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Abstract We extend Massey products from cohomology to differential cohomology
via stacks, organizing and generalizing existing constructions in Deligne cohomology.
We study the properties and show how they are related to more classical Massey
products in de Rham, singular, and Deligne cohomology. The setting and the algebraic
machinery via stacks allow for computations and make the construction well-suited
for applications. We illustrate with several examples from differential geometry and
mathematical physics.
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1 Introduction

Massey products were introduced in [37] and further developed and generalized in
[34,38]. The existence of (higher) Massey products indicates the complexity of the
topology of a space. They also determine whether and how various characterizing
properties of a space might be related, in particular how homotopy of a space might
be related to its cohomology [32]. On the one hand, Massey products can be viewed
as secondary cohomology operations associated with the primary operation given by
the cup product. On the other hand, they can also be seen as higher order products in
homotopy (A∞) algebras (see [5,51]).

A differential graded algebra (DGA) is a (not a priori commutative) graded algebra
A with a map d : A → A of degree +1 which satisfies the relations (up to sign
conventions) dd = 0 and d(ab) = (da)b + (−1)dim aa(db). Then the cohomology
H(A) of A with respect to d is a graded algebra. It has further certain operations called
(matrix) Massey products, the simplest of which is a correspondence

H(A) ⊗ H(A) ⊗ H(A) → H(A), (1.1)

which is denoted by 〈a, b, c〉, where a, b, c ∈ H(A). This has dimension dim(a) +
dim(b) + dim(c) − 1, is defined only when ab = bc = 0 ∈ H(A), and is not well-
defined but rather only defined modulo terms of the form ax + yb where x and y are
some (auxiliary) elements of H(A). The indeterminacy may, however, sometimes be
excluded, for example for dimension reasons, which occurs in applications. Generally,
we have ab = dy and bc = dz for y, z ∈ A, so that

〈a, b, c〉 = yc + (−1)dim a+1az, (1.2)

is a cocycle,with the cohomology class definedmodulo the indeterminacy given above.
There are other notions of Massey products, but all are essentially variations on this

principle. If the Massey product 〈a1, ...., an〉 exists, then all “lower” Massey products
necessarily vanish, although the converse is not true in general. One may also apply a
similar construction for matrices of elements, leading to matric Massey products [38],
where notions related to formal flatness of the connection become important.

Differential cohomology has played an important role recently by combining geo-
metric and topological data, namely usual cohomology and differential forms, in a
coherent way [2,7,9,10,12,17,22,27,33,50,53]. It is natural then to try to extend
Massey products, which exist in both of these ingredients, to differential cohomology.
Massey products have been considered in Deligne cohomology in [19,41,49,55]. We
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extend the definitions and constructions to the level of stacks,1 which has the virtue of
allowing for vast generalization to various settings and to a plethora of applications.
We believe this formulation has an advantage both for theory and for applications. In
particular, we emphasize that desired properties and behaviour of theMassey products
are clearer and systematic in stacks, and computations are generally doable and are
more efficient there, making them quite suitable for applications. The constructions are
based on the thesis [31], but we have taken the opportunity here to sharpen the results
and add properties and applications. We emphasize that this paper is the first part of
a bigger project, aimed at developing various concrete computational techniques for
differential cohomology theories.

The paper is organized as follows. In Sect. 2, we provide the setting for the two
main ingredients thatwewould like to combine, namely classical (generalized)Massey
products in Sect. 2.1 and differential cohomology in Sect. 2.2. We set up the former in
the general framework of [1,34,38] and the latter in the language of stacks (see [25,47,
53]). Then we recall the Deligne–Beilinson cup product in differential cohomology, as
set forth in [23,24], in Sect. 2.3. The first encounter of Massey products in differential
cohomology in the particular setting ofDeligne cohomology is recalled in Sect. 2.4 and
adapted slightly to our language. Our main construction is then described in Sect. 3,
where we first set up the powerful machinery needed, in the form of the Dold–Kan
correspondence, in Sect. 3.1, and then provide the main definitions in Sect. 3.2. Part
of this construction, together with a lot of the homotopic background appeared in the
second author’s thesis [31]. A vast generalization, along the lines of the classic work
of May, is presented in Sect. 3.3, where we present all three of differential, singular,
and de Rham Massey products within the same setting. Then in Sect. 3.4 we give the
properties of the Massey products thus defined. These turn out to be rather attractive
in general, with some unexpected features.

In Sect. 4, we illustrate (some aspects of) the construction with various applica-
tions. We will first give instances of where the classical Massey products arise in
applications, and we apply our constructions in previous sections to supply the differ-
ential refinements of these applications. We extend the constructions and discussion
in [23] from cup product Chern–Simons theories to what we might call Massey prod-
uct Chern–Simons theories. In Sect. 4.1, we illustrate how (stacky) Massey products
arise in trivialization of higher structures, such as (differential) String, Fivebrane [46],
and Ninebrane structures [45]. This gives natural trivializations of Chern–Simons the-
ories at the level of (higher) bundles with connections. There are two expressions
that involve three differential cohomology classes, namely the stacky Massey product
and the triple Deligne–Beilinson cup product. A natural question is whether these are
related. Indeed, we propose such a relation via transfer in the context of cobordism.

Then, in Sect. 4.2, we see how systems arising generally in anomaly cancellation
lead naturally to (stacky)Massey products. Finally, in settings inspired by type IIA and
type IIB string theory in Sects. 4.3 and 4.4, respectively, we illustrate how these lead
to stacky Massey products. Interestingly, the latter gives rise to a quadruple Massey

1 Throughout the paper, by stacks we mean simplicial sheaves as discussed, for instance, in [21,36,53] and
recalled in Sect. 2.2.

123



172 D. Grady, H. Sati

product. The reader need not be familiar with these string theories in order to follow
the discussion.

2 Massey products and differential cohomology

2.1 Classical (generalized) Massey products

We recall some notions from [1,34,38]. This will be useful for the applications that
we will consider later as well as a starting point for comparison with our stacky
constructions.

Let (A, d) be a differential graded algebra over R endowed with augmentation. Let
M(A) be the set of all upper triangular half-infinite matrices with entries inA, zeroes
on the diagonal and finitely many nonzero entries, i.e.

M(A) = {A = (ai j ), ai j ∈ A, ai j = 0 for j ≤ i and i, j ≥ n + 1

for some n with i, j ∈ N} . (2.1)

The last condition distinguishes in M(A) a subset (which is in fact a subalgebra)
Mn(A) consisting of all (n × n)-matrices with entries in A. The algebra M(A) is
bigraded and endowed with a bigraded Lie bracket. We introduce the differential d on
M(A) as d A = (dai j )i, j≥1. The algebra A admits an involution given by a 
→ a =
(−1)ka, which can be extended to an automorphism of M(A) as A = (ai j )i, j≥1, with
the differential d satisfying the generalized Leibnitz rule d(AB) = (d A)B + A(d B).
In [1], the Maurer–Cartan operator μ : M(A) −→ M(A) was defined as μ(A) =
d A − A · A. Then a matrix A ∈ M(A) is said to be a matrix of formal connection if
it satisfies the Maurer–Cartan equation in A,

d A − A · A ≡ 0 mod ker A, (2.2)

i.e. A is a formal connection if μ(A) ∈ ker A. Here ker A is a A-module generated
by matrices 1i j such that A · 1i j = 1i j · A, where 1i j denotes the matrix that has all
zero entries except for 1 as the i j-entry. Note that this implies that AB = B A for any
matrix B ∈ ker A. The element μ(A) is called the curvature of the formal connection
A, and can be shown to be closed (see e.g. [1,14]).

Now comes the relation between Maurer–Cartan and Massey products. The gen-
eralized Massey products are the cohomology classes of the curvature matrices of
the formal connection A, i.e. if A is a solution to the Maurer–Cartan equation then
the entries of the matrix [μ(A)] are the generalized Massey products [1]. Geometri-
cally, this means that the latter measure the deviation of connections from flat ones,
so that the connection is flat if they vanish. Later we will make use of this approach
in describing Massey products in stacks.

Classical Massey products in integral cohomology H∗(X; Z) arise by taking A to
be an algebra over the commutative ring Z, with the multiplication being associative
but not necessarily graded-commutative. Now let α, β, γ be the cohomology classes
of closed elements a ∈ Ap, b ∈ Aq , and c ∈ Ar . The triple Massey product 〈α, β, γ 〉
is defined if one can solve the Maurer–Cartan equation with the formal connection
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A =

⎛

⎜⎜
⎝

0 a f̃ ∗
0 0 b g̃
0 0 0 c
0 0 0 0

⎞

⎟⎟
⎠ .

This is equivalent to the two separate equations

d f̃ = (−1)pa ∧ b and dg̃ = (−1)qa ∧ c, (2.3)

and that implies that the Massey product is defined if and only if

α ∪ β = β ∪ γ = 0 ∈ H∗(A). (2.4)

The matrix μ(A) has the form

μ(A) = d A − A · A =

⎛

⎜⎜
⎝

0 0 0 τ

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠

and defines the Massey product [μ(A)] which is equal to the cohomology class

〈α, β, γ 〉 = [τ ] =
[
(−1)p+1a ∧ g̃ + (−1)p+q f̃ ∧ c

]
. (2.5)

Here [a] ∈ H∗(A) denotes the cohomology class of a closed element a ∈ A,
and [A] = ([ai j ])i, j≥1 ∈ M(H∗(A), for a closed matrix A ∈ M(A), denotes the
corresponding matrix whose entries are the cohomology classes of the entries ai j of
A. Since f̃ and g̃ are defined by expressions (2.3) up to closed elements from A, the
triple Massey product 〈α, β, γ 〉 is defined modulo α · Hq+r (A) + γ · H p+q(A).

2.2 Differential cohomology

There are several different approaches to differential cohomology. Initially, we will be
concerned with the construction as Deligne cohomology [7,27]. We will then move
to the stacky setting, which illuminates the true nature of differential cohomology as
a theory which counts isomorphism classes of higher U (1)-gerbes with connection
(generalizing the usual discussion for the gerbe case in [7]).

The classical construction relies on hypercohomology of a complex of objects of an
abelian category as an extension to complexes of the usual cohomology of an object.
For n ∈ N, let Z

∞
D [n] be the sheaf of chain complexes given by

Z
∞
D [n] := [· · · → 0 → Z ↪→ �0 → �1 → · · · → �n−1],
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174 D. Grady, H. Sati

whereZ is in degree2 n and�n−1 is the sheaf of real-valued (n −1)-forms in degree 0.
Given a manifold X , the degree n sheaf hypercohomology with coefficients in Z

∞
D [n]

can be defined to be the degree n differential cohomology of X :

Ĥn(X; Z) := Hn(X; Z
∞
D [n]). (2.6)

If X is paracompact, then these cohomology groups are given by the cohomology
of the total complex of the Čech–Deligne double complex corresponding to a good
open cover of X . In what follows, we will always assume that X is paracompact, so
that the hypercohomology groups can be computed by either taking arbitrary injective
resolutions, or via this more explicit Čech approach.

In [50] (see also [9]), it was observed that these cohomology groups fit nicely into
an exact hexagon

�n−1(X)/im(d) �n
cl(X)

Hn−1
dR (X) Ĥn(X; Z) Hn

dR(X),

Hn−1(X; U (1)) Hn(X, Z)

d

a

I

R

(2.7)
where the bottom row is the Bockstein sequence and the diagonals are exact. The map
R is called the curvature map and I is called the integration map. Notice that, by
exactness, in the case that the curvature of a differential cohomology class vanishes,
the class lies in the image of the inclusion Hn−1(X; U (1)) ↪→ Ĥn(X; Z). We call
these classes flat, as they represent n-gerbes with connections of vanishing curva-
ture. Differential cohomology therefore detects the topological information—when
the class is flat—and the differential geometric information encoded by the curvature.
See [2,7,10,12,17,22,27,33,50,53] for more details on the various approaches.

As we mentioned earlier, our point of view henceforth will be mainly that of stacks.
Wewill recall and introduce some stacks thatwill be useful for us.We start by surveying
some basic concepts and definitions from [23–25,36], adapted to our setting. We will
provide only as much detail as necessary to introduce our stacks.

For n ∈ N, let CartSp be the category with objects convex open subsets of Cartesian
space R

n (hence diffeomorphic to R
n), and morphisms smooth functions. A smooth

prestack is simply a functor

F : CartSpop → sSet

2 This is a descending grading, which is the opposite of the usual grading of the de Rham complex. That
is, we are viewing this as a chain complex rather than a cochain complex. Furthermore, we take V [n] to
denote the chain complex shifted by n, so that V is in degree n.
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with target the category of simplicial sets. The passage from prestacks to stacks is
achieved by imposing a sort of gluing condition on F . Roughly speaking, a stack F
attaches an entire space (equivalently simplicial set) of data to each object in CartSp.
This data should be viewed as being local data. The gluing condition then assembles
this data into a geometric object, which is a stack. More precisely, we say that a
prestack F satisfies descent if for each U ∈ CartSp and each open cover {Ui }i∈I of U
with contractible finite intersections Ui1i2...ik , we have a weak equivalence

F(U ) � holim
{

· · · ∏
i, j,k F(Ui jk)

∏
i, j F(Ui j )

∏
i F(Ui )

}
. (2.8)

In particular, if F takes values in Kan complexes, this weak equivalence is part of
an actual homotopy equivalence. The reader may notice the following.

• If we change the target category to Set and impose the stronger condition that
the strict limit over the diagram was isomorphic to F(U ), we would recover the
gluing condition for a sheaf.

• If we change the target category to groupoids, then the above condition recovers
the usual notion of descent for classical stacks.

In the latter, homotopy equivalence is simply categorical equivalence of groupoids.
Hence the gluing condition respects the correct notion of equivalence (which is weaker
than isomorphism). We can therefore view the equivalence (2.8) as the more general
gluing condition for ∞-groupoids (or Kan complexes). We need the following (see
[21,36,53]).

Definition 1 We call a smooth prestack F a smooth stack if it satisfies descent. We
denote the full subcategory of smooth stacks by

Sh∞(CartSp) ↪→ [CartSpop, sSet],

where the brackets denote the category of contravariant functors from CartSp to sSet,
with morphisms that are natural transformations.

Note that the above functor category is simplicially enriched in a natural way.
Observe that for objects X and Y in any (locally small) category, hom(X, Y ) is always
a set. This allows us to form the mapping space (i.e. simplicial set), which at level n
is

(
Map(X, Y )

)
n := hom

(
X × �[n], Y

)
,

when X is fibrant and Y cofibrant (this requires a model structure). Here the operation
× is the Cartesian product in stacks, and the underline on �[n] denotes taking the
locally constant stack associated to �[n].
Remark 1 The inclusion functor admits a left adjoint L which preserves homotopy
colimits (in fact, a left Quillen adjoint [53]). We call this functor L the stackification
functor and call the image of a prestack F under L the stackification of F .
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In [25], the moduli stack of n-gerbes with connection,BnU (1)conn, was introduced.
This stack was obtained as the stackification of the n-prestack obtained by applying
the Dold–Kan map (see Sect. 3.1) to the Deligne presheaf of chain complexes

Z
∞
D [n + 1] := [· · · → 0 → Z ↪→ �1 → �2 → · · · → �n].

These stacks are the differential analogues of Eilenberg-MacLane spaces and, for
a fixed manifold X , there is a bijective correspondence (a “representation”)

Ĥn+1
D (X; Z) � π0Map(X, B

nU (1)conn), (2.9)

where the right hand side is the set of morphisms in the homotopy category of stacks.

Remark 2 In general the right hand side of the correspondence (2.9) may not be
well-defined. In order to be able to take homotopy groups of the mapping space
Y := Map(X, B

nU (1)conn), Y has to be a Kan complex, which is the case when X is
confibrant and B

nU (1)conn is fibrant. However, since B
nU (1)conn satisfies descent, it

is fibrant in a particular local model structure on presheaves (see [25]). Even though
X can be viewed as a stack, it is not cofibrant, and so we need to cofibrantly replace
it. Indeed, if X is a (paracompact) manifold, thought of as a smooth stack, with good
open cover {Ui }i∈I , then we can replace X by its Čech nerve

C({Ui }) := hocolim
{
∐

i Ui
∐

i, j Ui j
∐

i, j,k Ui jk . . .

}
(2.10)

which is both cofibrant and weak equivalent to X in the category of smooth stacks
Sh∞(CartSp) [20]. For purely model category theoretic reasons it then follows that
Map(C({Ui }), B

nU (1)conn) is a Kan complex and we can take π0, obtaining the set
of morphisms in the homotopy category. This motivates the definition

Map(X, B
nU (1)conn) := Map(C({Ui }), B

nU (1)conn).

As explained in [25], these stacks also have a nice geometric interpretation. The
following example illustrates the point quite well.

Example 1 Let X be a manifold. Let us calculate the set of vertices of the mapping
space Map(X, B

2U (1)conn). Using the pointwise formula for the homotopy colimit
[25], we have

hom(X, B
2U (1)conn) = hom(C({Ui }), B

2U (1)conn)

= hom
( ∫ k∈�

�[k] ×
∐

α1,..,αk

Uα1,..,αk , B
2U (1)conn

)

=
∫

k∈�

∏

α1,..,αk

hom(�[k] × Uα1,..,αk , B
2U (1)conn)

=
∏

α1,..,αk

∫

k∈�

hom
(
�[k], B

2U (1)conn(Uα1,..,αk )
)
. (2.11)
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An element of the hom in the last line can be written out explicitly as a choice maps

Bα : �[0] →
∏

α

B
2U (1)(Uα)

Aαβ : �[1] →
∏

αβ

B
2U (1)(Uαβ)

gαβγ : �[2] →
∏

αβγ

B
2U (1)(Uαβγ ), (2.12)

such that the face inclusions of each map are equal to their corresponding restrictions
to higher intersections. Now since equivalent stacks will produce the same cohomol-
ogy groups, we do not distinguish between equivalent stacks. In particular, using the
exponential quasi-isomorphism, we could have equivalently defined B

2U (1)conn to
be the stackification of the prestack given by applying the Dold–Kan functor to the
presheaf of chain complexes

[0 → · · · → C∞(−, U (1))
d log−→ �1 → �2].

We can therefore describe the choices of Bα ,Aαβ and gαβγ via the 2-simplex.

Bα Bγ

Bδ

gαβγ

Aαβ

Aγ δAδα

Here, gαβγ is a choice of smooth U (1)-valued function on triple intersections, Aαβ is
a choice of 1-form on double intersections and Bα is a choice of 2-form on open sets.
Moreover, we have that these assignments must satisfy the conditions

(i) gαβ g−1
γβ gγα = 1;

(ii) g−1
αβγ dgαβγ = d log(g)αβγ = Aαβ − Aγβ + Aγα;

(iii) Bβ − Bα = d Aαβ .

We identify this data as precisely giving a gerbe with connection [7]. Moreover, the
fact that B

nU (1)conn is a stack ensures that Fα = d Bα is a globally defined 3-form:
the curvature of the gerbe. Notice that these are only the vertices in the mapping space.
The entire mapping space keeps track of more information, namely the homotopies
and higher homotopies between gerbes. These encode automorphisms in the sense of
gauge transformations (see [23,24]).

Example 2 Let X be a paracompact manifold and C({Ui }) the Čech nerve of some
good open cover. The maps

L : C({Ui }) → BU (1)conn
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178 D. Grady, H. Sati

are in bijective correspondencewith circle bundles on X equippedwith a connection. In
fact, using the calculations in the above example shows that such a morphism gives the
data U (1)-valued functions gαβ on intersections satisfying gαβg−1

βγ gγ δ = 1 on triple
intersections, along with 1-forms Aα on open sets satisfying Aα − Aβ = d log(g)αβ

on double intersections. If the homotopy class of L is trivial, then the circle bundle is
trivializable. In fact, the trivializing map φ is nothing but a homotopy φ : L → 0. To
identify this homotopy, we use the Dold–Kan correspondence. In particular, an edge
in Map(C({Ui }), BU (1)conn) is, by adjunction, an edge in the simplicial set

Map(C({Ui }), B
nU (1)conn) = DK(homCh+(N (C({Ui })), Z

∞
D [2])), (2.13)

where N is the normalizedMoore functor. Recall that this functor gives an equivalence
of categories, from simplicial abelian groups sAb to chain complexes in non-negative
degrees Ch+• (see [28]). The hom in positively graded chain complexes is the truncated
total complex of the Čech–Deligne double complex

[
· · · → tot1C(U , Z

∞
D [2]) → Z

(
tot2C(U , Z

∞
D [2])

)]
,

where Z denotes the group of cocycles in that degree. Recalling that the differential
is given by D := d + (−1)kδ, where δ takes the alternating sum of restrictions, we
identify an edge connecting L and 0 as an assignment of Čech–Deligne cochain h
of degree 1 such that (d − δ)h = L . Explicitly, this means a choice of U (1)-valued
function hα on open sets such that

(i) hαh−1
β = gαβ ;

(ii) −ih−1
α dhα = d log(hα) = Aα .

A straightforward calculation shows that the pattern continues and that null homo-
topies of n-gerbes (equivalently n-bundles, equivalently maps into B

nU (1)conn) can
again be identified with trivializations.

Motivated by this last example, we will often refer to null homotopies as trivializa-
tions. To summarize, the mapping space Map(X, B

nU (1)conn) can be identified with
the set of all n-gerbes with connection, along with isomorphisms between these and
higher homotopies between these isomorphisms.

Remark 3 There are several other stacks related to B
nU (1)conn which are useful for

us and are defined as follows (see [23–25,53]):

(i) If we forget about the connection on the these n-bundles, we obtain the bare
moduli stack of n-gerbes B

nU (1). Explicitly, this stack is obtained by applying
the Dold–Kan functor to the sheaf of chain complexes C∞(−, U (1))[n]: the
sheaf of smooth U (1)-valued functions in degree n.

(ii) We also define a stackwhich represents flat n-bundleswith connection, �BnU (1).
This stack is obtained by applying Dold–Kan to the sheaf of chain complexes
discU (1)[n]: the sheaf of locally constant U (1) valued functions in degree n.3

3 Here “disc” refers to the underlying discrete topology. As an operation on stacks, disc is the composite

functor disc : Sh∞
ev∗

sSet
(·)

Sh∞ , where ev∗ is the evaluation at a point and (·) takes the
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(iii) We have a stack representing the truncated de Rham complex �dRB
nU (1)

obtained by applying Dold–Kan to the truncated de Rham sheaf of chain com-
plexes

�
≤n
cl := [· · · 0 → �0 → �1 → · · · → �n

cl].

(iv) Finally, we define the stack of closed n-forms �n
cl to be the stack obtained by

applying Dold–Kan to the sheaf of closed n-forms.

Oneway to see that the second stack really does detect flat n-gerbeswith connection
is to observe that, by Poincaré lemma, one has a quasi-isomorphism of sheaves

disc(U (1))[n] � [0 → · · · → C∞(−, U (1))
d log−→ �1 → · · · → �n

cl],

where on the right we have closed n-forms in degree 0. These n-forms are to be
interpreted as giving the connection on the corresponding bundle. Hence, if the form
is closed then the bundle is flat.

The moduli stack B
nU (1)conn is related to the stacks in Remark 3 in various ways.

In [25,53], it was observed that B
nU (1)conn is the homotopy pullback

B
nU (1)conn

R
�n+1

cl

ι

B
nU (1)

θ
�dRB

n+1U (1),

(2.14)

where the left composite B
nU (1)conn → B

nU (1)
θ→ �dRB

n+1U (1) is homotopic to
the map

curv : B
nU (1)conn → �dRB

n+1U (1), (2.15)

induced by the morphism of sheaves of chain complexes

Z
i

i

�0

d

· · ·
d

�n

d

�0 d
�1 · · · �n+1

cl .

(2.16)

This map gives the full de Rham data for the curvature of a bundle with connection.
In fact, if one calculates the sheaf hypercohomology in degree 0 of the bottom row,
say via the Čech-de Rham complex (as in [6]), one gets Hn

dR(X). Consequently, the

Footnote 3 continued
locally constant stack associated to a simplicial set. For a smooth manifold X , the resulting stack disc(X)

is sometimes denoted instead by Xδ .
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map curv induces a map

curv∗ : π0Map(X, B
nU (1)conn) −→ Hn+1

dR (X), (2.17)

which sends an (n − 1)-gerbe with connection to the de Rham class of its curvature.
The following proposition might certainly be known to experts, but we include a proof
for completeness.

Lemma 2 The homotopy fiber of the map

R : B
nU (1)conn � �n+1

cl ,

can be identified with �BnU (1).

Proof The map R is induced by the morphism of sheaves of chain complexes

Z
i

0

�0

0

· · ·
0

�n−1

d

0
d

0 · · · �n
cl.

(2.18)

Since thismap is degree-wise surjective by Poincaré lemma (traditionally in highest
form-degree, and trivially in lower degrees), it is a fibration in the projective model
structure on presheaves of chain complexes. We can therefore calculate the homotopy
fiber as the kernel of that map. By inspection, the kernel is

[· · · → Z ↪→ �0 → �1 → · · · → �n
cl],

which, via the exponential map, is quasi-isomorphic to

[· · · C∞(−, U (1))
dlog−→ �1 → · · · → �n

cl].

Again, by Poincaré lemma, this sheaf of chain complex is quasi-isomorphic to
disc(U (1))[n]. Since the Dold–Kan functor is a right Quillen adjoint and preserves
weak equivalences, it takes fibration sequences to fibration sequences and we have the
desired result. ��

Using the above proposition along with diagram (2.14) and the pasting lemma for
homotopy pullbacks, we observe that we have the following iteration of homotopy
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pullbacks [53]

�Bn−1U (1) B
nU (1) ∗

0

∗ 0
�dRB

n−1U (1) �BnU (1) ∗
0

∗ 0
�≤n−1

B
nU (1)conn �n+1

cl

∗ 0
B

nU (1) �dRB
n+1U (1),

(2.19)

where 0 is the 0 map. From Lemma 2 along with this last diagram, we immediately
get the following:

Proposition 3 The based loop stack �B
nU (1)conn can be identified with the stack

�Bn−1U (1).

Proof Consider the homotopy pullback square

�Bn−1U (1) B
nU (1) ∗

0

∗ 0
�dRB

n−1U (1) �BnU (1)

∗ 0
�≤n−1

B
nU (1)conn

within diagram (2.19). Such a homotopy pullback, given by the outer square, can
be taken as a definition of the loop space. Alternatively, a homotopy pullback can
be computed explicitly as the paths in B

nU (1)conn connecting the point inclusion
∗ → B

nU (1)conn to itself: a loop. ��

Note that Massey products in the homology of the based loop space is classically
considered in [13,52]. The above discussions allows us to recast the “differential
cohomology diamond” using our stacks.
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Proposition 4 The differential cohomology diagram (2.7) lifts to a diagram of stacks

�≤n−1 �n
cl

�dRB
n−1U (1) B

nU (1)conn �dRB
nU (1)

�BnU (1) B
nU (1)

d

a

I

β

j

R

(2.20)
where the diagonals are fibration sequences.

Proof This is the same diagram as a portion of diagram (2.19) rotated. The top and
bottom horizontal maps in (2.20) are defined as the compositions d = Ra and β = j I .
Fixing amanifold X ,mapping into this diagram, andpassing to connected components,
i.e. taking π0Map(X,−), we recover the diamond diagram (2.7). Note that d in (2.20)
recovers the usual exterior derivative, by the nature of R, and that β recovers the
Beckstein by uniqueness of the latter as a cohomology operation. ��

We now explain how to go the other direction, i.e. from stacks to Deligne coho-
mology. We have seen that for a manifold X , the mapping space Map(X, B

nU (1)conn)
can be identified with the space of n-gerbes equipped with connections (along with
all isomorphisms and higher isomorphisms between them). It will be convenient to
organize this mapping space itself into a stack. We define the mapping stack to be the
stackification of the prestack given by the assignment

U 
→ Map(X × U, B
nU (1)conn), (2.21)

for each U ∈ CartSp. We denote this stack by4 [X, B
nU (1)conn].

Remark 4 Notice the following:

(i) If we evaluate the mapping stack on the terminal object in CartSp (the point) and
take π0, we recover the usual differential cohomology groups from the correspon-
dence (2.9)

π0[X, B
nU (1)conn](∗) � π0Map(X × ∗, B

nU (1)conn) � Ĥn(X, Z).

(ii) Since the mapping stack is clearly functorial in both arguments and the stackifi-
cation functor preserves homotopy fibers (it is left exact), we can map into the

4 Note that this is not to be confused with homotopy classes of maps as the notation might suggest.
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diagram (2.19) to obtain the diagram

[
X,�≤n−1

] [
X,�n

cl

]

[
X, �dRB

n−1U (1)
] [

X, B
nU (1)conn

] [
X, �dRB

nU (1)
]

[
X, �BnU (1)

] [
X, B

nU (1)
]

d

a

I

R

where the diagonals are again fibration sequences. If we evaluate this previous
diagram at the point and apply π0, we indeed reproduce the usual differential
cohomology diamond diagram (2.7).

2.3 Cup product in differential cohomology

Deligne [16] and Beilinson [3] showed that differential cohomology admits a dis-
tinguished cup product refining the usual cup product on singular cohomology. This
product is defined on sections of Z

∞
D [n] by the formula

α ∪DB β =
⎧
⎨

⎩

αβ, deg(α) = n
α ∧ dβ, deg(α) = 0

0, otherwise.
(2.22)

Note that the grading here is such that the first case is simply multiplication by an
integer. In fact, it is obvious from the definition that the Deligne–Beilinson (henceforth
DB) cup product composed with the natural inclusion

Z[n] ↪→ Z
∞
D [n],

simply multiplies the two locally constant integer-valued functions. Since the sheaf
cohomology of the locally constant sheaf Z, equipped with this product, is simply the
ordinary cohomology ring with integral coefficients, one immediately sees that this
cup product does indeed refine the usual cup product.

Equipped with this cup product, Ĥ∗(X; Z) becomes an associative and graded-
commutative ring [7]. This cup product structure also refines the wedge product of
forms in the sense that the curvature map R : Ĥ∗(X; Z) → �∗

cl defines a homomor-
phism of graded commutative rings [9]. In particular this implies that the cup product
of two classes of odd degree is flat. It can also be shown [9] that the cup product of a
flat class with any other class is again flat and that the inclusion of H∗(X, U (1)) into
Ĥ∗(X; Z) is a two sided ideal.

We now turn to the cup product, viewed as a morphism of stacks. In [23] it was
observed that the lax monoidal structure of the Dold–Kan map gives rise to a cup
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product, exhibited as a morphism

∪ : B
mU (1)conn × B

nU (1)conn −→ B
n+m+1U (1)conn, (2.23)

of stacks. This map is obtained by simply taking the DB cup product (2.22)

∪DB : Z
∞
D [n + 1] ⊗ Z

∞
D [m + 1] −→ Z

∞
D [n + m + 2],

applying the Dold–Kan map

DK(∪DB) : DK(Z∞
D [n + 1] ⊗ Z

∞
D [m + 1]) −→ DK(Z∞

D [n + m + 2]),

and using the lax monoidal structure ϕ of the map DK to get a map

∪ = DK(∪DB) ◦ ϕ : DK(Z∞
D [n + 1]) × DK(Z∞

D [n + 1])
→ DK(Z∞

D [n + 1] ⊗ Z
∞
D [m + 1]) → DK(Z∞

D [n + m + 2]).

Applying the stackification functor then gives the desired map. This map then
induces a map of stacks (which we also denote as ∪)

∪ : [X, B
nU (1)conn] × [X, B

mU (1)conn] −→ [X, B
n+m+1U (1)conn]. (2.24)

The following two propositions are implicit in [23,24].

Proposition 5 The DB cup product refines the singular cup product. That is, we have
a commutative diagram

B
nU (1)conn × B

mU (1)conn B
n+m+1U (1)conn

B
n+1

Z × B
m+1

Z B
n+m+2

Z.

∪DB

I × I

∪
I

Proof Let p : Z
∞
D [n + 1] → Z[n + 1] be the projection map

Z

id

i
�0

0

· · ·
0

�n

0

Z
d

0 · · · 0.
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Then, by definition of the DB cup product, the diagram

Z
∞
D [n + 1] ⊗ Z

∞
D [m + 1] Z

∞
D [n + m + 2]

Z[n + 1] ⊗ Z[m + 1] Z[n + m + 2]

∪DB

p

∪
p

commutes in sheaves of chain complexes. Applying the Dold–Kan functor and using
naturality of the lax monoidal structure map gives the result. ��

Proposition 6 The cup product refines the wedge product, and we have a commutative
diagram

B
nU (1)conn × B

mU (1)conn B
n+m+1U (1)conn

�n+1
cl × �m+1

cl �n+m+2
cl .

∪DB

R × R

∧
R

Proof Let α and β be sections of Z
∞
D [n + 1] and Z

∞
D [m + 1], respectively. Applying

the curvature R to the DB cup product (2.22) gives

R(α ∪DB β) =
⎧
⎨

⎩

αd(β) if deg(α) = n
d(α) ∧ d(β) if deg(β) = 0

0 otherwise,

which is R(α) ∧ R(β). We therefore have a commuting diagram

Z
∞
D [n + 1] ⊗ Z

∞
D [m + 1] Z

∞
D [n + m + 2]

�n+1
cl ⊗ �m+1

cl �n+m+2
cl .

∪DB

R

∧
R

Applying the Dold–Kan map DK gives the result in stacks. ��

The above results show that, in general, the Deligne–Beilinson cup product does
not refine the de Rham wedge product for the whole de Rham complex, but does so
only for the top and bottom degrees. However, for the triple product the only cup
products that arise are between degree zero and degree one cocycles, so that nothing
is missed in passing to ∪DB . We will make this more precise in Proposition 17.
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2.4 Massey products in hypercohomology

Massey products in Deligne–Beilinson cohomology are described in [19,41,49,55].
In this section, we review the construction for hypercohomology found in [49], with
a slightly adapted language for later comparison and generalization. In Sect. 3 we
generalize this construction in two ways, which we describe. We use the Dold–Kan
correspondence to establish these products in the stacky setting. We also use the
machinery ofMay [38] to exhibit these products as differentialmatricMasseyproducts.

Let R be a commutative ring and let C•(n), n ∈ N, be a sequence of positively
graded chain complexes of R-modules. Moreover, let us assume that this sequence
comes equipped with maps

∪ : C•(n) ⊗ C•(m) → C•(n + m),

which are associative in the sense that

∪ ◦(id ⊗ ∪) = ∪ ◦ (∪ ⊗ id). (2.25)

The maps ∪ induce an associative product on cohomology

∪ : H•(n) ⊗ H•(m) → H•(n + m),

called the cup product. Once a well-defined notion of a cup product is established, one
can define the Massey products via the following.

Definition 7 Let l ≥ 2 and let n1, . . . , nl and m1, . . . , ml be integers. Define

ns,t =
t∑

i=s

(ni − 1) and ms,t =
t∑

i=s

mi , for 1 ≤ s ≤ t ≤ l,

and let ā = (−1)q+1a denote the twist of a class a ∈ Cq(n). We define the l-fold
Massey product as follows:

(i) Let ai ∈ Hmi (C•(ni )) be cohomology classes. Suppose there exists cochains
as,t ∈ Cms,t+1(ns,t ) such that ai,i is a representative of ai and that

das,t =
t−1∑

i=s

ās,i ∪ ai+1,t for 1 ≤ s ≤ t ≤ l, (s, t) �= (1, l).

We call the collectionM = {as,t } a defining system for the l-foldMassey product.
(ii) The cochain

a1,l :=
l−1∑

i=1

ā1,i ∪ ai+1,l ∈ Cm1,l+2(n1,l)
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is a cocycle and represents a cohomology class ml . We call this class the l-fold
Massey product of the elements a1, .., al with defining systemM.

In general, wewould like to eliminate the dependance of the product on the defining
system. The case of l = 3 will be the most important for us, and in this case we are
indeed able to eliminate this dependence. The following three examples are known,
and we record them to highlight how Massey products arise in the different settings
that we consider, and how stacks will provide, in a sense, a unifying theme. Note that,
while the above construction is fairly general, it is not obvious how to generalize to
other settings and how to do computations easily with it, and that is why we later use
the stacky perspective.

Example 3 Let a1, a2 and a3 be cohomology classes as above. Suppose we have a
defining system M = {as,t }. This means, by definition, that we have the relations

da1,2 = ā1,1 ∪ a2,2 and da2,3 = ā2,2 ∪ a3,3.

Now a class ml representing the Massey product of this defining system has as a
representing cocycle

a1,l = ā1,1 ∪ a2,3 + ā1,2 ∪ a3,3.

Notice that, in this case, the class ml only depends on the defining system up to
cocycles. That is, for another defining system N = {bs,t }, the classes a2,3 − b2,3 and
a1,2−b1,2 are cocycles.Moreover, if these cocycles are coboundaries, then theMassey
products of both defining systems agree. We can therefore define a Massey product,
not depending on the defining system, as the quotient

〈a1, a2, a3〉 ∈ Hm1+m2+m3−1(C•(n1 + n2 + n3))

Hm1+m2−1(C•(n1 + n2)) ∪ a3 + a1 ∪ Hm2+m3−1(C•(n2 + n3))
.

Example 4 Let X be a smooth manifold and let C(n) = �∗(X) for each n, where
�∗(X) is the algebra of differential forms on X . Let a, b and c be deRhamcohomology
classes of degree p, q, r respectively, such that a∧b = 0 = b∧c. Choose representing
closed forms α, β, γ for a, b, c respectively, and let η and ρ be cochains such that

dη = α ∧ β and dρ = β ∧ γ.

Then the combination

η ∧ γ − (−)pα ∧ ρ

is a closed form representing the triple Massey product of a, b and c corresponding to
the defining system M = (α, β, γ, ρ, η). Eliminating the dependence on M gives a
well-defined class in the quotient group

H p+q+r−1
dR (X)/

(
a ∪ Hq+r−1

dR (X) + c ∪ H p+q−1
dR (X)

)
.
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The following constitutes our initial transition to differential cohomology, which
we will develop in stacks in the following section.

Example 5 Consider the Deligne complex given by the sheaf of chain complexes

Z
∞
D [n] := [Z ↪→ �0 → �1 → · · · → �n−1].

Let X be a paracompact manifold with good open cover {Ui }i∈I and let C(n) :=
totC•({Ui }, Z

∞
D [n]) be the total complex of the Čech–Deligne double complex. The

degree n cohomology of this total complex calculates the differential cohomology of
X :

Ĥn(X; Z) = Hn(totC•(U , Z
∞
D [n])).

The Deligne–Beilinson cup product is defined as a morphism

∪DB : Z
∞
D [n] ⊗ Z

∞
D [m] −→ Z

∞
D [n + m + 1],

which on sections is given by the formula (2.22). This map induces cup product
morphisms on the total complexes C(n) which are associative in the sense of the
identity in (2.25).

We can therefore use this cup product to define the Massey product in differential
cohomology, viewed as the sheaf hypercohomology of the Deligne complex. Since
our point of view will subsume this construction, we will delay explicit examples until
Sects. 3 and 4.

3 Massey products in the language of higher stacks

We provide our main construction of stacky Massey products in this section. We start
with setting up the machinery needed.

3.1 The Dold–Kan correspondence

TheDold–Kan correspondencewill be an important component in defining theMassey
product in stacks.Wewill use the correspondence to organize the homotopies involved
in certain homotopy commuting diagrams in an algebraic way.

The classical Dold–Kan correspondence describes an equivalence of categories (see
e.g. [28])

� : Ch+ sAb : N (3.1)

between positively graded chain complexes and simplicial abelian groups. By post-
composing with the free-forgetful adjunction, one obtains an adjunction.

DK := U� : Ch+ sSet : N F. (3.2)
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In fact, one can say more. This adjunction is a Quillen adjunction of model cate-
gories, with the projective model structure on chain complexes and the Quillen model
structure on simplicial sets. As such, it preserves the homotopy theories in both cat-
egories; it therefore comes as no surprise that for a positively graded chain complex
C• one has an isomorphism

HnC• � πnDK(C•). (3.3)

For convenience,we remind the readerwhat the functorDK does to a chain complex,
as this will be a frequently used tool in producing abelian stacks.

Let � denote the category of linearly ordered sets of n elements with order pre-
serving maps. Let C• be a positively graded chain complex. The degree n component
of the simplicial abelian group DK(C•) is given by

DK(C•)n =
⊕

[n]�[k]
Ck .

Here the indexing set is taken to be all surjections [n] � [k]. It is a bit trickier
to describe the face and degeneracy maps. Let di : [n − 1] ↪→ [n] be a coface map
in �. We want to define the corresponding face map. To get a map out of the direct
sum, it suffices to describe the map on each factor. Therefore, we need only define
the face map on a term Ck given by a surjection σ : [n] � [k]. To see where to send
this term, we form the composite σdi [n − 1] ↪→ [n] � [k]. Now this morphism
need not be surjective, so we factorize μσ ′[n − 1] � [m] ↪→ [k] where the first
map is a surjection and the second map is an injection. Then σ ′ corresponds to a term
Cm ↪→⊕

[n−1]→[m] Am = DK(C•)n−1. We send the factor Ck to the factor Cm by a
map μ′ : Ck → Cm . This map is given by

μ′ =
⎧
⎨

⎩

id, μ = id,
(−1)kd, μ = dk,

0, otherwise.
(3.4)

A similar construction is used to define the degeneracy maps. The following exam-
ple illustrates the point quite well.

Example 6 Consider the chain complex A[1], with the abelian group A in degree 1
and 0’s in all other degrees. We want to compute DK(A[1]). Using the above formula,
we see that the only nonzero terms in degree n are given by the surjections [n] � [1].
Each surjection can be thought of as being given by an element i ∈ [n] which divides
the set into two subsets: those that go to 0 and those that go to 1. We therefore have n
surjections and

DK(A[1])n =
n⊕

i=1

A.
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For a coface map d j : [n − 1] → [n], the corresponding face map d j is given as
follows. Let Ai denote the copy of A corresponding to the i th surjection. Then

d j (Ai ) =
{

Ai−1 if i > j �= 0, n
Ai if i ≤ j �= 0, n

, d0(Ai ) =
{

Ai−1 if i �= 0
0 if i = 0

,

dn(Ai ) =
{

Ai if i �= n
0 if i = n.

Notice that for j �= 0, n, the term corresponding to i = j and i = j + 1 both go to
the same copy of A. We therefore have a map A × A → A extending the identity on
each component. Hence, this morphism is just group multiplication. From this, one
can see that this simplicial abelian group is just the delooping group B A.

Another way to describe the simplicial set DK(C•), which is perhaps more concep-
tual, is via a labeling of simplices with elements of the chain complex C•. A 2-simplex
in DK(C•), for example, is a simplexwith face, edges and vertices labeled by elements
of C•

a1 a2

a0

c012
b01 b02

b12

such that

dc012 = b01 + b12 − b02 and dbi j = a j − ai .

Here d is the chain complex differential. Notice that a 2-simplex inDK(C•), defined
as before, can be identified as such a labeled simplex. To see this, let us calculate
the data involved in specifying a 2-simplex. First, observe that there is exactly one
surjection 0 : [2] � [0], id : [2] � [2], and exactly two surjections σi : [2] � [1].
Therefore, a 2-simplex is given by a quadruple (a0, b01, b02, c012), where a0 is in
degree 1, while b01, b02 are in degree 2 (corresponding to σ1, σ2, respectively), and
c012 is in degree 3. To determine the edges, we evaluate di on this quadruple. For
i = 0, we have the following epi-mono factorizations

id ◦ d0 = d0 ◦ id, σ1 ◦ d0 = d0 ◦ 0, σ2 ◦ d0 = id ◦ id.

It follows from the formula, that the 0 face is b02. For i = 1, we have

id ◦ d1 = d1 ◦ id, σ1 ◦ d1 = id ◦ id, σ2 ◦ d1 = id ◦ id
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and the 1 face is b01 + b02. Finally, for i = 2, we have

id ◦ d2 = d2 ◦ id, σ1 ◦ d2 = id ◦ id, σ2 ◦ d2 = d1 ◦ 0

and the 2 edge is dc012 + b01. Forming the boundary of the simplex, we get

∂(a0, b01, b02, c012) = b02 − (b01 + b02) + (dc012 + b01) = dc012.

That the edges of the simplex satisfy the second condition above is a straightforward
calculation and will be omitted. In fact, it is a straightforward calculation to show that
the boundary of a general n-simplex must be equal to d applied to the labeling on its
n-face.

Remark 5 This second description provides a powerful conceptual advantage; namely,
that the differential of the chain complex can be viewed as obstructing the chain from
being a cycle. For example, if the resulting simplicial set were the nerve of a groupoid,
then all simplices for n ≥ 2 would be cycles.

3.2 Stacky Massey products

We are now ready to define Massey products in the category of stacks. We begin with
a discussion on Massey triple products and then generalize to l-fold Massey products.

TheMassey triple product can be viewed as a homotopy built out of the associativity
diagram of the cup product of three elements. In fact, suppose one is given a triple of
higher gerbes with connection on a manifold X . These gerbes are given by the data
Gi : X → B

ni U (1), i = 1, 2, 3. Suppose, moreover, that these gerbes are chosen
so that the cup products G1 ∪ G2 and G2 ∪ G3 are homotopic to 0, with trivializing
homotopies φ1,2 and φ2,3. In this case, we can build a loop trivializing the triple
product. To see this, consider the associativity diagram for the cup product.

B
n1U (1)conn × B

n2U (1)conn × B
n3U (1)conn

B
n1+n2+1U (1)conn × B

n3U (1)conn

B
n1U (1)conn × B

n2+n3+1U (1)conn

B
n1+n2+n3+2U (1)connX

(∪ × id)

(id × ∪)

∪

∪

G1 × G2 × G3

Although the outer two maps agree, there is still nontrivial homotopy theoretic
information contained in the diagram. To see this, suppose G1 ∪ G2 and G2 ∪ G3 are
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trivializable with trivializations φ1,2 and φ2,3, respectively. Then we can add these
homotopies to the diagram.

B
n1U (1)conn × B

n2U (1)conn × B
n3U (1)conn

B
n1+n2+1U (1)conn × B

n3U (1)conn

B
n1U (1)conn × B

n2+n3+1U (1)conn

B
n1+n2+n3+2U (1)connX

B
n1U (1)conn × B

n2U (1)conn

B
n2U (1)conn × B

n3U (1)conn

B
n1+n2+1U (1)conn

B
n2+n3+1U (1)conn

φ1,2

φ2,3

�⇒

�⇒

�⇒

�⇒

G1 ∪ φ2,3

φ1,2 ∪ G3

(∪ × id)

(id × ∪)

∪

∪

G1 × G2 × G3

G1 × G2

G2 × G3

G1 ∪ G2

G2 ∪ G3

id × 0

0 × id

00

00

0

These two choices of homotopies φ1,2 and φ2,3 make the entire diagram homotopy
commutative, as the triple cup products (the two red arrows) are trivialized by the
homotopies G1 ∪ φ1,2 and φ2,3 ∪ G3. Since the cup product is strictly associative, the
diagram in red commutes and we have the homotopy commuting diagram.

B
n1+n2+n3+2U (1)conn .X

�⇒

�⇒

G1 ∪ φ2,3

φ1,2 ∪ G3

0

0

G1 ∪ G2 ∪ G3

(3.5)

These two homotopies fit together to form a loop. Then, by Proposition 3 and the
universal property of the homotopy pullback, we can equivalently describe this as a
map

X −→ �B
n1+n2+n3+2U (1)conn � �Bn1+n2+n3+1U (1). (3.6)

Lemma 8 The homotopy class of the loop (3.6) is in the image of the inclusion of the
group Hn1+n2+n3+1(X; U (1)) into Ĥn1+n2+n3+2(X; Z).

Proof Using the Dold–Kan adjunction along with a Čech resolution of X , we have
the following sequence of isomorphisms
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π0Map(X, �Bn1+n2+n3+1U (1))

� H0 homCh+(N (C({Ui }), disc(U (1))[n1 + n2 + n3 + 1])
� Hn1+n2+n3+1(X; U (1))

↪→ Ĥn1+n2+n3+2(X; Z).

Here disc indicates that we are taking the discrete topology on U (1) (i.e. this is the
sheaf of locally constant U (1) valued functions). ��

Remark 6 (i) Notice that we could have equivalently taken the homotopy class of
the loop directly to get an element [G1 ∪ φ2,3 − φ1,2 ∪ G1] in

π1Map(X, B
n1+n2+n3+2U (1)conn)

� H1 homCh+
(
C({Ui }), Z

∞
D [n1 + n2 + n3 + 2])

� Hn1+n2+n3+1(X; U (1))

↪→ Ĥn1+n2+n3+2(X; Z) .

(ii) The above observations allow us to recover the usual definition of the Massey
product as an element in cohomology. In Sect. 2.4, we observed that such a class
is not completely well-defined purely at the level of cohomology and there was
some dependence on the chosen cochain representatives. Taking this point of
view, one can see this dependence as a choice of trivializations φ1,2 and φ2,3 of
the cup products.

This definition works well for the triple product and gives a clear picture on how
the triple product is built out of the homotopies. However, to describe the higher
triple products this way would be cumbersome. Moreover, the algebraic nature of
the products would not be transparent. For these reasons, we will use the language
of simplicial homotopy theory to describe these homotopy commuting diagrams and
the Dold–Kan correspondence to organize these homotopies in an algebraic way. To
prepare the reader for this perspective, we first recast the triple product in this language.

Notice that the triple product was described by two homotopies φ1,2 and φ2,3
connecting the basepoint 0 to the double cup products. We can express this situation
diagrammatically via the horn-fillers.

∂�[1]
[

X, B
n1+n2+1U (1)conn

]
,

�[1]

(0,G1 ∪ G2)

φ1,2

∂�[1]
[

X, B
n2+n3+1U (1)conn

]
.

�[1]

(0,G2 ∪ G3)

φ2,3

Nowwe would like to use these homotopies to construct a loop. To do this, we need
to manipulate algebraically these homotopies. This motivates us to take the Moore
complex of these diagrams in order to translate the data into the language of sheaves
of chain complexes. This gives the data
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Z ⊕ Z N
(
[X, B

n1+n2+1U (1)conn]
)

0

Z N
(
[X, B

n1+n2+1U (1)conn]
)

1
,

(0,G1 ∪ G2)

(1, −1) ∂

φ1,2

Z ⊕ Z N
(
[X, B

n2+n3+1U (1)conn]
)

0

Z N
(
[X, B

n2+n3+1U (1)conn]
)

1
,

(0,G2 ∪ G3)

(1, −1) ∂

φ2,3

where the subindices indicate the degree of the chain complex. Now we can represent
these chain homotopies succinctly in the upper triangular matrix.

A =

⎛

⎜⎜
⎝

0 G1 φ1,2 ∗
0 0 G2 φ2,3
0 0 0 G3
0 0 0 0

⎞

⎟⎟
⎠ .

By construction, this matrix satisfies the Maurer–Cartan equation

d A − A · A = μ(A) ∈ Ker(A).

Moreover, μ(A) is of the form

μ(A) =

⎛

⎜⎜
⎝

0 0 0 τ

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ .

Applying the differential d to τ and using the Leibniz rule, we get

d(τ ) = d
(G1 ∪ φ2,3 − φ1,2 ∪ G3

)

= d(G1) ∪ φ2,3 + G1 ∪ d(φ2,3) − d(φ1,2) ∪ G3 + φ1,2 ∪ d(G3)
= G1 ∪ (G2 ∪ G3) − (G1 ∪ G2) ∪ G3
= 0.

At the level of sheaf hypercohomology, we have the following:

Proposition 9 The cohomology class of the matrix cocycle μ(A) is the element

[μ(A)] = [G1 ∪ φ2,3 − φ1,2 ∪ G3
] ∈ Hn1+n2+n3+1(X; U (1)).

Proof We have the following sequence of isomorphisms

[μ(A)] = [G1 ∪ φ2,3 − φ1,2 ∪ G3
] ∈ H1 homCh+

(
C(U), B

n1+n2+n3+2U (1)conn
)

� π1Map
(

C(U), B
n1+n2+n3+2U (1)conn

)

� π0Map
(

C(U), �Bn1+n2+n3+1U (1)
)

� Hn1+n2+n3+1(X; U (1)).

��
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3.3 General stacky Massey products

We would like to utilize the machinery of May [38] which makes use of matrices. We
will introduce stacks labelled by two integers, which will be indexing the entries of
the corresponding matrices. To that end, letRi j , i, j ∈ N, be simplicial abelian stacks
equipped with maps

∪ : Ri j ⊗ R jk −→ Rik,

which are associative in the sense that ∪ ◦ (∪ ⊗ id) = ∪ ◦ (id ⊗ ∪).

Remark 7 Let N denote the normalized Moore functor. It follows from the definition
of the differential on the tensor product that the induced product

∪̃ : N (Ri j ) ⊗ N (R jk)
∼−→ N (Ri j ⊗ R jk) −→ N (Rik)

must satisfy the Leibniz type rule d(α∪β) = d(α)∪β +(−1)degα∪d(β) on sections.

We can now utilize an extension of the machinery of May [38] locally to
define the refined matric Massey products in our setting. To this end, we consider
the set of all upper triangular half-infinite matrices M(R) = ⋃

n M(R)n , where
(cf. (2.1))

M(R)n = {A = (ai j ) | ai j ∈ N (Ri j ), ai j = 0 for

j ≤ i and i, j ≥ n + 1 for some n ∈ N} (3.7)

is the subalgebra of n × n matrices. Notice that, with our definition, this set possesses
more structure. It becomes a sheaf of DGA’s with product given by matrix multipli-
cation and differential given by applying the differential on N (Ri j ) to each entry of
the matrix. Just as in the case of classical Massey products, we have a filtration of
presheaves of subalgebras

M(R)1 ⊂ M(R)2 ⊂ · · · ⊂ M(R)n ⊂ · · · , (3.8)

and a bigrading
M(R) =

∑

p≥1,k≥0

M p,k, (3.9)

where

M p,k = span

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜
⎝

0
ai,i+p

0

⎞

⎟⎟
⎠; ai,i+p ∈ N (Ri,i+p)

⎫
⎪⎪⎬

⎪⎪⎭
. (3.10)

We can define the following notions similarly to the classical case.

123



196 D. Grady, H. Sati

Definition 10 Let A be a matrix in M(R). We define the (stacky version) of the
Maurer–Cartan equation as

d A − A · A ≡ 0 mod ker(A),

and call a solution a formal connection with curvature

μ(A) = d A − A · A.

Weare now ready to define the stackyMassey productwith a product on the bigraded
sequence of stacks.

Definition 11 Let R = {Ri j } be a sequence of abelian stacks equipped with maps

∪ : Ri j ⊗ R jk −→ Rik,

which satisfy∪◦(id⊗∪) = ∪◦(∪⊗ id). Let A be a formal connection with curvature
μ(A). Then the entries of the hypercohomology class [μ(A)] are called stacky Massey
products.

Remark 8 The following examples of stacks satisfy the compatibility requirement of
Definition 11 and will be of particular interest to us. They are the mapping stacks
corresponding to the stacks described in Remark 3. Fix a manifold X and a sequence
(ni, j ), i < j ≤ n, of integers satisfying ni, j + n j,k = ni,k ;

(i) The stacks [X, B
ni, j −1U (1)conn] of higher bundles with connection, with the

stacky cup product and Čech–Deligne differential.
(ii) The stacks [X, B

ni, j Z] of higher bundles, with the usual cup product and singular
differential.

(iii) The stacks [X, �dRB
ni, j U (1)conn] of differential forms of degrees ≤ n, with the

wedge product and exterior derivative.

Wehighlight the power of the above definitions in the following examples,wherewe
are able to describe all three of the differential, singular, and de Rham triple products.

Example 7 (Differential triple product) Let Gi , i = 1, 2, 3, be bundles corresponding
to morphisms�[0] → [X, B

ni,i+1−1U (1)conn]. Suppose G1∪G2 and G2∪G3 represent
trivial classes in π0Map(X, B

ni, j −1U (1)conn). Choose a defining system

A =

⎛

⎜⎜
⎝

0 G1 φ1,2 ∗
0 0 G2 φ2,3
0 0 0 G3
0 0 0 0

⎞

⎟⎟
⎠ ,
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where φ1,2 and φ2,3 are nondegenerate 1-simplices trivializing the cup products. Then
the curvature of A is

μ(A) =

⎛

⎜⎜
⎝

0 0 0 τ

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ ,

and the hypercohomology class [τ ] is [G1 ∪ φ2,3 − φ1,2 ∪ G3
]
. The latter is an element

in

π1Map(X, B
n3,3−1U (1)conn) � π0Map(X, �Bn1,4−2U (1)) � Hn1,4−2(X; U (1)),

where we have n1,4 = n1,3 + n3,4 = n1,2 + n2,3 + n3,4.

Example 8 (Singular triple product) Let X be amanifold, and let |X | be the topological
space denoting its geometric realization. Let ai : |X | → K (Z, ni,i+1) � Bni,i+1Z,
i = 1, 2, 3, be singular cochains with cup products vanishing in cohomology. Choose
a defining system

A =

⎛

⎜⎜
⎝

0 a1 f1,2 ∗
0 0 a2 f2,3
0 0 0 a3
0 0 0 0

⎞

⎟⎟
⎠ .

Since geometric realization is a left ∞-adjoint the discrete stack functor disc [53],
these are equivalently given by maps of stacks

āi : �[0] −→ [X, B
ni,i+1Z],

and homotopies

f̄i,i+1 : �[1] −→ [X, B
ni,i+2Z]

trivializing the cup products, hence a defining system

A =

⎛

⎜⎜
⎝

0 ā1 f̄1,2 ∗
0 0 ā2 f̄2,3
0 0 0 ā3
0 0 0 0

⎞

⎟⎟
⎠ .

The hypercohomology class of the entry τ ∈ μ(A) is given by
[
ā1 ∪ f̄2,3 − f̄1,2 ∪ ā3

]
,

which is an element in

π1Map(X, B
n1,4Z) � π1Map(|X |, K (Z, n1,4))

� π0Map(|X |, K (Z, n1,4 − 1))

� Hn1,4−1(X, Z).
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Example 9 (de Rham triple product) Let X be a manifold and let αi , i = 1, 2, 3, be
closed forms in different degrees. These forms are equivalently given by maps

αi : �[0] −→ �dRB
ni,i+1U (1)conn.

Suppose that the wedge products α1 ∧ α2 and α2 ∧ α3 are trivial in cohomology.
Then we can choose a defining system via

A =

⎛

⎜⎜
⎝

0 α1 η1,2 ∗
0 0 α2 η2,3
0 0 0 α3
0 0 0 0

⎞

⎟⎟
⎠ ,

where η1,2 and η2,3 are 1-simplices. The hypercohomology class of the entry τ ∈ μ(A)

is given by

[
α1 ∧ η2,3 − η1,2 ∪ α3

]
.

The sheaf at each level in the complex �≤n1,4 is acyclic (the sheaves are that
of differential forms and so admit a partition of unity). Thus, we can calculate the
hypercohomology as

π1Map(X,�≤n1,4) � H1�
≤n1,4(X)

� H
n1,4−1
dR (X).

Our main result in this section relates Massey products for Deligne cocycles to
corresponding ones for higher bundles in the stacky sense.

Theorem 12 Let âi , 1 ≤ i ≤ l, be Deligne cocycles. Suppose the l-fold Massey
product is defined. Let Gi , 1 ≤ i ≤ l, be ni,i+1- bundles with connections

Gi : X −→ B
ni,i+1U (1)conn,

representing the Deligne cocycles. Then there is a natural bijection between corre-
sponding Massey products

〈G1,G2, . . . ,Gl〉 � 〈â1, â2, . . . , âl〉.

Proof Recall that B
nU (1)conn := �(Z∞

D [n + 1]) (see [25]). Using the definition of
the stacky hom, the fact that the counit ε : N� → id is a natural isomorphism and the
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lax monoidal structure on N , we have a homotopy equivalence for each test object U ,

N ([X, B
nU (1)conn])(U ) = N ([X, B

nU (1)conn](U ))

� N (Map(C({Ui }) × U, B
nU (1)conn))

� homCh+(N (C({Ui }) ⊗ N (U ), Z
∞
D [n + 1])

� homCh+(N (C({Ui }), Z
∞
D [n + 1](U ))

� C(X, Z
∞
D [n + 1])(U ),

where the last line denotes the Čech resolution of the Deligne complex Z
∞
D [n + 1].

Hence, a defining system in the stacky sense is naturally equivalent to a defining system
in the sense of [49]. Since the set of Massey products is parametrized by the set of
defining systems, it follows that indeed we have a natural bijection

〈G1,G2, . . . ,Gl〉 � 〈â1, â2, . . . , âl〉.

��

3.4 Properties of stacky Massey products

We will now consider properties of the stacky Massey products. Our setting allows
for these to be quite attractive and natural. The most immediate of those are direct
generalizations of classical ones. Later in this section we will see properties that are
more peculiar to the differential setting.Among the properties that the classicalMassey
products satisfy are the following (see [34,38]):

(i) Dimension The dimension of 〈x1, x2, . . . , xn〉 is∑ deg(xi ) − n + 2.
(ii) Naturality If f : X → Y is a continuous map and y1 . . . , yk ∈ H∗(Y ; R) such

that the k-fold Massey product 〈y1, y2, . . . , yk〉 is defined, then 〈x1, . . . , xk〉 =
〈 f ∗(y1), . . . , f ∗(yk)〉 is defined as a Massey product on the cohomology of X
and

f ∗(〈y1, . . . , yk〉) ⊂ 〈 f ∗(y1), . . . , f ∗(yk)〉.

(iii) Definedness The vanishing of the the lower Massey products is only a necessary
condition for the k-fold Massey product to be defined for k > 3. For k = 3 the
condition is both necessary and sufficient.

(iv) Slide relation If the Massey product 〈x1, x2, . . . , xn〉 is defined, then so is
〈x1, x2, . . . , r xi , . . . xn〉 for any r ∈ R. Moreover we have the relation

r〈x1, x2, . . . , xn〉 ⊂ 〈x1, x2, . . . , r xi , . . . xn〉.

These indeed extend to the stacky version.

Proposition 13 The stacky Massey products satisfy the following properties:

(i) Dimension: The dimension of 〈G1,G2, . . . ,Gl〉 is
∑

deg(Gi ) − l + 2.
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(ii) Naturality: If f : X → Y is a smooth map between manifolds and G1 . . . ,Gk ∈
Ĥ∗
D(X; Z) such that the k-fold Massey product 〈G1,G2, . . . ,Gk〉 is defined, then

〈G1, . . . ,Gk〉 = 〈 f ∗(G1), . . . , f ∗(Gk)〉 is defined as a Massey product on the
differential cohomology of X and

f ∗(〈G1, . . . ,Gk〉) ⊂ 〈 f ∗(G1), . . . , f ∗(Gk)〉.

(iii) Definedness: The vanishing of the the lower Massey products is only a necessary
condition for the k-fold Massey product to be defined for k > 3. For k = 3 the
condition is both necessary and sufficient.

(iv) Slide relation: If the Massey product 〈G1,G2, . . . ,Gn〉 is defined, then so is
〈G1,G2, . . . , mGi , . . .Gn〉 for any m ∈ Z. Moreover we have the relation

m〈G1,G2, . . . ,Gn〉 ⊂ 〈G1,G2, . . . , mGi , . . .Gn〉.

Proof Part 1 follows immediately from the definition. To prove part 2, note that the
functor [−,R] is contravariant, sending a map f : X → Y to its pullback

f ∗ : [Y,Ri j ] −→ [X,Ri j ].

Since the cup product is natural with respect to pullbacks, the induced morphism
f ∗ : N ([Y,Ri j ]) → N ([X,Ri j ]) descends to a morphism of sheaves of DGA’s

f ∗ : M([Y,Ri j ]) −→ M([X,Ri j ]).

It follows that if A is a formal connection in M([Y,Ri j ]), then f ∗(A) is a formal
connection in M([X,Ri j ]) satisfying the equation:

d f ∗(A) − f ∗(A) · f ∗(A) = f ∗(μ(A)) ∈ ker( f ∗(A)).

By definition of the k-fold Massey product, the claim follows. For part 3, we will
show that for k = 3 the condition is both necessary and sufficient. From theproof, itwill
be clear that this cannot be the case for higher products. Let G1, G2 and G3 be bundles
and suppose the triple product 〈G1,G2,G3〉 is defined. Then we have trivializations
φ1,2 and φ2,3 such that

dφ1,2 = G1 ∪ G2 and dφ2,3 = G2 ∪ G3.

Hence, both cup products are trivial. For the converse, it is clear that if both cup
products are trivial in cohomology, we can choose trivializing homotopies and form
the Massey triple product. For higher products, the higher trivializations depend on
the lower ones. In fact, for the fourfold product, choose trivializations φ1,2, φ2,3 and
φ3,4 of the cup products such that

G1 ∪ φ2,3 − φ1,2 ∪ G3 ∈ 〈G1,G2,G3〉
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is trivializable. Then for the fourfold Massey product to be defined, the other triple
product

G2 ∪ φ2,3 − φ3,4 ∪ G4 ∈ 〈G2,G3,G4〉

must be trivializable. But this may not be true, even if 〈G2,G3,G4〉 contains 0. Finally,
for part 4, let A be a formal connection of the form

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 G1 φ1,2 . . . ∗
0 G2 φ2,3 . . .

0 . . . . . . . . .

Gi−1 φi−1,i
Gi φi,i+1

Gi+1
. . . φn−2,n−1

Gn−1 φn−1,n
Gn
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Then the matrix

Ã =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 G1 φ1,2 . . . . . . mφ1,i . . . ∗
0 G2 φ2,3 . . . . . .

0 . . . . . . mφi−2,i . . .

Gi−1 mφi−1,i mφi−1,i+1 . . .

mGi mφi,i+1 mφi,i+2 . . . mφi,n
Gi+1 . . .

. . . φn−2,n−1
0 Gn−1 φn−1,n

0 Gn
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is also a formal connection: that is, a defining system for the Massey product
〈G1, . . . , mGi , . . . ,Gn〉. Indeed, let us write the matrix A as a block matrix

A =
⎛

⎜
⎝

A1 A2

0 A3

⎞

⎟
⎠.

Then the second matrix can be written

Ã =
⎛

⎜
⎝

A1 m A2

0 A3

⎞

⎟
⎠.
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Now the Maurer–Cartan equation for Ã reads

μ( Ã) =
⎛

⎜
⎝

d A1 md A2

0 d A3

⎞

⎟
⎠−

⎛

⎜
⎝

A1 m A2

0 A3

⎞

⎟
⎠

⎛

⎜
⎝

A1 m A2

0 A3

⎞

⎟
⎠

=
⎛

⎜
⎝

d A1 md A2

0 d A3

⎞

⎟
⎠−

⎛

⎜
⎝

A1A1 m(A1A2 + A2A3)

0 A3A3

⎞

⎟
⎠.

We would like to show that μ( Ã) is in ker( Ã). Since A satisfies the Maurer–Cartan
equation up to an element in the kernel

ker(A) =

⎛

⎜⎜⎜
⎝

. . . 0 ∗

. . . 0 0
...

...

⎞

⎟⎟⎟
⎠

, (3.11)

we must have d A1 = A1 · A1 and d A3 = A3 · A3. Since A is a formal connection, we
must also have

μ(A)2 = d A2 − (A1A2 + A2A3)

where μ(A)2 is the upper right block of μ(A) of dimension dim(A2). Since the only
nonzero term of μ(A) is the cochain representative of the Massey product τ , located
in the upper right corner of μ(A), we have that

μ( Ã)2 = md A2 − m(A1A2 + A2A3) = mμ(A)2

has one nonzero element σ = mτ in the upper right corner. Therefore, Ã is indeed a
formal connection and, at the level of cohomology, the only nonzero term of the class
[μ(A)] is [σ ] = m[τ ]. Since [τ ] was chosen to be an arbitrary element of the Massey
product 〈G1, . . . ,Gn〉, we have

m〈G1, . . . ,Gn〉 ⊂ 〈G1, . . . , mGi , . . .Gn〉.

��

Wenowdiscuss the relationship between the stackyMassey product and the singular
Massey product. The following parametrizes how forgetting the differential data on
the Massey product is not quite the same as taking the Massey product of cohomology
classes after forgetting the differential data on these.
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Proposition 14 Let Gi : �[0] → [X, B
ni,i+1U (1)conn], 1 ≤ i ≤ l, be higher bundles

on X with defined Massey product. Then precomposition with the forgetful morphism

I : B
nU (1)conn −→ B

n+1
Z,

induced by the map

Z

0

i
�0

0

· · · �n−1

d

Z
d

0 · · · 0,

yields singular cocycles with defined Massey product. Furthermore, we have

I 〈G1,G2,G3〉 ⊂ 〈I (G1), I (G2), I (G3)〉.

Proof For simplicitiy, we denote the sheaf of matrix algebras

Mdiff := M([X, B
∗U (1)conn])

Msing := M([X, B
∗
Z])

according to the corresponding cohomology theories for these matrices. It is clear by
definition that I respects the cup product structure, hence I induces a morphism of
sheaves of DGA’s I∗ : Mdiff → Msing. It follows immediately from the definition of
the Maurer–Cartan equation Definition 10, that formal connections are sent to formal
connections. Then passing to hypercohomology gives the result. ��
Remark 9 (i) It follows from the proposition that if the classical Massey prod-

uct 〈I (G1), I (G2), I (G3)〉 is zero then certainly the left hand side is zero, i.e.
〈G1,G2,G3〉 is in the kernel of the forgetful morphism I . From the sequence

�n−1/Im(d) → Ĥn I−→ Hn we have that 〈G1,G2,G3〉 will be an (n − 1)-form.
However, it is important to note that this is not quite the (n − 1)-form given by
the classical Massey product.

(ii) A related question is to ask whether the differential Massey product completely
refines the singular Massey product. That is: do we have a bijection,

I 〈G1,G2,G3〉 � 〈I (G1), I (G2), I (G3)〉 ?

Unfortunately, this cannot be possible. Essentially, this is because the map I∗ :
Mdiff → Msing has a nontrivial kernel. Hence we cannot expect the Maurer–
Cartan equation to hold after refining.

(iii) However, this does help explain the nature of differential Massey products. In
fact, since these products are always flat, it follows from diagram (2.7) that if the
refinement of a singular formal connection is again a formal connection, then the
singular Massey product must have been torsion.
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Wewill show that the failure of the refinement to satisfy theMaurer–Cartan equation
can be measured by the de Rham Massey product.

Lemma 15 Let Fi j → Ri j � Si j be a fibration sequence of abelian prestacks for
each i and j . Suppose, moreover, that we have commuting diagrams

Fi j ⊗ F jk Fik

Ri j ⊗ R jk Rik

Si j ⊗ S jk Sik .

∪

∪

∪

i ⊗ i

p ⊗ p

i

p

Then the induced sequence 0 → M(F) → M(R) � M(S) → 0 is a short exact
sequence of DGA’s.

Proof Since the normalizedMoore functor is rightQuillen and preserves equivalences,
it follows that it sends fiber sequences to fiber sequences. Hence, we have a diagram

N (Fi j ) ⊗ N (F jk) N (Fik )

N (Ri j ) ⊗ N (R jk ) N (Rik )

N (Si j ) ⊗ N (S jk ) N (Sik ),

∪

∪

∪

i ⊗ i

p ⊗ p

i

p

where the right hand side is a short exact sequence of presheaves of chain complexes.
By definition, it follows that we have a short exact sequence

0 → M(F) → M(R) � M(S) → 0

of chain complexes. By commutivity of the above diagram, both maps are homomor-
phisms of presheaves of DGA’s. ��

It follows from the lemma along with diagram (2.19), that there is a short exact
sequence of presheaves of bigraded rings

0 −→ M([X,�≤∗]) −→ Mdiff −→ Msing −→ 0. (3.12)

Hence, Mform := M([X,�≤∗]) is a two-sided ideal in Mdiff .
Now, by definition of ker(A) along with the above observation, we have

ker( Â) ⊂ k̂er(A),

where ̂ denotes a choice of differential refinement. In fact, for a matrix C ∈ ker( Â)

and C ′ ∈ k̂er(A′), we have that the difference C − C ′ = B ∈ Mform. It is this lack of
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commutativity between taking kernels and taking differential refinements that leads
to a nontrivial structure than might otherwise be anticipated.

Summarizing the previous observations gives the following theorem.

Theorem 16 Let A be a formal connection for Msing, and let Â be a differential refine-
ment of A with μ(A) a solution to the Maurer–Cartan equation. Then any differential
refinement μ̂(A) satisfies the twisted Maurer–Cartan equation

μ̂(A) = d Â − Â · Â ≡ B mod ker( Â), (3.13)

where B is some matrix in the ideal Mform.

Proof Since A is a formal connection, μ(A) satisfies

μ(A) = d A − A · A ≡ 0 mod ker(A).

Hence, any refinement must satisfy

μ̂(A) = D Â − Â · Â ≡ 0 mod k̂er(A),

where D = d + (−1)∗δ is the Čech–Deligne differential on Mdiff . Now by sequence
(3.12), we see that this is equivalent to existence of a matrix of forms B satisfying
(3.13). ��

In general, the Deligne–Beilinson cup product does not refine the de Rham wedge
product for the whole de Rham complex, but does so only for the top and bottom
degrees, as we have seen in Propositions 5 and 6. However, for the triple product the
only cup products that arise are between degree zero and degree one cocycles, so that
nothing is missed in passing to ∪DB . Consequently, for the case of the triple product,
the matrix B in the above example encodes the information needed to define the de
Rham Massey product. More precisely, we have the following.

Proposition 17 Let ai ∈ H∗(X, Z), i = 1, 2, 3, and let ι(a)i ∈ H∗
dR(X) denote the

inclusions into de Rham cohomology. Let

A =

⎛

⎜⎜
⎝

0 a1 φ1,2 ∗
0 0 a2 φ2,3
0 0 0 a3
0 0 0 0

⎞

⎟⎟
⎠ .

in Msing be a matrix of singular cochains defining a formal connection and let μ(A) be
the corresponding solution to the corresponding Maurer–Cartan equation. Then for
any differential refinement μ̂(A) of μ(A), the curvature R(μ̂(A)) is a de RhamMassey
product in 〈ι(a)1, ι(a)2, ι(a)3〉. If, in addition, μ̂(A) is a solution to the differential
Maurer–Cartan equation, then R(μ̂(A)) = 0 and μ(A) represents a torsion class.
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Proof Let ai , i = 1, 2, 3, be singular cochains of degree ni,i+1. Suppose that the triple
product is defined, and choose a defining system

A =

⎛

⎜⎜
⎝

0 a1 φ1,2 ∗
0 0 a2 φ2,3
0 0 0 a3
0 0 0 0

⎞

⎟⎟
⎠ .

Let

Â =

⎛

⎜⎜
⎝

0 â1 φ̂1,2 ∗
0 0 â2 φ̂2,3
0 0 0 â3
0 0 0 0

⎞

⎟⎟
⎠

be a refinement. Then we know that the refinement μ̂(A) satisfies the equation D Â =
Â · Â + B up to some element in ker( Â). Explicitly, letting B = (ηi j ), we have

Â=

⎛

⎜⎜
⎝

0 0 Dφ̂1,2 ∗
0 0 0 Dφ̂2,3
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0 η12 â1 ∪ â2 + η̂13 â1 ∪ φ̂2,3 − φ̂1,2 ∪ â3
0 0 η23 â1 ∪ â2 + η̂24
0 0 0 η34
0 0 0 0

⎞

⎟⎟
⎠ .

The requirement that this equation hold up to an element in ker( Â) forces the
equations

η12 = 0, Dφ̂1,2 = â1 ∪ â2 + η13,

η23 = 0, Dφ̂2,3 = â1 ∪ â2 + η24.

At the level of connections, the data provided by the right two equations reduces
to

dφ1,2 = b1 ∧ a2 + η13 (3.14)

dφ2,3 = b2 ∧ a3 + η24, (3.15)

where b1 and b2 are forms representing the connections with curvatures a1 and a2.
Now forming μ̂(A) gives the matrix

μ̂(A) =

⎛

⎜⎜
⎝

0 0 0 â1 ∪ φ̂2,3 − φ̂1,2 ∪ â3
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠ .
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Finally, applying the curvature map R to the only nonzero term gives

R
(

â1 ∪ φ̂2,3 − φ̂1,2 ∪ â3
)

= R(â1) ∧ R(φ̂2,3) − R( ˆφ1,2) ∧ R(â3)

= R(â1) ∧ R(â2 ∪ â3) + R(â1) ∧ η24

− (η13 ∧ R(â3) + R(â1 ∪ â2) ∧ R(â3)
)

= R(â1 ∪ (â2 ∪ â3)) + R(â1) ∧ η24 − η13 ∧ R(â3)

−R((â1 ∪ â2) ∪ â3)

= R(â1) ∧ η24 − η13 ∧ R(â3)

= a1 ∧ η24 − η13 ∧ a3.

Notice that it follows from Eqs. (3.14) and (3.15) that the last line represents a de
Rham Massey product (simply apply d to both sides of those equations). This proves
the first claim.

For the second, observe that if μ̂ solves the Maurer–Cartan equation, then we can
choose B = (ηi j ) = 0, and the curvature calculated above must vanish. ��

4 Applications

Wewill discuss our applications in this section, both from geometry and mathematical
physics. We will show howMassey products arise in various settings, both classically
and then in the newly constructed stacky form.

4.1 Trivializations for (higher) structures

In this section we will consider Massey products arising from characteristic classes,
hence associated with bundles or (higher) abelian gerbes. The refinedMassey products
will be associatedwith bundles or (higher) abelian gerbes together with connections on
them. We consider examples involving the Deligne derivative D, which in the setting
of the Čech–Deligne double complex, is given by D = d + (−1)kδ.

Example 10 Let π : E → M be a vector bundle equipped with connection ∇. Let
ĉ1(E,∇) be the Čech–Deligne cochain representing the differential refinement of the
charateristic form corresponding to the connection (see [9]). Suppose that ĉ1(E,∇)

is trivializable as a Čech–Deligne cochain and that moreover that there are cochains
â and b̂ such that ĉ1(E,∇) = â ∪ b̂. Since the class of ĉ1(E) vanishes in differential
cohomology, there is a Čech–Deligne cocycle Â, with curvature A, such that

D Â = ĉ1(E,∇) = â ∪ b̂. (4.1)

It was shown by Gomi [29] (see also [18]) that for a differential cohomology
classes â of odd degree n, we have the formula

[â ∪ â] = j i(Sqn−1(ā)). (4.2)
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Here, i is the map on cohomology induced via the representation as the square roots
of unity i : Z/2 → U (1) (see [9,29]), and j denotes the inclusion into differential
cohomology via the map in diagram (2.7) which raises the degree by 1. Let us assume
that a is divisible by 2 so that the mod 2-reduction is trivial and choose a trivializing
Čech cochain φ. Write ϕ = j i(φ). In this case, (4.2) implies the equation

D(ϕ) = j iδ(φ) = â ∪ â. (4.3)

Now the following matrix organizes the defining system given by Eqs. (4.1) and
(4.3):

⎛

⎜⎜
⎝

0 â ϕ

0 0 â Â
0 0 0 b̂
0 0 0 0

⎞

⎟⎟
⎠ .

Then an element of the Massey product 〈â, â, b̂〉 is given by the class of the Čech–
Deligne cochain

â ∪ Â − ϕ ∪ b̂,

which is an element in Ĥ2(E; Z).

The previous example can be generalized to higher Chern classes.

Example 11 Let E → M be a vector bundle with connection ∇. Suppose that at the
level of Čech–Deligne cochains, we have

ĉ2n−1(E,∇) = â2n−1 ∪ b̂2n−1 and D Â(4n−3) = ĉ2n−1(E,∇) = â2n−1 ∪ b̂2n−1,

(4.4)
so that ĉ2n−1(E,∇) is trivializable as a bundle equipped with connection. We also
assume that Sqn−1(ā2n−1) = 0, where ā is the mod 2 reduction of a. Then, as in
Example 10 we have â2n−1 ∪ â2n−1 = Dϕ, for some cochain ϕ [29]. We have

D(ϕ) = j i(Sqn−1(ā2n−1)) = â2n−1 ∪ â2n−1. (4.5)

Now the following matrix organizes the defining system given by Eqs. (4.4) and
(4.5):

⎛

⎜⎜
⎝

0 â2n−1 ϕ

0 0 â2n−1 Â(2n−1)

0 0 0 b̂2n−1
0 0 0 0

⎞

⎟⎟
⎠ ,

and an element of the Massey product 〈â2n−1, â2n−1, b̂2n−1〉 is given by the class

â2n−1 ∪ Â(2n−1) − ϕ ∪ b̂2n−1.

123



Massey products in differential cohomology via stacks 209

We now consider the more interesting trivializations of String, Fivebrane [46] and
Ninebrane structures [45]. In fact, what we will consider are slightly weaker versions,
i.e. the vanishing of the pi , i = 1, 2, 3, where pi is the i th Pontrjagin class rather
than the vanishing of the precise fractional classes. These differ from pi -structures by
the fact that we still require the lower Pontrjagin classes to vanish (see [45] for more
discussion). We will then in turn consider differential refinements of these structures,
leading to Massey products representing geometric String, Fivebrane and Ninebrane
structures, respectively.

Example 12 (Differential String structures and Chern–Simons theory) On a smooth
manifold M , viewed as a stack, consider a Spin bundle E with connection∇ character-
ized by a morphism of stacks ∇ : M → BSpin(n)conn, to the moduli stack of bundles
of rank n Spin bundles with Spin connections. At the level of classifying spaces, the
fractional Pontrjagin class appears as a map

p1
2 : BSpin(n) −→ B3U (1) � K (Z, 4)

which obstructs String orientability. There is a unique differential refinement of the
first Spin characteristic class p1

2 denoted p̂1
2 which gives a map at the level of moduli

stacks

p̂1
2 : BSpin(n)conn −→ B

3U (1)conn.

and captures the data of Chern–Simons theory (see [8,11,23–25,42,47,54]). Compos-
ing this map with with a map ∇ : M → BSpinconn giving a Spin bundle, equipped
with connection and resolving M by its Čech nerve gives a Čech–Deligne cochain
p̂1
2 (∇) on M . Suppose that the Spin bundle trivializes as a bundle with connection, i.e.

that we have p̂1
2 (∇) = 0 as a differential cohomology class. There are two interesting

cases that can arise in practice and we will treat these cases separately. Suppose that
p̂1
2 (∇) decomposes as a square of a Čech–Deligne cochain. That is, we have

p̂1
2 (∇) = â ∪DB â. (4.6)

Diagrammatically, we have

0

M

(â,â)

∇
BSpin(n)conn

p̂1
2

B
3U (1)conn,

BU (1)conn × BU (1)conn
∪DB

, (4.7)

where, by the trivialization condition (4.6), the lower diagram commutes strictly, and
when we pass to connected components π0Map(M, B

3U (1)conn) the map p̂1
2 is trivial,
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so that the upper part of the diagram commutes up to homotopy. A choice of homotopy
is precisely a trivializing Čech–Deligne 3-cochain B̂. Given two such cochains B̂ and
Ĉ , the difference is necessarily a cocycle since

D(B̂ − Ĉ) = p̂1
2 − p̂1

2 = 0.

Consider the defining system

⎛

⎜⎜
⎝

0 â B̂
0 0 â Ĉ
0 0 0 â
0 0 0 0

⎞

⎟⎟
⎠ .

The corresponding Massey product then takes the form

〈â, â, â〉 = B̂ ∪DB â − â ∪DB Ĉ = â ∪DB (B̂ − Ĉ). (4.8)

Thus we can identify the Massey product as a flat bundle which is built entirely out
of the trivializations of the Spin bundle with connection ∇. Another interesting case
happens when p̂1

2 decomposes as â ∪DB b̂. In this case, if the class of both â ∪DB â

and p̂1
2 vanish in differential cohomology, choosing local trivialization B̂ and Ĉ of

â ∪DB â and p̂1
2 (respectively) lead to the defining system

⎛

⎜⎜
⎝

0 â B̂
0 0 â Ĉ
0 0 0 b̂
0 0 0 0

⎞

⎟⎟
⎠ ,

and we get the Massey product

〈â, â, b̂〉 = B̂ ∪DB b̂ − â ∪DB Ĉ .

In this case the trivialization of the Spin bundle and the trivialization of the square
â ∪DB â combine to give a flat bundle representing the Massey product.

Remark 10 (i) Note that the above example can be extended to the casewhen the Spin
bundle has a different rank than the dimension of the manifold. In particular, this
holds for the stable case.

(ii) Note that (4.6) implies, in particular, that at the level of de Rham cohomology
we locally have d B2 = C S3(∇), where B2 is the connection on the bundle B̂.
This then can be viewed as a generalization of local trivialization of Chern–
Simons theory. Hence the Massey product is s bundle on E that is built out of
the trivializations, including those of Chern–Simons. Furthermore, the structure
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of the Massey product (4.8) indicates that, even though we have a trivialization
of Chern–Simon theory, we still have some secondary structure.5

(iii) Note that Example 12 generalizes in a similar fashion to the cases of differen-
tial Fivebrane [47] and differential Ninebrane structures [45] with trivializing

conditions on the characteristic classes given by p̂2
6 (∇) = DB̂6 = DĈ6 and

p̂3
240 (∇) = DB̂10 = DĈ10, respectively, with trivializing bundles B̂i �= Ĉi of

degree i . If p̂3
240 (∇) decomposes as the square â ∪DB â, the diagram (4.7) will

have the obvious modifications in degrees with the middle entry being replaced
by the appropriate structure, e.g.BStringconn for the case of a Fivebrane structure.
The trivialization of these structures a priori give rise to Chern–Simons theories
in dimension 7 and 11, respectively, as highlighted in [45,46]. In the current
setting, we will have trivializations of the Chern–Simons theories themselves
at the level of complete data of bundles with connections, and governed by the
corresponding Massey products, which would read the same as (4.8) but with
obvious changes in degrees.

Remark 11 (Transfer of Massey products)

(i) A natural question is whether one can relate the stackyMassey triple product to the
triple Deligne–Beilinson cup product. To that end, we recall the following from
[35] (the argument therewas for specific dimensions but it extends evidently to any
dimension). Consider Zn+1 as obtained from gluing two cobordisms together, i.e.
Zn+1 is an orientable compactmanifold and Y n is a submanifold of codimension 1
such that Zn+1−Y n has two connected components, each ofwhich is a cobordism.
Then from the Mayer-Vietoris sequence, there is a connecting (or transfer) map

T : Hk(Y n) −→ Hk+1(Zn+1). (4.9)

Now let a, b, c ∈ H∗(Zn+1) with restrictions a′, b′, c′ ∈ H∗(Y n), and suppose
further that the cup products vanish a′ ∪ b′ = b′ ∪ c′ = 0 ∈ H∗(Y n) so that the
Massey product is defined. Then, by considering the Poincaré dual chains, one
has that the transfer of the Massey product gives the triple product [35]

T 〈a′, b′, c′〉 = a ∪ b ∪ c mod indeterminacy, (4.10)

where the Massey product is taken in H∗(Y n), the product in H∗(Zn+1). The
indeterminacy can be taken as a ∪ z + x ∪c where z, x are cocycles in the opposite
connected components of Zn+1 − Y n . We propose generalizing this to our stacky
setting of differential cohomology.We expect that the connecting homomorphism
for differential cohomology takes the form

T : Hk−1(Y n, U (1)) −→ Ĥ k+1(Zn+1),

5 Note that Chern–Simons theory by itself can be viewed in a sense as a secondary structure, so the above
is a secondary structure (in one sense) on some other secondary structure. We plan to make this precise
elsewhere.

123



212 D. Grady, H. Sati

and sends the differential Massey product to the triple DB cup product (modulo
indeterminacy).

(ii) The Deligne–Beilinson triple cup product arises in the description of certain
Chern–Simons type field theories in [23,24]. The above then would be applied to
these theories, giving that theMassey triple product of three differential cohomol-
ogy elements on Zn+1 transfers to a triple cup product Chern–Simons theory (in
the sense of [23,24]) on Y n . We leave the details of checking this for the future.

4.2 Characteristic forms and anomaly cancellations

Presence of anomalies in a physical theory parametrizes towhich extent certain entities
are not (well) defined. Cancellation of these anomalies amounts to defining physical
entities in the right mathematical setting. The process often requires an extension of
a topological or geometric setting to a more refined one. For example, to be able to
talk about spinors, one has to set up the problem in the Spin bundle as opposed to the
tangent bundle. This requirement is obstructed by the second Stiefel–Whitney class,
and the structure itself leads to interesting geometry and topology. One important
instance of this is the Green–Schwarz anomaly cancellation condition required for
consistency of string theory, which from the mathematical point of view essentially
requires working on manifolds with a (twisted) String structure. See [26,46,48] for
readable accounts aimed at mathematicians.

A generic situation is as follows. Consider a bundle P with curvature F on a
manifold M . Let ci (P) be a characteristic class of degree i and let ci (F) be the
corresponding characteristic form. Consider the conditions in cohomology ci (P) ∪
c j (P) = 0 and c j (P) ∪ ck(P) = 0. Then at the level of characteristic forms we have
the trivializations via differential forms α and β of the indicated degrees

ci (F) ∧ c j (F) = dα(i+ j−1), c j (F) ∧ ck(F) = dβ( j+k−1). (4.11)

We build the composite differential form

μ = ci (F) ∧ β( j+k−1) + (−1)i−1α(i+ j−1) ∧ ck(F) ∈ �i+ j+k−1(M),

which is directly verified to be closed. This then allows us to form the Massey triple
product of the corresponding cohomology classes

〈ci (P), c j (P), ck(P)〉 ∈ Hi+ j+k−1(M; Z).

Notice that we can consider conditions analogous to (4.11) in differential cohomol-
ogy

ĉi (F) ∪ ĉ j (F) = Dα̂(i+ j−1), ĉ j (F) ∪ ĉk(F) = Dβ̂( j+k−1), (4.12)

requiring not only that the characteristic forms vanish, but that the corresponding
bundles trivialize as bundles with connection. In this case, we can form the bundle
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(differential cochain)

μ̂ = ĉi (F) ∪ β̂( j+k−1) + (−1)i−1α̂(i+ j−1) ∪ ĉk(F) ∈ Map(M, B
i+ j+k−2U (1)conn),

(4.13)
which is an element in

〈ĉi (P), ĉ j (P), ĉk(P)〉 ∈ Ĥ i+ j+k−1(M; Z). (4.14)

We summarize the above.

Proposition 18 Given a system (4.12) of trivializations of products of differential
characteristic classes, we can build the stacky Massey product given by (4.13).

Wenowprovide an application of this direct but fairly general observation. Consider
a 10-dimensional manifold X10 with metric g on which there is a vector bundle with
connection A. One can consider the setting in families, i.e. take a bundle E with
fiber X10 and base a parameter space and then integrate over the fiber to get a class
on the parameter space (see [26] for beautiful constructions). We will not do all this
but simply just set up integral expressions which will suffice for our purposes. The
Green–Schwarz anomaly polynomials are given as

I4 = p1(g) − ch2(A),

I8 = −ch4(A) + 1
48 p1(g)ch2(A) − 1

64 p1(g)2 + 1
48 p2(g).

In [47] the first polynomial I4 is interpreted as giving rise to a twisted String
structure, and the indecomposable terms p2(g) and ch2(A) in I8 are interpreted as
giving rise (essentially) to a Fivebrane structure and its twist, respectively. Their
trivializations H3 and H7 provide trivializations of String and Fivebrane structures,
respectively. A question remained on how to interpret the decomposable terms in I8,
namely 1

48 p1(g)ch2(A) and − 1
64 p1(g)2. We provide one interpretation of the cor-

responding trivializations, which fits well within our context. Consider the situation
when [p1 ∪ ch2] = 0 = [p1 ∪ p1], i.e.

ch2(A) ∧ p1(g) = dα7(A, g), p1(g) ∧ p1(g) = dβ7(g), (4.15)

and build the differential form

μ11 = ch2(A) ∧ β7(g) − α7(A, g) ∧ p1(g). (4.16)

This form is closed by virtue of (4.15). Therefore, we can form the Massey triple
product

〈ch2, p1, p1〉 ∈ H11(E; Z). (4.17)

As expected, the previous discussion refines to differential cohomology. Let X10

be as before. Since we are fixing a Riemannian metric on X10 and equipping the

123



214 D. Grady, H. Sati

vector bundle with a connection A, it follows by uniqueness of characteristic forms
(see [9,50]) that we have unique differential refinements

Î4 = p̂1(g) − ĉh2(A), (4.18)

Î8 = −ĉh4(A) + 1
48 p̂1(g)ĉh2(A) − 1

64 p̂1(g)2 + 1
48 p̂2(g). (4.19)

We now consider the situation when these bundles trivialize as bundles with con-
nections: [ p̂1 ∪ ĉh2] = 0 = [ p̂1 ∪ p̂1], so that expressions (4.15) get replaced by

ĉh2(A) ∧ p̂1(g) = Dα̂7(A, g), p̂1(g) ∧ p̂1(g) = Dβ̂7(g).

We then build the bundle

μ̂11 = ĉh2(A) ∪ β̂7(g) − α̂7(A, g) ∪ p̂1(g) ∈ Map(X10, B
10U (1)conn), (4.20)

which is a representative of the Massey triple product

〈ĉh2, p̂1, p̂1〉 ∈ Ĥ11(E; Z). (4.21)

Therefore, we have the following

Proposition 19 The mixed terms in the Green–Schwarz anomaly polynomials (4.18),
(4.19) give rise to a stacky Massey product given by the top class (4.21).

It is interesting to note the form of the connection on the bundle μ̂. Using the
formula for the DB cup product, we see that the connection is

C S3(A) ∧ C S3(g) ∧ p1(g) − α7(A, g) ∪ p1(g), (4.22)

which we will make use of below (see Proposition 21).

Fiber integration of Massey products and anomaly line bundles In [23,24], a fiber
integration map was defined by taking the usual fiber integration in cohomology,
lifting to differential cohomology and then lifting to the internal hom in sheaves of
positively graded chain complexes to produce a map

∫

�k
− : [N (C({Ui }), Z

∞
D [n]] −→ Z

∞
D [n − k].

Here �k is a paracompact manifold of dimension k and C({Ui }) is the Čech nerve
corresponding to a good open cover of �k . The lifts are provided by the construction
of Gomi and Terashima in [30]. Post-composing with the quasi-isomorphism provided
by the exponential and applying the Dold–Kan functor gives a morphism of stacks in
the form of holonomy

hol�k := exp

(
2π i
∫

�k

−
)

: [�k, B
nU (1)conn] −→ B

n−kU (1)conn. (4.23)
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Again in [23,24], it was observed that the abelian Chern–Simons action functional
can be described by post-composing the cup product morphism with this holonomy
map. In particular, for amanifold�4k+3, this composite induces an intersection pairing
on differential cohomology

(x̂, ŷ) −→ exp

(
2π i
∫

�4k+3
x̂ ∪ ŷ

)
. (4.24)

For k = 0 and ŷ = x̂ , this pairing gives the usual Chern–Simons action. We now
would like to describe how to lift this morphism to theMassey product (when defined).
In fact, when the differential Massey product is defined, we have a map

〈x̂, ŷ, ẑ〉U : �k × U −→ B
n1+n2+n3+2U (1)conn, (4.25)

which is natural in any test space U . Hence, we can apply the fiber integration map.
Since Massey products necessarily define flat bundles, we see immediately that we
have the following.

Proposition 20 The integration over the fiber of the differential Massey product (4.25)
can be identifies with a map

e
(
2π i
∫
�k 〈x̂,ŷ,ẑ〉)

U : U −→ B
n1+n2+n3+2−kU (1)conn,

which is natural in U. Moreover, this map defines a flat bundle on U, and the map
factors through the inclusion

j : �Bn1+n2+n3+2−kU (1) ↪→ B
n1+n2+n3+2−kU (1)conn.

Remark 12 (i) The above construction can be generalized to higherMassey products,
aswe canfiber integrate anydifferential cohomology class of anydegree, including
those that are Massey products.

(ii) The notation e
(
2π i
∫
�k 〈x̂,ŷ,ẑ〉) is slightly abusive, since this map may not be well-

defined on the entireMassey product (due to indeterminacy).What we reallymean
here is an element of the Massey product.

In particular, when x̂ , ŷ and ẑ come as characteristic forms, they are given by
morphisms of stacks; e.g.

x̂ : [�k, BGconn] −→ [�k, B
n1U (1)conn],

which gives a natural assignment of differential cohomology classes as we vary the G-
principal bundle with connection on �k [23]. In this case, after choosing trivialization
of x̂ ∪DB ŷ and ŷ ∪DB ẑ, fiber integration gives the morphism of stacks

e
(
2π i
∫
�k :〈x̂,ŷ,ẑ〉) : [�k, BGconn] −→ �Bn1+n2+n3+2−kU (1). (4.26)
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One interesting instance of this morphism comes from the previous example of
Green–Schwarz anomaly polynomials. That is, we are interested in the triple product
〈ĉh2, p̂1, p̂1〉. In this case, we get a morphism

e

(
2π i
∫

X10 〈ĉh2, p̂1, p̂1〉
)

: [X10, BGconn] −→ �B10−10U (1) = U (1)δ, (4.27)

from the moduli stack of bundles on X10 equipped with connection to smooth U (1)-
valued functions. It is useful to unwind this map at the level of connections. Indeed,
noting (4.22), we have at that level:

Proposition 21 The connection on the bundle prescribed by (4.26) is given by the
form

∫

X10
C S3(A) ∧ C S3(g) ∧ p1(g) − α7(A, g) ∪ p1(g).

Remark 13 (i) The exponential of the functional on the right, beingbuilt out ofChern–
Simons forms, is indeed in U (1).

(ii) As the structure of the functional in the proposition involves a product of two
Chern–Simons forms, this suggests a formulation where X10 is viewed as a man-
ifold of corners of codimension two, in the sense of the setting in [43,44]. We
hope to take up this point of view elsewhere.

4.3 Twisted cohomology and twisted Bianchi identities

We consider the Ramond–Ramond (RR) fields in type IIA string theory on a ten-
dimensional manifold X10 with a B-field, whose curvature is a closed three-form H3.
The RR fields of various degrees can be combined into the expressionF =∑5

i=0 F2i ,
and satisfy the twisted Bianchi dFn + H3 ∧ Fn−2 = 0. In components,

H3 ∧ F0 = −d F2, H3 ∧ F2 = −d F4, H3 ∧ F4 = −d F6,

H3 ∧ F6 = −d F8, H3 ∧ F8 = −d F10, d F0 = 0 = d F10. (4.28)

Remark 14 From these we will build expressions of degree ten.

(i) Considering the first and fifth expressions in (4.28), we can set up the top differ-
ential form

μ = F0 ∧ F10 + F2 ∧ F8.

This is closed bydimension reasons, so thatwe can form the tripleMassey product

〈F0, H3, F8〉 ∈ H10(X10; Z).

123



Massey products in differential cohomology via stacks 217

(ii) Considering the second and fourth expressions in (4.28), we build the top form

μ′ = F2 ∧ F8 + F4 ∧ F6.

This is closed again by dimension reasons, and we can build the triple Massey
product

〈F2, H3, F6〉 ∈ H10(X10; Z).

We now would like to refine the previous discussion to differential cohomology.
Notice that since d F2i �= 0, we cannot simply put hats everywhere and expect the
equations to hold at the level of ordinary differential cohomology. Consequently, there
are two directions we can go. First, we could try to form Massey products in twisted
differential cohomology, which is outside the scope of the present paper. Second,
we can view the F2i ’s as improved gauge invariant field strengths corresponding to
potentials C2i−1 with curvatures G2i , which are not gauge invariant. We will expand
on this latter point of view. To this end, we require that the potentials C2i−1 satisfy

dCn + H3 ∧ Cn−2 = 0. (4.29)

Notice that this equation implies that the improved field strengths F2i vanish, by
definition. Combining the potentials into the single potential C = ∑3

i=0 C2i−1 we
have, by assumption, the equations

H3 ∧ C1 = −dC3, H3 ∧ C3 = −dC5, H3 ∧ C5 = −dC7. (4.30)

These equations can be viewed as conditions on the connections for differential
refinements of the field strengths G2i . Indeed, the full differentially refined equations
read

Ĥ3 ∪ Ĝ2 = −DĜ4, Ĥ3 ∪ Ĝ4 = −DĜ6, Ĥ3 ∪ Ĝ6 = −DĜ8. (4.31)

(i) Considering the first and third expressions in (4.31), we can form the bundle

μ̂ = Ĝ2 ∪ Ĝ8 + Ĝ4 ∪ Ĝ6,

with higher connection

C1 ∧ G8 + C3 ∧ G6 = C1 ∧ H3 ∧ C5 + C3 ∧ H3 ∧ C3. (4.32)

This bundle is an element in the stacky Massey triple product

〈Ĝ2, Ĥ3, Ĝ6〉 ∈ Ĥ10(X10; Z). (4.33)
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(ii) Considering instead the first and second expressions in (4.31), we form the higher
bundle

μ̂′ = Ĝ4 ∪ Ĝ6 + Ĝ4 ∪ Ĝ4.

with higher connection

C3 ∧ G6 + C5 ∧ G4 = C3 ∧ H3 ∧ C3 + C5 ∧ H3 ∧ C1. (4.34)

This is an element in the stacky triple Massey product

〈Ĝ4, Ĥ3, Ĝ4〉 ∈ Ĥ10(X10; Z). (4.35)

Proposition 22 The system of twisted Bianchi identities for the differential RR fields
leads to two higher bundles with connections (4.32) and (4.34) which are elements in
the stacky Massey products in top degree (4.33) and (4.35), respectively.

It would be interesting to investigate the implications of these expressions to string
theory. For now we just observe that, essentially and up to signs, μ1 and μ2 are part
of the couplings that arise in calculating the topological partition function of the RR
fields (in the case when H3 = 0) [4,15]. While we do not pursue this here, we expect
μ̂1 and μ̂2 to be relevant for the calculation of the partition function in the twisted
differential case, Ĥ3 �= 0, as well, extending the twisted topological case in [39,40].

4.4 Quadruple Massey products

We now consider a setting inspired by type IIB string theory. The main feature of
this theory that concerns us here is that it has fields of odd degree, where the degree
three play a somewhat special role. Consider four fields as cohomology classes h(i)

3 ∈
H3(X; Z), i = 1, . . . , 4, on a ten-dimensional manifold X10, and consider analogues
of three composite (Ramond–Ramond) fields F ( j)

5 , j = 1, 2, 3, such that

h(1)
3 ∧ h(2)

3 = −d F (3)
5 , h(2)

3 ∧ h(3)
3 = −d F (1)

5 , h(3)
3 ∧ h(4)

3 = −d F (2)
5 .

Then there are further composite (again analogues ofRamond–Ramond) fields F (i)
7 ,

i = 1, . . . , 4, such that

F (3)
5 ∧ h(3)

3 = −d F (3)
7 , h(1)

3 ∧ F (1)
5 = −d F (1)

7 ,

F (1)
5 ∧ h(4)

3 = −d F (4)
7 , h(2)

3 ∧ F (2)
5 = −d F (2)

7 .

Then we will end up (see below) having the Massey quadruple product as the
integer

〈h(1)
3 , h(2)

3 , h(3)
3 , h(4)

3 〉 := −F (3)
7 ∧ h(4)

3 − F (1)
7 ∧ h(4)

3 − F (3)
5 ∧ F (2)

5

+ h(1)
3 ∧ F (4)

7 + h(1)
3 ∧ F (2)

7 ∈ H10(X10; Z) ∼= Z.
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We now elaborate on the above. We first start with the triple Massey product in
the current IIB string theory inspired context. Let [h(i)

3 ] ∈ H3(X10) (i = 1, 2, 3) be

non-zero cohomology classes such that [h(1)
3 ]∪ [h(2)

3 ] = 0 and [h(2)
3 ]∪ [h(3)

3 ] = 0. For

the cocycle representatives h(i)
3 , write

h(1)
3 ∪ h(2)

3 = d F (1)
5 and h(2)

3 ∪ h(3)
3 = d F (2)

5 . (4.36)

Notice that from these two equations one gets immediately that d(F (1)
5 ∪ h(3)

3 +
h(1)
3 ∪ F (2)

5 ) = 0 by a straightforward application of the Leibnitz rule. This can then
be used to define the triple Massey product as the subset of H8(X10) given by

〈[h(1)
3 ], [h(2)

3 ], [h(3)
3 ]〉 =

{[
F (1)
5 ∪ h(3)

3 + h(1)
3 ∪ F (2)

5

]}
, (4.37)

where h3 and F5 run over all possible choices above. The indeterminacy in the choice
of the representative w = h(1)

3 ∪ F (2)
5 + F (1)

5 ∪ h(3)
3 for the triple product lies in the

ideal
(
[h(1)

3 ], [h(2)
3 ]
)
.

In order to connect with the Massey 4-fold product, it is good to rewrite the triple
product in matrix form. The classes [h(i)

3 ] and the elements F (i)
5 can be encoded in a

matrix form ⎛

⎜⎜
⎝

0 a11 a22
0 a22 a23

0 a33
0

⎞

⎟⎟
⎠ =

⎛

⎜⎜⎜
⎝

0 h(1)
3 F (1)

5
0 h(2)

3 F (2)
5

0 h(3)
3
0

⎞

⎟⎟⎟
⎠

. (4.38)

The defining properties of the Massey triple product can be expressed in a matrix
multiplication as

d

⎛

⎜⎜⎜
⎝

0 h(1)
3 F (1)

5
0 h(2)

3 F (2)
5

0 h(3)
3
0

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜
⎝

0 0 h(1)
3 h(2)

3

0 0 h(2)
3 h(3)

3
0 0

0

⎞

⎟⎟
⎠ ,

⎛

⎜⎜⎜
⎝

0 h(1)
3 F (1)

5
0 h(2)

3 F (2)
5

0 h(3)
3
0

⎞

⎟⎟⎟
⎠

2

=
⎛

⎝
0 0 h(1)

3 h(2)
3 h(1)

3 F (2)
5 + F (1)

5 h(3)
3

0 0 h(2)
3 h(3)

3
0 0

⎞

⎠ . (4.39)

Now in order to go one step further to the quadruple (or 4-fold) product, we need
to satisfy certain conditions on the triple product, in analogy to saying that higher
obstructions arise only once the lower ones vanish. So in our case, we first need to
assume that we can complete our set by adding two more elements, a fourth h(4)

3 and

a third F (3)
5 , such that

d F (3)
5 = h(3)

3 ∪ h(4)
3 . (4.40)
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Besides the above representative w, we then have a second representative for the
triple product and is given by z = h(2)

3 ∪ F (3)
5 + F (2)

5 ∪ h(4)
3 , namely representing

〈[h(2)
3 ], [h(3)

3 ], [h(4)
3 ]〉. The condition to be able to define the quadruple product is that

both triple products vanish simultaneously, i.e. that both cohomology representatives
w and z can be chosen as coboundaries, which we write asw = d F (1)

7 and z = d F (2)
7 .

We are now ready to define the 4-fold or quadruple Massey product. In analogy
to the triple product, we start with the Eqs. (4.36) and (4.40), and then write the two
cocycles of degree eight

d F (1)
7 = h(1)

3 ∪ F (2)
5 + F (1)

5 ∪ h(3)
3 and d F (1)

7 = h(2)
3 ∪ F (3)

5 + F (2)
5 ∪ h(4)

3 ,

from which we get a cocycle

x = h(1)
3 ∪ F (2)

7 + F (1)
5 ∪ F (2)

5 + F (1)
7 ∪ h(4)

3 , (4.41)

of degree ten.

Remark 15 (i) Again, we define the quadruple Massey product
〈[h(1)

3 ], [h(2)
3 ], [h(3)

3 ],
[h(4)

3 ]〉 as a collection of all cohomology classes [x] ∈ H10(X10) that we can
obtain by the above procedure.

(ii) The indeterminacy is best presented as the matrix triple product of certain ele-

ments, namely of (h(1)
3 , H5(X10)),

(
h(2)
3 H5(X10)

0 h(3)
3

)

, and

(
H5(X10)

h(4)
3

)
.

We now generalize this construction to differential cohomology. To produce the
desired products, we again view the F (i)

5 and F (i)
7 as improved, gauge invariant field

strengths and denote the corresponding potentials as C (i)
4 and C (i)

6 , with curvatures

G(i)
5 and G(i)

7 . We now lift everything to the level of differential cohomology, which
yields the equations

ĥ(1)
3 ∪ ĥ(2)

3 = −DĜ(3)
5 , ĥ(2)

3 ∪ ĥ(3)
3 = −DĜ(1)

5 , ĥ(3)
3 ∪ ĥ(4)

3 = −DĜ(2)
5 , (4.42)

and

Ĝ(3)
5 ∪ ĥ(3)

3 = −DĜ(3)
7 , ĥ(1)

3 ∪ Ĝ(1)
5 = −DĜ(1)

7 ,

Ĝ(1)
5 ∪ ĥ(4)

3 = −DĜ(4)
7 , ĥ(2)

3 ∪ Ĝ(2)
5 = −DĜ(2)

7 . (4.43)

The connection on the higher bundle is calculated as follows. Set

A := −C (3)
6 ∧ h(4)

3 − C (1)
6 ∧ h(4)

3 − C (3)
4 ∧ G(2)

5 + b(1)
2 ∪ G(4)

7 + b(1)
2 ∪ G(2)

7

= −C (3)
6 ∧ h(4)

3 − C (1)
6 ∧ h(4)

3 .
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Then, by writing the higher components in the last three terms via lower components,
we get

A = −C (3)
6 ∧ h(4)

3 − C (1)
6 ∧ h(4)

3 − C (3)
4 ∧ b(3)

2 ∧ h(4)
3 + b(1)

2 ∧ C (1)
4 ∧ h(4)

3

+ b(1)
2 ∧ b(2)

2 ∧ b(3)
2 ∧ h(4)

3 . (4.44)

Here b(i)
2 denotes a local potentials for the forms h(i)

3 . Therefore, we have the
following description as phase or holonomy.

Proposition 23 The system (4.42), (4.43) leads to the stacky Massey quadruple prod-
uct

〈ĥ(1)
3 , ĥ(2)

3 , ĥ(3)
3 , ĥ(4)

3 〉 := −Ĝ(3)
7 ∪ ĥ(4)

3 − Ĝ(1)
7 ∪ ĥ(4)

3 − Ĝ(3)
5 ∪ Ĝ(2)

5

+ ĥ(1)
3 ∪ Ĝ(4)

7 + ĥ(1)
3 ∪ Ĝ(2)

7 ∈ Ĥ10(X10; Z),

viewed as a higher bundle whose connection A is given by (4.44).

The discussion using matric Massey products carries over to differential cohomol-
ogy in a similar fashion. We also leave the discussion on the physical impact of the
above constructions to a separate treatment.

Acknowledgements The authors would like to thankDomenico Fiorenza andUrs Schreiber for very useful
discussions and comments, Chris Kapulkin for a useful comment on the first version of the manuscript, and
the referee for a careful reading of the manuscript and for many useful suggestions.

References

1. Babenko, I.K., Taimanov, I.A.: Massey products in symplectic manifolds. Sb. Math. 191, 1107 (2000).
arXiv:math.SG/9911132

2. Bär, C., Becker, C.: Differential Characters. Lecture Notes in Mathematics, vol. 2112. Springer, Berlin
(2014)

3. Beilinson,A.:Notes onAbsoluteHodgeCohomology,Applications ofAlgebraicK-theory toAlgebraic
Geometry andNumberTheory, Part I, II, Contemp.Math., vol. 55.Amer.Math. Soc., Providence (1986)

4. Belov, D.M., Moore, G.W.: Type II actions from 11-dimensional Chern–Simons theories.
arXiv:hep-th/0611020

5. Boardman, M., Vogt, R.: Homotopy Invariant Algebraic Structures on Topological Spaces, Springer
Lect. Notes Math., vol. 347. Springer, Berlin (1973)

6. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Springer, Berlin (1982)
7. Brylinski, J.: Loop Spaces, Characteristic Classes and Geometric Quantization. Progress in Mathe-

matics, vol. 107. Birkhäuser, Boston (2008)
8. Bunke, U.: String structures and trivialisations of a Pfaffian line bundle. Commun. Math. Phys. 307,

675 (2011). arXiv:0909.0846 [math.KT]
9. Bunke, U.: Differential cohomology. arXiv:1208.3961v6 [math.AT]

10. Bunke, U., Schick, Th: Uniqueness of smooth extensions of generalized cohomology theories. J. Topol.
3(1), 110–156 (2010). arXiv:0901.4423

11. Carey, A.L., Johnson, S., Murray, M.K., Stevenson, D., Wang, B.-L.: Bundle gerbes for Chern–Simons
andWess–Zumino–Witten theories. Commun.Math. Phys. 259, 577–613 (2005). arXiv:math/0410013
[math.DG]

12. Cheeger, J., Simons, J.: Differential Characters and Geometric Invariants, Lecture Notes in Math., vol.
1167, pp. 55–90. Springer, New York (1985)

123

http://arxiv.org/abs/math.SG/9911132
http://arxiv.org/abs/hep-th/0611020
http://arxiv.org/abs/0909.0846
http://arxiv.org/abs/1208.3961v6
http://arxiv.org/abs/0901.4423
http://arxiv.org/abs/math/0410013


222 D. Grady, H. Sati

13. Chen, K.T.: Free subalgebras of loop space homology and Massey products. Topology 11(3), 237–243
(1972)

14. Chen, K.T.: Connections, holonomy and path space homology. In: Differential geometry (Proc. Sym-
pos. Pure Math., Vol. XXVII, Part 1, Stanford Univ., Stanford, Calif., 1973), pp. 39–52. Amer. Math.
Soc., Providence (1975)

15. Diaconescu, E., Moore, G., Witten, E.: E8 gauge theory, and a derivation of K-theory from M-theory.
Adv. Theor. Math. Phys. 6, 1031–1134 (2003). arXiv:hep-th/0005090

16. Deligne, P.: Théorie de Hodge II. IHES Pub. Math. 40, 5–57 (1971)
17. Deligne, P., Freed, D.S.: Classical field theory. In: Quantum Fields and Strings: A Course for Mathe-

maticians, vol. 1 (Princeton, NJ, 1996/1997), pp. 137–225. Amer. Math. Soc., Providence (1999)
18. Deligne, P., Griffiths, P., Morgan, J., Sullivan, D.: The real homotopy theory of Kähler manifolds.

Inventiones Math. 29, 245–254 (1975)
19. Deninger, C.: Higher order operations in Deligne cohomology. InventionesMath. 122, 289–315 (1995)
20. Dugger, D., Hollander, S., Isaksen, D.: Hypercovers and simplicial presheaves. Math. Proc. Camb.

Philos. Soc. 136(1), 9–51 (2004)
21. Dugger, D., Isaksen, D.: Weak equivalences of simplicial presheaves. Contemp. Math. 346, 97–113

(2004). (Amer. Math. Soc., Providence, RI)
22. Esnault, H., Viehweg, E.: Deligne–Beilinson cohomology. In: Beilinson’s Conjectures on Special

Values of L-functions, Perspect. Math., vol. 4, pp. 43–91. Academic Press, Boston (1988)
23. Fiorenza, D., Sati, H., Schreiber, U.: Extended higher cup-product Chern–Simons theory. J. Geom.

Phys. 74, 130–163 (2013). arXiv:1207.5449 [hep-th]
24. Fiorenza, D., Sati, H., Schreiber, U.: A higher stacky perspective on Chern–Simons theory. In: Calaque,

D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories. Springer, Berlin (2015).
arXiv:1301.2580 [hep-th]
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