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Abstract This paper is about a correspondence between monoidal structures in cate-
gories and n-fold loop spaces. We developed a new syntactical technique whose role
is to substitute the coherence results, which were the main ingredients in the proof
that the Segal–Thomason bar construction provides an appropriate simplicial space.
The results we present here enable more common categories to enter this delooping
machine. For example, such as the category of finite sets with two monoidal structures
brought by the disjoint union and Cartesian product.
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1 Introduction

A correspondence between monoidal structures in categories and loop spaces was
initially established by Stasheff in [23]. Since then, a connection of various algebraic
structures on a category with onefold, twofold, n-fold, and infinite loop spaces is a
subject of many papers (see [3,9,12,14,16,17,22,25], and references therein). The
categories in question are usually equipped with one or several monoidal structures,
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zpetric@mi.sanu.ac.rs

Sonja Lj. Čukić
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and natural transformations providing symmetry, braiding, or some other kind of inter-
change between these structures. There are two main approaches to the subject. One
is operadic and the other is through the Segal–Thomason bar construction, which we
simply call reduced bar construction, as in [25]. The latter, to which we will keep
to throughout the paper, is an approach to the Quillen plus construction and it is the
initial step connecting various monoidal categories with loop spaces.

The n-fold reduced bar construction based on an n-fold monoidal categoryM is an
iteration of a construction of a simplicial object based on amonoid in a category whose
monoidal structure is given by finite products. The goal is to obtain a lax functorWM
from (�op)n , the nth power of the opposite of the simplicial category, to the category
Cat, of categories and functors, such that

WM(k1, . . . , kn) = Mk1·...·kn .

The main result of this paper states that for every n ≥ 2, the n-fold reduced bar
construction delivers a certain lax functor. This is what we mean by correctness of the
reduced bar construction. We prove this result gradually—the cases n = 2, n = 3 and
n ≥ 3 are dealt with respectively in Theorems 4.5, 6.5 and 8.5.

Following the ideas of [3, Section 2], we show in Sect. 9, that the lax functor
WM satisfies some additional conditions. Roughly speaking, some particular arrows
of (�op)n , which are built out of face maps corresponding to projections, have to be
mapped by WM to identities. Such a lax functor is called Segal’s in [20].

By applying Street’s rectification to WM (see [24]) one obtains a functor V , with
the same source and target asWM. From [20, Corollary 4.4], when B is the classifying
space functor, it follows that B ◦ V is a multisimplicial space with some properties
guaranteing that, up to group completion (see [18,22]), the realization of this multi-
simplicial space is an n-fold delooping of BM (see [20, Theorem 5.1]). A thorough
survey of results concerning these matters is given in [20] and the case n = 2 is
considered separately in [21].

This paper is strongly influenced by [3]. One can find the main ideas followed by
us in Sections 0, 1 and 2 of that paper. Also, the reader should consider [10] as an
earlier source of these ideas. The notions of two, three and n-fold monoidal categories
used in [3] and the corresponding notions used in this paper are compared in Sects. 2,
5 and 7. The case n = 2 is studied systematically in Sect. 2.

A definition of n-fold monoidal category is usually inductive as one starts with
the 2-category Cat whose monoidal structure is given by 2-products. The 0-cells
of a 2-category Mon(Cat) are pseudomonoids (or monoids) in Cat, i.e., monoidal
(or strict monoidal) categories. Then one makes a choice what to consider to be the
1-cells of Mon(Cat), i.e., how strictly they should preserve the monoidal structure.
The monoidal structure of Mon(Cat) is again given by 2-products. A pseudomonoid
(or a monoid) in Mon(Cat) is a (strict) twofold monoidal category and if we iterate
this procedure with the same degree of strictness, we obtain one possible notion of
n-fold monoidal category.

Joyal and Street [12], dealt with such a concept having in its basis a certain
2-category of monoidal categories, strong monoidal functors, and monoidal transfor-
mations. They showed that such a degree of strictness leads to a sequence of categorial
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structures starting with monoidal categories, then the braided monoidal categories as
the twofold monoidal categories and symmetric monoidal categories as the n-fold
monoidal categories for n ≥ 3.

Balteanu et al. [3], considered a variant of Mon(Cat) consisting of strict monoidal
categories, monoidal functors (in which the interchange between multiplicative struc-
tures need not be invertible), and monoidal transformations. This was an important
advance leading to a definition of n-fold monoidal categories without stabilization at
n = 3. However, they did not laxify the appropriate interchanges for units, which were
treated in their work as strict as possible.

The reason to stop at that notion is probably the impossibility of proving an appropri-
ate coherence result for the completely balancednotionof iteratedmonoidal categories.
Monoidal units usually produce difficulties in coherence results (cf. [13]). The situa-
tion brought by diversifying monoidal units in the case of n-fold monoidal structures
is very complicated.

The idea of [8,19] was to laxify the interchanges for units as much as the coherence
allows. Trimble and the second author showed that a coherence result for pseudocom-
mutative pseudomonoids, for which some structural constraints are invertible, in a
2-category of symmetric monoidal categories, lax symmetric monoidal functors, and
monoidal transformations is sufficient for the reduced bar construction.

In this paperwe consider the variant ofMon(Cat) inwhich the interchange between
multiplicative structures and interchange between units need not be invertible, i.e., a
2-monoidal category of monoidal categories, lax monoidal functors, and monoidal
natural transformations. This is the basis used by Aguiar and Mahajan [2], for the
definition of the notion of n-fold monoidal category. The possibility of defining n-fold
monoidal structureswith respect to such a basis ismuch less explored, perhaps because
of difficulties in proving the corresponding coherence results. Such a coherence result
usually guarantees commutativity of all the diagrams in n-fold monoidal categories
relevant for the reduced bar construction.

Our result is not of the form to prove the coherence and not to worry about the lax
conditions. We have developed a syntactical technique whose role is to substitute the
coherence results. The correctness of the reduced bar construction is guaranteed by
commutativity of certain diagrams. Our main goal is to check this directly.

We consider the two steps that seem to be necessary in the proof of correctness of the
reduced bar construction. These steps are roughly sketched below and precisely given
in Sects. 4, 6 and 8. It turns out that the definition of n-fold monoidal category given
in [2] provides these two steps. We start with checking the correctness of the reduced
bar construction based on a twofold monoidal category, i.e., 2-monoidal category of
[2], or duoidal category of [4,5]. The first step in this case is trivial, and the second
step, which may be simply modified and used for the n-fold case, is more involved.

Then we check the correctness of the reduced bar construction based on a threefold
monoidal category, i.e., 3-monoidal category of [2]. We go through two steps that are
in spirit the same as in the twofold case. Neither of these steps is now trivial but, as
mentioned above, the second is just a modification of the corresponding step in the
twofold case. The combinatorial structure of n-fold monoidal categories, defined by
iterating this procedure, as it is already shown in [2], stabilizes at n = 3. Hence, an
n-fold monoidal category, for n ≥ 3, may be envisaged as a sequence of n monoidal
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structures in a category, such that every triple of these structures corresponds to a
threefold monoidal category. The correctness of the reduced bar construction based
on an n-fold monoidal category is obtained as a simple modification of the results
mentioned above.

Our techniques are very much syntactical. We rely on a syntactical nature of the
simplicial category presented by its generating arrows and equations. These equations
are easily turned into rewrite rules,which are useful for somenormalization techniques.
Also, we try to point out the combinatorial core of the subject. This is the reason why
our definition of the reduced bar construction WM, although it covers the one of [3],
is given in different terms. From a composition of functors involved in the definition
of WM we abstract a shuffle of n sequences, whose members are generators of the
simplicial category.Thenweconsider someavailable transpositions turning this shuffle
into one obtained by concatenating these n sequences in a desired order. The first step
in the proof of correctness of the reduced bar construction shows that the equations
of n-fold monoidal categories suffice to consider any two applications of available
transpositions from one shuffle to the other to be equal. This is a consequence of
some naturality assumptions in the twofold case. In the n-fold case, for n ≥ 3, we
need some additional equations brought by the assumptions on 1-cells of Mon2(Cat).
Roughly speaking, these equations guarantee that the following two applications of
transpositions in our shuffles, which correspond to the Yang–Baxter equation, are
equal.

�
�

�
�

�
�

�
�

�
�

�
�

The sequences that constitute a shuffle may be transformed according to the equa-
tions of the simplicial category. Let �′ be the result of such a transformation of a
sequence �. The second step in the proof of correctness of the reduced bar construc-
tion shows that the equations of n-fold monoidal categories suffice to consider the
permutation of � or of �′ with a member of another sequence to be equal. All these
equations are already present in the twofold case.

Hence, the equations of n-fold monoidal categories guarantee the correctness of
the reduced bar construction. On the other hand, these equations are also necessary if
one proves the correctness through these two steps. Our work may be characterized as
the process of defining the n-fold monoidal categories just from the correctness of the
reduced bar construction based on a multiple monoidal structure. We believe there are
no further possibilities to laxify the notion of an n-fold monoidal category preserving
the correctness of the reduced bar construction.

With respect to the reduced bar construction, our result generalizes all the results
mentioned above. It does not involve coherence results whose proofs in the case
of n-fold monoidal categories are lengthy and complicated. The two steps of our
proofs mentioned above are pretty straightforward. This paper, except for some basic
categorial definitions and results needed for Sect. 9, is self-contained.
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To conclude, we mention that the interchanges between the monoidal structures
required for n-fold monoidal categories are usually brought about by braiding and
symmetry. It is pointed out in [8,19] that a bicartesian structure (a category with all
finite coproducts and products) brings the desired interchanges but the corresponding
coherence result required some unusual properties of such a category—a coproduct
of terminal objects should be terminal. Our results show that this coherence is not
necessary anymore and that every bicartesian category, for every n, may be conceived
as an n-foldmonoidal category in n+1 different ways. Although a bicartesian category
is already ∞-monoidal, since it is symmetric monoidal (in two ways), this fact is
interesting—there is a family, indexed by pairs of natural numbers, of reduced bar
constructions based on such a category. We discuss these matters in more details at
the end of Sect. 9. Also, this gives a positive answer to the second question of [19,
Section 8].

2 The twofold monoidal categories

The notion of twofold monoidal category that we use in this paper is defined in [11,
Section 4]. It appears in [2, Section 6.1] under the name 2-monoidal category and in
both [4, Section 2.2] and [5, Section 3] under the name duoidal category. The notion
appears as the second iterate of the inductive definition mentioned in the introduction.
It slightly generalizes the notion of bimonoidal intermuting category introduced in [8,
Section 12]. The difference between these two notions is that, in bimonoidal intermut-
ing categories, the arrows β and τ from below are required to be isomorphisms. The
motivation behind this invertibility requirement is a coherence result in the style of
Kelly and Mac Lane (see [13]), which is proved in [8].

Let Mon(Cat) be the 2-category whose 0-cells are the monoidal categories, 1-
cells are the monoidal functors, and 2-cells are the monoidal transformations (see [15,
XI.2]). The monoidal structure of Mon(Cat) is given by 2-products (see [6, 7.4]).

Definition A twofold monoidal category is a pseudomonoid in Mon(Cat).

The unfolded form of this definition is given in Sect. 10 (Appendix). In this paper
we are interested in strict monoidal structures and we now give a more symmetric
definition of twofold strict monoidal categories. A twofold strict monoidal cate-
gory is a category M equipped with two strict monoidal structures 〈M,⊗1, I1〉 and
〈M,⊗2, I2〉 togetherwith the arrows κ : I1 → I2,β : I1 → I1⊗2 I1, τ : I2⊗1 I2 → I2,
and a natural transformation ι given by the family of arrows

ιA,B,C,D : (A ⊗2 B) ⊗1 (C ⊗2 D) → (A ⊗1 C) ⊗2 (B ⊗1 D),

such that the following twelve equations hold:

ι ◦ (1 ⊗1 ι) = ι ◦ (ι ⊗1 1), (1)

ι ◦ (1 ⊗1 β) = 1, (2)

ι ◦ (β ⊗1 1) = 1, (3)
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τ ◦ (1 ⊗1 τ) = τ ◦ (τ ⊗1 1), (4)

τ ◦ (1 ⊗1 κ) = 1, (5)

τ ◦ (κ ⊗1 1) = 1, (6)

(1 ⊗2 ι) ◦ ι = (ι ⊗2 1) ◦ ι, (7)

(1 ⊗2 τ) ◦ ι = 1, (8)

(τ ⊗2 1) ◦ ι = 1, (9)

(1 ⊗2 β) ◦ β = (β ⊗2 1) ◦ β, (10)

(1 ⊗2 κ) ◦ β = 1, (11)

(κ ⊗2 1) ◦ β = 1. (12)

The twofold monoidal categories defined in [3, Definition 1.7] are the twofold strict
monoidal categories from above in which, moreover, it is assumed that I1 = I2 = 0
and κ = β = τ = 10. (The tensors ⊗1 and ⊗2 are denoted in [3] by �1 and �2, while
the natural transformation ι is denoted by η.) Hence, from our list of 12 equations,
the Eqs. (4), (5), (6), (10), (11) and (12) are trivial, (1) is the internal associativity
condition, (7) is the external associativity condition, (8) and (9) make together the
internal unit condition and (2) and (3) make together the external unit condition (see
[3, Definition 1.7]).

Also, every braided monoidal category is a twofold monoidal category in our sense.
Both monoidal structures of such a twofold monoidal category are the same, and all
the ι arrows are obtained by braiding.

3 The reduced bar construction

Here we will only give a definition of the reduced bar construction based on a strict
monoidal category. We refer to [19, Section 6] for the complete analysis of this con-
struction.

Let � (denoted by �+ in [15]) be the topologist’s simplicial category defined as in
[15, VII.5] for whose arrowswe take over the notation used in that book. In order to use
geometric dimension, the objects of �, which are the nonempty ordinals {1, 2, 3, . . .}
are rewritten as {0, 1, 2, . . .}. Hence, for n ≥ 1 and 0 ≤ i ≤ n, the source of δni is n−1
and the target is n, while for n ≥ 1 and 0 ≤ i ≤ n − 1, the source of σ n

i is n and the
target is n − 1. When we speak of �op, then we denote its arrows (δni )

op : n → n − 1
by dni and (σ n

i )op : n − 1 → n by sni .
The arrows of �op satisfy the following basic equations:

dn−1
j ◦ dnl = dn−1

l−1 ◦ dnj , when l − 1 ≥ j,

sn+1
j ◦ snl = sn+1

l+1 ◦ snj , when l + 1 > j,

dnj ◦ snl =

⎧
⎪⎨

⎪⎩

sn−1
l−1 ◦ dn−1

j , when j ≤ l − 1,
1, when l ∈ { j, j − 1},

sn−1
l ◦ dn−1

j−1 , when j ≥ l + 2.
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These particular equations whose left-hand sides are treated as redexes and the
right-hand sides as the corresponding contracta serve to define the normal form (see
below). The definition of the natural transformation ω (the ultimate ingredient in
our construction) is completely based on this normal form. We use some syntactical
techniques in this paper—it is therefore important how we represent the arrows by
terms. However, we will never write brackets to denote the association of the binary
operation of composition, and appropriate identity arrows could be considered present
in a term or deleted from it, if necessary. The following proposition is analogous to
[15, VII.5, Proposition 2].

Proposition 3.1 The category �op is generated by the arrows dni : n → n − 1 for
n ≥ 1, 0 ≤ i ≤ n, and sni : n − 1 → n for n ≥ 1, 0 ≤ i ≤ n − 1, subject to the basic
equations of �op.

Proof As in the lemma preceding [15, VII.5, Proposition 2], one can prove that every
arrow of �op has a unique representation of the form 1 or

sl1 ◦ . . . ◦ slk ◦ d j1 ◦ . . . ◦ d jm ,

(with the superscripts omitted) for k + m ≥ 1, l1 > · · · > lk , j1 ≥ · · · ≥ jm . The
basic equations of �op (read from the left to the right as reduction rules) suffice to put
any composite of d’s and s’s into the above form (cf. the proof of S4� Coherence in
[7, Section 3]). �

We call the arrows 1n , dni , and sni basic arrows of �op. Also, we call the above
representation of an arrow f of �op the normal form of f and we denote it by f nf .
This normal form does not completely correspond to the normal form given in the
mentioned lema of [15, VII.5]—by varying the directions of the reduction rules corre-
sponding to the first two basic equations of �op one may obtain other possible normal
forms.

Remark 3.2 If f1, . . . , fk are basic, non-identity arrows of �op such that fk ◦ . . . ◦ f1
is defined and not a normal form, then there is 1 ≤ i ≤ k − 1 such that fi+1 ◦ fi is
the left hand side of one of the basic equations of �op.

By [15, XI.3, Theorem 1], we may regard Cat as a strict monoidal category whose
monoidal structure is given by finite products. Let M be a strict monoidal category,
hence a monoid in Cat. The reduced bar construction (see [25]) based on M is a
functor WM : �op → Cat defined as follows.

WM(n) = Mn,

WM(dn0 )(A1, A2, . . . , An) = (A2, . . . , An),

WM(dnn )(A1, . . . , An−1, An) = (A1, . . . , An−1),

and for 1 ≤ i ≤ n−1 and 0 ≤ j ≤ n−1,
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WM(dni )(A1, . . . , Ai , Ai+1, . . . , An) = (A1, . . . , Ai ⊗ Ai+1, . . . , An),

WM(snj )(A1, . . . , A j , A j+1, . . . , An−1) = (A1, . . . , A j , I, A j+1, . . . , An−1),

where ⊗ is the tensor and I is the unit of the strict monoidal category M.
We denote by WMm : �op → Cat the reduced bar construction based on the mth

power of the strict monoidal category M (which is again a strict monoidal category
with the structure defined component-wise). When M is a twofold strict monoidal
category (or an n-fold, in general), then we denote byWMi : �op → Cat the reduced
bar construction based on the i th monoidal structure of M. By combining these two
notations,WMm

i : �op → Cat denotes the reduced bar construction based on themth
power of the strict monoidal category whose monoidal structure is the i th monoidal
structure of M.

4 The twofold reduced bar construction

We start with a definition of the twofold reduced bar construction based on a twofold
strict monoidal category. This construction corresponds to the one given in the proof of
[3, Theorem 2.1], save that the latter construction is based on a category that is twofold
monoidal in the sense of that paper. Then we switch to an equivalent notion, which is
of a combinatorial flavour. Such an approach is more suitable for our techniques, and
it highlights the combinatorial core of the subject.

LetM be a twofold strict monoidal category. By relying on the structure ofM, we
define a function from objects of (�op)2 to objects of Cat and a function from arrows
of (�op)2 to arrows of Cat. These two functions are both denoted by WM.

Definition The twofold reduced bar construction WM is defined on objects of (�op)2

as:

WM(n,m) = Mn·m,

and it is defined on arrows of (�op)2 in the following manner.

For f an arrow of (�op), we have

WM( f, 1m) = WMm
1 ( f ),

whereWMm
1 is, according to the notation introduced at the end of Sect. 3, the reduced

bar construction based on Mm with monoidal structure given by ⊗1 and I1. For
example, WM(d31 , 12) : M6 → M4 is such that

WM(d31 , 12)(A, B,C, D, E, F) = (A ⊗1 C, B ⊗1 D, E, F),

while WM(s30 , 12) : M4 → M6 is such that

WM(s20 , 12)(A, B,C, D) = (I1, I1, A, B,C, D).
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For g an arrow of (�op), we have

WM(1n, g) = (WM2(g))
n,

whereWM2 is, according to the notation introduced at the end of Sect. 3, the reduced
bar construction based on the strict monoidal structure given by ⊗2 and I2 ofM. For
example, WM(12, d31 ) : M6 → M4 is such that

WM(12, d31 )(A, B,C, D, E, F) = (A ⊗2 B,C, D ⊗2 E, F),

while WM(12, s30) : M4 → M6 is such that

WM(12, s30)(A, B,C, D) = (I2, A, B, I2,C, D).

Finally, for f : ns → nt and g : ms → mt , (“s” comes from source and “t” from
target) we have

WM( f, g) = (WM2(g))
nt ◦ WMms

1 ( f ).

For example, WM(d31 , s
3
0) : M6 → M6 is such that

WM(d31 , s
3
0)(A, B,C, D, E, F) = (I2, A ⊗1 C, B ⊗1 D, I2, E, F)

In general,WM is not a functor from (�op)2 toCat since it does not preserve compo-
sition (it preserves identities). For example,WM(d21 , 11)◦WM(12, d21 ) : M4 → M
is such that

(WM(d21 , 11) ◦ WM(12, d21 ))(A, B,C, D) = (A ⊗2 B) ⊗1 (C ⊗2 D),

while WM(d21 , d
2
1 ) : M4 → M is such that

WM(d21 , d
2
1 )(A, B,C, D) = (A ⊗1 C) ⊗2 (B ⊗1 D).

Our goal is to show thatWM : (�op)2 → Cat is a lax functor in the sense of [24].
This means that for every composable pair of arrows e1 = ( f1, g1) and e2 = ( f2, g2)
of (�op)2, there is a natural transformation

ωe2,e1 : WM(e2) ◦ WM(e1)
.→ WM(e2 ◦ e1),

such that the following diagram commutes:
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The rest of this section is devoted to a proof of laxness of WM.
For k ≥ 1, let fk . . . f1 be a sequence of basic arrows of �op such that the com-

position fk ◦ . . . ◦ f1 is defined. We say that � = ( fk, 1) . . . ( f1, 1) is a sequence of
colour 1 and we abbreviate the term fk ◦ . . .◦ f1 by ◦�. A sequence of colour 2 (or of
any other colour) is defined in the same manner. We assume that, if necessary, appro-
priate identities could always be added to, or deleted from sequences of any colour.
However, for measuring the length of such a sequence, only non-identity members are
taken into account.

Let � = ( fk, 1) . . . ( f1, 1) be a sequence of colour 1 and let � = (gl , 2) . . . (g1, 2)
be a sequence of colour 2, such that ◦� : ns → nt and ◦� : ms → mt . Let M be a
twofold strict monoidal category. We define a functor

WM�� : Mns ·ms → Mnt ·mt

as the following composition

(WM2(gl))
nt ◦ . . . ◦ (WM2(gq))

nt ◦ WMms
1 ( fk) ◦ . . . ◦ WMms

1 ( f1).

Let f = ◦� and g = ◦�. Since both WM1 and WM2 are functors, we have that
WM�� = WM( f, g). This fact leads to a combinatorial definition of the twofold
reduced bar construction WM, according to which WM( f, g) could be defined as
WM�� for arbitrary � of colour 1 such that ◦� = f and arbitrary � of colour 2 such
that ◦� = g.

In order to define the natural transformations ω involved in Diagram 4.1, we intro-
duce the following notions. Let  be a shuffle of � and � as above. For example, let
� be (d21 , 1)(d

3
1 , 1), let � be (d32 , 2)(s

3
0 , 2)(d

3
1 , 2), and let  be the following shuffle

(d32 , 2)(d
2
1 , 1)(d

3
1 , 1)(s

3
0 , 2)(d

3
1 , 2).

In this case, we have that ◦� : 3 → 1 and ◦� : 3 → 2.
For every member ( f, 1) of, we define its inner power to be the target of its right-

closest (g, 2) in. Wemay assume that such (g, 2) exists since we can always add the
appropriate identity of colour 2 to the right of ( f, 1) in . For every member (g, 2) of
, we define its outer power to be the target of its right-closest ( f, 1) in . For  as
above, we have that the inner power of (d21 , 1) is 3 and the outer power of (d32 , 2) is 1.

For a twofold strict monoidal category M and for an arbitrary shuffle  of � and
�, as for the shuffle �� (obtained by concatenating � and�), we can define a functor

WM : Mns ·ms → Mnt ·mt
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Table 1 χ( f, g) in nontrivial cases

f g χ( f, g)

sn+1
j sm+1

i (1 j (m+1), 1i , κ, �1)
dnj , 1 ≤ j ≤ n − 1 sm+1

i (1( j−1)(m+1), 1i , τ, �1)
sn+1
j dmi , 1 ≤ i ≤ m − 1 (1 j (m−1), 1i−1, β, �1)

dnj , 1 ≤ j ≤ n − 1 dmi , 1 ≤ i ≤ m − 1 (1( j−1)(m−1), 1i−1, ι, �1)

in the following way: replace in  every ( f, 1) whose inner power is i by WMi
1( f ),

and every (g, 2) whose outer power is o by (WM2(g))o, and insert ◦’s. For  as
above, we have that WM is

WM2(d
3
2 ) ◦ WM3

1(d
2
1 ) ◦ WM3

1(d
3
1 ) ◦ (WM2(s

3
0))

3 ◦ (WM2(d
3
1 ))

3,

which gives that WM(A, B,C, D, E, F,G, H, J ) is the ordered pair

(I2 ⊗1 I2 ⊗1 I2, ((A ⊗2 B) ⊗1 (D ⊗2 E) ⊗1 (G ⊗2 H)) ⊗2 (C ⊗1 F ⊗1 J )) .

For basic arrows f : n → n′ and g : m → m′ of �op we define a natural transfor-
mation

χ( f, g) : WMm′
1 ( f ) ◦ (WM2(g))

n .→ (WM2(g))
n′ ◦ WMm

1 ( f )

to be the identity natural transformation except in the following cases:
Here 1n denotes the n-tuple of identities and �1 is a tuple of identities whose length
can be easily calculated in all the cases, but we will not write the exact length to avoid
overlong expressions.

For j ≥ 0, let 0, . . . ,  j be shuffles of � and � such that 0 is  and  j is ��,
and if j > 0, then for every 0 ≤ i ≤ j − 1 we have that for some shuffles � and �

and non-identity members ( f, 1), (g, 2), the shuffle i is �( f, 1)(g, 2)� while i+1
is �(g, 2)( f, 1)�. We call 0, . . . ,  j a normalizing path starting with . Its length
is j . For example,

0 = (d32 , 2)(d
2
1 , 1)(d

3
1 , 1)(s

3
0 , 2)(d

3
1 , 2), 1 = (d32 , 2)(d

2
1 , 1)(s

3
0 , 2)(d

3
1 , 1)(d

3
1 , 2),

2 = (d32 , 2)(d
2
1 , 1)(s

3
0 , 2)(d

3
1 , 2)(d

3
1 , 1), 3 = (d32 , 2)(s

3
0 , 2)(d

2
1 , 1)(d

3
1 , 2)(d

3
1 , 1),

4 = (d32 , 2)(s
3
0 , 2)(d

3
1 , 2)(d

2
1 , 1)(d

3
1 , 1)

is a normalizing path of length 4 starting with  as in the example given above.

Proposition 4.1 Every normalizing path starting with  has the same length.
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Proof The length of every normalizing path starting with  is
∑

( f,1) in  k( f, 1),
where k( f, 1) is the number of non-identity members of colour 2 to the right of ( f, 1)
in . �

If i = �( f, 1)(g, 2)� and i+1 = �(g, 2)( f, 1)�, then

ϕi = WM� χ( f, g) WM�

is a natural transformation from WMi to WMi+1 . (In the case when � or � are
single-coloured, we can always add the appropriate identity of the other colour in order
to define WM� and WM�.) Let

ϕ(0, . . . ,  j ) =
{

ϕ j−1 ◦ . . . ◦ ϕ0, when j ≥ 1,
1, when j = 0.

Suppose′
0, . . . , 

′
j is another normalizing path starting with. Then ϕ(′

0, . . . ,

′
j ) is again a natural transformation fromWM toWM��. We can show that these

natural transformations are in fact the same.

Theorem 4.2 ϕ(0, . . . ,  j ) = ϕ(′
0, . . . , 

′
j ).

Proof We proceed by induction on j ≥ 0. If j = 0, then ϕ(0) = ϕ(′
0) =

1. If j > 0 and 1 = ′
1, then we apply the induction hypothesis to the

sequences of shuffles 1, . . . ,  j and ′
1, . . . , 

′
j . Suppose now 1 �= ′

1 and

ϕ0 = WM� χ( f, g) WM�, ϕ′
0 = WM�′ χ( f ′, g′) WM�′ . Then either

 = �1( f
′, 1)(g′, 2)�2( f, 1)(g, 2)� or  = �( f, 1)(g, 2)�1( f

′, 1)(g′, 2)�2.

In the first case, by naturality we have

WM�1 χ( f ′, g′) WM�2(g,2)( f,1)� ◦ WM�1( f ′,1)(g′,2)�2 χ( f, g) WM�

= WM�1(g′,2)( f ′,1)�2 χ( f, g) WM� ◦ WM�1 χ( f ′, g′) WM�2( f,1)(g,2)�, (∗)

and by applying the induction hypothesis twice we obtain the following commutative
diagram, in which � is �1(g′, 2)( f ′, 1)�2(g, 2)( f, 1)�.
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The n-fold reduced bar construction 515

We proceed analogously in the second case. �
By Theorem 4.2, the following definition is correct.

Definition Let ϕ : WM
.→ WM�� be ϕ(0, . . . ,  j ), for an arbitrary normal-

izing path 0, . . . ,  j starting with .
For every composable pair of arrows e1 = ( f1, g1) and e2 = ( f2, g2) of (�op)2 we

define a natural transformation

ωe2,e1 : WM(e2) ◦ WM(e1)
.→ WM(e2 ◦ e1).

In order to do this, note that for a sequence H of any colour, ◦H denotes a syntactical
object, a word of the form hk ◦ . . .◦h1. Hence, a sequence H is completely determined
by its colour and ◦H.

Definition Let �1 and �2 be sequences of colour 1, and let �1 and �2 be sequences
of colour 2 such that ◦�1 is f nf1 , ◦�2 is f nf2 , ◦�1 is gnf1 and ◦�2 is gnf2 . We define

ωe2,e1 as ϕ�2�2�1�1 .

Note. The source and target of ωe2,e1 are as desired since

WM(e2) ◦ WM(e1) = WM�2�2�1�1 , and

WM(e2 ◦ e1) = WM�2�1�2�1 .

It remains to prove that ourDiagram4.1 commutes. Let e1 = ( f1, g1), e2 = ( f2, g2)
and e3 = ( f3, g3) be such that the composition e3 ◦ e2 ◦ e1 is defined in (�op)2. Let
�1, �2, �1 and �2 be as above, and let �3 and �3 be sequences of colour 1 and 2
respectively such that ◦�3 is f nf3 and ◦�3 is gnf3 . In this case, Diagram 4.1 reads
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516 S. Lj. Čukić, Z. Petrić

where ◦�′ is ( f3 ◦ f2)nf , ◦�′ is (g3 ◦ g2)nf , ◦�′′ is ( f2 ◦ f1)nf and ◦�′′ is (g2 ◦ g1)nf .
By Theorem 4.2 we have the following commutative diagram

Hence, to prove that Diagram 4.1 commutes, it suffices to show that

(i) ϕ�3�2�3�2�1�1 = ϕ�′�′�1�1 and (ii) ϕ�3�3�2�1�2�1 = ϕ�3�3�′′�′′ .

Lemma 4.3 If � and �′ are sequences of colour 1 such that ◦� = ◦�′ is a basic
equation of �op, and g is a basic arrow of �op, then ϕ�(g,2) = ϕ�′(g,2).

Proof We have the following cases in which we always assume that dxy is such that
1 ≤ y ≤ x − 1 (see Table 1). To deal with dx0 and dxx is trivial. We will give a detailed
proof for three cases, first of which is trivial, with the remaining two needing some of
the Eqs. 1–6. The rest is done analogously. �

1.1. Suppose ◦� = ◦�′ is dn−1
j ◦ dnl = dn−1

l−1 ◦ dnj for j ≤ l − 2.
1.1.1. Suppose g is smi .

We have two normalizing paths. The first one is starting with �(g, 2) and it is

(dn−1
j , 1)(dnl , 1)(smi , 2), (dn−1

j , 1)(smi , 2)(dnl , 1), (smi , 2)(dn−1
j , 1)(dnl , 1).

Now we compute ϕ�(g,2), and we note that WM(dnl ,1) is formally WM(dnl ,1),(1m−1,2)
(we repeatedly use such an abbreviation throughout the paper):
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ϕ�(g,2) = (
χ(dn−1

j , smi ) WM(dnl ,1)) ◦ (WM
(dn−1

j ,1) χ(dnl , smi )
)

= (
χ(dn−1

j , smi ) WMm−1
1 (dnl )) ◦ (WMm

1 (dn−1
j ) χ(dnl , smi )

)

= (
(1( j−1)m, 1i , τ, �1) WMm−1

1 (dnl )) ◦ (WMm
1 (dn−1

j ) (1(l−1)m, 1i , τ, �1))

= (
1( j−1)m, 1i , τ, �1) ◦ (1(l−2)m, 1i , τ, �1). (since l − 1 > j)

On the other hand, the second normalizing path starting with �′(g, 2) is

(dn−1
l−1 , 1)(dnj , 1)(s

m
i , 2), (dn−1

l−1 , 1)(smi , 2)(dnj , 1), (smi , 2)(dn−1
l−1 , 1)(dnj , 1),

and therefore

ϕ�′(g,2) = (
χ(dn−1

l−1 , smi ) WM(dnj ,1)
) ◦ (WM

(dn−1
l−1 ,1) χ(dnj , s

m
i )

)

= (
χ(dn−1

l−1 , smi ) WMm−1
1 (dnj )) ◦ (WMm

1 (dn−1
l−1 ) χ(dnj , s

m
i )

)

= (
(1(l−2)m, 1i , τ, �1) WMm−1

1 (dnj )) ◦ (WMm
1 (dn−1

l−1 ) (1( j−1)m, 1i , τ, �1))

= (1(l−2)m, 1i , τ, �1) ◦ (1( j−1)m, 1i , τ, �1).

Since j −1 �= l−2, we see that these two tuples of arrows are the same, i.e., we have:

ϕ�(g,2) = (
1( j−1)m+i , τ, 1(l− j−1)m−1, τ, �1) = ϕ�′(g,2).

1.1.2. Suppose g is dmi .

ϕ�(g,2) = (
1( j−1)(m−1)+i−1, ι, 1(l− j−1)(m−1)−1, ι, �1) = ϕ�′(g,2).

1.2. Suppose ◦� = ◦�′ is dn−1
j ◦ dnj+1 = dn−1

j ◦ dnj .
1.2.1. Suppose g is smi .
The normalizing path starting with �(g, 2) is

(dn−1
j , 1)(dnj+1, 1)(s

m
i , 2), (dn−1

j , 1)(smi , 2)(dnj+1, 1), (smi , 2)(dn−1
j , 1)(dnj+1, 1),

and we have

ϕ�(g,2) = (
χ(dn−1

j , smi ) WM(dnj+1,1)
) ◦ (WM

(dn−1
j ,1) χ(dnj+1, s

m
i )

)

= (
χ(dn−1

j , smi ) WMm−1
1 (dnj+1)) ◦ (WMm

1 (dn−1
j ) χ(dnj+1, s

m
i )

)

= (
(1( j−1)m, 1i , τ, �1) WMm−1

1 (dnj+1)) ◦ (WMm
1 (dn−1

j ) (1 jm, 1i , τ, �1))

= (1( j−1)m, 1i , τ, �1) ◦ (1( j−1)m, 1i , 1 ⊗1 τ, �1)
= (1( j−1)m+i , τ ◦ (1 ⊗1 τ), �1).
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On the other hand, the normalizing path starting with �′(g, 2) is

(dn−1
j , 1)(dnj , 1)(s

m
i , 2), (dn−1

j , 1)(smi , 2)(dnj , 1), (smi , 2)(dn−1
j , 1)(dnj , 1).

We now compute ϕ�′(g,2):

ϕ�′(g,2) = (
χ(dn−1

j , smi ) WM(dnj ,1)
) ◦ (WM

(dn−1
j ,1) χ(dnj , s

m
i )

)

= (
χ(dn−1

j , smi ) WMm−1
1 (dnj )) ◦ (WMm

1 (dn−1
j ) χ(dnj , s

m
i )

)

= (
(1( j−1)m, 1i , τ, �1) WMm−1

1 (dnj )) ◦ (WMm
1 (dn−1

j ) (1( j−1)m, 1i , τ, �1))

= (1( j−1)m, 1i , τ, �1) ◦ (1( j−1)m, 1i , τ ⊗1 1, �1)
= (1( j−1)m+i , τ ◦ (τ ⊗1 1), �1).

Since, by (4), we have that τ ◦ (1 ⊗1 τ) = τ ◦ (τ ⊗1 1), we conclude that ϕ�(g,2) =
ϕ�′(g,2).

1.2.2. Suppose g is dmi .

ϕ�(g,2) = (1( j−1)(m−1)+i−1, ι ◦ (1 ⊗1 ι), �1)
= (1( j−1)(m−1)+i−1, ι ◦ (ι ⊗1 1), �1) = ϕ�′(g,2), by (1).

2. Suppose ◦� = ◦�′ is sn+1
j ◦ snl = sn+1

l+1 ◦ snj for j ≤ l.
2.1. Suppose g is smi .

ϕ�(g,2) = (1 jm+i , κ, 1(l− j+1)m−1, κ, �1) = ϕ�′(g,2).

2.2. Suppose g is dmi .

ϕ�(g,2) = (1 j (m−1)+i−1, β, 1(l− j+1)(m−1)−1, β, �1) = ϕ�′(g,2).

3.1. Suppose ◦� = ◦�′ is dnj ◦ snl = sn−1
l−1 ◦ dn−1

j for j ≤ l − 1.
3.1.1. Suppose g is smi .

ϕ�(g,2) = (1( j−1)m+i , τ, 1(l− j)m−1, κ, �1) = ϕ�′(g,2).

3.1.2. Suppose g is dmi .

ϕ�(g,2) = (1( j−1)(m−1)+i−1, ι, 1(l− j)(m−1)−1, β, �1) = ϕ�′(g,2).

3.2. Suppose ◦� = ◦�′ is dnj ◦ snj = 1.
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3.2.1. Suppose g is smi .

ϕ�(g,2) = (1( j−1)m+i , τ ◦ (1 ⊗1 κ), �1)
= (1( j−1)m+i , 1, �1) = ϕ�′(g,2), by (5).

3.2.2. Suppose g is dmi .
We now have this normalizing path starting with �(g, 2):

(dnj , 1)(s
n
j , 1)(d

m
i , 2), (dnj , 1)(d

m
i , 2)(snj , 1), (dmi , 2)(dnj , 1)(s

n
j , 1).

Since ϕ�′(g,2) = ϕ1(g,2) = �1, we ought to compute ϕ�(g,2):

ϕ�(g,2) = (
χ(dnj , d

m
i ) WM(snj ,1)

) ◦ (WM(dnj ,1)
χ(snj , d

m
i )

)

= (
χ(dnj , d

m
i ) WMm

1 (snj )) ◦ (WMm−1
1 (dnj ) χ(snj , d

m
i )

)

= (
(1( j−1)(m−1), 1i−1, ι, �1)WMm

1 (snj ))

◦ (WMm−1
1 (dnj )(1

j (m−1), 1i−1, β, �1))

= (1( j−1)(m−1), 1i−1, ι, �1) ◦ (1( j−1)(m−1), 1i−1, 1 ⊗1 β, �1)
= (1( j−1)(m−1)+i−1, ι ◦ (1 ⊗1 β), �1)
(2)= (1( j−1)(m−1)+i−1, 1, �1) = ϕ�′(g,2).

3.3. Suppose ◦� = ◦�′ is dnj ◦ snj−1 = 1.
3.3.1. Suppose g is smi .

ϕ�(g,2) = (1( j−1)m+i , τ ◦ (κ ⊗1 1), �1)
= (1( j−1)m+i , 1, �1) = ϕ�′(g,2), by (6).

3.3.2. Suppose g is dmi .

ϕ�(g,2) = (1( j−1)(m−1)+i−1, ι ◦ (β ⊗1 1), �1)
= (1( j−1)(m−1)+i−1, 1, �1) = ϕ�′(g,2), by (3).

3.4. Suppose ◦� = ◦�′ is dnj ◦ snl = sn−1
l ◦ dn−1

j−1 for j ≥ l + 2.
3.4.1. Suppose g is smi .

ϕ�(g,2) = (1lm+i , κ, 1( j−l−1)m−1, τ, �1) = ϕ�′(g,2).

3.4.2. Suppose g is dmi .
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ϕ�(g,2) = (1l(m−1)+i−1, β, 1( j−l−1)(m−1)−1, ι, �1) = ϕ�′(g,2).

�
Lemma 4.4 If � and � ′ are sequences of colour 1 such that (◦�)nf is ◦� ′, and g is
a basic arrow of �op, then ϕ�(g,2) = ϕ� ′(g,2).

Proof Letμ(�) be a “distance” from ◦� to (◦�)nf . For example,μ(�) can be defined
as the ordered pair

(n,m),

where n is the number of subsequences of � that are of the form (d, 1)(s, 1), i.e., s
precedes d looking from the right to the left (not necessary immediately) in�, andm is
the number of subsequences of� of the form (si , 1)(s j , 1)with i ≤ j , or (di , 1)(d j , 1)
with i < j . Suppose that our set of “distances” is lexicographically ordered.

We proceed by induction on μ(�). If μ(�) = (0, 0), then � = � ′ and we are
done. If μ(�) > (0, 0), then, by Remark 3.2, � must be of the form �2��1, where
◦� = ◦�′ is a basic equation of �op. Then we have

ϕ�2��1(g,2) = ϕ�2(g,2)WM��1 ◦ WM�2 ϕ�(g,2)WM�1 ◦ WM�2� ϕ�1(g,2),

(by Theorem 4.2)

= ϕ�2(g,2)WM��1 ◦ WM�2 ϕ�′(g,2)WM�1 ◦ WM�2�′ ϕ�1(g,2),

(by Lemma 4.3 and functoriality of WM1)

= ϕ�2�′�1(g,2), (by Theorem 4.2)

= ϕ� ′(g,2). (by the ind. hyp. sinceμ(�2�
′�1) < μ(�2��1))

�
We can prove now (i) by induction on the length of �1 where in the induction step

we use Lemma 4.4. We can prove (ii) in a dual manner using the Eqs. 7–12 for the
proof of a lemma dual to Lemma 4.3. So, we have:

Theorem 4.5 The twofold reduced bar construction WM, together with the natural
transformations ω, makes a lax functor from (�op)2 to Cat.

5 The threefold monoidal categories

The notion of threefold monoidal category that we use in this paper is defined in [2,
Section 7.1] under the name 3-monoidal category. In order to define this notion we
first define what the arrows between the twofold monoidal categories are.
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Definition A twofold monoidal functor between twofold monoidal categories C and
D is a 5-tuple 〈F, σ 1, δ1, σ 2, δ2〉, where for i ∈ {1, 2},

σ i
A,B : FA ⊗D

i FB → F(A ⊗C
i B) and δi : IDi → F ICi

are arrows ofD natural in A and B, such that 〈F, σ 1, δ1〉 and 〈F, σ 2, δ2〉 are monoidal
functors between, respectively, the first and the secondmonoidal structures of C andD.
Moreover, the structure brought by the arrows κ , β, τ and ι is preserved, which means
that the following four diagrams commute (with the superscripts C and D omitted):

Let Mon2(Cat) be the 2-category whose 0-cells are the twofold monoidal cate-
gories, 1-cells are the twofold monoidal functors, and 2-cells are the twofold monoidal
transformations, i.e., monoidal transformationswith respect to both the structures. The
monoidal structure of Mon2(Cat) is yet again given by 2-products.

Definition A threefold monoidal category is a pseudomonoid in Mon2(Cat).

Hence, a threefold monoidal category consists of the following:
1. a twofold monoidal category M,
2. twofold monoidal functors ⊗3 : M × M → M and I3 : 1 → M,
3. twofold monoidal transformations α3, ρ3, and λ3 such that the structure

〈M,⊗3, I3, α3, ρ3, λ3〉 satisfies the pseudomonoid conditions.
In an unfolded form, this means that a threefold monoidal category is a categoryM

equipped with three monoidal structures M1 = 〈M,⊗1, I1〉, M2 = 〈M,⊗2, I2〉,
and M3 = 〈M,⊗3, I3〉 such that
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[1-2] M1, M2, κ : I1 → I2, β : I1 → I1 ⊗2 I1, τ : I2 ⊗1 I2 → I2, and ι :
(A ⊗2 B) ⊗1 (C ⊗2 D) → (A ⊗1 C) ⊗2 (B ⊗1 D),

[2-3] M2, M3, κ ′ : I2 → I3, β ′ : I2 → I2 ⊗3 I2, τ ′ : I3 ⊗2 I3 → I3, and ι′ :
(A ⊗3 B) ⊗2 (C ⊗3 D) → (A ⊗2 C) ⊗3 (B ⊗2 D),

[1-3] M1, M3, κ ′′ : I1 → I3, β ′′ : I1 → I1 ⊗3 I1, τ ′′ : I3 ⊗1 I3 → I3 and
ι′′ : (A ⊗3 B) ⊗1 (C ⊗3 D) → (A ⊗1 C) ⊗3 (B ⊗1 D),
are twofold monoidal and, moreover, the following equations hold:

κ ′ ◦ κ = κ ′′, (13)

β ′ ◦ κ = (κ ⊗3 κ) ◦ β ′′, (14)

τ ′ ◦ (κ ′′ ⊗2 κ ′′) ◦ β = κ ′′, (15)

ι′ ◦ (β ′′ ⊗2 β ′′) ◦ β = (β ⊗3 β) ◦ β ′′, (16)

κ ′ ◦ τ = τ ′′ ◦ (κ ′ ⊗1 κ ′), (17)

β ′ ◦ τ = (τ ⊗3 τ) ◦ ι′′ ◦ (β ′ ⊗1 β ′), (18)

τ ′ ◦ (τ ′′ ⊗2 τ ′′) ◦ ι = τ ′′ ◦ (τ ′ ⊗1 τ ′), (19)

ι′ ◦ (ι′′ ⊗2 ι′′) ◦ ι = (ι ⊗3 ι) ◦ ι′′ ◦ (ι′ ⊗1 ι′). (20)

Note. The last eight equations represent the four commutative diagrams given above,
with F replaced by the twofold monoidal functors I3 and ⊗3.

As in the case of twofold monoidal categories, we are interested only in threefold
strict monoidal categories, i.e., when the structures M1, M2, and M3 are strict
monoidal.

The threefold monoidal categories defined in [3, Definition 1.7] are the threefold
strict monoidal categories from above in which, moreover, it is assumed that I1 =
I2 = I3 = 0 and all the κ’s, β’s and τ ’s are 10. Hence, from the above list of eight
equations, the Eqs. (13), (14), (15), and (17) are trivial, (16), (18) and (19 are variants
of internal and external unit conditions, while the Eq. (20) corresponds to the big
hexagonal interchange diagram (see [3, Definition 1.7]).

6 The threefold reduced bar construction

As in the twofold case, we start with a definition of the threefold reduced bar construc-
tion based on a threefold strictmonoidal category.Again, this construction corresponds
to the one given in the proof of [3, Theorem 2.1], save that the latter construction is
based on a category that is threefold monoidal in the sense of that paper.

For a threefold strict monoidal categoryM, we define functionsWM from objects
and arrows of (�op)3 to objects and arrows of Cat in the following manner.

Definition The threefold reduced bar construction WM is defined on objects of
(�op)3 as:

WM(n,m, p) = Mn·m·p,
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and for arrows f : ns → nt , g : ms → mt and h : ps → pt of �op, we define
WM( f, g, h) as the composition

(WM3(h))nt ·mt ◦ (WMps
2 (g))nt ◦ WMms ·ps

1 ( f ).

For example, WM(d21 , s
2
1 , d

2
1 ) : M4 → M2 is defined as the composition

(WM3(d
2
1 ))

2 ◦ WM2
2(s

2
1 ) ◦ WM2

1(d
2
1 ),

and for an object (A, B,C, D) of M4 we have that

WM(d21 , s
2
1 , d

2
1 )(A, B,C, D) = ((A ⊗1 C) ⊗3 (B ⊗1 D), I2 ⊗3 I2).

As in the twofold case,WM need not be a functor from (�op)3 to Cat, and our goal is
to prove that it is a lax functor. This means that for every composable pair of arrows
e1 = ( f1, g1, h1) and e2 = ( f2, g2, h2) of (�op)3, there is a natural transformation

ωe2,e1 : WM(e2) ◦ WM(e1)
.→ WM(e2 ◦ e1),

such that Diagram 4.1 commutes.
We use coloured sequences and their shuffles in order to define such natural trans-

formations ω. Let �, �, and H be sequences of colour 1, 2, and 3, respectively, such
that ◦� : ns → nt , ◦� : ms → mt , and ◦H : ps → pt . Let  be a shuffle of
these three sequences. For example, let � be (d22 , 1)(d

3
1 , 1), let � be (d21 , 2), let H be

(s31 , 3)(s
2
1 , 3), and let  be the following shuffle

(d22 , 1)(s
3
1 , 3)(d

3
1 , 1)(d

2
1 , 2)(s

2
1 , 3).

For every member ( f, 1) of , we define its inner power to be the product of the
targets of its right-closest (g, 2) and right-closest (h, 3) in . We may assume again
that such (g, 2) and (h, 3) exist since we can always add an identity of colour 2 and an
identity of colour 3 to the right of ( f, 1) in. For every member (g, 2) of, we define
its inner power to be the target of its right-closest (h, 3) in , and we define its outer
power to be the target of its right-closest ( f, 1) in . For every member (h, 3) of ,
we define its outer power to be the product of the targets of its right-closest ( f, 1) and
right-closest (g, 2) in . For  as above, for example, we have that the outer power
of (s21 , 3) is 6.

Let M be a threefold strict monoidal category. We define a functor

WM : Mns ·ms ·ps → Mnt ·mt ·pt

in the following way: replace in  each ( f, 1) whose inner power is i by WMi
1( f ),

every (g, 2) whose inner power is i and outer power is o by (WMi
2(g))

o and every
(h, 3) whose outer power is o by (WM3(h))o, and insert ◦’s. For  as above, we have
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Table 2 χ
1,2
w in nontrivial cases

f g χ
1,2
w ( f, g)

sn+1
j sm+1

i (1 j (m+1)w, 1iw, κw, �1
︸ ︷︷ ︸

(m+1)w

, �1)

dnj , 1 ≤ j ≤ n − 1 sm+1
i (1( j−1)(m+1)w, 1iw, τw, �1

︸ ︷︷ ︸
(m+1)w

, �1)

sn+1
j dmi , 1 ≤ i ≤ m − 1 (1 j (m−1)w, 1(i−1)w, βw, �1

︸ ︷︷ ︸
(m−1)w

, �1)

dnj , 1 ≤ j ≤ n − 1 dmi , 1 ≤ i ≤ m − 1 (1( j−1)(m−1)w, 1(i−1)w, ιw, �1
︸ ︷︷ ︸

(m−1)w

, �1)

that WM is

WM3
1(d

2
2 ) ◦ (WM3(s

3
1))

2 ◦ WM2
1(d

3
1 ) ◦ (WM2

2(d
2
1 ))

3 ◦ (WM3(s
2
1 ))

6,

which gives that WM(A, B,C, D, E, F) is the 3-tuple

((A ⊗2 B) ⊗1 (C ⊗2 D), I3, (I3 ⊗2 I3) ⊗1 (I3 ⊗2 I3)).

It is easy to see that for arrows f , g and h of �op, we have that

WM( f, g, h) = WMH��,

for arbitrary � of colour 1, � of colour 2 and H of colour 3, such that ◦� = f ,
◦� = g and ◦H = h. This may serve as a combinatorial definition of the threefold
reduced bar constructionWM (cf. the combinatorial definition of the twofold reduced
bar construction given in Sect. 4).

For basic arrows f : n → n′, g : m → m′ of �op and w ≥ 0 we define a natural
transformation

χ1,2
w ( f, g) : WMm′w

1 ( f ) ◦ (WMw
2 (g))n

.→ (WMw
2 (g))n

′ ◦ WMmw
1 ( f )

to be the identity natural transformation except in the following cases:
In order to simplify some calculations and improve the presentation of the paper, we

introduce the following formal operation of multiplication (always from the right) of
tuples representing the natural transformations by 0-1 matrices having in each column
exactly one entry equal to 1 and all the other entries equal to 0, which is derived from
the standard multiplication of matrices. For example,

(1, κ, 1)

⎛

⎝
1 0 0 0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0 0 1 1

⎞

⎠ = (1, κ2, 12, 12, κ2, 12).

123



The n-fold reduced bar construction 525

Table 3 χ
2,3
u in nontrivial cases

g h χ
2,3
u (g, h)

sm+1
i s p+1

k ((1i(p+1), 1k , κ ′, �1
︸ ︷︷ ︸

(m+1)(p+1)

)u)

dmi , 1 ≤ i ≤ m − 1 s p+1
k ((1(i−1)(p+1), 1k , τ ′, �1

︸ ︷︷ ︸
(m−1)(p+1)

)u)

sm+1
i d p

k , 1 ≤ k ≤ p − 1 ((1i(p−1), 1k−1, β ′, �1
︸ ︷︷ ︸

(m+1)(p−1)

)u)

dmi , 1 ≤ i ≤ m − 1 d p
k , 1 ≤ k ≤ p − 1 ((1(i−1)(p−1), 1k−1, ι′, �1

︸ ︷︷ ︸
(m−1)(p−1)

)u)

Note that the tuples of the third column of Table 2 are obtained as a result of multipli-
cation of the tuples in the third column of Table 1 by the matrix

In′ ⊗ Im′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

w

),

where Ik is the k × k identity matrix and ⊗ is the Kronecker product of matrices.
For basic arrows g : m → m′, h : p → p′ of �op and u ≥ 0 we define a natural

transformation

χ2,3
u (g, h) : (WMp′

2 (g))u ◦ (WM3(h))um
.→ (WM3(h))um

′ ◦ (WMp
2 (g))u

to be the identity natural transformation except in the following cases (Table 3):
Note that the tuples of the third column of this table are obtained as a result of multi-
plication of the tuples in the third column of Table 1 (where m is replaced by p, n is
replaced by m, i is replaced by k, j is replaced by i , and κ , β, τ , and ι are replaced by
κ ′, β ′, τ ′, and ι′) by the matrix

(1, . . . , 1
︸ ︷︷ ︸

u

) ⊗ Im′ ⊗ Ip′ .

Finally, for basic arrows f : n → n′, h : p → p′ of �op and v ≥ 0 we define a
natural transformation

χ1,3
v ( f, h) : WMvp′

1 ( f ) ◦ (WM3(h))nv .→ (WM3(h))n
′v ◦ WMvp

1 ( f )

to be the identity natural transformation except in the following cases (Table 4):
As in the previous cases, the tuples of the third column of this table are obtained
as a result of multiplication of the tuples in the third column of Table 1 (with some
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Table 4 χ
1,3
v in nontrivial cases

f h χ
1,3
v ( f, h)

sn+1
j s p+1

k (1 jv(p+1), (1k , κ ′′, �1
︸ ︷︷ ︸

p+1

)v, �1)

dnj , 1 ≤ j ≤ n − 1 s p+1
k (1( j−1)v(p+1), (1k , τ ′′, �1

︸ ︷︷ ︸
p+1

)v, �1)

sn+1
j d p

k , 1 ≤ k ≤ p − 1 (1 jv(p−1), (1k−1, β ′′, �1
︸ ︷︷ ︸

p−1

)v, �1)

dnj , 1 ≤ j ≤ n − 1 d p
k , 1 ≤ k ≤ p − 1 (1( j−1)v(p−1), (1k−1, ι′′, �1

︸ ︷︷ ︸
p−1

)v, �1)

necessary replacements) by a certain matrix, in this case that matrix is

In′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

v

) ⊗ Ip′ .

Lemma 6.1 For basic arrows f : n → n′, g : m → m′, and h : p → p′ of �op the
following diagram commutes:

Proof Consider the following table in which dxy is such that 0 < y < x .
This gives a list of all nontrivial cases for f , g, and h. In this table we point out the

component of the two n′ ·m′ · p′-tuples of arrows, representing the left-hand side and
the right-hand side of the above diagram, where we use one of the Eqs. (13)–(20). In
all the other components, the left-hand side is equal to the right-hand side by simple
categorial arguments.

As an illustration of these arguments, here we give a proof for one of the cases from
the table, namely when f = dnj , g = sm+1

i , and h = d p
k . At the left hand side of the

diagram we have the following

χ
1,2
p−1(d

n
j , s

m+1
i )(WM3(d

p
k ))nm = (1( j−1)(m+1)(p−1), 1i(p−1), τ p−1, �1

︸ ︷︷ ︸
(m+1)(p−1)

, �1), (L1)
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f g h Component Equations

sn+1
j sm+1

i s p+1
k j (m + 1)(p + 1) + i(p + 1) + k + 1 (13)

sn+1
j sm+1

i d p
k j (m + 1)(p − 1) + i(p − 1) + k (14)

sn+1
j dmi s p+1

k j (m − 1)(p + 1) + (i − 1)(p + 1) + k + 1 (15)

sn+1
j dmi d p

k j (m − 1)(p − 1) + (i − 1)(p − 1) + k (16)

dnj sm+1
i s p+1

k ( j − 1)(m + 1)(p + 1) + i(p + 1) + k + 1 (17)

dnj sm+1
i d p

k ( j − 1)(m + 1)(p − 1) + i(p − 1) + k (18)

dnj dmi s p+1
k ( j − 1)(m − 1)(p + 1) + (i − 1)(p + 1) + k + 1 (19)

dnj dmi d p
k ( j − 1)(m − 1)(p − 1) + (i − 1)(p − 1) + k (20)

(WMp−1
2 (sm+1

i ))n−1χ1,3
m (dnj , d

p
k )

= (WMp−1
2 (sm+1

i ))n−1 (1( j−1)m(p−1), (1k−1, ι′′, �1
︸ ︷︷ ︸

p−1

)m, �1)

= (1( j−1)(m+1)(p−1), (1k−1, ι′′, �1
︸ ︷︷ ︸

p−1

)i , 1p−1, (1k−1, ι′′, �1
︸ ︷︷ ︸

p−1

)m−i , �1), (L2)

χ
2,3
n−1(s

m+1
i , d p

k )WMmp
1 (dnj ) = ((1i(p−1), 1k−1, β ′, �1

︸ ︷︷ ︸
(m+1)(p−1)

)n−1), (L3)

while at the right hand side we have:

WM(m+1)(p−1)
1 (dnj )χ

2,3
n (sm+1

i , d p
k ) = WM(m+1)(p−1)

1 (dnj )((1
i(p−1), 1k−1, β ′, �1

︸ ︷︷ ︸
(m+1)(p−1)

)n)

= ((1i(p−1), 1k−1, β ′, �1
︸ ︷︷ ︸

(m+1)(p−1)

) j−1, 1i(p−1)+k−1, β ′ ⊗1 β ′, �1
︸ ︷︷ ︸

(m+1)(p−1)

, (1i(p−1), 1k−1, β ′, �1
︸ ︷︷ ︸

(m+1)(p−1)

)n− j−1),

(D1)

χ
1,3
m+1(d

n
j , d

p
k )(WMp

2 (sm+1
i ))n = (1( j−1)(m+1)(p−1), (1k−1, ι′′, �1

︸ ︷︷ ︸
p−1

)m+1, �1), (D2)
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(WM3(d
p
k ))(n−1)(m−1)χ1,2

p (dnj , s
m+1
i )

= (WM3(d
p
k ))(n−1)(m−1) ◦ (1( j−1)(m+1)p, 1i p, τ p, �1

︸ ︷︷ ︸
(m+1)p

, �1)

= (1( j−1)(m+1)(p−1), 1i(p−1), τ k−1, τ ⊗3 τ, τ p−1−k, �1
︸ ︷︷ ︸

(m+1)(p−1)

, �1). (D3)

Now we take a look at all entries that are not equal to 1 (non-identities). For example,
in (L1) the non-identities are at positions

( j − 1)(m + 1)(p + 1) + i(p − 1) + l, for 1 ≤ l ≤ p − 1,

and those entries are equal to τ . By comparing the non-identities for (D1), (D2), (D3),
(L1), (L2), and (L3), we get that the only difference is at position ( j − 1)(m + 1)(p+
1)+i(p−1)+k, where we have that β ′ ◦1◦τ must be equal to (τ ⊗3τ)◦ι′′ ◦(β ′⊗1β

′),
which is exactly our Eq. (18). �

Let 0, . . . ,  j for j ≥ 0 be shuffles of �, �, and H such that 0 = 

and  j = H��, and if j > 0, then for every 0 ≤ i ≤ j − 1 we have that
i = �( f, 1)(g, 2)� and i+1 = �(g, 2)( f, 1)�, or i = �(g, 2)(h, 3)� and
i+1 = �(h, 3)(g, 2)�, or i = �( f, 1)(h, 3)� and i+1 = �(h, 3)( f, 1)�.
We call 0, . . . ,  j a normalizing path starting with . Its length is j and
Proposition 4.1 still holds.

If i = �( f, 1)(g, 2)� and i+1 = �(g, 2)( f, 1)�, then for w being the target
of the leftmost member of � of colour 3 we have that

ϕi = WM� χ1,2
w ( f, g) WM�

is a natural transformation from WMi to WMi+1 . We define ϕi analogously in the

other two possibilities for the pair i , i+1 relying on χ
2,3
u (g, h) or χ1,3

v ( f, h), for u
being the target of the leftmost member of � of colour 1 and v being the target of the
leftmost member of � of colour 2. We define ϕ(0, . . . , k) as in the twofold case
and for ′

0, . . . , 
′
k being another normalizing path starting with , we can show the

following.

Theorem 6.2 ϕ(0, . . . ,  j ) = ϕ(′
0, . . . , 

′
j ).

Proof We proceed by induction on j ≥ 0. If j = 0, then ϕ(0) = ϕ(′
0) = 1.

If j > 0, then we are either in the situation as in the proof of Theorem 4.2 and
we proceed analogously, or for some basic arrows f : n → n′, g : m → m′, and
h : p → p′ of �op we have that

ϕ0 = WM� χ
1,2
p′ ( f, g) WM(h,3)� and ϕ′

0 = WM�( f,1) χ2,3
n (g, h) WM�.

In the latter case, we use Lemma 6.1 and the induction hypothesis twice to obtain the
following commutative diagram.
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�
By Theorem 6.2, the following definition is correct.

Definition Let ϕ : WM
.→ WMH�� be ϕ(0, . . . ,  j ), for an arbitrary normal-

izing path 0, . . . ,  j starting with .
We are ready to define a natural transformation

ωe2,e1 : WM(e2) ◦ WM(e1)
.→ WM(e2 ◦ e1),

for every composable pair of arrows e1 = ( f1, g1, h1) and e2 = ( f2, g2, h2) of (�op)3.

Definition Let �1 and �2 be sequences of colour 1, let �1 and �2 be sequences of
colour 2, and let H1 and H2 be sequences of colour 3, such that ◦�1 is f nf1 , ◦�2 is
f nf2 , ◦�1 is gnf1 , ◦�2 is gnf2 , ◦H1 is hnf1 , and ◦H2 is hnf2 . We define

ωe2,e1 as ϕH2�2�2H1�1�1 .

It remains to prove that our Diagram 4.1 commutes. Let e1 = ( f1, g1, h1), e2 =
( f2, g2, h2) and e3 = ( f3, g3, h3) be such that the composition e3 ◦ e2 ◦ e1 is defined
in (�op)3. Let �1, �2, �1, �2, H1 and H2 be as above, and let �3, �3 and H3 be
sequences of colour 1, 2 and 3 respectively such that ◦�3 is f nf3 , ◦�3 is gnf3 and ◦H3
is hnf3 . In this case, Diagram 4.1 reads

where ◦�′ is ( f3 ◦ f2)nf , ◦�′ is (g3 ◦ g2)nf , ◦H′ is (h3 ◦ h2)nf , ◦�′′ is ( f2 ◦ f1)nf ,
◦�′′ is (g2 ◦ g1)nf and ◦H′′ is (h2 ◦ h1)nf .

By Theorem 6.2 we have the following commutative diagram
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Hence, to prove that Diagram 4.1 commutes, it suffices to show that

(i) ϕH3H2�3�2�3�2H1�1�1 = ϕH′�′�′H1�1�1 and

(ii) ϕH3�3�3H2H1�2�1�2�1 = ϕH3�3�3H′′�′′�′′ .

To prove (i) and (ii) we use the same arguments as in the twofold case. Let x , y,
and z be three different elements of the set {1, 2, 3} such that x < y. Note that the
position of (1q , z) in the two shuffles of the lemma below is irrelevant; (1q , z) serves
just to keep ϕ correctly defined and to introduce the parameter q.

Lemma 6.3 If � and �′ are sequences of colour x such that ◦� = ◦�′ is a basic
equation of �op, and g is a basic arrow of �op, then for every q ≥ 0 we have that
ϕ�(g,y)(1q ,z) = ϕ�′(g,y)(1q ,z).

Proof Suppose the target of ◦� is n′ and the target of g is m′. If x = 1, y = 2,
and z = 3, then we proceed as in Lemma 4.3 with all the cases modified so that the
tuples representing the natural transformations are multiplied by the matrix In′ ⊗ Im′ ⊗
(1, . . . , 1
︸ ︷︷ ︸

q

). For example, Case 1.1.1 now reads

ϕ�(g,2)(1q ,3) = (1( j−1)mq , 1iq , τ q , 1((l− j−1)m−1)q , τ q , �1) = ϕ�′(g,2)(1q ,3).

If x = 2, y = 3, and z = 1, we again proceed as in Lemma 4.3 with all the
cases modified so that κ , β, τ , and ι are replaced by κ ′, β ′, τ ′, and ι′, and the tuples
representing the natural transformations aremultiplied by thematrix (1, . . . , 1

︸ ︷︷ ︸
q

)⊗ In′ ⊗

Im′ . For example, Case 1.1.1 now reads
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ϕ�(g,3)(1q ,1) = ((1( j−1)m, 1i , τ ′, 1(l− j−1)m−1, τ ′, �1)q) = ϕ�′(g,3)(1q ,1).

If x = 1, y = 3, and z = 2, we modify all the cases of Lemma 4.3 so that κ , β,
τ , and ι are replaced by κ ′′, β ′′, τ ′′, and ι′′, and the tuples representing the natural
transformations are multiplied by the matrix In′ ⊗(1, . . . , 1

︸ ︷︷ ︸
q

)⊗ Im′ . For example, Case

1.1.1 now reads

ϕ�(g,3)(1q ,2) = (1( j−1)mq , (1i , τ ′′, 1m−i−1)q , 1(l− j−2)mq , (1i , τ ′′, 1m−i−1)q , �1)
= ϕ�′(g,3)(1q ,2).

�
By relying on Lemma 6.3, we can prove a lemma analogous to Lemma 4.4 and this

suffices for the proof of (i) by induction on the sum of lengths of H1 and �1. We can
prove (ii) in a dual manner. Hence, we have:

Theorem 6.5 The threefold reduced bar construction WM, together with the natural
transformations ω, makes a lax functor from (�op)3 to Cat.

7 The n-fold monoidal categories

The notion of n-fold monoidal category that we use in this paper is defined in [2,
Section 7.6] under the name n-monoidal category. Before we define the notion of
(n+1)-fold monoidal category, for n ≥ 3, we first define what the arrows between the
n-fold monoidal categories are. For this inductive definition we assume that an n-fold
monoidal category, for n ≥ 3, is a category M equipped with n monoidal structures
M1 = 〈M,⊗1, I1〉, . . . ,Mn = 〈M,⊗n, In〉 such that for every 1 ≤ k < l < m ≤
n, the categoryMwith the structuresMk ,Ml andMm is threefold monoidal. Hence,
for every 1 ≤ k < l ≤ n, the category M with the structures Mk and Ml is twofold
monoidal. We denote by κk,l : Ik → Il , βk,l : Ik → Ik ⊗l Ik , τk,l : Il ⊗k Il → Il and

ιk,l : (A ⊗l B) ⊗k (C ⊗l D) → (A ⊗k C) ⊗l (B ⊗k D)

the required arrows of M.

Definition An n-fold monoidal functor between two n-fold monoidal categories C
and D is a (2n + 1)-tuple 〈F, σ 1, δ1, . . . , σ n, δn〉, where for k ∈ {1, . . . , n},

σ k
A,B : FA ⊗D

k FB → F
(
A ⊗C

k B
)

and δk : IDk → F ICk

are arrows of D natural in A and B, such that 〈F, σ k, δk〉 is a monoidal functor
between the kth monoidal structures of C and D. Moreover, for every 1 ≤ k < l ≤ n,
the following four diagrams commute (with the superscripts C and D omitted):
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LetMonn(Cat) be the 2-categorywhose 0-cells are the n-foldmonoidal categories,
1-cells are the n-fold monoidal functors, and 2-cells are the n-fold monoidal transfor-
mations, i.e., monoidal transformations with respect to all n structures. The monoidal
structure of Monn(Cat) is again given by 2-products.

Definition An (n + 1)-fold monoidal category is a pseudomonoid in Monn(Cat).

By this inductive definition, it is clear that an n-fold monoidal category satisfies the
assumptions given above, which we may take as an unfolded form of this definition.
As in the case of twofold and threefold monoidal categories, we are only interested
in n-fold strict monoidal categories, i.e., when the structures M1, . . . ,Mn are strict
monoidal.

The n-fold monoidal categories defined in [3, Definition 1.7] are the n-fold strict
monoidal categories from above in which, moreover, it is assumed that I1 = · · · =
In = 0, and all the κ , β and τ arrows are replaced by the identity 10. Also, for every
n, a symmetric monoidal category is n-fold monoidal with all n monoidal structures
being the same.

On the other hand, it is not true that every n-fold strict monoidal category in our
sense is an n-fold monoidal in the sense of [3]. It is not only the case that the difference
would appear in arrows that involve the units. The arrows of the form

A ⊗i B → A ⊗ j B and A ⊗i B → B ⊗ j A,

for i < j (see [3, Remark 1.4]), show that the axiomatization of n-fold monoidal
categories given in [3] leads to a non-conservative extension of its fragment without
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units. These arrows are not presumed by our definition. Hence, the categories would
be different in their unit-free fragments too.

8 The n-fold reduced bar construction

In Sects. 4 and 6, we have defined the n-fold reduced bar construction for n = 2
and n = 3. We define, in the same manner, the n-fold reduced bar construction for
arbitrary n ≥ 3. This construction corresponds to the one given in the proof of [3,
Theorem 2.1], save that the latter construction is based on a category that is n-fold
monoidal in the sense of that paper.

For an n-fold strict monoidal category M, we define functions WM from objects
and arrows of (�op)n to objects and arrows of Cat in the following manner.

Definition The n-fold reduced bar construction WM is defined on objects of (�op)n

as:

WM (k1, . . . , kn) = Mk1·...·kn ,

and for arrows fk : sk → tk , 1 ≤ k ≤ n, of �op, we define WM( f1, . . . , fn) as the
composition

(WMn( fn))
t1·...·tn−1 ◦ . . . ◦ (WMsk+1·...·sn

k ( fk))
t1·...·tk−1 ◦ . . . ◦ WMs2·...·sn

1 ( f1).

For example, for M being a fourfold strict monoidal category, the functor
WM(d21 , s

2
1 , d

2
1 , s

2
0 ) : M4 → M4 is defined as the composition

(WM4(s
2
0 ))

2(WM3(d
2
1 ))

2 ◦ WM2
2(s

2
1 ) ◦ WM2

1(d
2
1 ),

and for an object (A, B,C, D) of M4 we have that

WM(d21 , s
2
1 , d

2
1 , s

2
0 )(A, B,C, D) = (I4, (A ⊗1 C) ⊗3 (B ⊗1 D), I4, I2 ⊗3 I2).

In order to prove that WM is a lax functor, for every composable pair of arrows e1
and e2 of (�op)n , we have to define a natural transformation

ωe2,e1 : WM(e2) ◦ WM(e1)
.→ WM(e2 ◦ e1),

such that Diagram 4.1 commutes. For this we use again coloured sequences and their
shuffles.

Let�1, . . . , �n be sequences of colours 1, . . . , n, respectively and let be a shuffle
of these n sequences. For every member ( f, k) of , we define its inner power and its
outer power to be

∏

k<l≤n

tl and
∏

1≤l<k

tl ,
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respectively, where tl is the target of its right-closest member of  of colour l (again
with adding appropriate identities if necessary). We assume that the empty product
is 1. This definition is in accordance with the corresponding definitions for two and
threefold cases; the difference is that the powers fixed to be 1 (like, for example, the
outer power of ( f, 1)) are not mentioned there.

LetM be an n-fold strict monoidal category and let our sequences be such that for
every 1 ≤ k ≤ n, ◦�k : sk → tk . We define a functor

WM : Ms1·...·sn → Mt1·...·tn

in the following way: replace in every ( f, k)whose inner power is i and outer power
is o by (WMi

k( f ))
o, and insert ◦’s.

It is easy to see that for arrows fk , 1 ≤ k ≤ n, of �op, we have that

WM( f1, . . . , fn) = WM�n ...�1 ,

for arbitrary sequences �k of colour k, 1 ≤ k ≤ n, such that ◦�k = fk . This may
serve as an alternative (combinatorial) definition of the n-fold reduced bar construction
WM.

We define the natural transformations ω following the lines of Sects. 4 and 6.
In order to compare some notions needed for this definition with the corresponding
notions introduced in Sects. 4 and 6, we use the symbol n for an object of �op. To
prevent ambiguities, we introduce a new symbol ṅ, and assume that our category M
is ṅ-fold strict monoidal and that WM is the ṅ-fold reduced bar construction. This
includes just a few occurrences of ṅ ending with Lemma 8.1, when we return to the
standard notation.

For basic arrows f : n → n′ and g : m → m′ of �op, for k, l such that 0 ≤ k < l ≤
ṅ, and u, v, w ≥ 0, we define a natural transformation

χk,l
u,v,w( f, g) : (WMvm′w

k ( f ))u ◦ (WMw
l (g))unv .→ (WMw

l (g))un
′v ◦ (WMvmw

k ( f ))u

to be the identity natural transformation except in the following cases:

f g χ
k,l
u,v,w( f, g)

sn+1
j sm+1

i ((1 j (m+1)vw, (1iw, κw
k,l ,

�1
︸ ︷︷ ︸

(m+1)w

)v, �1)u)

dnj , 1 ≤ j ≤ n − 1 sm+1
i ((1( j−1)(m+1)vw, (1iw, τw

k,l ,
�1

︸ ︷︷ ︸
(m+1)w

)v, �1)u)

sn+1
j dmi , 1 ≤ i ≤ m − 1 ((1 j (m−1)vw, (1(i−1)w, βw

k,l ,
�1

︸ ︷︷ ︸
(m−1)w

)v, �1)u)

dnj , 1 ≤ j ≤ n − 1 dmi , 1 ≤ i ≤ m − 1 ((1( j−1)(m−1)vw, (1(i−1)w, ιwk,l ,
�1

︸ ︷︷ ︸
(m−1)w

)v, �1)u)
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The n-fold reduced bar construction 535

Note that the tuples of the third column of the table above are obtained as a result
of multiplication of the tuples in the third column of Table 1 (where κ , β, τ , and ι are
replaced by κk,l , βk,l , τk,l , and ιk,l ) by the matrix

(1, . . . , 1
︸ ︷︷ ︸

u

) ⊗ In′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

v

) ⊗ Im′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

w

).

For the following lemma,which is analogous toLemma6.1,we assume that f : n →
n′, g : m → m′, and h : p → p′ are basic arrows of �op, that 1 ≤ a < b < c ≤ ṅ, that
� is a shuffle of sequences of colours 1, . . . , ṅ with only identity arrows in it, and that

u =
∏

1≤l<a

tl , v1 =
∏

a<l<b

tl , v2 =
∏

b<l<c

tl , w =
∏

b<l≤ṅ

tl ,

where tl is the target of the leftmost member of � of colour l.
For example, if ṅ = 7, a = 2, b = 4, c = 5, and

� = (12, 1)(1n, 2)(13, 3)(1m, 4)(1p, 5)(15, 6)(14, 7),

then u = 2, v1 = 3, v2 = 1, and w = 20.

Lemma 8.1 The following diagram commutes:

Proof The tuples representing the natural transformations of the left-hand side and the
right-hand side of this diagram are obtained by multiplying the corresponding tuples
of the diagram in Lemma 6.1 (where κ , κ ′, and κ ′′ are replaced by κa,b, κb,c, and κa,c,
etc.) by the matrix

(1, . . . , 1
︸ ︷︷ ︸

u

) ⊗ In′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

v1

) ⊗ Im′(1, . . . , 1
︸ ︷︷ ︸

v2

) ⊗ Ip′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

w

).

Hence, Lemma 6.1 directly implies this lemma. �
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Let 0, . . . ,  j , for j ≥ 0, be shuffles of �1, . . . , �n such that 0 =  and
 j = �n . . . �1, and if j > 0, then for every 0 ≤ i ≤ j − 1 we have that for
some 1 ≤ k < l ≤ n, i = �( f, k)(g, l)� and i+1 = �(g, l)( f, k)�. We call
0, . . . ,  j a normalizing path starting with . Its length is j and Proposition 4.1
still holds.

For u, v, and w being respectively

∏

1≤z<k

tz,
∏

k<z<l

tz,
∏

l<z≤n

tz,

where tz is the target of the leftmost member of � of colour z, we have that

ϕi = WM� χk,l
u,v,w( f, g) WM�,

is a natural transformation from WMi to WMi+1 . We define ϕ(0, . . . ,  j ) as
in the twofold case and for ′

0, . . . , 
′
j being another normalizing path starting with

, the following theorem is proved in the same manner as Theorem 6.2, relying on
Lemma 8.1 instead of Lemma 6.1.

Theorem 8.2 ϕ(0, . . . ,  j ) = ϕ(′
0, . . . , 

′
j ).

By Theorem 8.2, the following definition is correct.

Definition Let ϕ : WM
.→ WM�n ...�1 be ϕ(0, . . . ,  j ), for an arbitrary nor-

malizing path 0, . . . ,  j starting with .
We are ready to define a natural transformation

ωe2,e1 : WM(e2) ◦ WM(e1)
.→ WM(e2 ◦ e1),

for every composable pair of arrows e1 = ( f 11 , . . . , f 1n ) and e2 = ( f 21 , . . . , f 2n ) of
(�op)n .

Definition Let �1
k and �2

k , for 1 ≤ k ≤ n, be sequences of colour k, such that ◦�1
k is

( f 1k )nf and ◦�2
k is ( f 2k )nf . We define

ωe2,e1 as ϕ�2
n ...�

2
1�

1
n ...�

1
1
.

It remains to prove that our Diagram 4.1 commutes. Let e1 = ( f 11 , . . . , f 1n ), e2 =
( f 21 , . . . , f 2n ) and e3 = ( f 31 , . . . , f 3n ) be such that the composition e3 ◦ e2 ◦ e1 is
defined in (�op)n . Let �1

k , �
2
k and �3

k , for 1 ≤ k ≤ n, be sequences of colour k, such
that ◦�1

k is ( f 1k )nf , ◦�2
k is ( f 2k )nf and ◦�3

k is ( f 3k )nf . In this case, Diagram 4.1 reads
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The n-fold reduced bar construction 537

where ◦�′
k is ( f 3k ◦ f 2k )nf and ◦�′′

k is ( f 2k ◦ f 1k )nf .
By Theorem 8.2 we have the following commutative diagram

Hence, to prove that Diagram 4.1 commutes, it suffices to show that

(i) ϕ�3
n�

2
n ...�

3
1�

2
1�

1
n ...�

1
1

= ϕ�′
n ...�

′
1�

1
n ...�

1
1

and

(ii) ϕ�3
n ...�

3
1�

2
n�

1
n ...�

2
1�

1
1

= ϕ�3
n ...�

3
1�

′′
n ...�

′′
1
.

To prove (i) and (ii) we use the same arguments as in the twofold case. Let �

be a shuffle of sequences of colours 1, . . . , n with only identity arrows in it. Let
1 ≤ k < l ≤ n and let u, v, and w be respectively

∏

1≤z<k

tz,
∏

k<z<l

tz,
∏

l<z≤n

tz,

where tz is the target of the leftmost member of � of colour z.

Lemma 8.3 If � and �′ are sequences of colour k such that ◦� = ◦�′ is a basic
equation of�op, and g is a basic arrow of�op, then we have that ϕ�(g,l)� = ϕ�′(g,l)�.

Proof Suppose the target of ◦� is n′ and the target of g is m′. We proceed as in
Lemma 4.3 with all the cases modified so that κ , β, τ , and ι are replaced by κk,l , βk,l ,
τk,l , and ιk,l , and the tuples representing the natural transformations are multiplied by
the matrix

(1, . . . , 1
︸ ︷︷ ︸

u

) ⊗ In′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

v

) ⊗ Im′ ⊗ (1, . . . , 1
︸ ︷︷ ︸

w

).

So, for example, Case 1.1.1 now reads
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ϕ�(g,l)�

= ((1( j−1)mvw, (1iw, τw
k,l , 1

(m−i−1)w)v, 1(l− j−2)mvw, (1iw, τw
k,l , 1

(m−i−1)w)v, �1)u)
= ϕ�′(g,l)�.

�
By relying on Lemma 8.3, we can prove a lemma analogous to Lemma 4.4 and this

suffices for the proof of (i) by induction on the sum of lengths of �1
n, . . . , �

1
2. We can

prove (ii) in a dual manner. So, for every n ≥ 2 we have:

Theorem 8.5 The n-fold reduced bar construction WM, together with the natural
transformations ω, makes a lax functor from (�op)n to Cat.

We see, by analyzing this result, that the conditions imposed by the definition of
n-fold monoidal categories are not only sufficient, but they are also necessary to prove
the correctness of the n-fold reduced bar construction. If one proves this through the
steps established by our Theorem 8.2 and Lemmata analogous to Lemma 8.3, then all
the combinatorial structure of n-fold monoidal categories is used.

Since every n-fold monoidal category in the sense of [3] is an n-fold strict monoidal
category in our sense, Theorem 8.5 gives an alternative proof for [3, Theorem 2.1].
Every braided strict monoidal category is a twofold monoidal category in the sense of
[3] and every symmetric strict monoidal category is an ∞-monoidal category in the
sense of [3]. Hence, our Theorem 8.5 covers all the related results concerning these
categories. Also, the correctness of the reduced bar construction of [19, Lemma 7.1]
follows from this theorem.

9 Delooping

This section, which is inspired by [3, Section 2], explains how to use Theorem 8.5
for delooping of classifying spaces of n-fold monoidal categories. Theorem 2.2 of [3]
says that the group completion of the nerve of an n-fold monoidal category is an n-fold
loop space. It is an easy corollary of a generalization of [22, Proposition 1.5] and [3,
Theorem 2.1].

A formulation of a generalization of [22, Proposition 1.5] is given in [3, para-
graph preceding Theorem 2.1]. This seems to be a folklore result amongst the experts,
but we couldn’t find written proof, or a precise formulation of it. The note [20] is
prepared to rectify that. We sketch a delooping procedure based on the results of this
note.

For m ≥ 1, consider the arrows i1, . . . , im : m → 1 of �op given by the following
diagrams.

These arrows are related to projections, which is explained in [21, Section 2] and [20,
Section 3].
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The n-fold reduced bar construction 539

We use the following notation in the sequel. For functors Fi : A → Bi , 1 ≤ i ≤ m,
let 〈F1, . . . , Fm〉 : A → B1 × · · · × Bm be the functor obtained by the Cartesian
structure of Cat.

Let WM be the n-fold reduced bar construction for n ≥ 2. It is easy to verify that
for every l ∈ {0, . . . , n − 1} and every k ≥ 0, the functor W : �op → Cat defined
as

WM(1, . . . , 1
︸ ︷︷ ︸

l

, , k, . . . , k)

is such that

〈W (i1), . . . ,W (im)〉 : W (m) → (W (1))m

is the identity. This means that WM is Segal’s lax functor according to [20, Defini-
tion 4.2].

Let V be a rectification ofWM obtained by [24, Theorem 2], and let B : Cat → Top
be the classifying space functor, i.e., the composition | |◦N , where N : Cat → Top�op

is the nerve functor, and | | : Top�op → Top is the standard geometric realization
functor. By [20, Corollary 4.4], B ◦ V is a multisimplicial space such that for X being
the simplicial space defined as

(B ◦ V )(1, . . . , 1
︸ ︷︷ ︸

l

, , k, . . . , k),

the map

〈X (i1), . . . , X (im)〉 : X (m) → (X (1))m

is a homotopy equivalence.
By applying [20, Lemma 3.1] to the simplicial space (B ◦ V )(1, . . . , 1, ), we

obtain a homotopy associative H-space structure on (B ◦V )(1, . . . , 1). The following
theorem (in which | | denotes the standard geometric realization of multisimplicial
spaces) is taken over from [20, Theorem 5.1].

Theorem 8.6 If (B ◦ V )(1, . . . , 1), with respect to the above H-space structure is
grouplike, then BM � �n|B ◦ V |.

Hence, up to group completion, the realization |B ◦V | of the multisimplicial space
B ◦ V is an n-fold delooping of the classifying space BM of M.
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Bicartesian categories, i.e., categories with all finite coproducts and products may
serve as examples of n-fold monoidal categories that are not n-fold monoidal in the
sense of [3]. If we denote the nullary and binary coproducts of a bicartesian cat-
egory by 0 and +, and nullary and binary products by 1 and ×, then the unique
arrows

κ : 0 → 1, β : 0 → 0 × 0, τ : 1 + 1 → 1

of this category together with the arrows

ιA,B,C,D : (A × B) + (C × D) → (A + C) × (B + D),

which are canonical in the coproduct–product structures, guarantee that such a cat-
egory may be conceived as a twofold monoidal with the first monoidal structure
given by + and 0, and the second given by × and 1. Furthermore, such a cate-
gory may be conceived as an n-fold monoidal category in n + 1 different ways
by taking first 0 ≤ k ≤ n monoidal structures to be given by the symmet-
ric monoidal structure brought by + and 0, and the remaining n − k monoidal
structures to be given by the symmetric monoidal structure brought by × and
1.

As a consequence of this fact there is a family, indexed by pairs of natural num-
bers, of reduced bar constructions based on a bicartesian category (strictified in
both monoidal structures). This is related to Adams’ remark on E∞ ring spaces
given in [1, §2.7] where the bicartesian category FinSet of finite sets and functions,
with disjoint union as + and Cartesian product as ×, is mentioned. According to
Segal [22, §2],“most fundamental �-space” arises from this category under disjoint
union.

By applying our results, it is possible to combine the disjoint union and Cartesian
product in the category FinSet to obtain various multisimplicial spaces. Since we have
the initial (and a terminal) object in FinSet, its classifying space is contractible and
all the other realizations of simplicial sets in question are path-connected. Hence, the
induced H-space structures are grouplike, and there is no need for group completion
when one starts to deloop FinSet with respect to the disjoint union and then con-
tinue to deloop it with respect to Cartesian product. However, all these deloopings are
contractible.

Since the notion of n-fold monoidal category is equationally presented, there
are n-fold monoidal categories freely generated by sets of objects. We believe that
delooping of classifying spaces of such categories deserves particular attention.
Also, some other examples of n-fold monoidal categories from the literature (e.g.
[2, Sections 6.4 and 7.3]) could be interesting from the point of view of deloop-
ing.

Acknowledgements This work was supported by projects of the Ministry of Education, Science, and
Technological Development of the Republic of Serbia (ON174020 and ON174026).
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10 Appendix

By the definition given in Sect. 2, a twofold monoidal category consists of the follow-
ing:

1. a monoidal category 〈M,⊗1, I1, α1, ρ1, λ1〉 (here α1, ρ1, and λ1, respectively,
denote associativity, right and left identity natural isomorphisms),

2. monoidal functors ⊗2 : M × M → M and I2 : 1 → M,
3. monoidal transformations α2, ρ2, and λ2 such that 〈M,⊗2, I2, α2, ρ2, λ2〉 sat-

isfies the pseudomonoid conditions (i.e., the equations of a monoidal category).
That ⊗2 is a monoidal functor means that there is a natural transformation ι given

by the family of arrows

ιA,B,C,D : (A ⊗2 B) ⊗1 (C ⊗2 D) → (A ⊗1 C) ⊗2 (B ⊗1 D),

and an arrow β : I1 → I1 ⊗2 I1 such that the following three diagrams commute:

That I2 is a monoidal functor means that there are arrows τ : I2 ⊗1 I2 → I2 and
κ : I1 → I2 such that the following diagrams commute:
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542 S. Lj. Čukić, Z. Petrić

Note that the unusual numbering of the following diagrams is due to our wish to
dualize the first six diagrams in some way, which can clearly be seen from the list of
12 equations at the end of Sect. 2. That α2 is a monoidal transformation means that
the following diagrams commute:

That ρ2 is a monoidal transformation means that the following diagrams commute:

Finally, that λ2 is a monoidal transformation means that the following diagrams
commute:
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