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Abstract LetA be an abelian category. In this paper we study monoform objects and
atoms introduced byKanda.We classify full subcategories ofA bymeans of subclasses
of ASpecA, the atom spectrum of A. We also study the atomical decomposition and
localization theory in terms of atoms. As some applications of our results, we study
the category Mod-A where A is a fully right bounded noetherian ring.
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1 Introduction

Throughout this paper, A is an abelian category and all subcategories of A are full
and closed under isomorphisms.

The classification of subcategories of a category is an important area in the recent
years which has been studied by numerous authors in [2,3,5,9,13] and [14]. The
prototype of this subject goes back to 1962 when Gabriel [1] presented a classification
of the Serre subcategories of the category of A-modules, where A is a commutative
noetherian ring. He showed that there exists a one-to-one correspondence between
Serre subcategories of A-Mod and specialization closed subsets of SpecA.
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For arbitrary rings, Storrer [11] defined and studied monoform modules and atoms
which play the role of prime ideals. For a commutative noetherian ring, the isomor-
phism class of indecomposable injective modules are in a one-one correspondence
with the prime ideals, whereas in the noncommutative noetherian rings the atoms are.
This is one of the reasons why he worked with atoms.

Recently, Kanda [5] has investigated the classification of Serre subcategories of an
arbitrary noetherian abelian categoryA in terms ofmonoformobjects and atoms. Since
abelian categories do not have enough injective objects in general, Kanda showed that
these notions can be suitable replacements for indecomposable injective modules. In
this paper we get further properties of monoform objects. We will develop Kanda’s
results for some more general abelian categories.

Section 2 is devoted to monoform objects in an abelian category. Kanda showed
that every nonzero noetherian object has a monoform subobject. In Theorem 2.1, we
showed howwe can construct this subobject.We define atomical decomposition of any
subobject of a noetherian object M ofA and show that ifM is a noetherian object, then
every subobject N has an atomical decomposition which determines the associated
atoms of M/N (cf. Propositions 2.5, 2.7). We define maximal atoms and present
sufficient conditions, so that an object has a maximal atom in its atom support (cf.
Proposition 2.11). In Theorem 2.12, we prove that the maximal atoms can characterize
finite length objects.

In Sect. 3, we study the relation between monoform objects and full subcategories
of an abelian category. In Theorem 3.8, we show that ifA has a set of generators, there
exists a one-to-one correspondence between

S = {X |X is a Serre subcategory of noeth A}

and the class of all open subclasses of ASpec(A).
Section 4 is mainly devoted to localization theory in Grothendieck categories. In

Theorem 4.6, we show that if A is a locally noetherian Grothendieck category, there
is a bijection between full subcategories of A which are closed under subobjects,
injective envelopes and direct sums, and subclasses of ASpec(A). In sequel we study
the localization theory in terms of atoms due to Kanda [6].We show that several results
in the classical localization theory of module category can be true in Grothendieck
categories in sense of the new version of localization. More precisely, we prove that
if α is an atom, then E(α)α ∼= E(α), where E(α) is the injective envelope of α

(cf. Proposition 4.8). We also show that in Proposition 4.11 that if X is a localizing
subcategory ofAwith the canonical functor F : A → A/X and the idempotent radical
tX and also if M is an object of A, then AAssF(M) = AAss(M/tX (M)). Moreover
if X is stable, then AAssF(M) = AAss(M)\ASuppX . In Proposition 4.13, we prove
that if N is a proper subobject of a noetherian object M in A and α is a minimal
atom in ASupp(M/N ) such that Xα is stable, then the α-component of any atomical
decomposition of N is η−1

M (GF(N )) where F : A → Aα is the canonical functor
with the right adjoint functor G : Aα → A. This fact implies that the α-component
is uniquely determined only by M, N and α.

In Section 5, as applications of our results, we study the fully right bounded noethe-
rian rings.

123



Monoform objects and localization theory in abelian categories 445

2 Monoform and uniform objects in abelian categories

Throughout this section A is an abelian category. We begin this section by some
definitions and notions due to Kanda. For more details, we refer the reader to [5].

A nonzero object M inA is monoform if for any nonzero subobject N of M , there
exists no common nonzero subobject of M and M/N , which means that there does
not exist a nonzero subobject of M which is isomorphic to a subobject of M/N . A
nonzero objectU inA is uniform if for any nonzero subobjects L and L ′ ofU , we have
L ′ ∩ L �= 0; in other words,U is uniform if every nonzero subobject ofU is essential
inU . We remark that uniform objects had already been known as coirreducible objects
(cf. [10, p. 119]).

Let ASpec0A denote the class of all monoform objects of A. Two monoform
objects H and H ′ are atom-equivalent if they have a common nonzero subobject.
By [5, Proposition 2.8], the atom equivalence establishes an equivalence relation on
ASpec0A and so for every monoform object H , equivalence class H is called an atom,
that is

H = {G ∈ ASpec0A|H and G have a common nonzero subobject}.

The atom spectrum ASpecA of A is the quotient class of ASpec0A consisting of all
atoms induced by this equivalence relation.

An object M of A is noetherian if every ascending chain of subobjects of M
stabilizes.

For an object M ofA, the atom support of M , denoted by ASupp(M), is a subclass
of ASpecA as follows

ASuppM = {H ∈ ASpecA| there exists H ′ ∈ H which is a subquotient of M}.

The associated atoms of a module had been studied in [11], but a generalization of
that for abelian category was defined in [5].

For an object M , we define the associated atoms of M , denoted by AAss(M), a
subclass of ASupp(M) as follows

AAssM = {H ∈ ASupp(M)| there exists H ′ ∈ H which is a subobject of M}.

Kanda [5], by a categorical proof, showed that if M is a nonzero noetherian object
of A, then it has a monoform subobject. Here, we present a different proof which
shows how we can find such a subobject directly.

Theorem 2.1 [5, Theorem 2.9] Any nonzero noetherian object M has a monoform
subobject. In particular M has a filtration

0 = L0 ⊂ L1 ⊂ · · · ⊂ Ln = M

such that L/Li−1 is a monofrom objects for any i = 1, . . . , n.
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Proof We begin by proving that M has a monoform subobject. If M is monoform,
there is nothing to prove. So we assume that M is not monoform. Then M has a
nonzero subobject N such that M and M/N have a common nonzero subobject.
Let � be the class of all such subobjects N of M . Since M is noetherian, � has
a maximal element K . Hence there exist subobjects K � K1 and X ⊂ M and
an isomorphism θ : K1/K → X . We show that K1/K is monoform and so is X .
Suppose on the contrary that K1/K is not monoform. Then there exist subobjects
K � K2 � K3 ⊆ K1 and K � K4 � K1 such that K3/K2 ∼= K4/K . Thus
θ(K4/K ) ∼= K3/K2 is a commonnonzero subobject ofM andM/K2. This implies that
K2 is in � which contradicts the maximality of K . Therefore K1/K is monoform. In
order to prove the second claim, ifM is monoform, there is nothing to prove, otherwise
it has a monoform subobject L1 such that M/L1 is a nonzero object. Clearly M/L1 is
noetherian and if it is monoform, then M = L2. If M/L1 is not monoform, continuing
the previous argument, we find an ascending chain of subobject of M

L0 = 0 ⊂ L1 ⊂ L2 ⊂ . . .

such that each Li/Li−1 is monoform. Now, since M is noetherian, our constructing
implies that there exists n ∈ N such that M = Ln . 
�
Remark 2.2 If A has a set of noetherian generators, then the subclass of associated
atoms of every nonzero object is non-empty. More precisely, let {Ui }I be a set of
generators of A such that every Ui is noetherian. For every nonzero object M of A,
there exists i ∈ I and a nonzero morphism f : Ui → M . We notice that Im f is a
noetherian subobject of M and so it follows from Theorem 2.1 that AAss(Im f ) is
non-empty. Therefore the claim follows as AAss(Im f ) ⊆ AAss(M).

A proper subobject N of M is said to be irreducible if for any two subobjects
K and L of M the equality N = K ∩ L implies that N = K or N = L . Clearly,
N is an irreducible subobject of M if and only if M/N is uniform. We say that an
expression of a subobject N of M as an intersection N = N1∩· · ·∩Nn is irredundant
if

⋂
i �= j Ni � N j for each 1 ≤ j ≤ n. In other words, we cannot omit any Ni , that

means N �= N1 ∩ · · · ∩ Ni−1 ∩ Ni+1 ∩ · · · ∩ Nn .
An irreducible decomposition of a subobject N of M is N = N1 ∩ · · · ∩ Nn in

which Ni s are irreducible subobjects of M .
A proper subobject N of an object M is called atomical if AAss(M/N ) has just

one element. If AAss(M/N ) = {α}, then N is called α-atomical.

Proposition 2.3 Every irreducible subobject of a noetherian object M is atomical.

Proof Let N be an irreducible subobject of M . Without loss of generality, assume
that N = 0 and so M is a uniform object. Let α1, α2 ∈ AAss(M). Then there exist
monoform subobjects H1 and H2 of M with αi = Hi for i = 1, 2. But since M is
uniform, H1 ∩ H2 �= 0; and hence H1 = H2. 
�
Proposition 2.4 Let α be an atom and N1 and N2 be α-atomical subobjects of a
noetherian object M. Then N1 ∩ N2 is α-atomical.
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Proof We can embed M/N1 ∩ N2 as a subobject of M/N1 ⊕ M/N2, so that
AAss(M/N1 ∩ N2) = {α}. 
�

Let M be a noetherian object. An atomical decomposition of a subobject L of M is
obtained by writing L as a finite intersection L = L1∩· · ·∩Ln of atomical subobjects
Li of M , so that

(i) The decomposition is irredundant.
(ii) AAss(M/Li ) �= AAss(M/L j ) for i �= j .

Proposition 2.5 Suppose that L = L1 ∩ · · · ∩ Ln is an atomical decomposition of L
in a noetherian object M with AAss(M/Li ) = {αi } for each i . Then AAss(M/L) =
{α1, . . . , αn}.
Proof Without loss of generality,wemay assume that L = 0.The canonicalmonomor-
phism β : M → M/L1 ⊕ · · · ⊕ M/Ln implies that AAss(M) ⊂ {α1, . . . , αn}.
Conversely, we show that every αi lies in AAss(M). Considering K = ⋂

j �=i L j , we
have K ∩ Li = 0 and since 0 = L1 ∩ · · · ∩ Ln is irredundant, K �= 0. Furthermore,
the canonical isomorphism K ∼= (K + Li )/Li implies that AAss(K ) = {αi }. Now,
since K is a subobject of M , we deduce that αi ∈ AAss(M). 
�
Proposition 2.6 [10, Chap.III. Proposition 3.9] Let M be a noetherian object of A.
Then every subobject of M has an irredundant irreducible decomposition.

Proposition 2.7 Every subobject L of a noetherian object M of A has an atomical
decomposition. If L = L1∩· · ·∩Lm = N1∩· · ·∩Nn are two atomical decompositions
of L in M, then m = n and

⋃m
i=1 AAss(M/Li ) = ⋃n

i=1 AAss(M/Ni ).

Proof Using Proposition 2.6, the subobject L can bewritten as an irredundant intersec-
tion L = L1∩· · ·∩Ln of irreducible subobjects Li of L and using Proposition 2.3, each
Li is atomical. For each α ∈ ⋃n

i=1 AAss(M/Li ), let L(α) denote the intersection of
all α-atomicals Li . Then L(α) is α-atomical by Proposition 2.4, and L = ⋂

α L(α) is
the desired atomical decomposition of L . In order to prove unicity, using Proposition
2.5, we have

⋃m
i=1 AAss(M/Li ) = AAss(M/L) = ⋃n

i=1 AAss(M/Ni ). Further-
more, since AAss(M/Li ) �= AAss(M/L j ) and AAss(M/Ni ) �= AAss(M/N j ) for
all i �= j , we have m = n. 
�
Proposition 2.8 If M is a monoform object, then any nonzero endomorphism of M is
injective.

Proof Let f : M → M be a nonzero endomorphism of M and let 0 �= K = Ker f .
Then M/K ∼= Im f ⊂ M . Since Im f �= 0, the objects M and M/K have a common
nonzero object which contradicts monoformness of M . 
�
Definition 2.9 An atom α in ASpecA is said to be maximal if there exists a simple
object H of A such that α = H . We denote by m-ASpecA, the subclass of ASpecA
consisting of all maximal atoms.

Proposition 2.10 Let A admit a set of noetherian generators and let M be an object
in A with ASupp(M) = {α}. Then α is maximal.
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Proof Since A has a set of noetherian generators, AAss(M) is non-empty and so
AAss(M) = {α}. Then there exists a monoform subobject H of M with α = H and
so ASupp(H) = {α}. If α is not maximal, then H is not simple and so it has a nonzero
proper subobject K such that ASupp(H/K ) = Ass(H/K ) = {α}. Then H/K has a
monoform subobject H1 such that α = H1; and hence there exists a subobject L of H
such that K � L and H1 = L/K . But since α = L = H1, the objects L and H1 have
a common nonzero subobject which contradicts monoformness of L . 
�

A categoryA is said to be locally small if the class of subobjects of any given object
is a set. We now show when a nonzero object in A has a maximal atom in its atom
support.

Proposition 2.11 (i) Let M be a nonzero noetherian object. Then ASupp(M) con-
tains a maximal atom. In particular, if A has a set of noetherian generators, then
every nonzero object of A has a maximal atom in its atom support.

(ii) If A is a locally small category, then every nonzero finitely generated object has
a maximal atom in its support. In particular if A has arbitrary direct sums and a
set of finitely generated generators, then every nonzero object ofA has a maximal
atom in its support.

Proof (i) Since M is noetherian, it has a maximal subobject N . Then M/N is a simple
object so that α = H is a maximal atom. For the second claim, let {Ui }I be a set
of noetherian generators of A. For every nonzero object M of A, there exists i ∈ I
and a nonzero morphism f : Ui → M . We notice that Im f is a noetherian subobject
of M . According to the first case, the object Im f has a maximal atom, and since
ASupp(Im f ) ⊂ ASupp(M), the object M has a maximal atom. (ii) If A is locally
small, the class of subobjects of any objects is actually a set. An analogous proof of
module category, using Zorn’s lemma, concludes that every nonzero finitely generated
object has a maximal subobjects. For the second claim, A has a generator and hence
using [10, Chap IV. Proposition 6.6], it is locally small. A similar argument mentioned
in (i) implies that any nonzero object of A contains a nonzero finitely generated
subobjects. Now, the result follows by the first part. 
�

We recall that an object M has finite length if it has a composition series, which
means that there exists a finite chain of subobjects

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that each object Mi/Mi−1 is simple.
An object M ofA is artinian if every descending chain of its subobjects stabilizes.
We now show that themaximal atom supports can characterize finite length objects.

Theorem 2.12 Let M be a nonzero object of A.

(i) If M is noetherian, then ASupp(M) ⊂ m-ASpecA if and only if M has finite
length.

(ii) If M is an artinian object, then ASupp(M) ⊂ m-ASpec(A).
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Proof (i) Assume that ASupp(M) ⊂ m-ASpecA. We will construct a composition
series for M . As M is a nonzero noetherian object, AAss(M) is a non-empty set
and AAss(M) ⊂ ASupp(M). Given α1 ∈ AAss(M), there exists a monoform
subobject M1 of M such that α1 = M1. Since α1 is maximal, we may assume
that M1 is simple. If M/M1 = 0, there is nothing to prove and so we assume that
M/M1 �= 0. Then, for this case, we have

AAss(M/M1) ⊂ ASupp(M/M1) ⊂ ASupp(M)

and AAss(M/M1) is non-empty. Suppose that α2 ∈ AAss(M/M1). Repeating the
previous argument there exists a simple subobject M2/M1 of M/M1 such that
α2 = M2/M1. Continuing this way for M/Mi for i ≥ 1, we have an ascending
chain M0 ⊂ M1 ⊂ . . . of subobjects of M such that each Mi+1/Mi is simple.
As M is noetherian, this chain finally stabilizes and hence there exists a positive
integer t such that Mt = M . Conversely, suppose that M is of finite length. Then
there exists a composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M

such that each object Mi/Mi−1 is simple. For every simple object H , it is clear
that ASupp(H) = {H}, and hence ASupp(M) = {M1/M0, . . . , Mn/Mn−1} ⊂
m-ASpecA.

(ii) Let α ∈ ASupp(M). Then by the definition there exists a subobject K of M and
a monoform subobject H of M/K such that α = H . Since M is artinian, M/K
is artinian; and so H can be considered as a minimal (simple) subobject of M/K .
This implies that α ∈ m-ASpec(A).


�

3 Monoform objects and their relationship to subcategories

Throughout this section A is an abelian category.
Let X be a subcategory of A. We set

〈X 〉sub = {M ∈ A|M is a subobject of an object of X };
〈X 〉quot = {M ∈ A|M is a quotient object of an object of X };

For any subcategories X and Y of A, we set the subcategory X � Y by

X � Y = {M ∈ A| there exists an exact sequence
0 → L → M → N → 0 with L ∈ X and N ∈ Y}.

For any n ∈ N0, we setX 0 = {0} andX n = X n−1 �X . In the case whereX 2 = X ,
we say that X is closed under extension. We also define 〈X 〉ext = ⋃

n≥0 X n as the
smallest subcategory of A containing X and closed under extension.
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A full subcategory X of A is called Serre if it is closed under taking subobjects,
quotients and extensions. For any subcategory X we denote by 〈X 〉Serre the smallest
Serre subcategory of A containing X .

Definition 3.1 Let π : ASpec0A � ASpecA be the canonical projection. For any
subcategory X ⊂ A, we define the subclasses ASupp(X ) and AAss(X ) of ASpecA
by

ASupp(X ) = π(〈〈X 〉sub〉quot ∩ ASpec0(A));
AAss(X ) = π(〈X 〉sub ∩ ASpec0(A)).

It is straightforward by the definition that if X is a subcategory of A, then

ASupp(X ) =
⋃

M∈X
ASuppM;

AAss(X ) =
⋃

M∈X
AAssM.

From [5]we recall that a subclass	 ofASpecA is open if for anyα ∈ 	, there exists
a monoform object H inA such that α = H and ASupp(H) ⊂ 	. We remark that for
any object M of A, the subclass ASupp(M) is open in ASpecA. Hence ASupp(X ) is
open in ASpecA for any subcategory X of A.

The following proposition gives a characterization of maximal atoms in terms of
open subclass of ASpecA.

Proposition 3.2 Let A admit a set of noetherian generators. Then {α} is an open
subclass of ASpec(A) if and only if α is a maximal atom.

Proof If α is not maximal, then by Proposition 2.10, we have ASupp(H) � {α} for
every monoform object H with α = H , which contradicts the fact that {α} is open.
Conversely, if α is a maximal atom with a simple object H such that α = H , then
ASupp(H) = {α}; and hence {α} is open. 
�

We denote by noethA the subcategory of A consisting of all noetherian objects.

Proposition 3.3 Let X be a subcategory of A. Then ASupp−1(ASupp(X )) ∩
noethA = 〈X 〉Serre ∩ noethA, where ASupp−1(U ) = {M ∈ A|ASupp(M) ⊆ U }
for any open subclass U of ASpecA.

Proof Let M ∈ ASupp−1(ASupp(X )) ∩ noethA. Then

ASupp(M) ⊂ ASupp(X ) = π(〈〈X 〉sub〉quot) ∩ ASpec0A).

It follows from [5, Lemma 4.2] that M ∈ 〈〈〈X 〉sub〉quot ∩ ASpec0A)〉Serre ⊂
〈X 〉Serre and hence M ∈ 〈X 〉Serre ∩ noethA. For the converse, it is clear that
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X ⊂ ASupp−1(ASupp(X )) and ASupp−1(ASupp(X )) is a Serre subcategory of A.
Hence, we have

〈X 〉Serre ⊂ ASupp−1(ASupp(X ))

so that 〈X 〉Serre ∩ noethA ⊂ ASupp−1(ASupp(X )) ∩ noethA. 
�
Lemma 3.4 LetA admit a set of noetherian generators and let X be a Serre subcat-
egory of A. Then ASupp(X ) = ASupp(X ∩ noethA).

Proof Clearly ASupp(X ∩ noethA) ⊂ ASupp(X ). Conversely if α is in ASupp(X ),
then there exists an object M of X such that α ∈ ASupp(M). Thus there exists a
subobject K of M and a monoform subobject H of M/K such that α = H . Since X
is Serre, H is inX . On the other hand, sinceA admits a set of noetherian generator, H
contains a noetherian subobject H1. Hence α ∈ ASupp(H1) ⊂ ASupp(X ∩ noethA).


�
Definition 3.5 Let U ⊂ ASpec(A). A subclass 	U of ASpec(A) is defined as

	U={α ∈ ASpec(A)| exists a monoform object H with α=H and ASupp(H) ⊂ U }.

Lemma 3.6 Let U ⊂ ASpec(A). Then 	U is the largest open subclass of ASpec(A)

contained in U.

Proof Wefirst show that	U is open. Suppose that α ∈ 	U . Then there exists a mono-
form object H of A such that α = H and ASupp(H) ⊂ U . Given β ∈ ASupp(H),
there exist a subobject K of H and a monoform subobject G of H/K such that
β = G. Thus ASupp(G) ⊂ ASupp(H) ⊂ U which implies that β ∈ 	U and so
ASupp(H) ⊂ 	U . Now we show that 	U ⊂ U . Given α ∈ 	U , there exists a mono-
form object H of A such that α = H and ASupp(H) ⊂ U and so α ∈ U . In order to
prove the last assertion let 	 be an open subclass of ASpec(A) such that 	 ⊂ U and
assume that α ∈ 	. Then by the definition, there exists a monoform object H of A
such that α = H and ASuppH ⊂ 	 ⊂ U so that α ∈ 	U . Therefore 	 ⊂ 	U . 
�

A corresponding result to Proposition 3.3 can be obtained for the subclasses of
ASpecA.

Proposition 3.7 Let U be a subclass of ASpec(A). Then ASupp(ASupp−1(U )) =
	U .

Proof We first show that ASupp−1(U ) = ASupp−1(	U ). Since 	U ⊂ U , we have
ASupp−1(	U ) ⊂ ASupp−1(U ) . Conversely, given M ∈ ASupp−1(U ), we have
ASupp(M) ⊂ U . Since ASupp(M) is an open subclass of ASpec(A), the previous
lemma forces that ASupp(M) ⊂ 	U ; and hence M ∈ ASupp−1(	U ). We now show
that

ASupp(ASupp−1(	U )) = 	U .
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Given α ∈ 	U , there exists a monoform object H with α = H and ASupp(H) ⊆ U .
Since ASupp(H) is an open subclass of ASpecA, in view of the definition, we have
ASupp(H) ⊆ 	U which implies that H ∈ ASupp−1(	U ). Thus ASupp(H) ⊆
ASupp(ASupp−1(	U )) so that α ∈ ASupp(ASupp−1(	U )). To do the reverse inclu-
sion, if α ∈ ASupp(ASupp−1(	U )), then there exists M ∈ ASupp−1(	U ) such that
α ∈ ASupp(M). Therefore ASupp(M) ⊆ 	U so that α ∈ 	U . Consequently, we
have the following equalities

ASupp(ASupp−1(U )) = ASupp(ASupp−1(	U )) = 	U .


�
The following theorem is a generalization of [5, Theorem 4.4] for non-noetherian

abelian categories.

Theorem 3.8 Let A admit a set of noetherian generators and let

S = {X | X is a Serre subcategory of noeth A}.

Then the map 
 by the assignment X �→ ASupp(X ) from S to the class of all open
subclasses of ASpec(A) establishes a one-to-one correspondence with the inverse
map 	 by the assignment U → ASupp−1(U ) ∩ noethA.

Proof Let X be any Serre subcategory of noethA. Then we have

	
(X ) = 	(ASupp(X ))

= ASupp−1(ASupp(X )) ∩ noethA
= X ∩ noethA = X

where the third equality follows from Proposition 3.3. Now, assume thatU is an open
subclass of ASpecA. Then we have


	(U ) = 
(ASupp−1(U ) ∩ noethA)

= ASupp(ASupp−1(U ) ∩ noethA)

= ASupp(ASupp−1(U )) = U

where the third equality follows from Lemma 3.4 and the last equality is obtained
from Proposition 3.7. 
�

4 Monoform objects in Grothendieck categories

Throughout this section A is a Grothendieck category. We start this section with a
known result in [10].

Proposition 4.1 [10, Chap. V. Proposition 5.9] Suppose that N = N1 ∩ · · · ∩ Nn is
an irredundant irreducible decomposition of a subobject N of a noetherian object M.
Then the canonical monomorphism β : M/N → M/N1 ⊕ · · · ⊕ M/Nn is essential.
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Remark 4.2 For any atom α ∈ ASpecA, it follows from [5, Lemma 5.8] that E(H) are
isomorphic to each other for all monoform objects H with α = H . So we denote the
isomorphism class of all E(H) with H = α by E(α). Observe that every monoform
object H is uniform and so is E(H). This fact implies that E(α) is an indecomposable
injective object.

Corollary 4.3 Suppose that N = N1 ∩· · ·∩ Nn is an irredundant irreducible decom-
position of a subobject N of a noetherian object M with AAss(M/Ni ) = {αi } for
each i . Then E(M/N ) = E(α1) ⊕ · · · ⊕ E(αn).

Proof For simplicity, we may assume that N = 0. In view of Proposition 4.1,
the canonical monomorphism β : M → M/N1 ⊕ · · · ⊕ M/Nn is essential. Thus
E(M/N1 ⊕ · · · ⊕ M/Nn) = E(M/N1) ⊕ · · · ⊕ E(M/Nn) is an essential extension
of M ; and then E(M) = E(M/N1) ⊕ · · · ⊕ E(M/Nn). On the other hand, for each
i there exists a monoform subobject Hi of M/Ni such that αi = Hi . Since M/Ni is
uniform, Hi is essential in M/Ni and then E(αi ) = E(Hi ) = E(M/Ni ). 
�
Lemma 4.4 Let M be an object ofA and let N be an essential subobject of M. Then
AAss(N ) = AAss(M).

Proof It is clear by definition that AAss(N ) ⊂ AAss(M). Given H ∈ AAss(M), there
exists H1 ∈ H such that H1 ⊂ M . Since N is essential inM , we have 0 �= H1∩N ⊂ N
and we notice that H1 ∩ N is a monoform such that H1 ∩ N ∈ H . Then H ∈
AAss(N ). 
�

A Grothendieck category is called locally noetherian if it has a set of noetherian
generators.

Lemma 4.5 If E is an indecomposable injective object in a locally noetherian
Grothendieck categoryA, then there exists amonoformobject H such that E = E(H).

Proof Since A is locally noetherian, AAss(E) is a non-empty set and since E is
indecomposable, it is uniform and hence there exists an atom α ∈ ASpecA such
that AAss(E) = {α}. It should also be noted that every subobject of E is essential.
Then there exists a essential monoform subobject H of E such that α = H and
E = E(H). 
�

Krause [8, Theorem 2.1] proved that over a commutative noetherian ring A, there
exists a one-to-one correspondence between all full subcategories of the category of A-
modules which are closed under taking submodules, extensions and direct unions, and
the set of subsets of SpecA. The following theorem is a slightly generalized version
of [8, Theorem 2.1] for locally noetherian Grothendieck categories if we replace
submodules, extensions and direct unions in the category of modules by subobjects,
injective envelopes and direct sums in a Grothendieck category. We notice that by
horseshoe lemma, to be closed under injective envelopes and direct sums implies to
be closed under extensions.

Theorem 4.6 For a locally noetherian Grothendieck category A, the map X →
AAss(X ) induces a bijection between full subcategories ofA closed under subobjects,
injective envelopes and direct sums, and subsets of ASpec(A). The inverse map sends
a subset 	 of ASpec(A) to AAss−1(	) = {M ∈ A| AAss(M) ⊂ 	}.
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Proof Let	 be a subclass ofASpec(A). It is clear to see thatAAss(AAss−1(	)) = 	.
Using Lemma 4.4 and [5, Proposition 5.6], it is clear to see that AAss−1(	) is closed
under taking subobjects, injective envelopes and direct sums. Now, assume that X
is a subcategory of A, which is closed under taking suobjects, injective envelopes
and direct sums. We assert that AAss−1(AAss(X )) = X . It is clear to see that
X ⊂ AAss−1(AAss(X )). Conversely, given M ∈ AAss−1(AAss(X )), we have
AAss(M) ⊂ AAss(X ). On the other hand, using Matlis theorem (cf. [10, Chap V.
Proposition 4.5]) and Lemmas 4.4 and 4.5 we have

E(M) =
⊕

α∈AAss(M)

E(α)(Iα).

Since α ∈ AAss(M) ⊂ AAss(X ), there exist N ∈ X and a monoform subobject H of
N such that α = H . Then by the assumption H and E(H) belong toX . It follows from
Remark 4.2 that E(α) = E(H) ∈ A. Thus the assumption implies that E(M) ∈ X ,
which forces M in X . 
�

For a Serre subcategory X of A, we define the quotient category A/X in which
the objects are those of A and for objects M and N of A, we have

HomA/X (M, N ) = lim−→
(M ′,N ′)∈SM,N

HomA(M ′, N/N ′)

where SM,N is a directed set defined by

SM,N = {(M ′, N ′)|M ′ ⊂ M, N ′ ⊂ N with M/M ′, N ′ ∈ X }.

IfA is a Grothendieck category, then so isA/X together with a canonical exact functor
F : A → A/X . We refer the reader to [1] or [12, Chap 4] for more details and the
basic properties of the quotient category.

Recall from [6] that ASpecA can be regarded as a partially order set together with
a specialization order≤ as follows: for any atoms α and β in ASpecA, we have α ≤ β

if and only if for any open subclass 	 of ASpecA satisfying α ∈ 	, we have β ∈ 	.
For more materials about ≤, we refer the reader to [6,7].

Remark 4.7 If α is a maximal atom, then α is maximal in ASpecA under the order ≤.
To be more precise, assume that H is a simple object with α = H and β ∈ ASpecA
such that α ≤ β. Then, since α ∈ ASupp(H) = {α}, the definition implies that
β ∈ ASupp(H) and so β = α. According [6, Remark 4.5] these two concepts of
maximality do not coincide in general. More precisely, assume that k is a field, regard
k[x] as a graded ring with deg x = 1 and consider the locally noetherian Grothendieck
category A =GrMod k[x] of graded k[x]-modules. Then H = k[x] is a monoform
object ofA such that {H} is not open subset of ASpecA; and hence using Proposition
3.2, the atom H is not maximal; but it is maximal under the order ≤. In later we show
that under some conditions they are the same.
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A Serre subcategory X of the Grothendieck category A is called localizing if the
canonical functor F : A → A/X has a right adjoint functor G : A/X → A. The
functors F and G induce a functorial morphism η(−) : IdA(−) → GF(−) such that
for any object M of A, the objects KerηM and CokerηM belong to X .

If X is a localizing subcategory ofA, then in view of [7, Proposition 5.4], the map
ASpecA\ASuppX → ASpec(A/X ) given by H �→ F(H) is a homeomorphism. The
inverse map is given by H ′ �→ G(H ′). Thus we may identify the atoms in quotient
category A/X with those in ASpecA\ASuppX .

For any atom α in ASpecA, the closure of α is as follows

{α} = {β ∈ ASpecA|β ≤ α}.

In this case we have an open subset 	α = ASpecA \ {α} and so we can define a
localizing subcategory Xα of A by Xα = ASupp−1	α . We now define the quotient
category Aα of A induced by Xα which is Aα = A/Xα . In this case the canonical
functor F is denoted by (−)α .

Proposition 4.8 For any atom α in ASpecA, the indecomposable injective E(α) is
isomorphic to GF(E(α)), where F : A → Aα is the canonical functor with its right
adjoint functor G : Aα → A.

Proof There is a natural morphism ηE(α) : E(α) → GF(E(α)). Clearly Ker ηE(α)

is in Xα , while AAss(KerηE(α)) ⊆ {α}. This implies that KerηE(α) = 0. It then
follows from [7, Proposition 4.8] that E(α) is an essential subobject of GF(E(α)). In
view of [7, Proposition 4.11], F(E(α)) is an injective object in Aα and also in view
of [7, Proposition 4.10], GF(E(α)) is an injective object in A. Therefore we have
E(α) ∼= GF(E(α)). 
�

A functor t : A → A is said to be preradical if it is a subfunctor of the identity
functor on A, in other words, if t assigns to any object M a subobject t (M) and
every morphism M → N in A induces a morphism t (M) → t (N ) by restriction. A
preradical t is called idempotent if t2 = t and is called radical if t (M/t (M)) = 0 for
every object M of A.

Remark 4.9 If X is a localizing subcategory of A, then according to [10, Chap VI.
Proposition 2.3], A admits an idempotent radical tX such that for any object M , the
subobject tX (M) is the largest subobject of M belonging to X . We notice that if
F : A → A/X is the canonical functor with the right adjoint functor G : A/X → A,
then tX (M) is the kernel of the natural morphism ηM : M → GF(M).

From [1], a localizing subcategory X of the Grothendieck category A is called
stable if the injective envelope inA of any object of X is also an object of X . Further
a Grothendieck category is said to be locally stable if any its localizing subcategory
is stable.

Remark 4.10 According to [1, p. 428, Proposition 10], if A is a commutative noethe-
rian ring, then Mod-A is a locally stable category. To be more precise, assume that X
is a localizing subcategory of the category of R-modules and M ∈ X . Then R/p ∈ X
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for any p ∈ SuppR(M). On the other hand it follows from [10, Chap VII, Proposition
5.3] that SuppR(M) = SuppR(E(M)). In order to prove E(M) ∈ X , it suffices to
show that N ∈ X for any finitely generated submodule N of E(M). But this follows
by considering a finite filtration of submodules 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nn = N
where each Ni/Ni−1 is isomorphic to R/pi for some pi ∈ Supp(M).

Proposition 4.11 Let X be a localizing subcategory of A with the canonical functor
F : A → A/X and the idempotent radical tX . If M is an object of A, then the
following conditions hold:

(i) AAssF(M) = AAss(M/tX (M)).
(ii) If X is stable, then AAssF(M) = AAss(M)\ASuppX .

Proof (i) Using [7, Proposition 5.6], we have AAssGF(M) = AAssF(M) and
AAssF(M) ⊆ ASuppF(M) = ASupp(M)\ASupp(X ). In view of Remark 4.9, there
exists a short exact sequence

0 → M/tX (M) → GF(M) → CokerηM → 0

in A where tX (M) and CokerηM belong to X . It follows from [7, Proposi-
tion 4.8] that M/tX (M) is essential in GF(M) so that AAss(M/tX (M)) =
AAssGF(M) = AAssF(M). (ii) Observe that the morphism ηM has a factoriza-

tion M
θ→ M/tX (M)

γ→ GF(M), where θ is epic and γ is monic. Let α = H be
an arbitrary atom in AAss(M/tX (M)) such that H is a subobject of M/tX (M) with
the monomorphism ι : H → M/tX (M). We notice that since M/tX (M) does not
contain any nonzero subobject in X , we deduce that α /∈ ASuppX . We now have a
commutative diagram with exact rows

where the right square is the pullback of θ and ι. We notice that since ι is monic, κ is
also monic by [10, Chap IV. Proposition 5.1] and K is not in X as H is not in X . We
show that α ∈ AAss(K ); and hence the proof completes as K is a subobject of M . If
tX (K ) is an essential subobject of K , then E(K ) = E(tX (K )) is in X because X is
stable; and hence K is in X which is a contradiction. Therefore tX (K ) is not essential
in K and so there exists a nonzero subobject Y of K such that Y ∩ tX (K ) = 0. This
implies that Y is isomorphic to a subobject of H ; and hence α = Y ∈ AAss(K ). The
inclusion AAss(M)\ASupp(X ) ⊆ AAss(F(M)) holds by [7, Proposition 5.6]. 
�

Given a nonzero object M ofA, we say that an atom α ∈ ASupp(M) is minimal in
ASupp(M), if it is minimal under the order ≤. We denote by MinASupp(M), the set
of all minimal atoms in SuppM .

Proposition 4.12 LetA be a locally noetherian Grothendieck category and let M be
a nonzero noetherian object of A. If α ∈ MinASupp(M) such that Xα is stable, then
α ∈ AAss(M).
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Proof Letα be inMinASupp(M). It follows from [6, Lemma5.16 andProposition 6.6]
that AAss(Mα) = ASupp(Mα) = {α}. Now, applying Proposition 4.11 to F(−) =
(−)α , we have α ∈ AAss(M). 
�

IfA is a locally stable locally noetherian Grothendieck category, then two concept
ofmaximality of atoms coincide. Because, ifα is an atomwhich ismaximal inASpecA
under the order ≤, then there exists a noetherian monoform object H such that α =
H . If H is not simple, then it contains a nonzero maximal subobject H1 and so
G = H/H1 is simple. Since A is locally stable, it follows form Proposition 4.12 that
MinASupp(H) = {α}. ThenG ∈ ASupp(H) forces that α ≤ G. Now, the maximality
of α implies that α = G; and henceG and H have a common nonzero subobject which
is a contradiction.

Proposition 4.13 Let A be a locally noetherian Grothendieck category and let N
be a proper subobject of a noetherian object M in A. If α is a minimal atom in
ASupp(M/N ) such that Xα is stable, then the α-component of any atomical decom-
position of N is η−1

M (GF(N )) where F : A → Aα is the canonical functor with the
right adjoint functor G : Aα → A. Therefore theα-component is uniquely determined
only by M, N and α.

Proof Suppose that N = ⋂n
i=1 Ni is an atomical decomposition of N with

AAssM/Ni = {αi }. The canonical monomorphism M/N �
⊕n

i=1 M/Ni implies
α ∈ ASupp(M/Ni ) for some 1 ≤ i ≤ n. On the other hand, since ASupp(M/Ni ) ⊆
ASupp(M/N ), usingProposition 4.12,wehaveα ∈ AAss(M/Ni ) = {αi }. Renumber-
ing, we may assume that α = α1. The same reasoning deduces that α /∈ ASuppM/Ni

for any i = 2, . . . , n. Thus Mα = Niα for any i = 2, . . . , n so that Nα = N1α . Using
the natural transformation η(−) : id(−) → GF and noting that F is exact and G is left
exact, we have the following commutative diagram with exact rows

0 GF (N1) GF (M) GF (M/N1)

0 N1 M M/N1 0

ηN1 ηM ηM/N1

We assert that ηM/N1 is a monomorphism, otherwise α ∈ AAss(KerηM/N1) which is
impossible as F(ηM/N1) is an isomorphism. Now, it is straightforward to show that
the left square is pullback so that we conclude N1 = η−1

M (GF(N1)). Therefore we
have

N1 = η−1
M (GF(N1)) = η−1

M (G(N1α)) = η−1
M (G(Nα)) = η−1

M (GF(N )).


�
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5 In the case right noetherian rings

In this section we assume that A is a noncommutative right noetherian ring andMod-A
denotes the category of all right A-modules. Our intention of this section is to extend
a result due to Krause [8, Theorem 2.1] for fully right bounded noetherian rings.

Proposition 5.1 Let A be a fully right bounded noetherian ring. The map X →
Ass(X ) = ⋃

M∈X Ass(M) induces a bijection between the full subcategories of Mod-
A closed under taking submodules, injective envelopes and direct sums, and the set
of subsets of Spec(A). The inverse map sends a subset U of Spec(A) to Ass−1(U ) =
{M ∈ A| Ass(M) ⊆ U }.
Proof It is known that Mod-A is a locally noetherian Grothendieck category. Using
[10, Chap VII. Theorem 2.1], there is a bijection 	 : E(A) → Spec(A), given
by E �→ ass(E), between E(A) the set of isomorphism class of indecomposable
injective right A-modules and Spec(A) the set of prime ideals. On the other hand,
by [5, Theorem 5.11], there is a bijection � : ASpec(A) → E(A), given by
α �→ E(α), between ASpec(A) the set of atoms of Mod-A and E(A) the set of iso-
morphism class of indecomposable injective right A-modules. Therefore 
 = 	� :
ASpec(A) → Spec(A) is bijective. For any subcategory X of Mod-A which is closed
under taking submodules, injective envelopes and direct sums, and any subset U
of Spec(A), using Theorem 4.6, it suffices to show that 
(AAss(X )) = Ass(X )

and AAss−1(
−1(U )) = Ass−1(U ). For the first equality, let 
(α) ∈ 
(AAss(X ))

where α ∈ AAss(X ). We hence have
(α) = 	(E(α)) = pwhere Ass(E(α)) = {p}.
Since α ∈ AAss(X ), there exist M ∈ X and monoform submodule H of M such that
α = H and α ∈ AAss(M). Hence E(H) = E(α) is a direct summand of E(M)

which forces
(α) = p ∈ Ass(E(M)) = Ass(M). Conversely assume that p ∈ AssX
and so there exists a module M ∈ X such that p ∈ Ass(M). We may assume that
M is noetherian, and so according to Proposition 2.6 and Corollary 4.3, we have
E(M) = E(α1) ⊕ · · · ⊕ E(αn) where AAss(M) = {α1, . . . , αn}. Then there exists
1 ≤ i ≤ n such that Ass(E(αi )) = {p}; hence
(αi ) = p. The second equality follows
easily by a similar argument using in the first one. 
�
Corollary 5.2 Let A be a fully right bounded noetherian ring and let X be a sub-
category of Mod-A which is closed under taking submodules, injective envelopes and
direct sums. Then M ∈ X if and only if A/p ∈ X for all p ∈ Ass(M).

Proof By virtue of Proposition 5.1 we have X = Ass−1(Ass(X )). Hence M ∈ X
if and only if Ass(M) ⊆ Ass(X ) if and only if {p} = Ass(R/p) ⊆ Ass(X ) for all
p ∈ Ass(M) if and only if R/p ∈ X for all p ∈ Ass(M). 
�

Krause [8, Theorem 2.1] considered the condition to be closed under extensions
on full subcategories while in Corollary 4.7, we have a stronger condition that the full
subcategories are closed under injective envelopes. It is easy by horseshoe lemma to
see that to be closed under injective envelopes and direct sums implies to be closed
under extensions in our desired subcategories. The theme of proof of [8, Theorem
2.1] with the mentioned conditions turns to [8, Lemma 2.4] which states E(A/p) ∈
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X if A/p ∈ X where the subcategory X of A-Mod has the same condition as [8,
Theorem 2.1]. However the proof of Krause [8, Lemma 2.4], does not work if A
is not commutative. In the rest of this section we slightly settle [8, Lemma 2.4] for
noncommutative noetherian rings.

For every prime ideal p of A we consider the multiplicatively closed subset of A

S(p) = {s ∈ A| s + p is regular in A/p}.

A multiplicatively closed subset S of A is a right Ore set if for every a ∈ A and
s ∈ S, there exist b ∈ A and t ∈ S such that at = sb. The left Ore sets can be defined
similarly. Finally, S is said to be an Ore set if it is both right and left Ore set.

Lemma 5.3 Let p be a prime ideal of A and let S(p) be a right Ore set in A. Then
each element of S(p) acts as a nonzero-divisor on the right A-module E(A/p).

Proof See [4, Theorem 3.2]. 
�
Lemma 5.4 Let p be a prime ideal of A and let S(p) be a right Ore set in A. Then
E(A/p) is a right A[S−1]-module.
Proof As A is a right noetherian, it satisfies ACC on right annihilators and so by using
[10, Chap II. Proposition 1.5], S(p) is a right denominator set. Thus A[S−1] exists.
On the other hand, according to Lemma 5.3, the module E(A/p) is S(p)-torsion free.
Now, the result is obtained by [10, Chap II. Proposition 3.7]. 
�

A two-sided ideal a has Artin-Rees property if for every right ideal b of A and
positive integer n, there exists h(n) > 0 such that ah(n) ∩ b ⊆ ban .

Proposition 5.5 Let p be a prime ideal of A, let S(p) be an Ore set in A and let p
have Artin-Rees property. Then E(A/p) is obtained from A/p by taking submodules,
extensions and direct unions.

Proof There is a decomposition E(A/p) = ⊕Ei into indecomposable injective
modules Ei with Ass(Ei ) = {p} for each i . Since p has Artin-Rees property, it
follows from [10, Chap VII. Theorem 4.4] that Ei = ⋃

n≥1(0 :Ei pn) for each i ;
hence E(A/p) = ⋃

n≥1(0 :E(A/p) pn). For every integer n > 0, consider the right
A-submodule In = (0 :E(A/p) p

n) of E(A/p). Then each factor In+1/In is a right A/p-
module.On the other hand, in viewofLemma5.4, E(A/p) is a right A[S(p)−1]-module
and so is In+1/In . Thus In+1/In is a right Q = A[S(p)−1]/pA[S(p)−1]-module. It
follows from [4, Theorem 2.1] that Q is the classical right quotient ring of the prime
ring A/p; and hence according to [10, Chap II. Proposition 2.6], Q is a simple ring.
In view of [10, Chap I. Proposition 7.8], the ring Q is semi-simple. Hence [10, Chap
I. Proposition 7.7] implies that In+1/In is a projective right Q-module so that it is a
direct summand of a free right Q-module. On the other hand, since S(p) is an Ore set
in A, the set X = {s + p|s ∈ S(p)} is an Ore set in A/p; and hence it is clear to see
that Q is a direct union of the form

Q =
⋃

s∈S(p)

(s + p)−1(A/p).
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We further notice that for each s ∈ S(p), there exists an isomorphism (s+p)−1(A/p) ∼=
A/p of right A/p-modules and so it is an isomorphism of right A-modules. Then Q is
obtained from A/p by taking the direct unions; hence In/In+1 is obtained from A/p
because it is a submodule of a direct sum of Q. Now using the extensions condition
and an easy induction, In is obtained from A/p. 
�
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