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Abstract We study the homotopy theory of∞-categories enriched in the∞-category
sS of simplicial spaces. That is, we consider sS-enriched ∞-categories as presenta-
tions of ordinary ∞-categories by means of a “local” geometric realization functor
CatsS → Cat∞, and we prove that their homotopy theory presents the ∞-category of
∞-categories, i.e.that this functor induces an equivalence CatsS�W−1

DK�
∼−→ Cat∞ from

a localization of the∞-category of sS-enriched∞-categories. FollowingDwyer–Kan,
we define a hammock localization functor from relative ∞-categories to sS-enriched
∞-categories, thus providing a rich source of examples of sS-enriched ∞-categories.
Simultaneously unpacking and generalizing one of their key results, we prove that
given a relative ∞-category admitting a homotopical three-arrow calculus, one can
explicitly describe the hom-spaces in the ∞-category presented by its hammock
localization in a much more explicit and accessible way. As an application of this
framework, we give sufficient conditions for the Rezk nerve of a relative ∞-category
to be a (complete) Segal space, generalizing joint work with Low.

Keywords Relative categories · ∞-Categories · Relative ∞-categories ·
Hammock localization · Calculus of fractions
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1 Introduction

1.1 Introducing (even more) homotopy theory

In their groundbreaking papers [1,2], Dwyer–Kan gave the first presentation of the
∞-category of ∞-categories, namely the category CatsSet of categories enriched in
simplicial sets: in modern language, every sSet-enriched category has an underlying
∞-category, and this association induces an equivalence

CatsSet�W−1
DK�

∼−→ Cat∞

from the (∞-categorical) localizationof the category CatsSet at the subcategoryWDK ⊂
CatsSet of Dwyer–Kan weak equivalences to the ∞-category Cat∞ of ∞-categories.
Moreover, Dwyer–Kan provided a method of “introducing homotopy theory” into a
categoryR equipped with a subcategoryW ⊂ R of weak equivalences, namely their
hammock localization functor L H

δ : RelCat → CatsSet of [1].
In this paper, we set up an analogous framework in the setting of ∞-categories:

we prove that the ∞-category CatsS of ∞-categories enriched in simplicial spaces
likewise models the ∞-category of ∞-categories via an equivalence

CatsS�W−1
DK�

∼−→ Cat∞,

and we define a hammock localization functor L H : RelCat∞ → CatsS which like-
wise provides a method of “introducing (even more) homotopy theory” into relative
∞-categories. We moreover prove the following two results – the first generalizing a
theorem of Dwyer–Kan, the second generalizing joint work with Low (see [5]).

Theorem (4.4). Given a relative ∞-category (R,W) admitting a homotopical
three-arrow calculus, the hom-spaces in the underlying ∞-category of its hammock
localization admit a canonical equivalence

3(x, y)gpd
∼−→ ∣

∣homL H (R,W)(x, y)
∣
∣

from the groupoid completion of the ∞-category of three-arrow zigzags x
≈← • →

• ≈← y in (R,W).

Theorem (6.1). Given a relative ∞-category (R,W), its Rezk nerve

NR∞(R,W) ∈ sS
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• is a Segal space if (R,W) admits a homotopical three-arrow calculus, and
• is moreover a complete Segal space if moreover (R,W) is saturated and satisfies

the two-out-of-three property.

(The notion of a homotopical three-arrow calculus is a minor variant on Dwyer–Kan’s
“homotopy calculus of fractions” (see Definition 4.1). Meanwhile, the Rezk nerve is a
straightforward generalization of Rezk’s “classification diagram” construction, which
we introduced in [11] and proved computes the ∞-categorical localization (see [11,
Theorem 3.8 and Corollary 3.12]).)

Remark 1.1 In Remark 2.21, we show how our notion of “sS-enriched ∞-category”
fits with the corresponding notion coming from Lurie’s theory of distributors.

Remark 1.2 Many of the original Dwyer–Kan definitions and proofs are quite point-
set in nature. However, when working ∞-categorically, it is essentially impossible to
make such ad hoc constructions. Thus, we have no choice but to be both much more
careful and much more precise in our generalization of their work.1 We find Dwyer–
Kan’s facility with universal constructions (displayed in that proof and elsewhere) to
be really quite impressive, and we hope that our elaboration on their techniques will be
pedagogically useful. Broadly speaking, our main technique is to corepresent higher
coherence data.

1.2 Conventions

Though it stands alone, this paper belongs to a series on model ∞-categories. These
papers share many key ideas; thus, rather than have the same results appear repeatedly
in multiple places, we have chosen to liberally cross-reference between them. To this
end, we introduce the following “code names”.

Title Reference Code

Model ∞-categories I: some pleasant properties of the
∞-category of simplicial spaces

[10] S

The universality of the Rezk nerve [11] N
All about the Grothendieck construction [12] G
Hammocks and fractions in relative ∞-categories n/a H
Model ∞-categories II: Quillen adjunctions [13] Q
Model ∞-categories III: the fundamental theorem [14] M

Thus, for instance, to refer to [10, Theorem 1.9], we will simply write TheoremM.1.9.
(The letters are meant to be mnemonical: they stand for “simplicial space”, “nerve”,
“Grothendieck”, “hammock”, “Quillen”, and “model”, respectively.)

1 For example, our proof of Theorem 4.4 spans nearly four pageswhereas the proof of [1, Proposition 6.2(i)]
(which it generalizes) is just half a page long, and our proof of Proposition 5.8 is nearly three pages whereas
the proof of [1, Proposition 3.3] (which it generalizes) is not even provided.
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We take quasicategories as our preferred model for ∞-categories, and in general
we adhere to the notation and terminology of [7,9]. In fact, our references to these
two works will be frequent enough that it will be convenient for us to adopt Lurie’s
convention and use the code names T and A for them, respectively.

However, we work invariantly to the greatest possible extent: that is, we primarily
work within the ∞-category of ∞-categories. Thus, for instance, we will omit all
technical uses of the word “essential”, e.g. we will use the term unique in situations
where onemight otherwise say “essentially unique” (i.e.parametrized by a contractible
space). For a full treatment of this philosophy as well as a complete elaboration of our
conventions, we refer the interested reader to §S.A. The casual reader should feel free
to skip this on a first reading; on the other hand, the careful reader may find it useful
to peruse that section before reading the present paper. For the reader’s convenience,
we also provide a complete index of the notation that is used throughout this sequence
of papers in §S.B.

1.3 Outline

We now provide a more detailed outline of the contents of this paper.

• In Sect. 2, we introduce the ∞-category CatsS of ∞-categories enriched in sim-
plicial spaces, as well as an auxiliary ∞-category SsS of Segal simplicial spaces.
We endow both of these with subcategories ofDwyer–Kan weak equivalences, and
prove that the resulting relative ∞-categories both model the ∞-category Cat∞ of
∞-categories.

• In Sect. 3, we define the∞-categories of zigzags in a relative∞-category (R,W)

between two objects x, y ∈ R, and use these to define the hammock simplicial
spaces homL H (R,W)(x, y), which will be the hom-simplicial spaces in the ham-
mock localization L H (R,W).

• In Sect. 4,we definewhat itmeans for a relative∞-category to admit a homotopical
three arrow calculus, and we prove the first of the two results stated above.

• In Sect. 5, we finally construct the hammock localization functor on relative ∞-
categories, and we explore some of its basic features.

• In Sect. 6, we prove the second of the two results stated above.

2 Segal spaces, Segal simplicial spaces, and sS-enriched ∞-categories

In this section, we develop the theory—and the homotopy theory—of two closely
related flavors of higher categories whose hom-objects lie in the symmetric monoidal
∞-category (sS,×) of simplicial spaces equipped with the cartesian symmet-
ric monoidal structure. By “homotopy theory”, we mean that we will endow the
∞-categories of these objects with relative ∞-category structures, whose weak equiv-
alences are created by “local” (i.e. hom-object-wise) geometric realization. These
therefore constitute “many-object” elaborations on the Kan–Quillen relative ∞-
category (sS,WKQ), whose weak equivalences are created by geometric realization
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Hammocks and fractions in relative ∞-categories 325

(see Theorem S.4.4). A key source of such objects will be the hammock localization
functor, which we will introduce in Sect. 5.

This section is organized as follows.

• In Sect. 2.1, we recall some basic facts regarding Segal spaces.
• in Sect. 2.2, we introduce Segal simplicial spaces and define the essential notions
for “doing (higher) category theory” with them.

• In Sect. 2.3, we introduce their full (in fact, coreflective) subcategory of simplicio-
spatially-enriched (or simply sS-enriched) ∞-categories. These are useful since
they can more directly be considered as “presentations of ∞-categories”.

• In Sect. 2.4, we prove that freely inverting the Dwyer–Kan weak equivalences
among either the Segal simplicial spaces or the sS-enriched∞-categories yields an
∞-category which is canonically equivalent to Cat∞ itself. We also contextualize
both of these sorts of objects with respect to the theory of enriched ∞-categories
based in the notion of a distributor, and provide some justification for our interest
in them.

2.1 Segal spaces

Webegin this sectionwith the following recollections. This subsection existsmainly in
order to set the stage for the remainder of the section;we refer the reader seeking amore
thorough discussion either to the original paper [16] (which uses model categories) or
to [8, §1] (which uses ∞-categories).

Definition 2.1 The ∞-category of Segal spaces is the full subcategory SS ⊂ sS of
those simplicial spaces satisfying the Segal condition. These sit in a left localization
adjunction

sS SS,
LSS
⊥

USS

which factors the left localization adjunction LCSS 
 UCSS of Definition N.2.1 in the
sense that we obtain a pair of composable left localization adjunctions

sS SS CSS.
LSS
⊥

USS

LCSS
⊥

UCSS

(This follows easily from [16, Theorems 7.1 and 7.2], or alternatively more-or-less
follows from [8, Remark 1.2.11].)

In order to make a few basic observations, it will be convenient to first introduce
the following.

Definition 2.2 Suppose that C ∈ Cat∞ admits finite products. Then, we define the
0th coskeleton of an object c ∈ C (or perhaps more standardly, of the corresponding
constant simplicial object const(c) ∈ sC) to be the simplicial object selected by the
composite
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326 A. Mazel-Gee

�op ↪→ (sSet)op ((−)0)
op

−−−−−→ Setop ↪→ Sop −�c−−→ C.

This assembles to a functor

C (−)×(•+1)

−−−−−→ sC

which, as the notation suggests, is given in degree n by c �→ c×(n+1). This sits in an
adjunction

(−)0 : sC � C : (−)×(•+1),

which we refer to as the 0th coskeleton adjunction for C. Using this, given a simplicial

object Z ∈ sC and a map Y
ϕ−→ Z0 in C, we define the pullback of Z along ϕ to be the

fiber product

ϕ∗(Z) = lim

⎛

⎜
⎜
⎜
⎜
⎝

Z•

Y ×(•+1) (Z0)
×(•+1)

ϕ×(•+1)

⎞

⎟
⎟
⎟
⎟
⎠

in sC, where the vertical map is the component at the object Z ∈ sC of the unit of
the 0th coskeleton adjunction. In particular, note that we have a canonical equivalence
(ϕ∗(Z))0  Y in C.

Remark 2.3 Suppose that Y ∈ SS, and let us write Y
λ−→ LCSS(Y ) for its localization

map. Then, the map Y0
λ0−→ LCSS(Y )0 is a surjection in S, and moreover we have a

canonical equivalence

Y  (λ0)
∗(LCSS(Y ))

in SS ⊂ sS. (The first claim follows from [16, Theorem 7.7 and Corollary 6.5],
while the second claim follows from combining [8, Definition 1.2.12(b) and Theo-
rem 1.2.13(2)] with the Segal condition for Y ∈ sS.) From here, it follows easily that
we have an equivalence

SS  lim

⎛

⎜
⎜
⎜
⎝

Funsurj([1], Cat∞)

S Cat∞
s

⎞

⎟
⎟
⎟
⎠

,

where Funsurj([1], Cat∞) ⊂ Fun([1], Cat∞) denotes the full subcategory on those
functors [1] → Cat∞ that select surjective functors C → D. From this viewpoint, the
left localization LCSS : SS → CSS is then just the composite functor
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Hammocks and fractions in relative ∞-categories 327

SS ↪→ Funsurj([1], Cat∞)
t−→ Cat∞ N∞−−→∼ CSS,

where N∞(−)• = homlw
Cat∞([•],−) denotes the ∞-categorical nerve functor. Thus,

one might think of SS as “the ∞-category of surjectively marked ∞-categories”
(where by “surjectively marked” we mean “equipped with a surjective map from an
∞-groupoid”).

Remark 2.4 Continuing with the observations of Remark 2.3, note that the category
Cat of strict 1-categories can be recovered as a limit

Cat Cat

SS Funsurj([1], Cat∞) Cat∞

Set S Cat∞

t

s

in Cat∞ (in which the square is already a pullback). (In fact, the inclusion Cat ↪→ SS
itself fits into the defining pullback square

Cat SS

sSet sS

N USS

in Cat∞.) We can therefore consider the ∞-category SS of Segal spaces as a close
cousin of the 1-category Cat of strict categories, with the caveat that objects of Cat must
be surjectively marked by a discrete space.

Remark 2.5 Suppose that Y ∈ SS. Then, we can compute hom-spaces in the ∞-
category

C = N−1∞ (LCSS(Y )) ∈ Cat∞

as follows. Any pair of objects x, y ∈ C can be considered as defining a pair of points

x, y ∈ C  N∞(C)0  LCSS(Y )0.
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328 A. Mazel-Gee

Since the map Y0 → LCSS(Y )0 is a surjection, these admit lifts x̃, ỹ ∈ Y0. Then, we
have a composite equivalence

homC(x, y)  lim

⎛

⎜
⎜
⎜
⎝

N∞(C)1

ptS N∞(C)0 × N∞(C)0

(s,t)

(x,y)

⎞

⎟
⎟
⎟
⎠

 lim

⎛

⎜
⎜
⎜
⎝

Y1

ptS Y0 × Y0

(s,t)

(x̃,ỹ)

⎞

⎟
⎟
⎟
⎠

by Remarks N.2.2 and 2.3. (In particular, we can compute the hom-space homC(x, y)

using any choices of lifts x̃, ỹ ∈ Y0.)

2.2 Segal simplicial spaces

We now turn from the S-enriched context to the sS-enriched context.

Definition 2.6 We define the ∞-category of Segal simplicial spaces to be the full
subcategory SsS ⊂ s(sS) of those simplicial objects in sS which satisfy the Segal
condition. These sit in a left localization adjunction s(sS) � SsS by the adjoint
functor theorem (Corollary T.5.5.2.9). We take the convention that our bisimplicial
spaces are organized according to the diagram

...
... . .

.

(C0)1 (C1)1 · · ·

(C0)0 (C1)0 · · ·

in S: we think of the columns as the “internal” simplicial spaces, and denote them as
Cn = (Cn)• ∈ sS (omitting the outer index if it’s irrelevant for the discussion). The
Segal condition then asserts that the map

Cn → C1 ×
C0

· · · ×
C0

C1

is an equivalence in sS.
Remark 2.7 In light ofRemark 2.4,we can consider the∞-categorySsS of Segal sim-
plicial spaces as being a homotopical analog of the 1-category sCat = Fun(�op, Cat)
of simplicial objects in strict 1-categories. The subcategory CatsSet ⊂ sCat of sSet-
enriched categories then corresponds to the full subcategory on those Segal simplicial
spaces C• ∈ SsS such that the object C0 ∈ sS is constant.Wewill restrict our attention
to such objects in Sect. 2.3.

Definition 2.8 For any C• ∈ SsS , we define the space of objects of C• to be the space

(C0)0  homsS(ptsS , C0) ∈ S,
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Hammocks and fractions in relative ∞-categories 329

and for any x, y ∈ (C0)0, we define the hom-simplicial space from x to y in C• to be
the pullback

homC•(x, y) = lim

⎛

⎜
⎜
⎜
⎝

C1

ptsS C0 × C0
(s,t)

(x,y)

⎞

⎟
⎟
⎟
⎠

in sS. We refer to the points of the space

homC•(x, y)0  homsS(ptsS , homC•(x, y))

simply as morphisms from x to y. The various hom-simplicial spaces of C• admit
associative composition maps

homC•(x0, x1) × · · · × homC•(xn−1, xn)
χ
C•
x0,...,xn−−−−→ homC•(x0, xn)

in sS, which are obtained as usual via the Segal conditions. For any x ∈ (C0)0 there
is an evident identity morphism from x to itself, denoted idx ∈ homC•(x, x)0, which
behaves as expected under these composition maps.

Definition 2.9 Given any C• ∈ SsS and any pair of objects x, y ∈ (C0)0, we say that
two morphisms

ptsS ⇒ homC•(x, y)

are simplicially homotopic if the induced maps

ptS ⇒ |homC•(x, y)|

are equivalent (i.e. select points in the same path component of the target). We then
say that a morphism f ∈ homC•(x, y)0 is a simplicial homotopy equivalence if there
exists a morphism g ∈ homC•(y, x)0 such that the composite morphisms

χC•
x,y,x ( f, g) ∈ homC•(x, x)

and

χC•
y,x,y(g, f ) ∈ homC•(y, y)

are simplicially homotopic to the respective identity morphisms.

Now, the objects of SsS will indeed be “presentations of ∞-categories”, but
maps between themwhich are not equivalences may nevertheless induce equivalences
between the ∞-categories that they present. We therefore introduce the following
notion.
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330 A. Mazel-Gee

Definition 2.10 A map C•
ϕ•−→ D• in SsS is called a Dwyer–Kan weak equivalence

if

• it isweakly fully faithful, i.e.for all pairs of objects x, y ∈ (C0)0 the induced map

∣
∣homC•(x, y)

∣
∣ → ∣

∣homD•(ϕ(x), ϕ(y))
∣
∣

is an equivalence in S, and
• it is weakly surjective, i.e. the map

π0((C0)0) π0((ϕ0)0)−−−−−→ π0((D0)0)

is surjective up to the equivalence relation on π0((D0)0) generated by simplicial
homotopy equivalence.

Such morphisms define a subcategory WDK ⊂ SsS containing all the equivalences
and satisfying the two-out-of-three property, and we denote the resulting relative ∞-
category by SsSDK = (SsS,WDK) ∈ RelCat∞.

Remark 2.11 Via the evident functor CatsSet → SsS (recall Remark 2.7), the sub-
category of Dwyer–Kan weak equivalences WCatsSet

DK ⊂ CatsSet of Sect. 1.1 (i.e. the
subcategory of weak equivalences for the Bergner model structure) is pulled back
from the subcategory WSsS

DK ⊂ SsS .

2.3 sS-enriched ∞-categories

In light of the discussion of Sect. 2.2, the natural guess for the sense in which a Segal
simplicial space should be considered as a “presentation of an ∞-category” is via the
levelwise geometric realization functor

s(sS)
s(|−|)−−−→ sS.

However, this operation does not preserve Segal objects: taking fiber products of
simplicial spaces does not generally commute with taking their geometric realizations.
On the other hand, these two operations do commute when the common target of the
cospan is constant. Hence, it will be convenient to restrict our attention to the following
special class of objects.

Definition 2.12 We define the ∞-category of simplicio-spatially-enriched ∞-
categories, or simply of sS-enriched ∞-categories, to be the full subcategory
CatsS ⊂ SsS on those objects C• ∈ SsS ⊂ s(sS) such that C0 ∈ sS is constant. We
write

CatsS
UCatsS

↪−−−→ SsS
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Hammocks and fractions in relative ∞-categories 331

for the defining inclusion. Restricting the subcategory WSsS
DK ⊂ SsS of Dwyer–Kan

weak equivalences along this inclusion, we obtain a relative∞-category (CatsS)DK =
(CatsS ,WDK) ∈ RelCat∞ (which also has the two-out-of-three property).

Lemma 2.13 There is a canonical factorization

CatsS SsS s(sS) sS

SS

UCatsS s(|−|)

of the restriction of the levelwise geometric realization functor

s(sS)
s(|−|)−−−→ sS

to the subcategory CatsS ⊂ s(sS) of sS-enriched ∞-categories.

Proof Choose any C• ∈ CatsS . Since the functor SS ↪→ sS is the inclusion of a full
subcategory, it suffices to show that s(|UCatsS (C•)|) ∈ SS, for which in turn it suffices
to show that the evident map

|Cn| → |C1| ×
|C0|

|Cn−1|

is an equivalence. Towards this aim, write

|C0| 
∐

i

|C0|i

for the decomposition of |C0| ∈ S into its connected components; since by assumption
C0  const(|C0|), this induces a decomposition

C0  const

(
∐

i

|C0|i
)


∐

i

const(|C0|i )

of C0 ∈ sS. C1  ∐

i (C1)i and Cn−1  ∐

i (Cn−1)i for the resulting pulled back
decompositions. Then, using Lemma A.5.5.6.17 (applied to the ∞-topos S) and the
fact that coproducts commute with connected limits, we can identify the target of the
above map as

|C1| ×
|C0|

|Cn−1| 
∐

i

(

|(C1)i | ×
|C0|i

|(Cn−1)i |
)


∐

i

∣
∣
∣
∣
(C1)i ×

const(|C0|i )
(Cn−1)i

∣
∣
∣
∣
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∣
∣
∣
∣
∣

∐

i

(

(C1)i ×
const(|C0|i )

(Cn−1)i

)
∣
∣
∣
∣
∣


∣
∣
∣
∣
C1 ×

C0
Cn−1

∣
∣
∣
∣
.

As C• satisfies the Segal condition by assumption, this proves the claim. ��
Remark 2.14 The proof of Lemma 2.13 shows that it would suffice tomake theweaker
assumption that the object π lw

0 (C0) ∈ sSet is constant in order to conclude that
s(|UCatsS (C•)|) ∈ SS.
Definition 2.15 We denote simply by

CatsS |−|−→ SS

the factorization of Lemma 2.13, and refer to it as the geometric realization functor
on sS-enriched ∞-categories.

Definition 2.16 The composite inclusion

Cat∞ N∞−−→∼ CSS UCSS
↪−−−→ s(S)

s(const)
↪−−−−→ s(sS)

clearly factors through the subcategory CatsS ⊂ SsS ⊂ s(sS). We simply write

Cat∞ const−−→ CatsS

for this factorization, and refer to it as the constant sS-enriched ∞-category functor.
Thus, for an ∞-category C ∈ Cat∞, the simplicial object

const(C)• ∈ CatsS ⊂ s(sS)

is given in degree n by

const(N∞(C)n) ∈ sS,

the constant simplicial space on the object

N∞(C)n = homCat∞([n], C) ∈ S.

This functor clearly participates in a commutative diagram

Cat∞ CatsS SS

CSS

const

∼
N∞

|−|

UCSS

in Cat∞.
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Remark 2.17 Suppose we are given a Segal simplicial space C• ∈ SsS and a map

Z → (C0)0 in S to its space of objects. Write const(Z)
ϕ−→ C0 for the corresponding

map in sS. Then, the canonical map

ϕ∗(C•) → C•

is fully faithful (in the sS-enriched sense): for any objects x, y ∈ Z  (ϕ∗(C•)0)0,
the induced map

homϕ∗(C•)(x, y) → homC•(ϕ(x), ϕ(y))

is already an equivalence in sS (instead of just being an equivalence upon geometric
realization). Of course, the map ϕ∗(C•) → C• is therefore in particular weakly fully

faithful as well. As we can always choose our original map Z
ϕ−→ (C0)0 so that

the induced map ϕ∗(C•) → C• is additionally weakly surjective (e.g. by taking ϕ

to be a surjection), it follows that any Segal simplicial space admits a Dwyer–Kan
weak equivalence from a sS-enriched category; indeed, we can even arrange to have
Z ∈ Set ⊂ S.

Improving on Remark 2.17, we now describe a universal way of extracting a sS-
enriched ∞-category from a Segal simplicial space.

Definition 2.18 We define the spatialization functor sp : SsS → CatsS as follows.2

Any C• ∈ SsS gives rise to a natural map

const((C0)0) ε−→ C0

in sS, the component at C0 ∈ sS of the counit of the right localization adjunction
const : S � sS : lim. The spatialization of C• is then the pullback

sp(C•) = ε∗(C•).

(Note that the fiber product of Definition 2.2 that yields this pullback may be equiv-
alently taken either in SsS or in s(sS), in light of the left localization adjunction of
Definition 2.6.) This clearly assembles to a functor, and in fact it is not hard to see that
this participates in a right localization adjunction

CatsS SsS,

UCatsS
⊥
sp

whose counit components sp(C•) → C• are Dwyer–Kan weak equivalences (which
are even fully faithful as in Remark 2.17).

2 The word “spatialization” is meant to indicate that the 0th object of its output will lie in the subcategory
S ⊂ sS of constant simplicial spaces.
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2.4 SsS and CatsS as presentations of Cat∞

The following pair of results asserts that both sS-enriched ∞-categories and Segal
simplicial spaces, equipped with their respective subcategories of Dwyer–Kan weak
equivalences, present the ∞-category of ∞-categories.

Proposition 2.19 The composite functor

CatsS |−|−→ SS LCSS−−−→ CSS  Cat∞

induces an equivalence

CatsS�W−1
DK�

∼−→ CSS  Cat∞.

Proof So far, we have obtained the solid diagram

s(sS) sS

SsS SS

CatsS CSS.

s(|−|)
⊥

s(const)⊥
LSS⊥USS

LCSS⊥UCSS
⊥
sp |−|

⊥
s(const)

The right adjoint of the composite left localization adjunction

s(sS) sS SS
s(|−|)

⊥
s(const)

LSS
⊥

USS

clearly lands in the full subcategory CatsS ⊂ s(sS), and hence restricts to give the
right adjoint of a left localization adjunction as indicated by the dotted arrow above.
This composes to a left localization adjunction

CatsS SS CSS.
|−|
⊥

s(const)

LCSS
⊥

UCSS

Moreover, the definition of Dwyer–Kan weak equivalence is precisely chosen so that
the composite left adjoint creates the subcategoryWDK ⊂ CatsS [i.e. it is pulled back
from the subcategory of equivalences (see Definition N.1.5)]. Hence, by Example
N.1.13, it does indeed induce an equivalence

CatsS�W−1
DK�

∼−→ CSS  Cat∞,

as desired. ��
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Proposition 2.20 Both adjoints in the right localization adjunction

CatsS SsS
UCatsS

⊥
sp

are functors of relative ∞-categories (with respect to their respective Dwyer–Kan
relative structures), and moreover they induce inverse equivalences

CatsS�(WCatsS
DK )−1�  SsS�(WSsS

DK )−1�

in Cat∞ on localizations.

Proof The left adjoint inclusion is a functor of relative ∞-categories by definition.

On the other hand, suppose that C•
≈→ D• is a map in WSsS

DK ⊂ SsS . Via the right
localization adjunction, its spatialization fits into a commutative diagram

sp(C•) C•

sp(D•) D•

≈

≈

≈

in SsSDK, and hence is also in WSsS
DK ⊂ SsS by the two-out-of-three property. This

shows that the right adjoint is also a functor of relative ∞-categories.
To see that these adjoints induce inverse equivalences on localizations, note that

the composite

CatsS
UCatsS

↪−−−→ SsS sp−→ CatsS

is the identity, while the composite

SsS sp−→ CatsS
UCatsS

↪−−−→ SsS

admits a natural weak equivalence inSsSDK to the identity functor (namely, the counit
of the adjunction). Hence, the claim follows from Lemma N.1.24. ��

To conclude this section, we make a pair of general remarks regarding SsS and
CatsS . We begin by contextualizing these ∞-categories with respect to Lurie’s theory
of enriched ∞-categories, which is described in [8, §1].

Remark 2.21 Lurie’s theory of enriched∞-categories—which provides a satisfactory,
compelling, and apparently complete picture (at least when the enriching ∞-category
is equipped with the cartesian symmetric monoidal structure)—is premised on the
notion of a distributor, the data of which is simply an ∞-category Y equipped with
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a full subcategory X ⊂ Y (see [8, Definition 1.2.1]).3 Given such a distributor, one
can then define ∞-categories SSX⊂Y and CSSX⊂Y of Segal space objects and of
complete Segal space objects with respect to it: these sit as full (in fact, reflective)
subcategories

CSSX⊂Y ⊂ SSX⊂Y ⊂ sY,

in which

• the subcategory SSX⊂Y ⊂ sY consists of those simplicial objects Y• ∈ sY such
that
• Y• satisfies the Segal condition and
• Y0 ∈ X

(see [8, Definition 1.2.7]), while

• the subcategory CSSX⊂Y ⊂ SSX⊂Y consists of those objects which additionally
satisfy a certain completeness condition (see [8, Definition 1.2.10]).

Thus, Y plays the role of the “enriching ∞-category”, i.e. the ∞-category containing
the hom-objects in our enriched ∞-category, while its subcategory X ⊂ Y provides
a home for the “object of objects” of the enriched ∞-category. As in the classi-
cal case—indeed, the identity distributor S ⊂ S simply has SSS⊂S  SS and
CSSS⊂S  CSS—, one can already meaningfully extract an enriched ∞-category
from a Segal space object, but it is only by restricting to the complete ones that one
obtains the desired ∞-category of such.

Now, obviously we have

SsS  SSsS⊂sS ,

as Segal simplicial spaces are nothing but Segal space objects with respect to the iden-
tity distributor sS ⊂ sS on the ∞-category sS of simplicial spaces. We can clearly
also identify the ∞-category of sS-enriched ∞-categories as

CatsS  SSS⊂sS ,

the Segal space objects with respect to the distributor S ⊂ sS (the embedding of
spaces as the constant simplicial spaces).4,5 On the other hand, the subcategory of
complete Segal space objects can be identified as the pullback

3 Note that there is a typo in [8, Definition 1.2.1]: condition (4) should say that the functorX → (Cat∞)op

preserves colimits, not limits. This is clear from [8, Example 1.2.3] (see Lemma T.6.1.3.7 and Definition
T.6.1.3.8).
4 To see that the inclusion S ⊂ sS of the full subcategory of constant objects is a distributor, note that if
Y is an ∞-topos andX ⊂ Y is a full subcategory which is stable under limits and colimits, thenX ⊂ Y is
automatically a distributor. The only remaining point is to verify condition (4) of [8, Definition 1.2.1]. The
functor X → (Cat∞)op is given on objects by x �→ (Y/x )◦, with functoriality given by pullback in Y .
This clearly factors as the composite X ↪→ Y → (Cat∞)op , in which the latter functor is similarly given
by y �→ (Y/y)◦, which then preserves colimits by Proposition T.6.1.3.10 and Theorem T.6.1.3.9.
5 In contrast with Remark 2.7, sS-enriched ∞-categories do not quite have an analog in ordinary category
theory, only in enriched category theory. (It is only a coincidence of the special case presently under study
that the two ∞-categories S and sS participating in the distributor appear to be so closely related.)
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CSSS⊂sS SSS⊂sS

CSS SS

in which the right vertical functor takes an sS-enriched ∞-category C• ∈ SSS⊂sS 
CatsS to its “levelwise 0th space” object (C•)0 ∈ SS.

We now explain the source of our interest in the ∞-categories SsS and CatsS .
Remark 2.22 First and foremost, the reason we are interested in SsS is because this
is the natural target of the “pre-hammock localization” functor

RelCat∞
L H

pre−−→ SsS,

whose construction constitutes themain ingredient of the construction of the hammock
localization functor itself (see Sect. 5). On the other hand, we then restrict to the
(coreflective) subcategory CatsS ⊂ SsS since this is a convenient full subcategory of
SsS ⊂ s(sS) on which the levelwise geometric realization functor

s(sS)
s(|−|)−−−→ sS

(which is a colimit) preserves the Segal condition (which is defined in terms of limits)
[recall (the proof of)Lemma2.13].6 Indeed, if our “local geometric realization” functor
failed to preserve the Segal condition, it would necessarily destroy all “category-ness”
inherent in our objects of study. In turn, this would effectively invalidate our right to
declare the hammock simplicial spaces

homL H (R,W)(x, y) ∈ sS

(see Definition 3.17)—which will of course be the hom-simplicial spaces in the ham-
mock localization L H (R,W) ∈ CatsS—as “presentations of hom-spaces” in any
reasonable sense.

For these reasons, Segal simplicial spaces are therefore not really our primary
interest. However, since for a Segal simplicial spaceC• ∈ SsS , the counit sp(C•) → C•
of the spatialization right localization adjunction is actually fully faithful in the sS-
enriched sense, the hammock localization

L H (R,W) = sp(L H
pre(R,W)) ∈ CatsS

will then simultaneously

• have the hammock simplicial spaces as its hom-simplicial spaces, and
• have composition maps which both

6 In light of Proposition 2.19, it seems unnecessary to use the larger subcategory of SsS afforded by
Remark 2.14.
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– directly present composition in its geometric realization, and
– manifestly encode the notion of “concatenation of zigzags”.

Of course, it would also be possible to restrict further to the (reflective) subcategory

CSSS⊂sS ⊂ SSS⊂sS  CatsS

of complete Segal space objects (recall Remark 2.21). However, this is unnecessary for
our purposes, since both the pre-hammock localization functor and the hammock local-
ization functor will land in∞-categories (namely SsS and CatsS , respectively) which
admit canonical relative structures via which they present the ∞-category Cat∞, thus
endowing these constructions with external meaning (which are of course compatible
with each other in light of Proposition 2.20). Moreover, as the successive inclusions

CSSS⊂sS ⊂ SSS⊂sS  CatsS ⊂ SsS

respectively admit a left adjoint and a right adjoint, this further restriction would in
all probability make for a somewhat messier story.

3 Zigzags and hammocks in relative ∞-categories

In studying relative 1-categories and their 1-categorical localizations, one is naturally
led to study zigzags. Given a relative category (R,W) ∈ RelCat and a pair of objects
x, y ∈ R, a zigzag from x to y is a diagram of the form

x
≈← · · · → · · · ≈← · · · → · · · ≈← y,

i.e. a sequence of both forwards and backwards morphisms in R (in arbitrary (finite)
quantities and in any order) such that all backwards morphisms lie inW ⊂ R. Under
the 1-categorical localization R → R[W−1], such a diagram is taken to a sequence
of morphisms such that all backwards maps are isomorphisms, so that it is in effect
just a sequence of composable (forwards) arrows. Taking their composite, we obtain
a single morphism x → y in R[W−1]. In fact, one can explicitly construct R[W−1]
in such a way that all of its morphisms arise from this procedure.

It is a good deal more subtle to show, but in fact the same is true of relative
∞-categories and their (∞-categorical) localizations: given a relative ∞-category
(R,W) ∈ RelCat∞, it turns out that every morphism in R�W−1� can likewise be
presented by a zigzag in (R,W) itself. (We prove a precise statement of this assertion
as Proposition 3.11.)

The representation of a morphism in R�W−1� by a zigzag in (R,W) is quite
clearly overkill: many different zigzags in (R,W) will present the same morphism
inR�W−1�. For example, we can consider a zigzag as being selected by a morphism
m → (R,W) of relative ∞-categories, where m ∈ RelCat ⊂ RelCat∞ is a zigzag
type which is determined by the shape of the zigzag in question; then, precomposition
with a suitable morphismm′ → m of zigzag types will yield a compositem′ → m →
(R,W)which presents a canonically equivalent morphism inR�W−1�. Thus, in order
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to obtain a closer approximation to homR�W−1�(x, y), we should take a colimit of the
various spaces of zigzags from x to y indexed over the category of zigzag types.

However, this colimit alone will still not generally capture all the redundancy inher-
ent in the representation of morphisms in R�W−1� by zigzags in (R,W). Namely, a
natural weak equivalence between two zigzags of the same type (which fixes the end-
points) will, upon postcomposing to the localizationR → R�W−1�, yield a homotopy
between themorphisms presented by the respective zigzags. Pursuing this observation,
we are thus led to consider certain∞-categories, denotedm(x, y) (for varying zigzag
typesm), whose objects are them-shaped zigzags from x to y and whose morphisms
are the natural weak equivalences (fixing x and y) between them.

Finally, putting these two observations of redundancy together, we see that in order
to approximate the hom-space homR�W−1�(x, y), we should be taking a colimit of the
various ∞-categories m(x, y) over the category of zigzag types. In fact, rather than
taking a colimit of these ∞-categories, we will take a colimit of their corresponding
complete Segal spaces (see §N.2), not within the ∞-category CSS of such but rather
within the larger ambient ∞-category sS in which it is definitionally contained; this,
finally, will yield the hammock simplicial space homL H (R,W)(x, y) ∈ sS, which (as
the notation suggests) will be the hom-simplicial space in the hammock localization
L H (R,W) ∈ CatsS .7

This section is organized as follows.

• In Sect. 3.1, we lay some groundwork regarding doubly-pointed relative ∞-
categories, which will allow us to efficiently corepresent our ∞-categories of
zigzags.

• In Sect. 3.2, we use this to define∞-categories of zigzags in a relative∞-category.
• In Sect. 3.3, we prove a precise articulation of the assertion made above, that all
morphisms in the localization R�W−1� are represented by zigzags in (R,W).

• In Sect. 3.4, we finally define our hammock simplicial spaces and compare them
with the hammock simplicial sets of Dwyer–Kan (in the special case of a relative
1-category).

• In Sect. 3.5, we assemble some technical results regarding zigzags in relative ∞-
categories which will be useful later; notably, we prove that for a concatenation
[m;m′] of zigzag types, we can recover the ∞-category [m;m′](x, y) via the
two-sided Grothendieck construction (see Definition G.2.3).

3.1 Doubly-pointed relative ∞-categories

In this subsection, we make a number of auxiliary definitions which will streamline
our discussion throughout the remainder of this paper.

7 As the functor LCSS : sS → CSS is left adjoint to the inclusion CSS ⊂ sS and hence in particular
commutes with colimits, its application to the hammock simplicial space will yield the aforementioned
colimit of ∞-categories. Moreover, since we are ultimately interested in hammock simplicial spaces for
their geometric realizations, in view of Proposition N.2.4 we can consider this shift in ambient ∞-category
merely as a technical convenience. For instance, there is an evident explicit description of the constituent
spaces in the hammock simplicial space [analogous to the 1-categorical case (see [1, 2.1])].
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Definition 3.1 A doubly-pointed relative ∞-category is a relative ∞-category
(R,W) equipped with a map ptRelCat∞ � ptRelCat∞ → R. The two inclusions
ptRelCat∞ ↪→ ptRelCat∞ � ptRelCat∞ select objects s, t ∈ R, which we call the source
and the target; we will sometimes subscript these to remove ambiguity, e.g.as sR and
tR. These assemble into the evident ∞-category, which we denote by

(RelCat∞)∗∗ = (RelCat∞)(ptRelCat∞�ptRelCat∞ )/.

Of course, there is a forgetful functor (RelCat∞)∗∗ → RelCat∞. We will often
implicitly consider a relative ∞-category (R,W) equipped with two chosen objects
x, y ∈ R as a doubly-pointed relative ∞-category; on the other hand, we may also
write ((R,W), x, y) ∈ (RelCat∞)∗∗ to be more explicit. We write RelCat∗∗ ⊂
(RelCat∞)∗∗ for the full subcategory of doubly-pointed relative categories, i.e. of
those doubly-pointed relative ∞-categories whose underlying ∞-category is a 1-
category.

Notation 3.2 Recall from Notation N.1.6 that RelCat∞ is a cartesian closed sym-
metric monoidal ∞-category. With respect to this structure, (RelCat∞)∗∗ is enriched
and tensored over RelCat∞. As for the enrichment, for any (R1W1), (R2,W2) ∈
(RelCat∞)∗∗, we define the object

(

Fun∗∗(R1,R2)
Rel,Fun∗∗(R1,R2)

W
)

= lim

⎛

⎜
⎜
⎜
⎝

(

Fun(R1,R2)
Rel,Fun(R1,R2)

W
)

{(s2, t2)} (R2,W2) × (R2,W2)

(evs1 ,evt1 )

⎞

⎟
⎟
⎟
⎠

of RelCat∞ (where we write s1, t1 ∈ R1 and s2, t2 ∈ R2 to distinguish between
the source and target objects); informally, this should be thought of as the relative
∞-category whose objects are the doubly-pointed relative functors from (R1,W1) to
(R2,W2), whose morphisms are the doubly-pointed natural transformations between
these (i.e. those natural transformations whose components at s1 and t1 are ids2
and idt2 , resp.), and whose weak equivalences are the doubly-pointed natural weak
equivalences. Then, the tensoring is obtained by taking (R,W) ∈ RelCat∞ and
(R1,W1) ∈ (RelCat∞)∗∗ to the pushout

colim

⎛

⎜
⎜
⎜
⎝

R × {s, t} R × R1

ptRelCat∞ × {s, t}

⎞

⎟
⎟
⎟
⎠

in RelCat∞, with its double-pointing given by the natural map from ptRelCat∞ �
ptRelCat∞  ptRelCat∞ × {s, t}. We will write

(RelCat∞)∗∗ × RelCat∞ −�−−−−→ (RelCat∞)∗∗

to denote this tensoring.
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Notation 3.3 In order to simultaneously refer to the situations of unpointed and
doubly-pointed relative ∞-categories, we will use the notation (RelCat∞)(∗∗) (and
similarly for other related notations). When we use this notation, we will mean for the
entire statement to be interpreted either in the unpointed context or the doubly-pointed
context.

Notation 3.4 We will write

(RelCat∞)(∗∗) × RelCat∞ −�−−−−→ (RelCat∞)(∗∗)

to denote either the tensoring of Notation 3.2 in the doubly-pointed case or else simply
the cartesian product in the unpointed case.

3.2 Zigzags in relative ∞-categories

In this subsection we introduce the first of the two key concepts of this section, namely
the ∞-categories of zigzags in a relative ∞-category between two given objects.

We begin by defining the objects which will corepresent our ∞-categories of
zigzags.

Definition 3.5 We define a relative word to be a (possibly empty) word m in the
symbols A (for “any arbitrary arrow”) and W−1. We will write A◦n to denote n
consecutive copies of the symbol A (for any n ≥ 0), and similarly for (W−1)◦n .
We can extract a doubly-pointed relative category from a relative word, which for
our sanity we will carry out by reading forwards. So for instance, the relative word
m = [A; (W−1)◦2;A◦2] defines the doubly-pointed relative category

s • • • • t.≈ ≈

We denote this object bym ∈ RelCat∗∗. Thus, by convention, the empty relative word
determines the terminal object [∅]  ptRelCat∗∗ ∈ RelCat∗∗ (which is the unique
relative word determining a doubly-pointed relative category whose source and target
objects are equivalent). Restricting to the order-preserving maps between relative
words (with respect to the evident ordering on their objects, i.e. starting from s and
ending at t), we obtain a (non-full) subcategory Z ⊂ RelCat∗∗ of zigzag types.8,9,10

We will occasionally also use this same relative word notation with the symbol W,
but the resulting doubly-pointed relative categories will not be objects of Z .

8 Note that the objects of Z can in fact be considered as strict doubly-pointed relative categories, and
moreover Z itself can be considered as a strict category. However, as we will only use these objects in
invariant manipulations, we will not need these observations.
9 Omitting the terminal relativeword fromZ (and considering it as a strict category), we obtain the opposite
of the indexing category II of [1, 4.1]. We prefer to include this terminal object: it is the unit object for a
monoidal structure onZ given by concatenation, which will play a key role in the definition of the hammock
localization (see Construction 5.1).
10 Note that an order-preserving map must lay each morphism [A] across some [A◦m ] (for some m ≥ 0),
and must lay each morphism [W−1] across some [(W−1)◦n ] (for some n ≥ 0). In particular, it cannot lay
a morphism [A] across a morphism [W−1] (or vice versa, of course).
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Remark 3.6 Let m,m′ ∈ Z ⊂ RelCat∗∗ ⊂ (RelCat∞)∗∗ be relative words. Then,
their concatenation can be characterized as a pushout

ptRelCat∞ m′

m [m;m′]

s

t

inRelCat∞ (as well as inRelCat).
Notation 3.7 For anym ∈ Z , we will write |m|A ∈ N to denote the number of times
thatA appears inm, and we will write |m|W−1 ∈ N to denote the number of times that
W−1 appears inm.

Remark 3.8 The localization functor

RelCat∞ L−→ Cat∞

acts on the subcategory Z ⊂ RelCat ⊂ RelCat∞ of zigzag types as

L (m)  [|m|A] ∈ � ⊂ Cat ⊂ Cat∞ :

in effect, it collapses all the copies of [W−1] and leaves the copies of [A] untouched.
We now define the first of the two key concepts of this section, an analog of [1,

5.1].

Definition 3.9 Given a relative∞-category (R,W) equippedwith two chosen objects
x, y ∈ R, and given a relative word m ∈ Z , we define the ∞-category of zigzags in
(R,W) from x to y of type m to be

m(R,W)(x, y) = Fun∗∗(m,R)W.

If the relative∞-category (R,W) is clear from context, we will simply writem(x, y).

3.3 Representing maps in R�W−1� by zigzags in (R,W)

In this subsection, we take a digression to illustrate that our study of zigzags in relative
∞-categories is well-founded: roughly speaking, we show that any morphism in the
localization of a relative ∞-category is represented by a zigzag in the relative ∞-
category itself. We will give the precise assertion as Proposition 3.11. In order to state
it, however, we first introduce the following terminology.

Definition 3.10 Let (R,WR) and (D,WD) be relative ∞-categories. We will say
that a morphism

(D,WD) → (R,WR)
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inRelCat∞ represents the morphism

D�W−1
D � → R�W−1

R �

in Cat∞ induced by the localization functor. We will also say that it represents the
morphism

ho(D�W−1
D �) → ho(R�W−1

R �)

in Cat induced from the previous one by the homotopy category functor. In a slight
abuse of terminology, we will moreover say that a zigzag

m → (R,WR)

represents the composite

[1] → L (m) → R�W−1
R �

in Cat∞, where the map [1] → L (m)  [|m|A] is given by 0 �→ 0 and 1 �→ |m|A
(i.e. it corepresents the operation of composition), and likewise for the morphism in
the homotopy category ho(R�W−1

R �) of the localization selected by either three-fold
composite in the commutative diagram

[1]

L (m) R�W−1
R �

ho(L (m)) ho(R�W−1
R �)

∼

in Cat∞.

Proposition 3.11 Let (R,W) ∈ RelCat∞ be a relative ∞-category, and let [1] F−→
R�W−1� be a functor selecting a morphism in its localization. Then, for some relative
word m ∈ Z , there exists a zigzag m → (R,W) which represents F.

We will prove Proposition 3.11 in stages of increasing generality. We begin by
recalling that any morphism in the 1-categorical localization of a relative 1-category
is represented by a zigzag.

Lemma 3.12 Let (R,W) ∈ RelCat be a relative 1-category, and let [1] F−→ R[W−1]
be a functor selecting a morphism in its 1-categorical localization. Then, for some
relative word m ∈ Z , there exists a zigzag m → (R,W) which represents F.
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Proof This follows directly from the standard construction of the 1-categorical local-
ization of a relative 1-category (see e.g. [1, Proposition 3.1]). ��

Remark 3.13 Lemma 3.12 accounts for the fundamental role that zigzags play in the
theory of relative categories and their 1-categorical localizations. We can therefore
view Proposition 3.11 as asserting that zigzags play an analogous fundamental role in
the theory of relative ∞-categories and their (∞-categorical) localizations.

Remark 3.14 We can view Lemma 3.12 as guaranteeing the existence of a diagram

m (R,W)

ho(L (m)) R[W−1]

[1]
F

for some relative wordm ∈ Z , in which

• the upper dotted arrow is a morphism inRelCat ⊂ RelCat∞,
• the lower dotted arrow is its image under the 1-categorical localization functor

RelCat∞ L−→ Cat∞ ho−→ Cat,

and
• the map [1] → ho(L (m))  ho([|m|A])  [|m|A] is as in Definition 3.10.

With Lemma 3.12 recalled, we now move on to the case of ∞-categorical local-
izations of relative 1-categories.

Lemma 3.15 Let (R,W) ∈ RelCat be a relative 1-category, and let [1] F−→ R�W−1�
be a functor selecting a morphism in its localization. Then, for some relative word
m ∈ Z , there exists a zigzag m → (R,W) which represents F.

Proof Recall from Remark N.1.29 that we have an equivalence ho(R�W−1�)
∼−→

R[W−1]. The resulting postcomposition

[1] F−→ R�W−1� → ho(R�W−1�)
∼−→ R[W−1]

of F with the projection to the homotopy category selects a morphism in the 1-
categorical localization R[W−1]. Hence, by Lemma 3.12, we obtain a diagram
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m (R,W)

L (m) R�W−1�

ho(L (m)) R[W−1]

[1]

∼

for some relative wordm ∈ Z , in which

• the solid horizontal arrows are as in Remark 3.14,
• the upper map in RelCat ⊂ RelCat∞ induces the dotted map under the functor
L : RelCat∞ → Cat∞, so that

• the (lower) square in Cat∞ commutes.

That the resulting composite

[1] → L (m) → R�W−1�

is equivalent to the functor [1] F−→ R�W−1� follows fromLemma 3.16. Thus, in effect,
we obtain a diagram

m (R,W)

L (m) R�W−1�

[1]

analogous to the one inRemark 3.14 (onlywith the 1-categorical localizations replaced
by the ∞-categorical localizations), which proves the claim. ��

Lemma 3.16 For any ∞-category C and any map [1] → ho(C), the space of lifts

C

[1] ho(C)

is connected.

Proof Since the functor C → ho(C) creates the subcategory C ⊂ C, there is a
connected space of lifts of the maximal subgroupoid {0, 1}  [1] ⊂ [1]. Then, in
any solid commutative square

123



346 A. Mazel-Gee

[1] C

[1] ho(C)

there exists a connected space of dotted lifts by definition of the homotopy category.
��

With Lemma 3.15 in hand, we now proceed to the fully general case of ∞-
categorical localizations of relative ∞-categories.

Proof of Proposition 3.11 Observe that the morphism (R,W) → (ho(R), ho(W)) in
RelCat∞ induces a postcomposition

[1] F−→ R�W−1� → ho(R)�ho(W)−1�

selecting a morphism in the ∞-categorical localization of the relative 1-category
(ho(R), ho(W)) ∈ RelCat. Hence, by Lemma 3.15, we obtain a solid diagram

(R,W)

m (ho(R), ho(W)) R�W−1�

L (m) ho(R)�ho(W)−1� ho(R�W−1�)

ho(R)[ho(W)−1]

[1]

∼

for some relative wordm ∈ Z , in which
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• the lower right diagonal map is an equivalence by Remark N.1.29,
• we moreover obtain the upper dotted arrow from Remark 3.6 by induction, and
• we define the lower dotted arrow to be its image under localization.

Now, the resulting composite

[1] → L (m) → R�W−1�

fits into a commutative diagram

[1] L (m) R�W−1�

ho(R)�ho(W)−1� ho(R)[ho(W)−1] ho(R�W−1�)∼

in Cat∞. In particular, we have obtained a lift

R�W−1�

[1] ho(R�W−1�)

of the composite

[1] F−→ R�W−1� → ho(R�W−1�),

which must therefore be equivalent to F itself by Lemma 3.16. Thus, we obtain a
diagram

m (R,W)

L (m) R�W−1�

[1]

as in the proof of Lemma 3.15, which proves the claim. ��
Thus, zigzags play an important role not just in the theory of relative 1-categories

and their 1-categorical localizations, but more generally in the theory of relative ∞-
categories and their ∞-categorical localizations.
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3.4 Hammocks in relative ∞-categories

For a general relative ∞-category (R,W), the representation of a morphism in
R�W−1� by a zigzag m → (R,W) guaranteed by Proposition 3.11 is clearly
far from unique. Indeed, any morphism m′ → m in Z gives rise to a composite
m′ → m → (R,W) which presents the same morphism inR�W−1�: in other words,
the morphisms in Z corepresent universal equivalence relations between zigzags in
relative ∞-categories (with respect to the morphisms that they represent upon local-
ization).

In order to account for this over-representation, we are led to the following defini-
tion, the second of the two key concepts of this section, an analog of [1, 2.1].

Definition 3.17 Suppose (R,W) ∈ RelCat∞, and suppose x, y ∈ R. We define the
simplicial space of hammocks (or alternatively the hammock simplicial space) in
(R,W) from x to y to be the colimit

homL H (R,W)(x, y) = colimm∈Zop N∞(m(x, y)) ∈ sS.

We will extend the hammock simplicial space construction further – and in partic-
ular, justify its notation – by constructing the hammock localization

L H (R,W) ∈ CatsS
of (R,W) in Sect. 5 (see Remark 5.5).

We now compare our hammock simplicial spaces of Definition 3.17 with Dwyer–
Kan’s classical hammock simplicial sets (in relative 1-categories).

Remark 3.18 Suppose that (R,W) ∈ RelCat is a relative category. Then, by [1, Propo-
sition 5.5], we have an identification

homL H
δ (R,W)(x, y) ∼= colimsSet

m∈Zop N(m(x, y))

of the classical simplicial set of hammocks defined in [1, 2.1] as an analogous colimit
over the 1-categorical nerves of the (strict) categories of zigzags in (R,W) from x to
y.11 However, there are two reasons that this does not coincide with Definition 3.17.

• The colimit computing homL H
δ (R,W)(x, y) is taken in the subcategory sSet ⊂ sS.

This inclusion (being a right adjoint) does not generally commute with colimits.

• The functors Cat
N−→ sSet ↪→ sS and Cat → Cat∞ N∞−−→ sS do not generally agree,

but are only related by a natural transformation

Cat sSet

Cat∞ sS

N

⇒ disc

N∞

11 It is not hard to see that the presence of the initial object [∅]◦ ∈ Zop (which is what distinguishes this
indexing category from II) does not change this colimit.
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in Fun(Cat, sS) (see Remark N.2.6).

On the other hand, these two constructions do at least participate in a diagram

sSet

Zop sS

discN((−)(x,y))

⇓

N∞((−)(x,y))

in Cat∞, which induces a span

colimsS
m◦∈Zop disc(N(m(x, y)))

homL H (R,W)(x, y) disc
(

homL H
δ (R,W)(x, y)

)

in sS. We claim that this span lies in the subcategoryWKQ ⊂ sS, i.e. that it becomes
an equivalence upon geometric realization; as we have a commutative triangle

sSet sS

S

disc

|−| |−|

in Cat∞, this will imply that we have a canonical equivalence

∣
∣homL H (R,W)(x, y)

∣
∣ 

∣
∣
∣homL H

δ (R,W)(x, y)

∣
∣
∣

in S. We view this as a satisfactory state of affairs, since we are only ultimately inter-
ested in simplicial sets/spaces of hammocks as presentations of hom-spaces, anyways.

To see the claim, note first that since |−| : sS → S is a left adjoint, it com-
mutes with colimits, and so the left leg of the span lies in WKQ by the fact that upon
postcomposition with the geometric realization functor |−| : sS → S, the natural
transformation
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disc ◦ N → N∞

in Fun(Cat, sS) becomes a natural equivalence

|−| ◦ disc ◦ N
∼−→ |−| ◦ N∞

in Fun(Cat,S) (again see Remark N.2.6). By Proposition N.2.4, these geometric real-
izations of colimits in sS both evaluate to

colimS
m◦∈Zop m(x, y)gpd.

Now, in order to compute the geometric realization

∣
∣
∣disc

(

homL H
δ (R,W)(x, y)

)∣
∣
∣ 

∣
∣
∣homL H

δ (R,W)(x, y)

∣
∣
∣ ,

we begin by observing that the category Z has an evident Reedy structure, which one
can verify has cofibrant constants, so that the dual Reedy structure on Zop has fibrant
constants. Moreover, it is not hard to verify that the functor

Zop N((−)(x,y))−−−−−−−→ sSet

defines a cofibrant object of Fun(Zop, sSetKQ)Reedy. Hence, the colimit

homL H
δ (R,W)(x, y) ∼= colimsSet

m◦∈Zop N(m(x, y))

computes the homotopy colimit in sSetKQ, i.e. the colimit of the composite

Zop N((−)(x,y))−−−−−−−→ sSet |−|−→ sSet�W−1
KQ�  S.

The claim then follows from the string of equivalences

|−| ◦ N  |−| ◦ disc ◦ N  |−| ◦ N∞  (−)gpd

in Fun(Cat,S) (again appealing to Proposition N.2.4).

Remark 3.19 Dwyer–Kan give a point-set definition of the hammock simplicial set
in [1, 2.1], and then prove it is isomorphic to the colimit indicated in Remark 3.18.
However, working ∞-categorically, it is essentially impossible to make such an ad
hoc definition. Thus, we have simply defined our hammock simplicial space as the
colimit to which we would like it to be equivalent anyways.
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3.5 Functoriality and gluing for zigzags

In this subsection, we prove that ∞-categories of zigzags are suitably functorial for
weak equivalences among source and target objects (see Notation 3.23), and we use
this to give a formula for an ∞-category of zigzags of type [m;m′], the concatenation
of two arbitrary relative words m,m′ ∈ Z (see Lemma 3.24).

Recall from Remark 3.6 that concatenations of relative words compute pushouts
in RelCat∞. This allows for inductive arguments, in which at each stage we freely
adjoin a new morphism along either its source or its target. For these, we will want to
have a certain functoriality property for diagrams of this shape. To describe it, let us
first work in the special case of Cat∞ (instead ofRelCat∞). There, if for instance we
have an ∞-category D′ with a chosen object d ∈ D′ and we use this to define a new
∞-category D as the pushout

ptCat∞ [1]

D′ D,

t

d

then for any target ∞-category C, the evaluation

Fun(D, C) → Fun([1], C)
s−→ C

will be a cartesian fibration by Corollary T.2.4.7.12 (applied to the functor

Fun(D′, C)
evd−−→ C). The following result is then an analog of this observation for

relative ∞-categories; note that there are now two types of “freely adjoined mor-
phisms” we must consider.

Lemma 3.20 Let (I ′,WI ′) ∈ RelCat∞, choose any i ∈ I ′, and suppose we are given
any (R,WR) ∈ RelCat∞.

1. (a) If we form the pushout

pt [W]

(I ′,WI ′) (I,WI)

s

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([W],R)W
t−→ WR

is a cocartesian fibration.
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(b) Dually, if we form the pushout

pt [W]

(I ′,WI ′) (I,WI)

t

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([W],R)W
s−→ WR

is a cartesian fibration.
2. (a) If we form the pushout

pt [A]

(I ′,WI ′) (I,WI)

s

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([A],R)W
t−→ WR

is a cocartesian fibration.
(b) Dually, if we form the pushout

pt [A]

(I ′,WI ′) (I,WI)

t

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([A],R)W
s−→ WR

is a cartesian fibration.

Proof We first prove item 1(b). Applying Corollary T.2.4.7.12 to the functor

Fun(I ′,R)W
i−→ WR
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and noting that Fun([W],R)W  Fun([1],WR) (in a way compatible with the eval-
uation maps), we obtain that the composite restriction

Fun(I,R)W  lim

⎛

⎜
⎜
⎜
⎜
⎝

Fun([W],R)W

Fun(I ′,R)W WR
t

i

⎞

⎟
⎟
⎟
⎟
⎠

→ Fun([W],R)W
s−→ WR

is a cartesian fibration, as desired. The proof of item 1(a) is completely dual.
We now prove item 2(b). For this, consider the diagram

Fun(I,R)W Fun(I ′,R)W

Fun(I,R)W@s Fun(I,R)Rel Fun(I ′,R)Rel

Fun([A],R)Rel R

WR R

s

i

t
s

in which all small rectangles are pullbacks and in which we have introduced the ad
hoc notation

Fun(I,R)W@s ⊂ Fun(I,R)Rel

for the wide subcategory whose morphisms are those natural transformations whose
component at s ∈ [A] ⊂ I lies in WR ⊂ R. Observing that Fun([A],R)Rel 
Fun([1],R) (in a way compatible with the evaluation maps), it follows from applying
Corollary T.2.4.7.12 to the functor

Fun(I ′,R)Rel i−→ R

that the composite

Fun(I,R)Rel → Fun([A],R)Rel s−→ R

is a cartesian fibration, for which the cartesian morphisms are precisely those that are
sent to equivalences under the restriction functor

Fun(I,R)Rel → Fun(I ′,R)Rel.

Then, by Propositions T.2.4.2.3(2) and T.2.4.1.3(2), the functor

Fun(I,R)W@s s−→ WR
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is also a cartesian fibration, for which any morphism that is sent to an equivalence
under the composite

Fun(I,R)W@s → Fun(I,R)Rel → Fun(I ′,R)Rel

is cartesian. Now, for any map x ′ ϕ−→ x inWR and any object

G ∈
(

ptCat∞ ×
x,WR,s

Fun(I,R)W@s
)

,

choose such a cartesian morphism

(F
ϕ̃−→ G) ∈

(

Fun
(

[1],Fun(I,R)W@s
)

×
Fun([1],s),Fun([1],WR),ϕ

ptCat∞

)

.

Since by definitionR ⊂ WR, it follows that this is in fact a morphism in the (wide)
subcategory Fun(I,R)W ⊂ Fun(I,R)W@s . Hence, we obtain a diagram

(

Fun(I,R)W
)

/ϕ̃

(

Fun(I,R)W@s
)

/ϕ̃
(WR)/ϕ

(

Fun(I,R)W
)

/G

(

Fun(I,R)W@s
)

/G (WR)/x

in Cat∞, in which the right square is a pullback since ϕ̃ is a cartesian morphism.
Moreover, again using the fact thatR ⊂ WR, it is easy to check that the left square
is also a pullback. So the entire rectangle is a pullback, and hence ϕ̃ is also a cartesian
morphism for the functor

Fun(I,R)W
s−→ WR.

Fromhere, it follows from the fact that Fun(I,R)W ⊂ Fun(I,R)W@s is a subcategory
that this functor is indeed a cartesian fibration. The proof of item 2(a) is completely
dual. ��

Given an arbitrary doubly-pointed relative ∞-category (I,WI) ∈ (RelCat∞)∗∗
and some relative∞-category (R,WR) ∈ RelCat∞ which we consider to be doubly-
pointed via some choice x, y ∈ R of a pair of objects, we will be interested in the
functoriality of the construction

Fun∗∗((I,WI), ((R,WR), x, y))W ∈ Cat∞

in the variable x ∈ W but for a fixed choice of y ∈ W (or vice versa). This functoriality
will be expressed by a variant of Lemma 3.20. However, in order to accommodate the
fixing of just one of the two chosen objects, we must first introduce the following
notation.
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Notation 3.21 Let I ∈ (RelCat∞)∗∗, let (R,W) ∈ RelCat∞, and let x, y ∈ R.
Then, we write

(

Fun∗◦(I,R)Rel, Fun∗◦(I,R)W
)

= lim

⎛

⎜
⎜
⎜
⎜
⎝

(

Fun(I,R)Rel, Fun(I,R)W
)

ptRelCat∞ (R,W)

s

x

⎞

⎟
⎟
⎟
⎟
⎠

and

(

Fun◦∗(I,R)Rel,Fun◦∗(I,R)W
)

= lim

⎛

⎜
⎜
⎜
⎜
⎝

(

Fun(I,R)Rel,Fun(I,R)W
)

ptRelCat∞ (R,W)

t

y

⎞

⎟
⎟
⎟
⎟
⎠

.

We now give a “half-doubly-pointed” variant of Lemma 3.20, but stated only in the
special case that we will need.

Lemma 3.22 Let m ∈ Z , let (R,W) ∈ RelCat∞, and let x, y ∈ R.

1. The functor Fun◦∗(m,R)W
s−→ W

(a) is a cocartesian fibration if m begins with W−1, and
(b) is a cartesian fibration if m begins with A.

2. The functor Fun∗◦(m,R)W
t−→ W

(a) is a cartesian fibration if m ends with W−1, and
(b) is a cocartesian fibration if m ends with A.

Proof If we simply havem = [A] orm = [W−1] then these statements follow trivially
from Lemma 3.20, so let us assume that the relative wordm has length greater than 1.

To prove item 2(a), suppose thatm = [m′;W−1]. Then we have a pullback square

Fun∗◦(m,R)W Fun([W−1],R)W

Fun∗◦(m′,R)W W

s[W−1]

tm′

which, making the identification of [W−1] with [W] in a way which switches the
source and target objects, is equivalently a pullback square

Fun∗◦(m,R)W Fun([W],R)W

Fun∗◦(m′,R)W W.

t[W]

tm′

From here, the proof parallels that of Lemma 3.20(1)(b), only nowwe apply Corollary
T.2.4.7.12 to the functor

Fun∗◦(m′,R)W
tm′−→ W.
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The proof of item 1(a) is completely dual.
To prove item 1(b), let us now suppose thatm = [A;m′]. Then we have a diagram

Fun◦∗(m,R)W Fun◦∗(m′,R)W

Fun◦∗(m,R)W@s Fun◦∗(m,R)Rel Fun◦∗(m′,R)Rel

Fun([A],R)W R

W R

s

sm′

t[A]
s[A]

in which all small rectangles are pullbacks, almost identical to that of the proof of
Lemma 3.20(2)(b). From here, the proof proceeds in a completely analogous way to
that one. The proof of item 2(b) is completely dual. ��

Lemma 3.22, in turn, enables us to make the following definitions.

Notation 3.23 Let m ∈ Z , let (R,W) ∈ RelCat∞, and let x, y ∈ R.

• Ifm begins withW−1, we write

W
m(−,y)−−−−→ Cat∞

for the functor classifying the cocartesian fibration of Lemma 3.22(1)(a). On the
other hand, ifm begins with A, we write

Wop m(−,y)−−−−→ Cat∞

for the functor classifying the cartesian fibration of Lemma 3.22(1)(b).
• Ifm ends with W−1, we write

Wop m(x,−)−−−−→ Cat∞

for the functor classifying the cartesian fibration of Lemma 3.22(2)(a). On the
other hand, ifm ends with A, we write

W
m(x,−)−−−−→ Cat∞

for the functor classifying the cocartesian fibration of Lemma 3.22(2)(b).
• By convention and for convenience, if m = [∅] ∈ Z is the empty relative word
(which defines the terminal relative∞-category),we let bothm(x,−) andm(−, y)

denote either functor

W
const(ptCat∞ )−−−−−−−→ Cat∞
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or

Wop const(ptCat∞ )−−−−−−−→ Cat∞.

Using Notation 3.23, we now express the ∞-category [m;m′](R,W)(x, y) of
zigzags in (R,W) from x to y of the concatenated zigzag type [m;m′] in terms
of the two-sided Grothendieck construction (see Definition G.2.3). This is an analog
of [1, 9.4].12

Lemma 3.24 Let m,m′ ∈ Z . Then for any (R,W) ∈ RelCat∞ and any x, y ∈ R,
we have an equivalence

[m;m′](x, y)



⎧

⎪⎪⎨

⎪⎪⎩

Gr
(

m′(−, y),W,m(x,−)
)

, m ends with A and m′ begins with A
Gr

(

m(x,−),W,m′(−, y)
)

, m ends withW−1 and m′ begins with W−1

Gr
(

const(pt),W,
(

m(x,−) × m′(−, y)
))

, m ends with A and m′ begins with W−1

Gr
((

m(x,−) × m′(−, y)
)

,W, const(pt)
)

, m ends withW−1 and m′ begins with A

which is natural in ((R,W), x, y) ∈ (RelCat∞)∗∗.

Proof Recall from Remark 3.6 that we have a pushout square

ptRelCat∞ m′

m [m;m′]

s

t

in RelCat∞, through which [m;m′] acquires its source object from m and its target
object from m′. This gives rise to a string of equivalences

[m;m′](x, y) = Fun∗∗([m;m′],R)W

 lim

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ptCat∞

Fun(m′,R)W W

Fun(m,R)W W

ptCat∞ W

y

t
s

t
s

x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

 lim

⎛

⎜
⎜
⎜
⎝

Fun◦∗(m′,R)W

Fun∗◦(m,R)W W

s

t

⎞

⎟
⎟
⎟
⎠

12 In the statement of [1, 9.4], the third appearance ofm should actually be m′.
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in Cat∞. From here, the first and second cases follow from Lemma 3.22, Notation
3.23, and Definition G.2.3, while the third and fourth cases follow by additionally
appealing to Example G.1.9 and Example G.2.3. ��

4 Homotopical three-arrow calculi in relative ∞-categories

In the previous section, given a relative ∞-category (R,W), we introduced the ham-
mock simplicial space

homL H (R,W)(x, y) ∈ sS

for two objects x, y ∈ R. The definition of this simplicial space is fairly explicit, but
it is nevertheless quite large. In this section, we show that under a certain condition—
namely, that (R,W) admits a homotopical three-arrow calculus—we can at least
recover this simplicial space up to weak equivalence in sSKQ (i.e.we can recover its
geometric realization) from a much smaller simplicial space, in fact from one of the
constituent simplicial spaces in its defining colimit. This condition is often satisfied
in practice; for example, it holds when (R,W) admits the additional structure of a
model ∞-category (see Lemma M.8.2).

This section is organized as follows.

• In Sect. 4.1, we define what it means for a relative ∞-category to admit a homo-
topical three-arrow calculus, and we state the fundamental theorem of homotopical
three-arrow calculi (Theorem 4.4) described above.

• In Sect. 4.2, in preparation for the proof of Theorem 4.4, we assemble some
auxiliary results regarding relative ∞-categories.

• In Sect. 4.3, in preparation for the proof of Theorem 4.4, we assemble some
auxiliary results regarding ends and coends.

• In Sect. 4.4, we give the proof of Theorem 4.4.

4.1 The fundamental theorem of homotopical three-arrow calculi

We begin with the main definition of this section, whose terminology will be justified
by Theorem 4.4; it is a straightforward generalization of [5, Definition 4.1], which is
itself a minor variant of [1, 6.1(i)].

Definition 4.1 Let (R,W) ∈ RelCat∞. We say that (R,W) admits a homotopical
three-arrow calculus if for all x, y ∈ R and for all i, j ≥ 1, the map

[W−1;A◦i ;W−1;A◦ j ;W−1] → [W−1;A◦i ;A◦ j ;W−1]

inZ ⊂ RelCat∗∗ obtained by collapsing the middle weak equivalence induces a map

Fun∗∗([W−1;A◦i ;A◦ j ;W−1],R)W → Fun∗∗([W−1;A◦i ;W−1;A◦ j ;W−1],R)W
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in WCat∞
Th ⊂ Cat∞ (i.e. it becomes an equivalence upon applying the groupoid com-

pletion functor (−)gpd : Cat∞ → S).
Notation 4.2 Since it will appear repeatedly, we make the abbreviation 3 =
[W−1;A;W−1] for the relative word

s • • t.≈ ≈

Definition 4.3 For any relative ∞-category (R,W) and any objects x, y ∈ R, we
will refer to

3(x, y) = Fun∗∗(3,R)W ∈ Cat∞

as the ∞-category of three-arrow zigzags inR from x to y.

We now state the fundamental theorem of homotopical three-arrow calculi, an
analog of [1, Proposition 6.2(i)]; we will give its proof in Sect. 4.4.

Theorem 4.4 If (R,W) ∈ RelCat∞ admits a homotopical three-arrow calculus, then
for any x, y ∈ R, the natural map

N∞(3(x, y)) → homL H (R,W)(x, y)

in sS becomes an equivalence under the geometric realization functor |−| : sS → S.

4.2 Supporting material: relative ∞-categories

In this subsection, we give two results regarding relative ∞-categories which will be
used in the proof of Theorem 4.4. Both concern corepresentation, namely the effect
of the functor

RelCat(∗∗)
Fun(−,R)W−−−−−−−→ Cat∞

on certain data inRelCat(∗∗) (for a given relative ∞-category (R,W)).

Lemma 4.5 Given a pair of maps I ⇒ J in (RelCat∞)(∗∗), a morphism between
them in Fun(∗∗)(I,J )W induces, for any (R,W) ∈ (RelCat∞)(∗∗), a natural trans-
formation between the two induced functors

Fun(∗∗)(J ,R)W ⇒ Fun(∗∗)(I,R)W.

Proof First of all, the morphism in Fun(∗∗)(I,J )W is selected by a map [1] →
Fun(∗∗)(I,J )W; this is equivalent to a map

[1]W →
(

Fun(∗∗)(I,J )Rel,Fun(∗∗)(I,J )W
)
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inRelCat∞, which is adjoint to a map

I � [1]W → J

in (RelCat∞)(∗∗). Then, for any (R,W) ∈ (RelCat∞)(∗∗), composing with this map
yields a functor

Fun(∗∗)(J ,R)W → Fun(∗∗)(I � [1]W,R)W

 Fun
(

[1]W,
(

Fun(∗∗)(I,R)Rel,Fun(∗∗)(I,R)W
))

 Fun
(

[1],Fun(∗∗)(I,R)W
)

,

which is adjoint to a map

[1] × Fun(∗∗)(J ,R)W → Fun(∗∗)(I,R)W,

which selects a natural transformation between the two induced functors

Fun(∗∗)(J ,R)W ⇒ Fun(∗∗)(I,R)W,

as desired. ��

Lemma 4.6 Let (I,WI) ∈ (RelCat∞)(∗∗), and form any pushout diagram

[W] (I,WI)

[W◦2] (J ,WJ )

in RelCat(∗∗), where the left map is the unique map in RelCat∗∗. Note that the two
possible retractions [W◦2] ⇒ [W] in RelCat∗∗ of the given map induce retractions
(J ,WJ ) ⇒ (I,WI) in (RelCat∞)(∗∗). Then, for any (R,WR) ∈ RelCat(∗∗), the
induced map

Fun(∗∗)(J ,R)W → Fun(∗∗)(I,R)W

becomes an equivalence under the functor (−)gpd : Cat∞ → S, with inverse given by
either map

(

Fun(∗∗)(I,R)W
)gpd

⇒
(

Fun(∗∗)(J ,R)W
)gpd

in S induced by one of the given retractions.
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Proof Note that both composites

[W◦2] ⇒ [W] → [W◦2]

(of one of the two possible retractions followed by the given map) are connected to
id[W◦2] by a map in

Fun∗∗([W◦2], [W◦2])W.

In turn, both composites

(J ,WJ ) ⇒ (I,WI) → (J ,WJ )

are connected to id(J ,WJ ) by a map in Fun(∗∗)(J ,J )W. Hence, the result follows
from Lemmas 4.5 and N.1.26. ��

4.3 Supporting material: co/ends

In this subsection, we give a few results regarding ends and coends which will be used
in the proof of Theorem 4.4. For a brief review of these universal constructions in the
∞-categorical setting, we refer the reader to [3, §2].

We begin by recalling a formula for the space of natural transformations between
two functors.

Lemma 4.7 Given any C,D ∈ Cat∞ and any F, G ∈ Fun(C,D), we have a canonical
equivalence

homFun(C,D)(F, G) 
∫

c∈C
homD(F(c), G(c)).

Proof This appears as [4, Proposition 2.3] (and as [3, Proposition 5.1]). ��
We now prove a “ninja Yoneda lemma”.13

Lemma 4.8 If C ∈ Cat∞ is an ∞-category equipped with a tensoring − � − :
C × S → C, then for any functor Iop F−→ C, we have an equivalence

F(−) 
∫ i∈I

F(i) � homI(−, i)

in Fun(Iop, C).

13 The name is apparently due to Leinster (see [6, Remark 2.2]).
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Proof For any test objects j ∈ Iop andY ∈ C, we have a string of natural equivalences

homC

(
∫ i∈I

F(i) � homI( j, i), Y

)


∫

i∈I
homC(F(i) � homI( j, i), Y )


∫

i∈I
homS(homI( j, i), homC(F(i), Y ))

 homFun(I,S)(homI( j,−), homC(F(−), Y ))

 homC(F( j), Y ),

where the first line follows from the definition of a coend as a colimit (see e.g. [3,
Definition 2.5]), the second line uses the tensoring, the third line follows from Lemma
4.7, and the last line follows from the usual Yoneda lemma (Proposition T.5.1.3.1).
Hence, again by the Yoneda lemma, we obtain an equivalence

F( j) 
∫ i∈I

F(i) � homJ ( j, i)

which is natural in j ∈ Iop. ��
Then, we have the following result on the preservation of colimits.14

Lemma 4.9 If C ∈ Cat∞ is an ∞-category equipped with a tensoring − � − :
C × S → C, then for any functor Iop F−→ C, the functor

Fun(I,S)

∫ i∈I F(i)�(−)(i)−−−−−−−−−−→ C

is a left adjoint.

Proof It suffices to check that for every c ∈ C, the functor

Fun(I,S)op
homC

(∫ i∈I F(i)�(−)(i),c
)

−−−−−−−−−−−−−−−−→ S

is representable. For this, given any W ∈ Fun(I,S) we compute that

homC

(
∫ i∈I

F(i) � W (i), c

)


∫

i∈I
homC(F(i) � W (i), c)


∫

i∈I
homS(W (i), homC(F(i), c))

 homFun(I,S)(W, homC(F(−), c)),

14 Lemma 4.9 is actually implicitly about weighted colimits (see [3, Definition 2.7]).
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where the first line follows from the definition of a co/end as a co/limit (again see e.g.
[3, Definition 2.5]), the second line uses the tensoring, and the last line follows from
Lemma 4.7. ��

4.4 The proof of Theorem 4.4

Having laid out the necessary supporting material in the previous two subsection, we
now proceed to prove the fundamental theorem of homotopical three-arrow calculi
(Theorem 4.4). This proof is based closely on that of [1, Proposition 6.2(i)], although
we give many more details (recall Remark 1.2).

Proof of Theorem 4.4 We will construct a commutative diagram

∣
∣N∞(3(x, y))

∣
∣

∣
∣colimm∈Zop N∞(G(m)(x, y))

∣
∣

∣
∣colimm∈Zop N∞(m(x, y))

∣
∣

∣
∣colimm∈Zop N∞(F(m)(x, y))

∣
∣

|β|
∼

|α| |ψ |∼

|ϕ|

|ρ|

in S, i.e.a commutative square in which the bottom arrow is equipped with a retraction
and in which moreover the top and right map are equivalences. Note that by definition,
the object on the bottom left is precisely

∣
∣homL H (R,W)(x, y)

∣
∣; the left map will be

the natural map referred to in the statement of the result. The equivalences in S satisfy
the two-out-of-six property, and applying this to the composable sequence of arrows
[|α|; |ϕ|; |ρ|], we deduce that |α| is also an equivalence, proving the claim.

We will accomplish this by running through the following sequence of tasks.

1. Define the two objects on the right.
2. Define the maps in the diagram.
3. Explain why the square commutes.
4. Explain why |ρ| gives a retraction of |ϕ|.
5. Explain why the map |β| is an equivalence.
6. Explain why the map |ψ | is an equivalence.

We now proceed to accomplish these tasks in order.

1. We define endofunctors F, G ∈ Fun(Z,Z) by the formulas

F(m) = [W−1;m;W−1]
and

G(m) = [W−1;A◦|m|A;W−1].
Then, the object in the upper right is given by

∣
∣
∣
∣
colim

(

Zop Gop−−→ Zop N∞((−)(x,y))−−−−−−−−→ sS
)∣

∣
∣
∣
,
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and the object in the bottom right is given by

∣
∣
∣
∣
colim

(

Zop Fop−−→ Zop N∞((−)(x,y))−−−−−−−−→ sS
)∣

∣
∣
∣
.

2. We define the two evident natural transformations F
ϕ−→ idZ (given by collapsing

the two newly added copies of [W−1]) and F
ψ−→ G (given by collapsing all

internal copies of [W−1]) in Fun(Z,Z); these induce natural transformations

idZop
ϕop

−−→ Fop and Gop ψop

−−→ Fop in Fun(Zop,Zop).15 We then define the maps
in the diagram as follows.
• The left map is obtained by taking the geometric realization of the inclusion

N∞(3(x, y))
α−→ homL H (R,W)(x, y) = colimm∈Zop N∞(m(x, y))

into the colimit at the object 3 ∈ Zop.
• The top map is obtained by taking the geometric realization of the inclusion

N∞(3(x, y))  N∞(G([A])(x, y))
β−→ colimm∈Zop N∞(G(m)(x, y))

into the colimit at the object [A] ∈ Zop. (Note that 3 ∼= G([A]) in Zop.)
• The right map is obtained by taking the geometric realization of the map

colimm∈Zop N∞(G(m)(x, y))
ψ−→ colimm∈Zop N∞(F(m)(x, y))

on colimits induced by the natural transformation idN∞((−)(x,y)) ◦ ψop in
Fun(Zop, sS).

• The bottom map in the square (i.e. the straight bottom map) is obtained by
taking the geometric realization of the map

homL H (R,W)(x, y)

= colimm∈Zop N∞(m(x, y))
ϕ−→ colimm∈Zop N∞(F(m)(x, y))

on colimits induced by the natural transformation idN∞((−)(x,y)) ◦ ϕop in
Fun(Zop, sS).

• The curved map is obtained by taking the geometric realization of the map

colimm∈Zop N∞(F(m)(x, y))
ρ−→ colimm∈Zop N∞(m(x, y))

= homL H (R,W)(x, y)

15 Recall that the involution (−)op : Cat∞ → Cat∞ is contravariant on 2-morphisms.
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on colimits induced by the functor

Fun(Zop, sS)
−◦Fop←−−−− Fun(Zop, sS).

3. The upper composite in the square is given by the geometric realization of the
composite

N(3(x, y))  N∞(G([A])(x, y))
N∞((ψ

op
[A])(x,y))−−−−−−−−−→∼ N∞(F([A])(x, y))

→ colimm∈Zop N∞(F(m)(x, y))

of the equivalence induced by the component of ψop at the object [A] ∈ Zop

(which is an isomorphism in Zop) followed by the inclusion into the colimit at
[A]. So, via the (unique) identification 3 ∼= F([A]), we can identify this composite
with the inclusion into the colimit at [A] ∈ Zop.
Meanwhile, the lower composite in the square is given by the geometric realiza-

tion of the composite

N∞(3(x, y))
N∞((ϕ

op
3 )(x,y))−−−−−−−−−→ N∞(F(3)(x, y)) → colimm∈Zop N∞(F(m)(x, y))

of the map induced by the component of ϕop at 3 followed by the inclusion into
the colimit at 3.

Now, the map F(3)
ϕ3−→ 3 in Z is given by

sF(3) • • • • tF(3)

s3 • • t3.

≈ ≈ ≈ ≈

≈ ≈

On the other hand, applying F to the unique map 3
γ−→ [A] in Z , we obtain a map

F(3)
F(γ )−−−→ F([A]) ∼= 3 in Z given by

sF(3) • • • • tF(3)

s3 • • t3.

≈ ≈ ≈ ≈

≈ ≈

which corepresents a map

N∞(3(x, y))  N∞(F([A])(x, y))
N∞((F(γ ))(x,y))−−−−−−−−−−→ N∞(F(3)(x, y))

in sS which participates in the diagram

Zop Fop−−→ Zop N∞((−)(x,y))−−−−−−−−→ sS
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defining colimm∈Zop N∞(F(m)(x, y)). So, in order to witness the commutativity
of the square, it suffices to obtain an equivalence between the two maps
∣
∣
∣N∞((ϕ

op
3 )(x, y))

∣
∣
∣ , |N∞((F(γ ))(x, y))| ∈ homS

(∣
∣N∞(3(x, y))

∣
∣ ,

∣
∣N∞(F(3)(x, y))

∣
∣
)

.

But there is an evident cospan in Fun∗∗(F(3), 3)W between the two maps ϕ3 and
F(γ ), so this follows from Lemma 4.5, Lemma N.1.26, and Proposition N.2.4.

4. The fact that |ρ|◦|ϕ|  id∣
∣
∣colimm∈Zop N∞(m(x,y))

∣
∣
∣
follows fromapplyingProposition

G.2.5 to the diagram

Zop Zop S

idZop

ϕop ⇓

Fop

((−)(x,y))gpd

and invoking Proposition N.2.4 to obtain a retraction diagram

colim((−)gpd ◦ N∞((−)(x, y)) ◦ idZop )

colim((−)gpd ◦ N∞((−)(x, y))).

colim((−)gpd ◦ N∞((−)(x, y)) ◦ Fop)

∼

|ϕ|

|ρ|

5. We first claim that for any m′ ∈ Z , the map

homZ (3,m′)  homZ (G([A]),m′) → colimm∈Zop homZ (G(m),m′)

is an isomorphism. Indeed, note that by PropositionG.2.1, we have an equivalence

colimm∈Zop homZ (G(m),m′)  Gr

(

Zop homZ (G(−),m′)−−−−−−−−−→ Set
)gpd

.

The category

Gr

(

Zop homZ (G(−),m′)−−−−−−−−−→ Set
)

admits a span of natural transformations from the identity functor to its fiber over
the object [A] ∈ Zop, whose component at an object (m ∈ Zop, G(m) → m′) is
indicated by the natural commutative diagram
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G(m) m′

G([A◦|m|A])

[A]

∼ =

in Z (in which the dotted arrow is simply the extension of the upper map over an
isomorphism).16 Hence, by Lemma N.1.26 the inclusion of the fiber over [A] ∈
Zop induces an equivalence upon groupoid completions. But this fiber is precisely
homZ (G([A]),m′)  homZ (3,m′).

Now, assembling the above observation over allm′ ∈ Z , we see that the map

homZ (3,−) → colimm∈Zop homZ (G(m),−)

is an equivalence in Fun(Z,Set) ⊂ Fun(Z,S). Using this, and denoting by − � − :
sS × S → sS the evident tensoring

sS × S idsS×const−−−−−−→ sS × sS −×−−−−→ sS,

we obtain the map

N∞(3(x, y))
β−→ colimm∈Zop N∞(G(m)(x, y))

as string of equivalences

N∞(3(x, y)) 
∫ m′∈Z

N∞(m′(x, y)) � homZ (3,m′)

=
∫ Z

N∞((−)(x, y)) � homZ (3,−)

∼−→
∫ Z

N∞((−)(x, y)) �
(

colimFun(Z,S)

m∈Zop homZ (G(m),−)
)

 colimsS
m∈Zop

(
∫ Z

N∞((−)(x, y)) � homZ (G(m),−)

)

= colimsS
m∈Zop

(
∫ m′∈Z

N∞(m′(x, y)) � homZ (G(m),m′)
)

 colimsS
m∈Zop N∞(G(m)(x, y))

in sS, in which

16 Each path component of this category contains exactly one object lying over [A] ∈ Zop .
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• the second and fifth lines are purely for notational convenience,
• we apply to the functor

Zop N∞((−)(x,y))−−−−−−−−→ sS

– Lemma 4.8 to obtain the first line,
– Lemma 4.9 to obtain the fourth line, and
– Lemma 4.8 again to obtain the last line,

and
• the third line follows from the equivalence in Fun(Z,S) obtained above.

(So in fact, the map β itself is already an equivalence in sS (i.e. before geometric
realization).)

6. We claim that for every m ∈ Zop the map

N∞(G(m)(x, y))
N∞((ψ

op
m )(x,y))−−−−−−−−−→ N∞(F(m)(x, y))

in sS becomes an equivalence after geometric realization. This follows from an

analysis of the corepresenting map F(m)
ψm−−→ G(m) in Z ⊂ RelCat∞: it can be

obtained as a composite

F(m) = m′
0 → m′

1 → · · · → m′|m|W−1−1 → m′|m|W−1
= G(m)

in Z , in which each m′
i is obtained from m′

i−1 by omitting one of the internal
appearances ofW−1 in F(m), and the corresponding mapm′

i → m′
i+1 is obtained

by collapsing this copy of W−1 to an identity map. Each map

N∞(m′
i (x, y)) → N∞(m′

i−1(x, y))

in sS becomes an equivalence after geometric realization, by Lemma 4.6 when the
about-to-be-omitted appearance ofW−1 inm′

i−1 is adjacent to another appearance
ofW−1, and by applying the definition of (R,W) admitting a homotopical three-
arrow calculus (Definition 4.1) to (either one or two iterations, depending on the
shape ofm′

i−1, of) the combination of Lemma 3.24 and Proposition G.2.4. Hence,
the composite map

N∞(G(m)(x, y)) = N∞(m′|m|W−1
(x, y)) → · · · → N∞(m′

0(x, y))

= N∞(F(m)(x, y)),

which is precisely the map N∞((ψ
op
m )(x, y)), does indeed become an equivalence

upon geometric realization as well. Then, since colimits commute, it follows that
the induced map

∣
∣colimm′∈Zop N∞(G(m′)(x, y))

∣
∣

|ψ |−→ ∣
∣colimm′∈Zop N∞(F(m′)(x, y))

∣
∣

is an equivalence in S. ��
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5 Hammock localizations of relative ∞-categories

In Sect. 3, given a relative ∞-category (R,W) and a pair of objects x, y ∈ R, we
defined the corresponding hammock simplicial space

homL H (R,W)(x, y) ∈ sS

(see Definition 3.17). In this section, we proceed to globalize this construction,
assembling the various hammock simplicial spaces of (R,W) into a Segal simpli-
cial space—and thence a sS-enriched ∞-category—whose compositions encode the
concatenation of zigzags in (R,W).

The bulk of the construction of the hammock localization consists in constructing
the pre-hammock localization: this will be a Segal simplicial space

L H
pre(R,W) ∈ SsS ⊂ s(sS),

whose nth level is given by the colimit

colimsS
(m1,...,mn)∈(Zop)×nN∞

(

Fun([m1; . . . ;mn],R)W
)

.

For clarity, we proceed in stages.
First, we build an object which simultaneously corepresents

• all possible sequences (of any length) of composable zigzags, and
• all possible concatenations among these sequences.

Construction 5.1 Observe that Z ∈ Cat is a monoid object, i.e.a monoidal category:
its multiplication is given by the concatenation functor

Z × Z [−;−]−−−→ Z,

and the unit map ptCat → Z selects the terminal object [∅] ∈ Z .17 We can thus define
its bar construction

�op Bar(Z)•−−−−→ Cat,

which has Bar(Z)n = Z×n (so that Bar(Z)0 = Z×0 = ptCat), with face maps given
by concatenation and with degeneracy maps given by the unit. This admits an oplax
natural transformation to the functor

�op const(RelCat)−−−−−−−−→ Cat,

17 In fact, we can even consider Z as a monoid object in Cat (i.e. a strict monoidal category), but this is
unnecessary for our purposes.
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which we encode as a commutative triangle

Gr−(Bar(Z)•) RelCat × �

�

in Cat (recall Definition G.3.1 and Example G.1.15): in simplicial degree n, this is
given by the iterated concatenation functor

Bar(Z)n = Z×n [−;··· ;−]−−−−−→ Z ↪→ RelCat∗∗ → RelCat

(which in degree 0 is simply the composite

{[∅]} ↪→ RelCat∗∗ → RelCat,

i.e.the inclusion of the terminal object {ptRelCat} ↪→ RelCat).18,19 Taking opposites,
we obtain a commutative triangle

Gr(Bar(Zop)•) RelCatop × �op

�op

in Cat, which now encodes a lax natural transformation from the bar construction

�op Bar(Zop)•−−−−−−→ Cat

on the monoid object Zop ∈ Cat (note that the involution (−)op : Cat ∼−→ Cat is
covariant) to the functor

�op const(RelCatop)−−−−−−−−−→ Cat.

Wenowmap into an arbitrary relative∞-category and extract the indicated colimits,
all in a functorial way.

Construction 5.2 A relative ∞-category (R,W) represents a composite functor

RelCat ↪→ RelCat∞ Fun(−,R)W−−−−−−−→ Cat∞ N∞−−→∼ CSS ↪→ sS.

18 The reason that we must compose with the forgetful functor RelCat∗∗ → RelCat is that the oplax
structure maps (e.g. the inclusionm1 ↪→ [m1;m2]) do not respect the double-pointings.
19 It is also true that for a monoidal (∞-)category C whose unit object is terminal, the bar construction
Bar(C)• admits a canonical lax natural transformation to const(C), whose components are again given by
the iterated monoidal product. But this is distinct from what we seek here.
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Considering this as a natural transformation const(RelCatop) → const(sS) in
Fun(�op, Cat∞), we can postcompose it with the lax natural transformation obtained
in Construction 5.1, yielding a composite lax natural transformation encoded by the
diagram

Gr(Bar(Zop)•) RelCatop × �op sS × �op

�op

N∞
(

Fun(−,R)W
)×id�op

in Cat∞. Then, by Proposition T.4.2.2.7, there is a unique “fiberwise colimit” lift in
the diagram

Gr(Bar(Zop)•) sS × �op

Gr(Bar(Zop)•) �
�op

�op �op

in Cat∞.20 Thus, the resulting composite

�op → Gr(Bar(Zop)•) �
�op

�op → sS × �op → sS

takes each object [n]◦ ∈ �op to the colimit of the composite

Bar(Zop)n = (Zop)×n [−;··· ;−]op−−−−−−→ Zop ↪→ (RelCat∗∗)op → RelCatop N∞
(

Fun(−,R)W
)

−−−−−−−−−−→ sS.

We denote this simplicial object in simplicial spaces by

�op
L H

pre(R,W)−−−−−−→ sS.

Allowing (R,W) ∈ RelCat∞ to vary, this assembles into a functor

RelCat∞
L H

pre−−→ s(sS).

We now show that the bisimplicial spaces of Construction 5.2 are in fact Segal
simplicial spaces.

Lemma 5.3 For any (R,W) ∈ RelCat∞, the object L H
pre(R,W) ∈ s(sS) satisfies

the Segal condition.

20 The object in the bottom left of this diagram is a “relative join” (see Definition T.4.2.2.1), which in this
case actually simply reduces to a “directed mapping cylinder” (see Example G.1.8).
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Proof We must show that for every n ≥ 2, the nth Segal map

L H
pre(R,W)n → L H

pre(R,W)1 ×
t,L H

pre(R,W)0,s
· · · ×

t,L H
pre(R,W)0,s

L H
pre(R,W)1

(to the n-fold fiber product) is an equivalence in sS. As sS is an ∞-topos, colimits
therein are universal, i.e. they commute with pullbacks [see Definition T.6.1.0.4 and
Theorem T.6.1.0.6 (and the discussion at the beginning of §T.6.1.1)]. Moreover, note
that we have a canonical equivalence L H

pre(R,W)0  N∞(W) in sS. Hence, by
induction, we have a string of equivalences

L H
pre(R,W)1 ×

t,L H
pre(R,W)0,s

· · · ×
t,L H

pre(R,W)0,s
L H

pre(R,W)1

 L H
pre(R,W)1 ×

{1},L H
pre(R,W)0,{0}

L H
pre(R,W)n−1

= lim

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

colim
(m2,...,mn )∈(Zop )×(n−1) N∞

(

Fun([m2; . . . ;mn ],R)W
)

colimm1∈Zop N∞
(

Fun(m1,R)W
)

N∞(W)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

 colimm1∈Zop

⎛

⎜
⎜
⎜
⎜
⎜
⎝

lim

⎛

⎜
⎜
⎜
⎜
⎜
⎝

colim
(m2,...,mn )∈(Zop )×(n−1) N∞

(

Fun([m2; . . . ;mn ],R)W
)

N∞
(

Fun(m1,R)W
)

N∞(W)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

 colimm1∈Zop

⎛

⎜
⎜
⎜
⎜
⎜
⎝

colim
(m2,...,mn )∈(Zop )×(n−1)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

lim

⎛

⎜
⎜
⎜
⎜
⎜
⎝

N∞
(

Fun([m2; . . . ;mn ],R)W
)

N∞
(

Fun(m1,R)W
)

N∞(W)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

 colim
(m1,...,mn )∈(Zop )×n N∞

(

Fun([m1; . . . ;mn ],R)W
)

= L H
pre(R,W)n

(where in the penultimate line we appeal to Fubini’s theorem for colimits) which,
chasing through the definitions, visibly coincides with the nth Segal map. This proves
the claim. ��

We finally come to the main point of this section.

Definition 5.4 By Lemma 5.3, the functor given in Construction 5.2 admits a factor-
ization

RelCat∞ s(sS)

SsS

L H
pre

through the∞-category of Segal simplicial spaces. We again denote this factorization
by

RelCat∞
L H

pre−−→ SsS,
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and refer to it as the pre-hammock localization functor.21 Then, we define the ham-
mock localization functor

RelCat∞ L H−−→ CatsS

to be the composite

RelCat∞
L H

pre−−→ SsS sp(−)−−−→ CatsS .

Remark 5.5 Given a relative ∞-category (R,W), the 0th level of its pre-hammock
localization

L H
pre(R,W) ∈ SsS ⊂ s(sS)

is given by

colim

(

{[∅]}◦ ↪→ (RelCat∗∗)op → RelCatop N∞
(

Fun(−R)W
)

−−−−−−−−−−→ sS
)

,

which is simply the nerve N∞(W) ∈ sS of the subcategory W ⊂ R of weak equiva-
lences. Thus, its space of objects is simply

L H
pre(R,W)0  N∞(W)0  W  R.

Moreover, unwinding the definitions, it is manifestly clear that

• its hom-simplicial spaces are precisely the hammock simplicial spaces of (R,W)

(recall Definitions 2.8 and 3.17), and
• its compositions correspond to concatenation of zigzags (with identity morphisms
corresponding to zigzags of type [∅] ∈ Z).

Of course, we have a canonical counit weak equivalence

L H (R,W)
≈→ L H

pre(R,W)

in SsSDK which is even fully faithful in the sS-enriched sense, so that the hammock
localization enjoys all these same properties.

Just as in the 1-categorical case, the hammock localization of (R,W) admits a
natural map from R.

21 The terminology “pre-hammock localization” should be parsed as “pre-(hammock localization)”: it
already contains the hammock simplicial spaces (see Remark 5.5), it is just not itself the hammock local-
ization.
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Construction 5.6 Returning to Construction 5.1, observe that there is a tautological
section

Gr−(Bar(Z)•)

�

which takes [n] ∈ � to ([A], . . . , [A]) ∈ Z×n = Bar(Z)n , and which takes a map

[m] ϕ−→ [n] in � to the map corresponding to the fiber map which, in the i th factor of
Z×m , is given by the unique map

[A] → [A◦(ϕ(i)−ϕ(i−1))]

in Z . This is opposite to a tautological section

Gr(Bar(Zop)•)

�op

which gives rise to a composite map

�op → Gr(Bar(Zop)•) → Gr(Bar(Zop)•) �
�op

�op

admitting a natural transformation to the standard inclusion (as the “target” factor, i.e.
the fiber over 1 ∈ [1]). This postcomposes with the composite

Gr(Bar(Zop)•) �
�op

�op → sS × �op → sS

appearing in Construction 5.2 to give a natural transformation

Nlw∞
(

Fun([•],R)W
)

→ L H
pre(R,W)•

in Fun(�op, sS).22 Thus, in simplicial degree n, this map is simply the inclusion into
the colimit defining L H

pre(R,W)n ∈ sS at the object

([A]◦, . . . , [A]◦) ∈ (Zop)×n .

22 Note that this source is just the image of the Rezk pre-nerve preNR∞(R,W)• ∈ sCat∞ under the

inclusion sCat∞ ∼−→ sCSS ↪→ s(sS) (recall Definition N.3.1).
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Restricting levelwise to (the nerveof) themaximal subgroupoid,weobtain a composite

const(R)• = constlw(UCSS(N∞(R)))•
= constlw(homCat∞([•],R))

 constlw
(

Fun([•],R)
)

 Nlw∞
(

Fun([•],R)
)

↪→ Nlw∞
(

Fun([•],R)W
)

→ L H
pre(R,W)•.

As this source lies in CatsS ⊂ SsS, we obtain a canonical factorization

const(R) L H
pre(R,W)

L H (R,W)

≈

in (CatsS)DK. This clearly assembles into a natural transformation

const → L H

in Fun(RelCat∞, CatsS).

Definition 5.7 For a relative ∞-category (R,W), we refer to the map

const(R) → L H (R,W)

in CatsS of Construction 5.6 as its tautological inclusion.

We end this section with the following fundamental result, an analog of [1, Propo-
sition 3.3]. In essence, it shows that when considered as morphisms in the hammock
localization, weak equivalences in R both represent and corepresent equivalences in
the underlying ∞-category. Just as with the fundamental theorem of homotopical
three-arrow calculi (Theorem 4.4), its proof will be substantially more involved than
that of its 1-categorical analog (recall Remark 1.2).

Proposition 5.8 Let (R,W) ∈ RelCat∞, and let r, y, z ∈ R. Suppose we are given
a weak equivalence

w ∈ homW(y, z) ⊂ homR(y, z),

and let us also denote by w ∈ homL H (R,W)(y, z)0 the resulting composite morphism

ptsS → N∞([A](y, z)) → homL H (R,W)(y, z).
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Then, the induced “composition with w” maps

homL H (R,W)(r, y)
χ
L H (R,W)
r,y,z (−,w)−−−−−−−−−−→ homL H (R,W)(r, z)

and

homL H (R,W)(z, r)
χ
L H (R,W)
y,r,z (w,−)−−−−−−−−−−→ homL H (R,W)(y, r)

in sS become equivalences in S upon geometric realization. Moreover, if we denote
by w−1 ∈ homL H (R,W)(z, y)0 the composite morphism

ptsS → N∞([W−1](z, y)) → homL H (R,W)(y, z),

then their inverses are respectively given by the geometric realizations of the induced
“composition with w−1” maps

homL H (R,W)(r, z)
χ
L H (R,W)
r,z,y (−,w−1)−−−−−−−−−−−−→ homL H (R,W)(r, y)

and

homL H (R,W)(y, r)
χ
L H (R,W)
z,y,r (w−1,−)−−−−−−−−−−−−→ homL H (R,W)(z, r).

in sS.

Proof We prove the first statement; the second statement follows by a nearly identical
argument. Moreover, we will only show that the composite map

∣
∣homL H (R,W)(r, y)

∣
∣ → ∣

∣homL H (R,W)(r, z)
∣
∣ → ∣

∣homL H (R,W)(r, y)
∣
∣

is an equivalence; that the composite

∣
∣homL H (R,W)(r, z)

∣
∣ → ∣

∣homL H (R,W)(r, y)
∣
∣ → ∣

∣homL H (R,W)(r, z)
∣
∣

is an equivalence will follow from a very similar argument.
For each m ∈ Zop, let us define a functor

m(r, y)
ϕm−→ [m;A;W−1](r, y)

given informally by taking a zigzag

r y
m
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in (R,W) to the zigzag

r y z y
m ≈

in (R,W), in which both new maps are the chosen weak equivalence w.23 This
operation is clearly natural inm ∈ Zop, i.e.it assembles into a natural transformation

Zop Cat∞.

Zop

(−)(r,y)

ϕ⇓

[−;A;W−1] (−)(r,y)

Then, using Proposition N.2.4 and the fact that the geometric realization functor

sS |−|−→ S commutes with colimits (being a left adjoint), we see that the composite

∣
∣homL H (R,W)(r, y)

∣
∣ → ∣

∣homL H (R,W)(r, z)
∣
∣ → ∣

∣homL H (R,W)(r, y)
∣
∣

is obtained as the composite

colimZop
(

(−)gpd ◦ (−)(r, y)
)

colimZop
(

(−)gpd ◦ (−)(r, y) ◦ [−;A;W−1]) colimZop
(

(−)gpd ◦ (−)(r, y)
)

.

colimZop (id
(−)gpd ◦ϕ)

colimS ([−;A;W−1])

To see that this is an equivalence, for each m ∈ Zop let us define a map m
ψm−−→

[m;A;W−1] inZop to be opposite the map [m;A;W−1] → m inZ which collapses
the newly concatenated copy of [A;W−1] to the map idtm . These assemble into a

natural transformation idZop
ψ−→ [−;A;W−1] in Fun(Zop,Zop), and hence we obtain

a natural transformation

23 This (and subsequent constructions) can easily be made precise by defining a suitable notion of a map in
a relative word being forced to land at w; we will leave such a precise construction to the interested reader.
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Zop Cat∞.

Zop

(−)(r,y)

id(−)(r,y)◦ψ ⇓

[−;A;W−1] (−)(r,y)

Moreover, For each m ∈ Zop we have a functor

[1] × m(r, y)
μm−−→ [m;A;W−1](r, y),

adjoint to a functor

m(r, y) → Fun([1], [m;A;W−1](r, y)),

given informally by taking a zigzag

r y
m

in (R,W) to the diagram

r y y y

r y z y

m

≈

≈

m ≈

in (R,W) representing a morphism in [m;A;W−1](r, y), where the maps in the right

two squares are all either the chosen weak equivalence y
≈→ z or are idy . These

assemble into a morphism

const([1]) × (−)(r, y)
μ−→ (−)(r, y) ◦ [−;A;W−1]
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in Fun(Zop, Cat∞), i.e.a modification from id(−)(r,y) ◦ ψ to ϕ. By Proposition G.2.8,
this induces a natural transformation

Gr((−)(r, y)) Gr((−)(r, y) ◦ [−;A;W−1])

Gr(id(−)(r,y)◦ψ)

Gr(μ)⇓

Gr(ϕ)

which, by LemmaN.1.26 and Proposition G.2.1, gives a homotopy between the maps

colimZop

(

(−)gpd ◦ (−)(r, y)
) colimZop (id

(−)gpd◦id(−)(r,y)◦ψ)

−−−−−−−−−−−−−−−−−−→
colimZop

(

(−)gpd ◦ (−)(r, y) ◦ [−;A;W−1]
)

and

colimZop

(

(−)gpd ◦ (−)(r, y)
) colimZop (id

(−)gpd◦ϕ)

−−−−−−−−−−−−→
colimZop

(

(−)gpd ◦ (−)(r, y) ◦ [−;A;W−1]
)

in S. Hence, to show that the above composite is an equivalence, it suffices to show
that the composite

colimZop
(

(−)gpd ◦ (−)(r, y)
)

colimZop
(

(−)gpd ◦ (−)(r, y) ◦ [−;A;W−1]) colimZop
(

(−)gpd ◦ (−)(r, y)
)

colimZop (id
(−)gpd ◦id(−)(r,y)◦ψ)

colimS ([−;A;W−1])

is an equivalence. But this composite fits into a commutative triangle

colimZop ((−)gpd ◦ (−)(r, y) ◦ idZop )

colimZop ((−)gpd ◦ (−)(r, y))

colimZop ((−)gpd ◦ (−)(r, y) ◦ [−;A;W−1])

∼

123



380 A. Mazel-Gee

obtained by applying Proposition G.2.5 to the diagram

Zop Zop Cat∞,

idZop

ψ⇓

[−;A;W−1]

(−)(r,y)

so it is an equivalence. This proves the claim. ��

6 From fractions to complete Segal spaces, redux

As an application of the theory developed in this paper, we now provide a sufficient
condition for the Rezk nerve NR∞(R,W) ∈ sS of a relative ∞-category (R,W) to be
either

• a Segal space or
• a complete Segal space,

thus giving a partial answer to our own Question N.3.6, which we refer to as the
calculus theorem.24 This result is itself a direct generalization of joint work with Low
regarding relative 1-categories (see [5, Theorem4.11]). That result, in turn, generalizes
work of Rezk, Bergner, and Barwick–Kan; we refer the reader to [5, §1] for a more
thorough history.

Theorem 6.1 Suppose that (R,W) ∈ RelCat∞ admits a homotopical three-arrow
calculus.

1. NR∞(R,W) ∈ sS is a Segal space.
2. Suppose moreover that W ⊂ R satisfies the two-out-of-three property. Then

NR∞(R,W) ∈ sS is a complete Segal space if and only if (R,W) is saturated.

The proof of the calculus theorem (Theorem 6.1) is very closely patterned on
the proof of [5, Theorem 4.11] (the main theorem of that paper), which is almost
completely analogous but holds only for relative 1-categories.25 We encourage any
reader who would like to understand it to first read that paper: there are no truly new
ideas here, only generalizations from 1-categories to ∞-categories.

Proof of Theorem 6.1 For this proof, we give a detailed step-by-step explanation of
what must be changed in the paper [5] to generalize its main theorem from relative
1-categories to relative ∞-categories.

• For [5, Definition 2.1], we replace the notion of a “weak homotopy equivalence”
of categories by the notion of a map in Cat∞ which becomes an equivalence under

24 The Rezk nerve is a straightforward generalization of Rezk’s “classification diagram” construction,
which we introduced and studied in §N.3.
25 The 1-categorical Rezk nerve and the Rezk nerve of a relative ∞-category are essentially equivalent
(see Remark N.3.2), which is why essentially the same proof can be applied in both cases.
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(−)gpd : Cat∞ → S (i.e.a Thomason weak equivalence (see Definition G.A.2 and
Remark G.A.3)).

• The proof of [5, Lemma 2.2] carries over easily using Lemma N.1.26.
• For [5, Definition 2.3], we replace the notion of a “homotopy pullback diagram”
of categories by the notion of a commutative square in Cat∞ which becomes a
pullback square under (−)gpd : Cat∞ → S (i.e. a homotopy pullback diagram in
(Cat∞)Th).

• For [5, Definition 2.4], we replace the notions of “Grothendieck fibrations” and
“Grothendieck opfibrations” of categories by those of cartesian fibrations and
cocartesian fibrations of ∞-categories (see §G.1 and [15]).

• For [5, Remark 2.5], as the entire theory of ∞-categories is in essence already
only pseudofunctorial, there is no corresponding notion of a co/cartesian fibration
being “split” (or rather, every co/cartesian fibration should be thought of as being
“split”).

• The evident generalization of [5, Example 2.6] can be obtained by applying Corol-
lary T.2.4.7.12 to an identity functor of ∞-categories.

• The evident generalization of (the first of the two dual statements of) [5, Theo-
rem 2.7] is proved as Corollary G.4.3.

• The evident generalization of [5, Corollary 2.8] again follows directly (or can
alternatively be obtained by combining Example N.1.12 and Lemma N.1.20).

• For [5, Definition 2.9], we use the definition of the “two-sided Grothendieck con-
struction” given in Definition G.2.3. (Note that the 1-categorical version is simply
the corresponding (strict) fiber product.)

• The evident analog of [5, Lemma 2.11] is proved as Proposition G.2.4.
• For [5, Definition 3.1], we replace the notion of a “relative category” by the notion
of a “relative ∞-category” given in Definition N.1.1; recall from Remark N.1.2
that here we are actually working with a slightly weaker definition. We replace
the notion of its “homotopy category” by that of its localization given in Defi-
nition N.1.8. We have already defined the notion of a relative ∞-category being
“saturated” in Definition N.1.14.

• For [5, Definition 3.2], we have alreadymade the analogous definitions in Notation
N.1.6.

• For [5, Definitions 3.3 and 3.6], we have already made the analogous definitions
in Definitions 3.5 and 3.9.

• The evident analog of [5, Remark 3.7] is now true by definition (recall Notation
3.2).

• For [5, Proposition 3.8], the paper actually only uses part (ii), whose evident analog
is provided by Lemma 3.20(1).

• For [5, Lemma 3.10], note that the functors in the statement of the result as well as
in its proof are all corepresented by maps in RelCat∗∗ ⊂ (RelCat∞)∗∗; the proof
of the analogous result thus carries over by Lemma 4.5.

• For [5, Lemma 3.11], again everything in the statement of the result as well as in
its proof are all corepresented; again the proof carries over by Lemma 4.5.

• For [5, Definition 4.1], we have already defined a “homotopical three-arrow cal-
culus” for a relative ∞-category in Definition 4.1.
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• For [5, Theorem 4.5], we use the more general but slightly different definition
of hammocks given in Definition 3.17 (recall Remark 3.18); part (i) is proved as
Theorem 4.4, while part (ii) follows immediately from the definitions, particularly
Definitions 5.4 and 2.8. (Note that in the present framework, the “reduction map”
is simply replaced by the canonical map to the colimit defining the simplicial space
of hammocks.)

• For [5, Corollary 4.7], the evident analog of [1, Proposition 3.3] is proved as
Proposition 5.8.

• For [5, Proposition 4.8], the proof carries over essentially without change. (The
functor considered there when proving that the rectangle (AC) is a homotopy

pullback diagram is replaced by our functorWop 3(x,−)−−−−→ Cat∞ of Notation 3.23.)
• For [5, Lemma 4.9], the map itself in the statement of the result comes from the
functoriality

Wop [W−1;A◦n;W−1](x,−)−−−−−−−−−−−−−→ Cat∞

and

W
[W−1;A◦n;W−1](−,y)−−−−−−−−−−−−−→ Cat∞

of Notation 3.23, as do the vertical maps in the commutative square in the proof.
The horizontal maps in that square are corepresented by maps inZ ⊂ RelCat∗∗ ⊂
(RelCat∞)∗∗, and it clearly commutes by construction. The evident analog of [1,
Proposition 9.4] is proved as Lemma 3.24.

• For [5, Proposition 4.10], note that all morphisms in both the statement of the
result and its proof are corepresented by maps in Z ⊂ RelCat∗∗ ⊂ (RelCat∞)∗∗;
the proof itself carries over without change.

• For [5, Theorem 4.11] (whose analog is Theorem 6.1 itself), note that we are now
proving an ∞-categorical statement (instead of a model-categorical one), and so
there are no issues with fibrant replacement.
– The proof of part (1) of Theorem 6.1 is identical to the proof of part (i) there:
it follows from our analog of [5, Proposition 4.10].

– We address the two halves of the proof of part (2) of Theorem 6.1 in turn.
∗ The proof of the “only if” direction runs analogously to that of [5, Theo-

rem 4.11(ii)], only now we use that given two objects ptCat∞ ⇒ C in an
∞-category C, any path between their postcompositions ptCat∞ ⇒ C →
Cgpd can be represented by a zigzag N−1(sdi (�1)) → C connecting them
(for some sufficiently large i).

∗ We must modify the proof of the “if” direction slightly, as follows.
Assume that (R,W) ∈ RelCat∞ is saturated. By the local universal
property of the Rezk nerve (Theorem N.3.8), we have an equivalence
LCSS(NR∞(R,W))  N∞(R�W−1�) in CSS ⊂ sS. Note also that by
the two-out-of-three assumption, any two objects ptCat∞ ⇒ Fun([1],R)W

which select the same path component under the composite
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ptCat∞ ⇒ Fun([1],R)W →
(

Fun([1],R)W
)gpd = NR∞(R,W)1

are either both weak equivalences or both not weak equivalences. Now,
for any object of Fun([1],R)W, recalling Remark 2.3 and invoking the
saturation assumption,we see that the correspondingmap [1] → R selects
an equivalence under the postcomposition [1] → R → R�W−1� if and
only if it factors as [1] → W ↪→ R. From here, the proof proceeds
identically. ��

Remark 6.2 After establishing the necessary facts concerning model ∞-categories,
we obtain an analog of [5, Corollary 4.12] as Theorem M.10.1.

Remark 6.3 In light of Remark N.3.2, [5, Remark 4.13] is strictly generalized by the
local universal property of the Rezk nerve (Theorem N.3.8).
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