2l) this element maps to σ−1βQl ι2l under
the identification, where σ−1 is the desuspension. We therefore just need to show that
[ι2l , [ι2l , ι2l ]] is not a non-trivial multiple of βQl ι2l . Tracing through the definitions
we see that βQl ι2l is carried by the cell labelled by the tree T3, and [ι2l , [ι2l , ι2l ]] is
carried by the cell labelled by the �3 orbit of T 1,3. The spectral sequence of Lemma
2.7 computing H∗D3(S2l) has only two lines, so thereforewe get a long exact sequence

· · · → H6l−2

(
�−2S2l

)∧3
h�T 1,3

→ H6l−2D3

(
S2l

)
→ H6l−2

(
�−1S2l

)∧3
h�T3

d1→ · · ·

Clearly

H6l−2D3(S2l) H6l−2(�
−1S2l)∧3h�T3

βQl ι2l σ−1βQl ι2l

by definition, where σ−1 denotes the desuspension, and�T3 � �3. Hence the element
σ−2ι2l�ι2l�ι2l ∈ H6l−2(�

−2S2l)∧3h�T 1,3
,whichmaps to [ι2l , [ι2l , ι2l ]] in H6l−2D3(S2l),

must map to the trivial element, since �T 1,3 � �2, and � denotes the Pontryagin
product. This concludes the proof. �

5 Main result

Before stating our main result, we will need a bit of terminology:

Definition 5.1 If M∗ is a graded Fp vector space with basis B, then defineA(M∗) to
be the graded vector space with basis

B ∪
⋃

k≥2

{[a1, [a2, [. . . , [ak−1, ak] . . .]]∣∣ai ∈ B
}
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where |[x, y]| = |x | + |y| − 1. Define the free shifted Lie algebra sL(M∗) to be A∗
modulo the relations for all x, y, z ∈ A(M∗)

• [x, y] + [x, z] = [x, y + z] (Linearity)
• [x, y] = (−1)|x ||y|[y, x] (Graded Commutativity)
• (−1)|x ||z|[x, [y, z]] + (−1)|y||z|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0 (The Graded
Jacobi Identity)

• For p = 3 [x, [x, x]] = 0

We define the free shifted Lie algebra with Power operations, sLP (M∗) to be

⋃

k≥0

{

βε1Qs1 · · · βεk Qsk x
∣
∣x ∈ sL(M∗), sk ≥ |x |

2
, si > psi+1 − εi+1∀i

}

subject to linearity of the power operations.

Clearly given any spectrum X we have a map sLP (H∗(X)) → H∗P(X).
We are now ready to state our main theorem:

Theorem 5.2 If X is a spectra, then the map sLP (H∗(X)) → H∗P(X) is an isomor-
phism of Fp vector spaces.

The proof follows from the results above and arguments completely analogous to the
proof of Theorem 7.1 in [4], which I will summarize here.

Proof Step one is showing that the homology of P(X) depends only on the homology
of X . In fact Antolin-Camarena shows that this is true for any operad in spectra. From
here we need to prove the theorem in increasing generality. The first case is taken care
of by noting that we have already proved the theorem in the case where X is a sphere.
From here we can use a result of Arone and Kankaanrinta [2, Theorem 0.1] to extend
the result to when X is a finite wedge of spheres, and then we note that this also gives
us the case for arbitrary wedges of spheres, writing it as a filtered colimit of finite
wedges of spheres, and recall that homology and free constructions commute with
filtered colimits. The last case is for a general X . We simply pick a basis for H∗(X),
{xi }, and then use the following homology isomorphism:

H∗

(
∨

i

S|xi |
)

→ H∗(X)

given by the sum of the xi ’s and that gives the full result. �
One could have hoped for a description of the relations the power operations satisfy,

as was done for the p = 2 case in [7, Theorem 1.5.1]. The argument there relies on
a good understanding of the homology of the James–Hopf map (see [15]), which due
to combinatorics appears harder to obtain for odd primes.

Conjecture 5.3 The Lie power operations satisfy the mixed Adem relations, see [10]
II.3 for a statement of these.
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Remark 5.4 Note that to prove Conjecture 5.3 for positive homology classes, it will
suffice to prove the following:

The transfer H∗(�p2) → H∗(�p � �p) is given by

βεQi Q j �→ βεQi Q j + Mixed Adem Relations.

The conjecture then follows from the fact that the kernel of the surjection

�−2H∗(S2l+1)
p2

h�p ��p
→ H∗Dp2(S

2l+1) from [3, Theorem 3.16] is given by the

image of the transfer H∗(S2l+1)
p2

h�p2
→ H∗(S2l+1)

p2

h�p ��p
.

Note that Conjecture 5.3 and Remark 5.4 hold for p = 2.
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