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Abstract Adapting a result of Félix—Halperin—-Lemaire concerning the Lusternik—
Schnirelmann category of products, we prove the additivity of a rational approximation
for Schwarz’s sectional category with respect to products of certain fibrations.
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1 Introduction

The sectional category [12] (or Schwarz genus) of a fibration p : E — X, secat(p),
is the smallest integer m such that X admits a cover by (m + 1) open sets on each
of which a local section for p exists. This homotopy invariant is a generalization of
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the well-known Lusternik-Schnirelmann (L.-S.) category [10] of a path-connected
space X, cat(X), as the latter is the sectional category of the path fibration PX — X,
a — «a(l), where P X is the space of paths starting at the base point.

One of the most important results of [5] says that, if X and Y are simply con-
nected rational spaces of finite type, then cat(X x Y) = cat(X) + cat(Y). This was
achieved by first proving the analogous result for the lower bound module L.-S. cat-
egory, mcat(X), of cat(X) using differential graded (DG) module techniques. It was
then lifted to rational category using Hess’ theorem [9]. We propose to apply simi-
lar DG-module techniques to the lower bound msecat(p) of secat(p) called module
sectional category and introduced in [7].

Throughout this paper we consider fibrations whose base and total space have the
homotopy type of simply connected CW-complexes of finite type. Our main result is

Theorem 1 Let p and p’ be two fibrations. If either p or p’ admits a homotopy
retraction, then

msecat(p x p’) = msecat(p) + msecat(p’).

Recall the important particular case of sectional category provided by Farber’s
(higher) topological complexity [4,11] of a space X, TC, (X) = secat(m, ), where the
considered fibration 7, : X" — X" is given by 7, (a) = (a(1), @(2), ..., a(n)).
Consequently, the module invariant associated to (higher) topological complexity, i.e.,

mTC,(X) := msecat(rm,),

is additive on products. Namely

Corollary 2 Let X and Y be two spaces. Then
mTC,(X x Y) = mTC,,(X) + mTC, (Y).

These results are improvements over [2] as only one of the two fibrations of Theo-
rem | needs a homotopy retraction and the Poincaré duality assumption is no longer
required.

2 Preliminaries

This section contains a brief summary of the DG-modules techniques that will be used
(see [6] for further details). Let (A, d) be a commutative differential graded algebra
over Q (cdga). An (A, d)-module is a chain complex (M, d) together with a degree
0 action of A satisfying d(ax) = (da)x + (—=Dlla(dx). A semifree extension of
an (A, d)-module (M, d) is an (A, d)-module of the form (M & A ® U, d) where
the action is the one of the direct sum, the differential on M is the differential of
(M, d), and U admits a direct sum decomposition U = @?ioUi suchthatd(Uy) C M
andd(U,) CM P AR (69;’:_01 U;) forn > 1. A semifree (A, d)-module is a semifree
extension (AQU, d) of the trivial (A, d)-module 0 and the data of a quasi-isomorphism
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(A® U,d) 3 (M, d) is called a semifree resolution of (M, d). The category of
(A, d)-modules is a proper closed model category in which semifree extensions are
cofibrations (see, for instance, [7, Theorem 4.1]). Two (A, d)-module morphisms
¢, v: (M,d) - (N, d) are homotopic if there is an A-linear map 6 : M — N of
degree —1 such that ¢ — ¢ = d6 + 6d. We will frequently use the fact that any
(A, d)-module morphism ¢ : (M, d) — (N, d) can be decomposed as (the inclusion
of) a semifree extension followed by a quasi-isomorphism as well as the following
lifting lemma. Given a solid arrow commutative diagram of (A, d)-modules of the
form

(A,d) —— (M, d)

T

(P,d)%(N, d)

in which the morphism (A, d) — (P, d) is a semifree extension, there is an (A, d)-
module morphism (P,d) — (M, d) making commutative the upper triangle and
homotopy commutative (rel. A) the lower triangle. A morphism of (A, d)-modules
¢: (M,d) — (N, d)issaidtohave ahomotopy retraction if there exists acommutative
diagram of (A, d)-modules,

M, d) 4 (M, d)

N

(N.d) <— (P, d).

If M is an (A, d)-module, the module M* = hom(M, Q) admits an (A, d)-module
structure with action (a@)(x) = (—1)I¢lp(ax) and differential dp = (—1)1¢!p o d.
If Nisan (A, d)-module, then the module M ® 4 N admits an (A, d)-module structure
with actiona(m®n) = (am)@n and differential d(m®n) = dm@n+(— D" mQdn.
If P is (A, d)-semifree and if n is a quasi-isomorphism of (A, d)-modules then
n®a Idp and Idp ® 4 n are also quasi-isomorphisms.

The following lemma is an adaptation of a central idea of [5].

Lemma 3 Let¢: (A, d) — (B, d) be a surjective cdga morphism with kernel K and
A of finite type. The morphism ¢ admits a homotopy retraction of (A, d)-modules if

and only if for any (A, d)-semifree resolution n: P = A¥| the projection
o: P— ——

K.-P

is injective in homology.

@ Springer



548 J. G. Carrasquel et al.

Proof Suppose that ¢ admits a homotopy retraction of (A, d)-modules. This means
that there exists a homotopy commutative diagram of (A, d)-modules of the form

A Ids
|\
¢
B'%

where Q is an (A, d)-semifree resolution of B. Now letn : P = A*bean (A, d)-
semifree resolution. By applying — ® 4 P to the diagram above, we get

r

QH—>

3

Idp

pP——" P

|

B®AP-TQ®AP.

Since B and % are isomorphic cdgas, we have B ® 4 P = ﬁ. Hence the left hand
morphism is simply the projection o: P — %. The diagram shows that ¢ admits a
homotopy retraction of (A, d)-modules. Hence it is injective in homology.

Conversely, suppose that o is injective in homology. Since A is of finite type,
17#: A — P*isalsoan (A, d)-semifree resolution. Moreover,

#
P
o' (—) — pP*
K-P

is surjective in homology. Hence there exists a cycle y € (%)# such that [y o
ol = [n*(1)]. Now define an (A, d)-module morphism o: A — (%)# by setting
a(l) = y. Then ¢" o « is a quasi-isomorphism. To finish the proof, we observe
that K - (K—Z,)# = 0. Hence the map o" o « factors through ¢ as B = A/K. Let
A5 Q S Bbea decomposition of ¢ as a semifree extension followed by a quasi-

isomorphism. Applying the lifting lemma to the solid arrow commutative diagram

Ida

- S A

A
ii = ~ | o*oux
0~ ‘

— B —— P7,

we obtain the desired homotopy (A, d)-module retraction for ¢. O
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3 The invariant msecat(p)

Let us denote by p,,: J¥' (E) — X the join of m + 1 copies of a fibration p: E — X.
As is well-known [12], secat(p) < m if and only if p,, admits a homotopy section.
By definition, msecat(p) is the smallest m such that Apr (p,) admits a homotopy
retraction of A py (X)-modules, where A py denotes Sullivan’s functor of piecewise
linear forms [13].

Lety: (A,d) — (B, d) be any cdga model of p and

(A.d) > (AR Q®U),d) > (B, d). 1)

a factorization in the category of (A, d)-modules of ¢ as the inclusion of a semifree
extension followed by a quasi-isomorphism &. We refer to the inclusion as a semifree
model of p. Forx € U, we write dx = dox +dyx,wheredpx € Aandd;x € AQU.
We notice that, if ¢ is surjective, then the quasi-isomorphism & can be constructed
to satisfy £(U) = 0, which implies that dpx € ker¢ for x € U. Recall that the
n'"-suspension s~V of a graded vector space V is defined by (s ™" V)! = Vi~

According to [7] (Thm 5.4, p.135), msecat(p) is the least m such that the following
(A, d)-semifree model of p,,

jmi (A, d) > (AQ Q@ s~ "U®" Y, D).

I

admits a retraction of (A, d)-modules, where the differential D is given by

m

> (klxm—|+k—1)

D(s™xg® -+ ® xp) = (=)= doxg - -+ - doxm
m
+ Z Z(_l)(laij,- ‘+l)(‘x0|+"'+‘x"’l‘+m)aij,- Rs MR- ® Xij @ ® X,
i=0 ji

for xg,..., X, € U and d+x; = Zji aij; & Xij; with ajj; € A and xij; € U.
Using the following notation (suggested by the standard rules of signs)

ST ® - Qdixi ® - ® xp :=ZUij,-aij,- s "XN® - ®Xij; @ ® Xy,
Ji

we can write D1 (s7"x) ® - - ® x;;) as
m
Di(s"x0 @ @xm) = (=D" Y Y Tus"x0® - ®dixi @ @ X,
i=0 ji

where o, := (_l)laij,-I(\xo|+~-~+\x,>1\+m) and 7; := (=) xol+-+lxizah
When the fibration p : E — X is endowed with a homotopy retraction, there
exists a surjective cdga model of p which is a retraction of a cdga cofibration (see,
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for instance, [3, Section 5.1] for an explicit construction). Such a model is called an
s-model. We will use the following result from [1].

Theorem 4 ([1, Theorem 3.3]) Let p be a fibration endowed with a homotopy retrac-
tion. For any s-model ¢: A — % of p, msecat(p) is the smallest m for which the

projection py, . A — % admits a homotopy retraction of (A, d)-modules.

By using this result together with Lemma 3, we obtain the following new charac-
terization of msecat(p) when p admits a homotopy retraction.

Proposition 5 Let p : E — X be a fibration endowed with a homotopy retraction,
p:A— % an s-model for p and (A,d) - (A® (Q & U), d) a semifree extension

for @, as in (1). Let also n: P = A* be an (A, d) semifree resolution. Then the
following are equivalent

(i) msecat(p) < m,
(ii) the morphismIdp ®4 ju: P — PQ(Q@s "U®"t) is injective in homology,

(iii) the projection P — = is injective in homology.

Proof 1Tt is clear that (i) implies (ii). From the proof of [1, Theorem 3.3], there is a
diagram

Km+1>

where the map A, : A — Cp, is a model of p,,: Jy' (E) — X, the left hand triangle
is commutative up to a homotopy of (A, d)-modules, and the right hand triangle is
strictly commutative. Applying Id p ® 4 — to the previous diagram, we get the following
diagram of (A, d)-modules:

P

PRQ®s™US™) — = P @) Cw < zoirp

where the left hand triangle is commutative up to a homotopy of (A, d)-modules and

the right hand triangle is strictly commutative, which yields (ii) = (iii). Finally the
implication (iii) = (ii) follows from Lemma 3 applied to py,. O

4 The main result
Finally, we present a proof of the additivity of module sectional category when only

one of the fibrations admits homotopy retraction.
We first notice that one of the inequalities of Theorem 1 follows in general:
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Proposition 6 Let p: E — X and p’': E' — X' be two fibrations. We have
msecat(p x p’) < msecat(p) + msecat(p’).

Proof In [8, Section 7.2], maps l/f,f ;nE / producing a commutative diagram of the fol-
lowing form are constructed:

ik
JY(E) x Jy,(E") Jy e (E x E')
m m+m
X x X'

By applying Ap;, to this diagram, we can establish that, if msecat(p) < m and
msecat(p’) < n then msecat(p x p’) <m + n. O

In order to prove our main result (Theorem 1), it remains to establish the inequality
msecat(p x p’) > msecat(p) + msecat(p’) under the additional assumption that one
of the fibration, say p, admits a homotopy retraction. We notice that, if both fibrations
would admit a homotopy retraction, a direct adaptation of the strategy of [5] together
with Proposition 5 would give a proof of this inequality. The following less immediate
adaptation of [5] provides a proof when only p admits a homotopy retraction.

Proof (Proof of Theorem 1) Take an s-model ¢ for p and an (A, d)-semifree extension
(A® Q@ U),d) of ¢ such that dy(x) € K = ker¢ for x € U. Let also (B, d) —
(B® (Q® V), d) be a (B, d)-semifree model of p’. Then p x p’ is modeled by the
tensor product of the two semifree extensions which gives a semifree extension of
(A ® B, d)-modules that we write as follows

AR®B > A®R®BRQ(Q®Z), where Z=UdVOUQRYV.

In order to prove the statement, we suppose msecat(p) = m and msecat(p x p’) =
m + n and show that msecat(p’) < n.

Let P —> A" be an (A, d)-semifree resolution. Since msecat(p) = m we know
from Proposition 5 that there exists 2 € H (K™ - P) which is not trivial in H (P). Then
there exist a cocyle w € K™ - P representing 2 in H(P) and 6 € P ® s~ Dy®m
such that d@ = w. As a chain complex, we can write P = w - Q & S where d(S) C S,
and we define the following linear map of degree —|w|:

Iy: P—>Q, I,(w)=1, 1,(S)=0.

This map commutes with differentials. Now write the element § € P @ s~ "~ Dy®m
as

0 = qu (Y s_(m_l)x,-

1
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with g; € P and x; € U®™. Since df = w we have d;6 = 0 and dp6 = w.
Lety: B Qs "Vvetl) 5 PRBQR(Q@s ™ "2+ be the B-linear
map of degree || given by ¥(1) = w ® 1 and, for y € V& +1,

YTy = (=)Dl @ 1@ sy @
i

and extended to B® (Q@s V&) by the rule ¥ (b-x) = (—1)?I1®Ip. 4 (x). Notice
that the structure of (B, d)-module on P ® B ® (Q @ s~ " Z®m+n+1) i5 given by
b- (g ®2) = (—1Plg @ bb' @ z. In particular ¥ (b) = w ® b. Let us now see
that 1/ commutes with differentials, that is ¢ o d = (—1)°!d o y. Since ¥ is B-linear
and since w is a cocycle we only have to see that

dyr(s™"y) = (=D®ly(ds™"y),
foreach y € yont+l Writing the differential of P ® B (Q b s~ 7" ZEmtntly o
d=dy+d, e POQB®PQ®B®s " zomtntl

we can check that

— dor(s™"y) = (=)l (dos ™" y) using the fact that dpf = w, and
—diy(s™y) = (=D!ly(dys™"y) using the fact that d.0 = 0.

From the assumption msecat(p x p’) = m + n we know that the morphism
-]t;;\%f A ® B— A ® B X (Q D s_m_nZ®m+n+1).

admits a retraction r of (A ® B, d)-modules. Finally the composite

B Q@s™" V®n+1) L PRB®Qa sfmfnz®m+n+1)

\LP@A}”
1,®Id

P®B B.

gives a morphism (of degree 0) of (B, d)-module which is a retraction for the inclusion
B — B® (Q & s "V®"+1) This proves that msecat(p’) < n. O
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