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Abstract Adapting a result of Félix–Halperin–Lemaire concerning the Lusternik–
Schnirelmann category of products, we prove the additivity of a rational approximation
for Schwarz’s sectional category with respect to products of certain fibrations.
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1 Introduction

The sectional category [12] (or Schwarz genus) of a fibration p : E → X , secat(p),
is the smallest integer m such that X admits a cover by (m + 1) open sets on each
of which a local section for p exists. This homotopy invariant is a generalization of
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the well-known Lusternik-Schnirelmann (L.-S.) category [10] of a path-connected
space X , cat(X), as the latter is the sectional category of the path fibration PX → X ,
α �→ α(1), where PX is the space of paths starting at the base point.

One of the most important results of [5] says that, if X and Y are simply con-
nected rational spaces of finite type, then cat(X × Y ) = cat(X) + cat(Y ). This was
achieved by first proving the analogous result for the lower bound module L.-S. cat-
egory, mcat(X), of cat(X) using differential graded (DG) module techniques. It was
then lifted to rational category using Hess’ theorem [9]. We propose to apply simi-
lar DG-module techniques to the lower bound msecat(p) of secat(p) called module
sectional category and introduced in [7].

Throughout this paper we consider fibrations whose base and total space have the
homotopy type of simply connected CW-complexes of finite type. Our main result is

Theorem 1 Let p and p′ be two fibrations. If either p or p′ admits a homotopy
retraction, then

msecat(p × p′) = msecat(p) + msecat(p′).

Recall the important particular case of sectional category provided by Farber’s
(higher) topological complexity [4,11] of a space X , TCn(X) = secat(πn), where the
considered fibration πn : X [1,n] → Xn is given by πn(α) = (α(1), α(2), . . . , α(n)).
Consequently, themodule invariant associated to (higher) topological complexity, i.e.,

mTCn(X) := msecat(πn),

is additive on products. Namely

Corollary 2 Let X and Y be two spaces. Then

mTCn(X × Y ) = mTCn(X) + mTCn(Y ).

These results are improvements over [2] as only one of the two fibrations of Theo-
rem 1 needs a homotopy retraction and the Poincaré duality assumption is no longer
required.

2 Preliminaries

This section contains a brief summary of the DG-modules techniques that will be used
(see [6] for further details). Let (A, d) be a commutative differential graded algebra
over Q (cdga). An (A, d)-module is a chain complex (M, d) together with a degree
0 action of A satisfying d(ax) = (da)x + (−1)|a|a(dx). A semifree extension of
an (A, d)-module (M, d) is an (A, d)-module of the form (M ⊕ A ⊗ U, d) where
the action is the one of the direct sum, the differential on M is the differential of
(M, d), andU admits a direct sum decompositionU = ⊕∞

i=0Ui such that d(U0) ⊂ M
and d(Un) ⊂ M ⊕ A ⊗ (⊕n−1

i=0Ui ) for n ≥ 1. A semifree (A, d)-module is a semifree
extension (A⊗U, d)of the trivial (A, d)-module 0 and the data of a quasi-isomorphism
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(A ⊗ U, d)

→ (M, d) is called a semifree resolution of (M, d). The category of

(A, d)-modules is a proper closed model category in which semifree extensions are
cofibrations (see, for instance, [7, Theorem 4.1]). Two (A, d)-module morphisms
φ,ψ : (M, d) → (N , d) are homotopic if there is an A-linear map θ : M → N of
degree −1 such that φ − ψ = dθ + θd. We will frequently use the fact that any
(A, d)-module morphism ϕ : (M, d) → (N , d) can be decomposed as (the inclusion
of) a semifree extension followed by a quasi-isomorphism as well as the following
lifting lemma. Given a solid arrow commutative diagram of (A, d)-modules of the
form

(A, d) (M, d)




(P, d) (N , d)

in which the morphism (A, d) → (P, d) is a semifree extension, there is an (A, d)-
module morphism (P, d) → (M, d) making commutative the upper triangle and
homotopy commutative (rel. A) the lower triangle. A morphism of (A, d)-modules
ϕ : (M, d) → (N , d) is said to have ahomotopy retraction if there exists a commutative
diagram of (A, d)-modules,

(M, d)
Id

ϕ

(M, d)

(N , d) (P, d).


If M is an (A, d)-module, the module M# = hom(M,Q) admits an (A, d)-module
structure with action (aϕ)(x) = (−1)|a|·|ϕ|ϕ(ax) and differential dϕ = (−1)|ϕ|ϕ ◦ d.
If N is an (A, d)-module, then the module M⊗A N admits an (A, d)-module structure
with action a(m⊗n) = (am)⊗n and differential d(m⊗n) = dm⊗n+(−1)|m|m⊗dn.
If P is (A, d)-semifree and if η is a quasi-isomorphism of (A, d)-modules then
η ⊗A IdP and IdP ⊗A η are also quasi-isomorphisms.

The following lemma is an adaptation of a central idea of [5].

Lemma 3 Let ϕ : (A, d) → (B, d) be a surjective cdga morphism with kernel K and
A of finite type. The morphism ϕ admits a homotopy retraction of (A, d)-modules if

and only if for any (A, d)-semifree resolution η : P 
−→ A#, the projection

	 : P −→ P

K · P
is injective in homology.
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Proof Suppose that ϕ admits a homotopy retraction of (A, d)-modules. This means
that there exists a homotopy commutative diagram of (A, d)-modules of the form

A
IdA

ϕ
i

A

B Q,


r

where Q is an (A, d)-semifree resolution of B. Now let η : P 
−→ A# be an (A, d)-
semifree resolution. By applying − ⊗A P to the diagram above, we get

P
IdP

P

B ⊗A P Q ⊗A P.


Since B and A
K are isomorphic cdgas, we have B ⊗A P = P

K ·P . Hence the left hand
morphism is simply the projection 	 : P → P

K ·P . The diagram shows that 	 admits a
homotopy retraction of (A, d)-modules. Hence it is injective in homology.

Conversely, suppose that 	 is injective in homology. Since A is of finite type,
η# : A → P# is also an (A, d)-semifree resolution. Moreover,

	# :
(

P

K · P
)#

→ P#

is surjective in homology. Hence there exists a cycle γ ∈ ( P
K ·P

)#
such that [γ ◦

	] = [η#(1)]. Now define an (A, d)-module morphism α : A → ( P
K ·P )# by setting

α(1) = γ . Then 	# ◦ α is a quasi-isomorphism. To finish the proof, we observe

that K · ( P
K ·P

)# = 0. Hence the map 	# ◦ α factors through ϕ as B = A/K . Let

A
i→ Q


→ B be a decomposition of ϕ as a semifree extension followed by a quasi-
isomorphism. Applying the lifting lemma to the solid arrow commutative diagram

A

i

IdA
A

	#◦α


Q 
 B P#,

we obtain the desired homotopy (A, d)-module retraction for ϕ. 
�
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3 The invariant msecat( p)

Let us denote by pm : JmX (E) → X the join ofm+1 copies of a fibration p : E → X .
As is well-known [12], secat(p) ≤ m if and only if pm admits a homotopy section.
By definition, msecat(p) is the smallest m such that APL(pm) admits a homotopy
retraction of APL(X)-modules, where APL denotes Sullivan’s functor of piecewise
linear forms [13].

Let ϕ : (A, d) → (B, d) be any cdga model of p and

(A, d) ↪→ (A ⊗ (Q ⊕U ), d)
ξ→ (B, d). (1)

a factorization in the category of (A, d)-modules of ϕ as the inclusion of a semifree
extension followed by a quasi-isomorphism ξ . We refer to the inclusion as a semifree
model of p. For x ∈ U , we write dx = d0x +d+x , where d0x ∈ A and d+x ∈ A⊗U .
We notice that, if ϕ is surjective, then the quasi-isomorphism ξ can be constructed
to satisfy ξ(U ) = 0, which implies that d0x ∈ ker ϕ for x ∈ U . Recall that the
nth-suspension s−nV of a graded vector space V is defined by (s−nV )i = V i−n .

According to [7] (Thm 5.4, p.135), msecat(p) is the leastm such that the following
(A, d)-semifree model of pm

jm : (A, d) → (A ⊗ (Q ⊕ s−mU⊗m+1), D)︸ ︷︷ ︸
Jm

.

admits a retraction of (A, d)-modules, where the differential D is given by

D(s−mx0 ⊗ · · · ⊗ xm) = (−1)

m∑
k=1

(k|xm−k |+k−1)
d0x0 · · · · · d0xm

+
m∑
i=0

∑
ji

(−1)(|ai ji |+1)(|x0|+···+|xi−1|+m)ai ji ⊗ s−mx0 ⊗ · · · ⊗ xi ji ⊗ · · · ⊗ xm,

for x0,..., xm ∈ U and d+xi = ∑
ji ai ji ⊗ xi ji with ai ji ∈ A and xi ji ∈ U .

Using the following notation (suggested by the standard rules of signs)

s−mx0 ⊗ · · · ⊗ d+xi ⊗ · · · ⊗ xm :=
∑
ji

σi ji ai ji ⊗ s−mx0 ⊗ · · · ⊗ xi ji ⊗ · · · ⊗ xm,

we can write D+(s−mx0 ⊗ · · · ⊗ xm) as

D+(s−mx0 ⊗ · · · ⊗ xm) = (−1)m
m∑
i=0

∑
ji

τi s
−mx0 ⊗ · · · ⊗ d+xi ⊗ · · · ⊗ xm,

where σi ji := (−1)|ai ji |(|x0|+···+|xi−1|+m) and τi := (−1)(|x0|+···+|xi−1|).
When the fibration p : E → X is endowed with a homotopy retraction, there

exists a surjective cdga model of p which is a retraction of a cdga cofibration (see,
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for instance, [3, Section 5.1] for an explicit construction). Such a model is called an
s-model. We will use the following result from [1].

Theorem 4 ([1, Theorem 3.3]) Let p be a fibration endowed with a homotopy retrac-
tion. For any s-model ϕ : A → A

K of p, msecat(p) is the smallest m for which the
projection ρm : A → A

Km+1 admits a homotopy retraction of (A, d)-modules.

By using this result together with Lemma 3, we obtain the following new charac-
terization of msecat(p) when p admits a homotopy retraction.

Proposition 5 Let p : E → X be a fibration endowed with a homotopy retraction,
ϕ : A → A

K an s-model for p and (A, d) → (A ⊗ (Q ⊕ U ), d) a semifree extension

for ϕ, as in (1). Let also η : P

−→ A# be an (A, d) semifree resolution. Then the

following are equivalent

(i) msecat(p) ≤ m,
(ii) the morphism IdP ⊗A jm : P → P⊗ (Q⊕ s−mU⊗m+1) is injective in homology,
(iii) the projection P → P

Km+1·P is injective in homology.

Proof It is clear that (i) implies (i i). From the proof of [1, Theorem 3.3], there is a
diagram

A
jm

λm
ρm

Jm 
 Cm
A

Km+1 ,

where the map λm : A → Cm is a model of pm : JmX (E) → X , the left hand triangle
is commutative up to a homotopy of (A, d)-modules, and the right hand triangle is
strictly commutative.Applying IdP⊗A− to the previous diagram,we get the following
diagram of (A, d)-modules:

P
IdP⊗A jm

P ⊗ (Q ⊕ s−mU⊗m+1) 
 P ⊗A Cm
P

Km+1·P

where the left hand triangle is commutative up to a homotopy of (A, d)-modules and
the right hand triangle is strictly commutative, which yields (i i) ⇒ (i i i). Finally the
implication (i i i) ⇒ (i i) follows from Lemma 3 applied to ρm . 
�

4 The main result

Finally, we present a proof of the additivity of module sectional category when only
one of the fibrations admits homotopy retraction.

We first notice that one of the inequalities of Theorem 1 follows in general:
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Proposition 6 Let p : E → X and p′ : E ′ → X ′ be two fibrations. We have

msecat(p × p′) ≤ msecat(p) + msecat(p′).

Proof In [8, Section 7.2], maps ψ
E,E ′
n,m producing a commutative diagram of the fol-

lowing form are constructed:

JnX (E) × JmX ′(E ′)
ψ

E,E ′
n,m

pn×p′
m

Jm+n
X×X ′(E × E ′)

(p×p′)n+m

X × X ′.

By applying APL to this diagram, we can establish that, if msecat(p) ≤ m and
msecat(p′) ≤ n then msecat(p × p′) ≤ m + n. 
�

In order to prove our main result (Theorem 1), it remains to establish the inequality
msecat(p × p′) ≥ msecat(p) +msecat(p′) under the additional assumption that one
of the fibration, say p, admits a homotopy retraction. We notice that, if both fibrations
would admit a homotopy retraction, a direct adaptation of the strategy of [5] together
with Proposition 5 would give a proof of this inequality. The following less immediate
adaptation of [5] provides a proof when only p admits a homotopy retraction.

Proof (Proof of Theorem 1) Take an s-model ϕ for p and an (A, d)-semifree extension
(A ⊗ (Q ⊕ U ), d) of ϕ such that d0(x) ∈ K = ker ϕ for x ∈ U . Let also (B, d) →
(B ⊗ (Q ⊕ V ), d) be a (B, d)-semifree model of p′. Then p × p′ is modeled by the
tensor product of the two semifree extensions which gives a semifree extension of
(A ⊗ B, d)-modules that we write as follows

A ⊗ B → A ⊗ B ⊗ (Q ⊕ Z), where Z = U ⊕ V ⊕U ⊗ V .

In order to prove the statement, we suppose msecat(p) = m and msecat(p × p′) =
m + n and show that msecat(p′) ≤ n.

Let P

−→ A# be an (A, d)-semifree resolution. Since msecat(p) = m we know

from Proposition 5 that there exists� ∈ H(Km ·P)which is not trivial in H(P). Then
there exist a cocyle ω ∈ Km · P representing � in H(P) and θ ∈ P ⊗ s−(m−1)U⊗m

such that dθ = ω. As a chain complex, we can write P = ω ·Q⊕ S where d(S) ⊂ S,
and we define the following linear map of degree −|ω|:

Iω : P → Q, Iω(ω) = 1, Iω(S) = 0.

This map commutes with differentials. Now write the element θ ∈ P ⊗ s−(m−1)U⊗m

as

θ =
∑
i

qi ⊗ s−(m−1)xi
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with qi ∈ P and xi ∈ U⊗m . Since dθ = ω we have d+θ = 0 and d0θ = ω.
Let ψ : B ⊗ (Q⊕ s−nV⊗n+1) → P ⊗ B ⊗ (Q⊕ s−m−n Z⊗m+n+1) be the B-linear

map of degree |ω| given by ψ(1) = ω ⊗ 1 and, for y ∈ V⊗n+1,

ψ(s−n y) = −(−1)n|ω| ∑
i

(−1)(n+1)|qi |qi ⊗ 1 ⊗ s−m−nxi ⊗ y

and extended to B⊗(Q⊕s−nV⊗n+1) by the ruleψ(b ·x) = (−1)|b||ω|b ·ψ(x). Notice
that the structure of (B, d)-module on P ⊗ B ⊗ (Q ⊕ s−m−n Z⊗m+n+1) is given by
b · (q ⊗ b′ ⊗ z) = (−1)|q||b|q ⊗ bb′ ⊗ z. In particular ψ(b) = ω ⊗ b. Let us now see
that ψ commutes with differentials, that is ψ ◦ d = (−1)|ω|d ◦ψ . Since ψ is B-linear
and since ω is a cocycle we only have to see that

dψ(s−n y) = (−1)|ω|ψ(ds−n y),

for each y ∈ V⊗n+1. Writing the differential of P ⊗ B ⊗ (Q ⊕ s−m−n Z⊗m+n+1) as

d = d0 + d+ ∈ P ⊗ B ⊕ P ⊗ B ⊗ s−m−n Z⊗m+n+1

we can check that

– d0ψ(s−n y) = (−1)|ω|ψ(d0s−n y) using the fact that d0θ = ω, and
– d+ψ(s−n y) = (−1)|ω|ψ(d+s−n y) using the fact that d+θ = 0.

From the assumption msecat(p × p′) = m + n we know that the morphism

j A⊗B
m+n : A ⊗ B → A ⊗ B ⊗ (Q ⊕ s−m−n Z⊗m+n+1).

admits a retraction r of (A ⊗ B, d)-modules. Finally the composite

B ⊗ (Q ⊕ s−nV⊗n+1)
ψ

P ⊗ B ⊗ (Q ⊕ s−m−n Z⊗m+n+1)

P⊗Ar

P ⊗ B
Iω⊗Id

B.

gives amorphism (of degree 0) of (B, d)-module which is a retraction for the inclusion
B → B ⊗ (Q ⊕ s−nV⊗n+1). This proves that msecat(p′) ≤ n. 
�
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