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Abstract This is the first in a series of papers constructing geometric models of
twisted differential K -theory. In this paper we construct a model of even twisted
differential K -theory when the underlying topological twist represents a torsion class.
By differential twists we will mean smooth U (1)-gerbes with connection, and we use
twisted vector bundles with connection as cocycles. The model we construct satisfies
the axioms of Kahle and Valentino, including functoriality, naturality of twists, and the
hexagon diagram. This paper confirms a long-standing hypothetical idea that twisted
vector bundles with connection define twisted differential K -theory.
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1 Introduction

There has been a considerable interest in twisted and differential refinements of
generalized cohomology theories. Several aspects of topology, geometry, analysis,
and physics coalesce in this area, and it has provided interesting applications of
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144 B. Park

∞-categorical machinery nicely packaged by ∞-sheaves of spectra on the site of
smooth manifolds. (See [5,6] for example.)

One important question in generalized cohomology theories is whether one can
represent an element of a given generalized cohomology theory of a space using
geometric cocycles. For instance, an element of the singular cohomology group of
a space can be represented by a singular cocycle in the space, and elements in the
complex K -theory of a space can be represented by complex vector bundles over
that space. However, geometric models are still unknown for most other cohomology
theories such as topological modular forms, and even less is known for their twisted
and differential refinements. This paper is the first in a series of papers to answer this
question for the case of differential refinements of twisted complex K -theory.

Twisted K -theory was first introduced by Donovan and Karoubi in [10], where
twists represent torsion classes in degree 3 integral cohomology, and Rosenberg [23]
for all classes. More recently twisted K -theory has received much attention because of
its applications in classifying D-brane charges in string theory [27], Verlinde algebras
[12], and topological insulators [14].

An archetype of differential K -theory first appeared in Karoubi [18] as the multi-
plicative K -theory. This is nowadays known as the flat subgroup of the differential
K -theory. Lott [21] used Karoubi’s construction to develop an index theorem, but it
was mostly applications in string theory that have rekindled a considerable interest in
differential K -theory (see Freed [11] for example). Perhaps one of the most remark-
able steps forward in differential cohomologies is due to Hopkins and Singer [16]
wherein they construct a differential extension of any exotic cohomology theory in a
homotopy-theoretic way. Following this work, Bunke and Schick [7], Freed and Lott
[13], Klonoff [20], Simons and Sullivan [24], and Tradler et al. [25,26] all came up
withmore concrete and geometricmodels of differential K -theory. For amore detailed
survey on recent developments of differential K -theory, we refer the reader to Bunke
and Schick [8].

There have been some attempts to twist differential K -theory. Carey et al. [9] gave
a construction that satisfies the square diagram and short exact sequences. Kahle and
Valentino [17], in an attempt to precisely formulate the T -duality forRamond–Ramond
fields in the presence of a B-field, gave a list of axioms for twisted differential K -
theory, which can be generalized as axioms for any twisted differential cohomology
theory. They construct a canonical differential twist for the differential K -theory of the
total space of any torus bundle [17, Section 2.2]. However, a construction of twisted
differential K -theory that satisfies Kahle–Valentino axioms had not been found until
very recently: in 2014, Bunke and Nikolaus [5] constructed a differential refinement
of any twisted cohomology theory. Their construction of twisted differential K -theory
satisfies several properties we would expect, including all Kahle–Valentino axioms,
except the push-forward axiom which is not addressed in [5]. The construction of
Bunke and Nikolaus provides a correct model for twisted differential cohomology
theory in that their model combines twisted cohomology groups and twisted differen-
tial forms in a homotopy theoretic way, analogous to what Hopkins and Singer did in
the untwisted case. However, the Bunke–Nikolaus model is not very geometric just as
the Hopkins–Singer model is not. We might hope that there exists a more geometric
model for a twisted differential cohomology theory, at least in the case of K -theory.
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Geometric models of twisted differential K -theory I 145

The goal of this paper is to construct such a geometric model of twisted differential
even K -theory in the case that the underlying topological twists represent torsion
classes in degree 3 integral cohomology. We use U (1)-gerbes with connection as
differential twists and twisted vector bundles with connection as cycles. We also have
constructed a twisted differential K -theory for both torsion and non-torsion twistings
using lifting bundle gerbes with connection and curving as differential twists and Utr-
bundle gerbe modules with connection (due to Bouwknegt et al. [3]) as cycles, which
will be discussed in the second paper of this series. Both of our models satisfy all of
the Kahle-Valentino axioms except the push-forward axiom which, together with a
model of odd twisted differential K -theory, will be discussed in subsequent papers.

This paper is organized as follows. In Sect. 2, we review twisted vector bundles and
set up some notation. Section 3 constructs the twisted Chern character form and the
twisted Chern-Simons form. We also verify several properties which will be needed
in later sections. Section 4 defines differential twists and constructs an even twisted
differential K -group. We then show that our construction is functorial, natural with
respect to change of differential twist, define maps into and out of the twisted differen-
tial K -groups, and verify that our model fits into a twisted analogue of the differential
K -theory hexagon diagram à la Simons and Sullivan [24].

Having constructed geometric models of the even twisted differential K -theory, a
natural question arises: “Is there a map between our geometric model and the Bunke–
Nikolaus model?” Bunke et al. [6] answered this question for the case of untwisted
differential K -theory. In this case, there is a way to obtain a sheaf of spectra on the site
of smooth manifolds using the symmetric monoidal category of vector bundles with
connection. In [6], they obtain a map between this sheaf of spectra into a Hopkins-
Singer sheaf of spectra by the universal property of the pullback. The induced map
between abelian groups is called a cycle map. Constructing a twisted analogue of the
cycle map along this vein is work in progress, which we hope to complete in the near
future.

2 Review of twisted vector bundles and twisted K -theory

In this section, we set up notations and briefly review λ-twisted vector bundles. A good
reference on twisted vector bundles is Karoubi [19], which has a broader account.

Notation 2.1 Throughout this paper, all of our manifolds are connected compact
smooth manifolds, and all our maps are smooth maps unless specified otherwise.
In particular, X and Y always denote manifolds. We will use the notation Ui1···in to
denote an n-fold intersection Ui1 ∩ · · · ∩ Uin . If an open cover is locally finite and
every n-fold intersection is contractible for all n ∈ Z

+, we will call it a good cover.

Definition 2.2 Let U = {Ui }i∈I be an open cover of X , and λ be a U (1)-valued
completely normalized Čech 2-cocycle as recalled below. A λ-twisted vector bundle
E of rank n over X consists of a family of product bundles {Ui × C

n : Ui ∈ U }i∈Λ

together with transition maps
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146 B. Park

g ji : Ui j → U (n)

satisfying

gii = 1, g ji = g−1
i j , gkj g ji = gkiλk ji .

Remark 2.3 (1) Recall that a Čech cocycle ζ = (ζi1···in ) is called completely nor-
malized if ζi1···in ≡ 1 whenever there is a repeated index, and ζσ(i1)···σ(in) =
(ζi1···in )

sign(σ ) for any σ ∈ Sn , where Sn is the symmetric group on n letters.
(2) We write a λ-twisted vector bundle E of rank n as a triple (U , {g ji }, {λk ji }), or a

pair ({g ji }, {λk ji }) if the open cover U is clear from the context. When the rank
n is zero, there exists a λ-twisted vector bundle O = ({gOj i }, {λk ji }) with gOj i = 1
for all i, j ∈ Λ. We call it the zero λ-twisted vector bundle.

Definition 2.4 A morphism f from a λ-twisted vector bundle E = ({g ji }, {λk ji })
of rank n to a λ-twisted vector bundle F = ({h ji }, {λk ji }) of rank n, with respect to
the same open cover {Ui }i∈I of the base X , is a family of maps { fi : Ui → U (n)}i∈Λ

such that

f j (x)g ji (x) = h ji (x) fi (x) for all x ∈ Ui j and all i, j ∈ Λ.

Definition 2.5 Let E = ({g ji }, {λk ji }) and F = ({h ji }, {λk ji }) be λ-twisted vector
bundles of rank n and m with respect to the same coveringU = {Ui } of X . The direct
sum E ⊕ F is defined by ({g ji ⊕ h ji }, {λk ji }), and is a λ-twisted vector bundle of
rank n + m. The symbol ⊕ between two transition maps denotes the block sum of
matrices.

We denote the category of λ-twisted vector bundles over X defined on an open cover
U by Bun(U , λ). The category Bun(U , λ) is an additive category with respect to
the direct sum ⊕.

Definition 2.6 The twisted K -theory of X defined on an open coverU with a U (1)-
gerbe twisting λ, denoted by K 0(U , λ), is the Grothendieck group of the commutative
monoid Vect(U , λ) of isomorphism classes of λ-twisted vector bundles on U .

Remark 2.7 The isomorphism class of the group K 0(U , λ) for a fixed U depends
only on the Čech cohomology class of λ. To see this, let C and D be additive
categories. Recall that if an additive functor F : C → D is an equivalence of addi-
tive categories, then it induces an isomorphism of groups F∗ : K (C ) → K (D),
where K denotes the K -theory functor from additive categories to abelian groups.
Let σ and λ be cohomologous U (1)-valued Čech 2-cocycles defined on U , i.e.,
λk ji = σk jiχ j iχikχk j for some Čech 1-cochain χ . There is an additive functor
Φ : Bun(U , σ ) → Bun(U , λ) that is an isomorphism of categories. The func-
tor Φ takes a σ -twisted vector bundle ({g ji }, {σk ji }) to a λ-twisted vector bundle
({g jiχ j i }, {λk ji }) and takes amorphismbetweenσ -twisted vector bundles to itself. The
inverse of Φ is defined similarly by taking a λ-twisted vector bundle ({g ji }, {λk ji }) to
the σ -twisted vector bundle ({g jiχ

−1
j i }, {σk ji }). Therefore, the induced map of groups

Φ∗ : K 0(U , σ ) → K 0(U , λ) is an isomorphism.
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Geometric models of twisted differential K -theory I 147

Definition 2.8 Let f : Y → X be amap, and E = ({g ji }, {λk ji }) be aλ-twisted vector
bundle defined on a covering U = {Ui } of X . Let f −1U denote the open cover on
Y consisting of open sets of the form f −1(Ui ). The pull-back of the λ-twisted vector
bundle E is a (λ◦ f )-twisted vector bundle ( f −1U , {g ji ◦ f }, {λk ji ◦ f }) on Y denoted
by f ∗(E).

Proposition 2.9 The map

f ∗ : Vect(U , λ) → Vect( f −1U , λ ◦ f )

[E] 
→ [ f ∗E]
is a monoid homomorphism with respect to ⊕ and therefore induces a group homo-
morphism

f ∗ : K 0(U , λ) → K 0( f −1U , λ ◦ f )

[E] − [F] 
→ [ f ∗E] − [ f ∗F].
Proof The map is well-defined on Vect(U , λ). Given another λ-twisted vector bundle
F , we have f ∗(E) ⊕ f ∗(F) = f ∗(E ⊕ F). Hence f ∗ is a monoid homomorphism,
which induces a group homomorphism f ∗ between K -groups. ��

3 Chern–Weil theory of twisted vector bundles

In this section, we review Chern–Weil theory of twisted vector bundles and define
twistedChern-Simons forms.Wewill also prove several lemmatawhichwill be needed
in subsequent sections.We begin with a summary of the language ofU (1)-gerbes with
connection used in this paper. We refer the reader to Gawędzki and Reis [15] for more
details.

Definition 3.1 Let X be a manifold and U := {Ui }i∈Λ an open cover of X .
A U (1)-gerbe over X subordinate to U is a U (1)-valued completely normal-
ized Čech 2-cocycle {λk ji } ∈ Ž2(U , U (1)). A connection on a U (1)-gerbe
{λk ji } on U is a pair ({A ji }, {Bi }) consisting of a family of differential 1-
forms {A ji ∈ Ω1(Ui j ;

√−1R)}i, j∈Λ and a family of differential 2-forms {Bi ∈
Ω2(Ui ;

√−1R)}i∈Λ satisfying the following relations:

C1. λk jiλ
−1
l j i λlkiλ

−1
lk j = 1

C2. d log λk ji = A ji + Aik + Akj

C3. B j − Bi = d A ji

Remark 3.2 (1) A U (1)-gerbe with connection on U is therefore a Deligne cocycle
of degree 2. Notice that our total differential is D = d + (−1)qδ on Č p(U ,Ωq).

(2) From d Bi = d B j for all i, j ∈ Λ, the family of exact 3-forms {d Bi }i∈Λ defines a
global closeddifferential 3-form H . Thedifferential form H is called the curvature
of the U (1)-gerbe or the Neveu–Schwarz 3-form.

(3) Let {λk ji } ∈ Ž2(U , U (1)) be a U (1)-gerbe, and δ : Ȟ2(U , U (1)) →
H3(X; 2π iZ) be the connecting map. The image in H3

dR(X;√−1R) of the coho-
mology class δ([λ]) ∈ H3(X; 2π iZ) coincides with the cohomology class of
H ∈ H3

dR(X;√−1R). (See Brylinski [4, p.175] Corollary 4.2.8.)
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148 B. Park

Throughout the rest of this paper̂λ = ({λk ji }, {A ji }, {Bi }) always denotes a U (1)-
gerbe with connection defined on an open cover U = {Ui }i∈Λ of X and H denotes
the 3-curvature form of̂λ. We assume that the Dixmier–Douady class of λ is a torsion
class in H3(X;Z).

Definition 3.3 Let̂λ = ({λk ji }, {A ji }, {Bi }) be as above, E = (U , {g ji }, {λk ji }) a
smooth λ-twisted vector bundle of rank n. A connection on E compatible witĥλ is a
family Γ = {Γi ∈ Ω1(Ui ; u(n))}i∈Λ satisfying

Γi − g−1
j i Γ j g ji − g−1

j i dg ji = −A ji · 1, (1)

where A ji ∈ Ω1(Ui j ; iR). Here u(n) denotes the Lie algebra of U (n), and 1 the
identity matrix.

Lemma 3.4 In the notation of Definition 3.3, A ji ·1− Aki ·1+ Akj ·1 = λ−1
k ji dλk ji ·1.

Proof

(A ji − Aki + Akj ) · 1 = −(Γi − g−1
j i Γ j g ji − g−1

j i dg ji )

+ (Γi − g−1
ki Γk gki − g−1

ki dgki ) + Akj · 1
= g−1

j i (g−1
k j Γk gk j + g−1

k j dgk j − Akj · 1)g ji + g−1
j i dg ji

− λk ji gi j g jkΓk gk j g jiλ
−1
k ji − g−1

ki dgki + Akj · 1
= g−1

j i g−1
k j Γk gk j g ji + g−1

j i g−1
k j dgk j g ji − Akj · 1 + g−1

j i dg ji

− gi j g jkΓk gk j g ji − g−1
ki dgki + Akj · 1

= g−1
j i g−1

k j (−gkj dg ji + dgkiλk ji + gki dλk ji ) + g−1
j i dg ji

− g−1
ki dgki

= gik gk j g ji g
−1
j i g−1

k j dgki + g−1
j i g−1

k j gki dλk ji − g−1
ki dgki

= λ−1
k ji dλk ji · 1.

��
Remark 3.5 For any λ-twisted vector bundle E , there exists a connection on E asso-
ciated witĥλ. See [19, p. 244].

Definition 3.6 Let̂λ = ({λk ji }, {A ji }, {Bi }) be as above, (E, Γ ) a λ-twisted vector
bundle (U , {g ji }, {λk ji }) of rank n with a connection Γ compatible with ̂λ. The
curvature form of Γ is the family R = {Ri ∈ Ω2(Ui ; u(n))}i∈Λ, where Ri :=
dΓi + Γi ∧ Γi .

Lemma 3.7 For each m ∈ Z
+, the differential forms tr[(Ri − Bi · 1)m] over the open

sets Ui glue together to define a global differential form on X. Here Bi ∈ Ω2(Ui ; iR)

is given bŷλ.
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Geometric models of twisted differential K -theory I 149

Proof From (1), it follows that Ri = g−1
j i R j g ji − d A ji · 1. Then

tr[(Ri − Bi · 1)m] = tr[(g−1
j i R j g ji − d A ji · 1 − Bi · 1)m]

= tr[(g−1
j i R j g ji − B j · 1)m]

= tr

[

m
∑

r=0

(

m

r

)

g−1
j i Rm−r

j g ji (−1)r (B j · 1)r

]

∗= tr

[

m
∑

r=0

(

m

r

)

Rm−r
j (−1)r (B j · 1)r

]

= tr[(R j − B j · 1)m],

where
(m

r

)

is the binomial coefficient m choose r , and at ∗, we have used tr(AB) =
tr(B A) and the fact that B j · 1 commutes with other matrices. ��
Definition 3.8 Let̂λ = ({λk ji }, {A ji }, {Bi }) be as above, H the 3-curvature of̂λ, and
(E, Γ ) a λ-twisted vector bundle with connection compatible witĥλ. For m ∈ Z

+,
the mth twisted Chern character form is defined by

ch(m)(Γ )(x) := tr(Ri (x) − Bi (x) · 1)m x ∈ Ui .

When m = 0, define ch(0)(Γ ) to be the rank of E . The total twisted Chern character
form is defined by

ch(Γ ) := rank(E) +
∞
∑

m=1

1

m!ch(m)(Γ ),

which will be sometimes denoted by ch(E, Γ ).

Remark 3.9 Recall that the Z2-graded sequence of differential forms · · · →
Ωeven(X)

d+H−→ Ωodd(X)
d+H−→ · · · is a complex if H is a closed 3-form on X . Then the

twisted de Rham cohomology of X is the cohomology of this complex and denoted by
H even/odd

H (X). If closed 3-forms H and H ′ are cohomologous, i.e. H ′ = H + dξ , the
multiplication by exp(ξ) induces an isomorphism H•

H (X) → H•
H ′(X). We refer the

reader to Atiyah and Segal [1] for more details on twisted cohomology.

The following fact is well-known. (See [3, p. 29] for example.)

Proposition 3.10 For each m ∈ Z
+,

dch(m)(Γ ) = mch(m−1)(Γ )H.

Hence the total twisted Chern character form ch(Γ ) is (d + H)-closed.

Proposition 3.11 The mth twisted chern character form is additive for all m ≥ 0,
i.e.,

ch(m)(Γ
E ⊕ Γ F ) = ch(m)(Γ

E ) + ch(m)(Γ
F ).
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150 B. Park

Definition 3.12 Let ̂λ = ({λk ji }, {A ji }, {Bi }) be as above, and (E, Γ ) a λ-twisted
vector bundle (U , {g ji }, {λk ji }) of rank n with a connection Γ compatible with ̂λ.
Let f : (Y,V ) → (X,U ) be any map provided that V = f −1U . The pullback of
(E, Γ ) along f is f ∗(E) together with the family

f ∗Γ := { f ∗Γi }i∈Λ,

where f ∗Γi ∈ Ω1( f −1(Ui ); u(n)) is defined by entrywise pullback.

Proposition 3.13 f ∗Γ is a connection on the (λ◦ f )-twisted vector bundle (V , {g ji ◦
f }, {λk ji ◦ f }) of rank n compatible with f ∗̂λ = ({λk ji ◦ f }, { f ∗ A ji }, { f ∗ Bi }) and
f ∗ch(Γ ) = ch( f ∗Γ ).

Proposition 3.14 Let ̂λ = ({λk ji }, {A ji }, {Bi }) be as above and ϕ : E → F an
isomorphism of λ-twisted vector bundles over X with respect to the same open cover
U . Let Γ E be a connection on E associated with ̂λ and Γ F a connection on F
associated witĥλ. Then ch(Γ F ) = ch(ϕ∗Γ F ).

Remark 3.15 We shall prove in Proposition 3.26 that the total twisted Chern character
in twisted de Rham cohomology group is independent of the choice of connection.

Proposition 3.16 Let ̂λ = ({λk ji }, {A ji }, {Bi }) and ̂λ′ = ({λ′
k ji }, {A′

j i }, {B ′
i }) be

two U (1)-gerbes with connection defined on an open cover U = {Ui }i∈Λ over X.
Suppose ̂λ and ̂λ′ are cohomologous as Deligne 2-cocycles such that ̂λ′ = ̂λ + Dα̂,
where α̂ = ({χ j i }, {Πi }) ∈ Č1(U ,Ω1). (See Remark 3.2 for the definition of D.)
Let E = (U , {g ji }, {λk ji }) be a λ-twisted vector bundle of rank n and Γ = {Γi }i∈Λ

a connection on E compatible with ̂λ. Define a λ′-twisted vector bundle E ′ with
connection Γ ′ compatible witĥλ′ by

E ′ := (U , χ j i g ji , λ
′
k ji )

Γ ′ := {Γ ′
i }i∈Λ, where Γ ′

i := Γi + Πi · 1.

Then ch(Γ ) = ch(Γ ′).

Remark 3.17 Sincêλ and̂λ′ are cohomologous, their 3-curvatures are the same.

Proof of Proposition 3.16 From

R′
i = dΓ ′

i + Γ ′
i ∧ Γ ′

i = d(Γi + Πi · 1) + (Γi + Πi · 1) ∧ (Γi + Πi · 1)
= dΓi + dΠi · 1 + Γi ∧ Γi + Γi ∧ Πi · 1 + Πi · 1 ∧ Γi

+ Πi · 1 ∧ Πi · 1
= Ri + dΠi · 1,

it follows that

ch(m)(E, Γ ) − ch(m)(E ′, Γ ′) = tr(Ri − Bi · 1)m − tr(R′
i − B ′

i · 1)m = 0

since B ′
i − Bi = dΠi . ��
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Geometric models of twisted differential K -theory I 151

Notation 3.18 Given̂λ and ξ ∈ Ω2(X; iR), we denote bŷλξ the U (1)-gerbe with
connection ({λk ji }, {A ji }, {Bi + ξ |Ui }). Let E be a λ-twisted vector bundle and Γ =
{Γi }i∈Λ be a connection on E associated witĥλ. We denote the same family {Γi }i∈Λ

on E that is associated witĥλξ as a connection on E by Γξ . We also denote ξ |Ui by
ξi .

Proposition 3.19 Let ̂λ = ({λk ji }, {A ji }, {Bi }) be as above, E a λ-twisted vector
bundle, Γ a connection on E, and ξ ∈ Ω2(X; iR). Then ch(Γ−ξ ) = ch(Γ ) ∧ exp(ξ).

Proof

ch(Γ−ξ ) =
∞
∑

m=0

1

m!ch(m)(Γ−ξ ) =
∞
∑

m=0

1

m! tr
[

(Ri − Bi · 1 + ξi · 1)m]

=
∞
∑

m=0

1

m! tr
(

m
∑

r=0

(

m

r

)

(Ri − Bi · 1)m−rξ r
i · 1

)

=
∞
∑

m=0

1

m!
m

∑

r=0

((

m

r

)

tr(Ri − Bi · 1)m−r
)

∧ ξ r
i

=
∞
∑

m=0

1

m!
m

∑

r=0

(

m!
(m − r)!r !ch(m−r)(Γ )

)

∧ ξ r
i =

∞
∑

m=0

m
∑

r=0

ch(m−r)(Γ )

(m − r)! ∧ ξ r
i

r !

=
∞
∑

m=0

∞
∑

r=0

ch(m)(Γ )

(m)! ∧ ξ r
i

r ! since
∞
∑

m=0

m
∑

r=0

ar,m−r =
∞
∑

m=0

∞
∑

r=0

ar,m

= ch(Γ ) ∧ exp(ξ).

��
Now we discuss the Chern–Simons transgression form in the twisted case.

Lemma 3.20 Let̂λ = ({λk ji }, {A ji }, {Bi }) be as above and Γ0 and Γ1 be connections
on a λ-twisted vector bundle E = (U , {g ji }, {λk ji }) such that both are compatible
witĥλ. Then for each t ∈ R,

Γt := (1 − t)Γ0 + tΓ1

is a connection on E compatible with ̂λ, i.e., the space of ̂λ-compatible connections
on E is an affine space modeled over Ω1(X; End(E)).

Proof

Γt i − g−1
j i Γt j g ji − g−1

j i dg ji = (1 − t)Γ0i + tΓ1i − g−1
j i

(

(1 − t)Γ0 j + tΓ1 j
)

g ji

− g−1
j i dg ji

= (1 − t)Γ0i − (1 − t)g−1
j i Γ0 j g ji − (1 − t)g−1

j i dg ji

+ tΓ1i − tg−1
j i Γ1 j g ji − tg−1

j i dg ji

= −(1 − t)A ji · 1 − t A ji · 1 = −A ji · 1.
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If Γ and Γ ′ are two different̂λ-compatible connections on E , we have Γi − Γ ′
i =

g−1
j i (Γ j − Γ ′

j )g ji , so the space of̂λ-compatible connections on E is an affine space

modelled over Ω1(X;End(E)). Notice that End(E) is an ordinary vector bundle. ��
Corollary 3.21 Let Γ0 and Γ1 be as in Lemma 3.20. Let αt and γt with t ∈ I be two
paths of connections each starting at Γ0 and ending at Γ1 and both αt and γt are
compatible witĥλ for all t ∈ I . Then there exists a bigon (a polygon with two sides) of
connections with edges αt and γt such that every point on the bigon is âλ-compatible
connection on E.

Proof By Lemma 3.20, for each fixed t ∈ I and s ∈ I , the connection (1− s)αt + sγt

iŝλ-compatible. ��
Notation 3.22 We shall denote the projection map X × I → X onto the first factor
by p.

Lemma 3.23 Let̂λ = ({λk ji }, {A ji }, {Bi }) be as above, E a λ-twisted vector bundle
(U , {g ji }, {λk ji }), and Γt a connection on E compatible witĥλ for each t ∈ I . Then
the family {˜Γi }i∈Λ defined by ˜Γi (x, t) := (p∗Γt )(x, t) is a connection on the (λ ◦ p)-
twisted vector bundle p∗E = (U × I, {g ji ◦ p}, {λk ji ◦ p}) compatible with the
pull-back U (1)-gerbe with connection p∗̂λ = ({λk ji ◦ p}, {p∗ A ji }, {p∗Bi }).

We refer the reader to Bott and Tu [2] for an account of the integration along the
fiber.

Definition 3.24 Let̂λ = ({λk ji }, {A ji }, {Bi })be as above, E aλ-twisted vector bundle
over X , and γ : t 
→ Γt a path of connections on E such that each Γt is compatible
witĥλ. The twisted Chern–Simons form of γ is the integration along the fiber:

cs(γ ) :=
∫

I
ch(˜Γ ) ∈ Ωodd(X;C),

where ˜Γ is the connection on p∗E defined by ˜Γ (x, t) = (p∗Γt )(x, t).

The following lemma is certainly well-known, but we did not find a reference.

Lemma 3.25 Let E be a smooth fiber bundle over X with fiber F a compact ori-
ented smooth k-manifold with corners. Let

∫

F : Ω•(E;C) → Ω•−k(X;C) be the
integration along the fiber map and ω ∈ Ωn(E;C) for n ≥ k. Then

d
∫

F
ω =

∫

F
dω + (−1)n−k

∫

∂ F
ω. (2)

Proposition 3.26 Let ̂λ = ({λk ji }, {A ji }, {Bi }) be as above, E = (U , {g ji }, {λk ji })
a λ-twisted vector bundle of rank n, and γ : t 
→ Γt a path of connections on E
joining Γ0 and Γ1 such that each Γt is compatible witĥλ. Then

ch(Γ0) − ch(Γ1) = (d + H)cs(γ ).
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Proof Let ˜Γ be a connection on p∗E defined by ˜Γ (x, t) = (p∗Γt )(x, t). By Lemma
3.25, d

∫

I ch(˜Γ ) = ∫

I dch(˜Γ ) − ∫

∂ I ch(˜Γ ) = − ∫

I ch(˜Γ ) ∧ p∗ H − ∫

∂ I ch(˜Γ ) =
−H ∧ ( ∫

I ch(˜Γ )
) + ch(Γ0) − ch(Γ1). Hence the result. ��

Definition 3.27 The twisted total Chern character of E , denoted by ch(E), is the
twisted cohomology class of ch(Γ ) for any connection Γ on E .

Proposition 3.28 The assignment

ch : K 0(U , λ) → Heven
H (X;C)

[E] − [F] 
→ [ch(Γ E )] − [ch(Γ F )],

with ({A ji }, {Bi }) a connection on λ and Γ E and Γ F connections on λ-twisted vec-
tor bundles E and F, respectively, both compatible with ̂λ, is a well-defined group
homomorphism called the twisted Chern character.

Before proving Proposition 3.28, we recall the following lemma and its gener-
alizations, which are certainly well-known. We include a proof here for sake of
completeness. (See also Bunke and Nikolaus [5], Section 7).

Lemma 3.29 Suppose U (1)-gerbes λ and λ′ defined on a good open cover U of X
are isomorphic: λ′

k ji = λk ji + (δχ)k ji . Let ({A ji }, {Bi }) on λ and ({A′
j i }, {B ′

i })
on λ′ be arbitrarily choosen connections. Then there exists a Deligne 1-cochain
α̂ = ({χ j i }, {Πi }) and ξ ∈ Ω2(X; iR) such that ̂λ′ = ̂λξ + Dα̂, where ̂λ =
({λk ji }, {A ji }, {Bi }) and̂λ′ = ({λ′

k ji }, {A′
j i }, {B ′

i }).
We need the following lemma, which is well-known, see e.g. Bott and Tu [2, p. 94],

Proposition 8.5.

Lemma 3.30 Ȟ p(U ,Ωq) = 0, for all p ≥ 1.

Proof of Lemma 3.29 Wedenote the 3-curvature of̂λ and̂λ′ by H and H ′, respectively.
The curvature 3-forms of̂λ and̂λ′ are cohomologous, i.e. H ′ − H = dζ for some
ζ ∈ Ω2(X;√−1R). Over each open set Ui , we have d(B ′

i − Bi ) = dζi , where
ζi := ζ |Ui , and by Poincaré’s Lemma, there exists a 1-form ωi on each Ui such that
B ′

i = Bi + ζi + dωi . Now by the cocycle condition, d A′
j i = B ′

j − B ′
i = B j − Bi +

d(ω j −ωi ) = d A ji +d(ω j −ωi ) and so there exists a U (1)-valued function μ j i over
each Ui j such that A′

j i = A ji + ω j − ωi + d logμ j i . Take the Čech differential of

both sides and get δ(d log(χμ−1))k ji = 0. By Lemma 3.30, d log(χ j iμ
−1
j i ) = γ j −γi

for some γ ∈ Č1(U ,Ω1), hence d log(χ j i ) = d log(μ j i ) + (γ j − γi ). Notice that
the family {dγi }i∈Λ defines a global 2-form on X . Thus setting α̂ = ({χ j i }, {ωi −γi })
and ξ |Ui = ζi + dγi proves the claim. ��
Remark 3.31 When the underlying gerbes λ and λ′ are identical, a special case of
Lemma 3.29 indicates that, under different choices of connection on λ, the corre-
sponding twisted Chern characters are related by exp of a global 2-form.
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Proof of Proposition 3.28 Well-definedness: Let̂λ be fixed. The image of ch is inde-
pendent of the choice of connections on the twisted vector bundles E and F by
Proposition 3.26.

Supposêλ and̂λ′ are the same U (1)-gerbes λ endowed with different connections
and ̂λ′ = ̂λ + Dα̂. Then by Proposition 3.16, the image of ch is invariant under
cohomologous change of U (1)-gerbe connection. (Notice that the image of ch is not
invariant under the arbitrary change of U (1)-gerbe connection. See Remark 3.31.)

Suppose there exists aλ-twisted vector bundleG with an isomorphismϕ : E⊕G →
E ⊕ G. Let Γ G be an arbitrary connection on G. By Lemma 3.11 and Proposition
3.14,

[ch(Γ E )] + [ch(Γ G)] = [ch(Γ E ⊕ Γ G)] = [ch(ϕ∗(Γ E ⊕ Γ G))] = [ch(Γ E ⊕ Γ G)]
= [ch(Γ E )] + [ch(Γ G)].

From this, well-definedness of ch on K 0(U , λ) follows.
Group homomorphism: This follows from Lemma 3.11:

ch([E] − [F] + [E] − [F]) = ch([E ⊕ E] − [F ⊕ F]) = ch(Γ E ⊕ Γ E )

− ch(Γ F ⊕ Γ F )

= ch(Γ E ) − ch(Γ F ) + ch(Γ E ) − ch(Γ F )

= ch([E] − [F]) + ch([E] − [F]).

��
Proposition 3.32 Let ̂λ = ({λk ji }, {A ji }, {Bi }) be as above, E a λ-twisted vector
bundle (U , {g ji }, {λk ji }), and Γ0 and Γ1 two connections on E joined by two different
paths of connections αt and γt on E, such that each of αt and γt is compatible witĥλ

for all t ∈ I . Then

cs(γ ) − cs(α) ∈ Im(d + H).

Proof The paths α and γ define connections on p∗E over X × I , which we denote by
α̃ and γ̃ , respectively. Then there exists a path of connections on p∗E interpolating
between α̃ and γ̃ (by Corollary 3.21). Accordingly this path of connection defines
a connection ˜β on q∗ p∗E over X × I × I , where q : X × I × I → X × I is the
projection map forgetting the third factor. By applying Lemma 3.25 to the twisted
Chern character form ch(q∗ p∗E,˜˜β), we get

d
∫

I×I
ch(q∗ p∗E, ˜β) =

∫

I×I
dch(q∗ p∗E, ˜β) +

∫

∂(I×I )
ch(q∗ p∗E, ˜β)

= −
(∫

I×I
ch(q∗ p∗E, ˜β)

)

∧ H +
∫

I
ch(p∗E, γ̃ )

−
∫

I
ch(p∗E, α̃)
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Hence,

cs(γ ) − cs(α) = (d + H)

∫

I×I
ch(q∗ p∗E, ˜β)

��
Proposition 3.33 Let ϕ : E → F be an isomorphism of λ-twisted vector bundles
over X. Let γ : t 
→ Γ t be a path of connections on F. Then cs(ϕ∗γ ) = cs(γ ).

4 Twisted differential K -theory

This section constitutes the main part of this paper. We define differential twists and
construct a twisted differential K -group (Sects. 4.1, 4.2) using triples consisting of a
twisted vector bundle, a connection, and an odd differential form modulo exact forms
in a twisted de Rham complex. We verify that our construction is functorial (Sect.
4.3) and natural with respect to change of twists (Sect. 4.4). In Sects. 4.5 and 4.7, we
define the I , R, and a maps and verify the exact sequence involving the a and I maps.
Finally, we show commutativity of diagrams and exactness of sequences consisting
the hexagon diagram à la Simons and Sullivan [24] (Sect. 4.8), and verify that the
maps I , R, and a are compatible with change of twists (Sect. 4.9).

4.1 Differential twists

Definition 4.1 The torsion differential K -twists for an open coverU of X , denoted
by Twisttor

̂K
(U ), is the groupoid whose objects are U (1)-gerbes with connection

̂λ = ({λk ji }, {A ji }, {Bi }) each of which has an underlying U (1)-gerbe representing a
torsion class in H3(X;Z). For any two objectŝλ1 and̂λ2 in this groupoid, the Hom set
is defined by Hom(̂λ1,̂λ2) = {(̂α, ξ) ∈ Č1(U ;Ω0) ⊕ Č0(U ;Ω1) ⊕ Ω2(X; iR)) :
̂λ2 =̂λ1 + Dα̂ + ξ}.
Proposition 4.2 (Existence)Given any manifold X with an open coverU , the torsion
differential twist Twisttor

̂K
(U ) consists of at least one object.

Proof The statement amounts to the existence of a connection on a local U (1)-bundle
gerbe, which follows from the existence of partitions of unity as shown in Murray
[22]. ��
Notation 4.3 (1) The torsion topological K -twists for an open coverU of amanifold

X is the groupoid, denoted by Twisttor
K (U ), whose objects are U (1)-gerbes

λ = {λk ji } each representing a torsion class in H3(X;Z). A morphism from λ1

to λ2 is a Čech 1-cochain α = (χ j i ) ∈ Č1(U , U (1)) such that λ1 = λ2 + δα.
(2) Define the groupoid Ω3

cl(X; iR) of iR-valued closed differential 3-forms on X
as follows. Objects are iR-valued closed differential 3-forms on X . A morphism
from ω to ω′ is a differential 2-form α on X modulo exact forms satisfying
ω = ω′ + dα.
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Definition 4.4 The forgetful and curvature functors are given by the assignments

F : Twisttor
̂K

(U ) → TwisttorK (U ) Curv : Twisttor
̂K

(U ) → Ω3
cl(X; iR)

̂λ = ({λk ji }, {A ji }, {Bi }) 
→ {λk ji } ̂λ = ({λk ji }, {A ji }, {Bi }) 
→ Curv(̂λ) = H,

(̂α, ξ) 
→ α (̂α, ξ) 
→ dξ

where α̂ = ({χ j i }, {Πi }), α = ({χ j i }), and H |Ui = d Bi for all i ∈ Λ.

Remark 4.5 Let f : (Y,V ) → (X,U ) be a map with V = f −1U . The following
diagrams commute:

Twisttor
̂K

(V )
F

Twisttor
K (V ) Twisttor

̂K
(V )

Curv
Ω3

cl(Y ; iR)

Twisttor
̂K

(U )

f ∗

F
Twisttor

K (U )

f ∗

Twisttor
̂K

(U )

f ∗

Curv
Ω3

cl(X; iR)

f ∗

Here f ∗ on torsion differential twists takes each torsion U (1)-gerbe with connection
to its pullback U (1)-gerbe with pullback connection, and f ∗ on topological twists
does the same on torsion U (1)-gerbes.

Notation 4.6 Throughout this section, we shall use the notation̂λ to denote a differ-
ential twist ({λk ji }, {A ji }, {Bi }) ∈ Twisttor

̂K
(U ), H for Curv(̂λ), and λ forF (̂λ).

4.2 Twisted differential K -group

Definition 4.7 A ̂K 0(U ;̂λ)-generator is a triple (E, Γ, ω) consisting of a λ-twisted
vector bundle E defined on the open coverU = {Ui }i∈Λ on X , a connection Γ on E
compatible witĥλ, and ω ∈ Ωodd(X;C)/Im(d + H).

Definition 4.8 Let E be any λ-twisted vector bundle with a path of connections γ

joining Γ0 and Γ1 and each connection on the path being compatible witĥλ. Define
CS(Γ0, Γ1) := cs(γ ) mod Im(d + H).

Remark 4.9 By Proposition 3.32, Definition 4.8 is independent of the choice of path
of connections. Furthermore, we have CS(Γ0, Γ1) + CS(Γ1, Γ2) = CS(Γ0, Γ2).

Definition 4.10 Two ̂K 0(U ;̂λ)-generators (E, Γ, ω) and (E ′, Γ ′, ω′) are equivalent
if there exists aλ-twisted vector bundlewith connection (F, Γ F ) and aλ-twisted vector
bundle isomorphism ϕ = {ϕi }i∈Λ : E ⊕ F → E ′ ⊕ F such that CS(Γ ⊕Γ F , ϕ∗(Γ ′ ⊕
Γ F )) = ω − ω′.

Lemma 4.11 The relation between triples in Definition 4.10 is an equivalence rela-
tion.
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Proof The relation is reflexive since cs of a loop is (d + H)-exact. For symmetry,
suppose (E, Γ, ω) and (E ′, Γ ′, ω′) are equivalent, i.e., there exists a λ-twisted vector
bundle with connection (F, Γ F ) whose connection is compatible with ̂λ such that

there is an isomorphism of λ-twisted vector bundles ϕ : E ⊕ F
∼=→ E ′ ⊕ F , and

CS(Γ ⊕ Γ F , ϕ∗(Γ ′ ⊕ Γ F )) = ω − ω′. By Proposition 3.33,

CS(Γ ⊕ Γ F , ϕ∗(Γ ′ ⊕ Γ F )) = CS((ϕ−1)∗(Γ ⊕ Γ F ), Γ ′ ⊕ Γ F ).

This proves the symmetry. For transitivity, suppose (E, Γ, ω) is equivalent to
(E ′, Γ ′, ω′) and (E ′, Γ ′, ω′) is equivalent to (E ′′, Γ ′′, ω′′), i.e., there exists aλ-twisted
vector bundle with connection (F, Γ F ) whose connection is compatible witĥλ such

that there is an isomorphism of λ-twisted vector bundles ϕ : E ⊕ F
∼=→ E ′ ⊕ F ,

and CS(Γ ⊕ Γ F , ϕ∗(Γ ′ ⊕ Γ F )) = ω − ω′, and there exists a λ-twisted vector
bundle with connection (F ′, Γ F ′

) whose connection is compatible witĥλ such that

there is an isomorphism of λ-twisted vector bundles ϕ′ : E ′ ⊕ F ′ ∼=→ E ′′ ⊕ F ′, and
CS(Γ ′⊕Γ F ′

, ϕ′∗(Γ ′′⊕Γ F ′
)) = ω′−ω′′. Then by taking the λ-twisted vector bundle

with connection (F ⊕ F ′, Γ F ⊕ Γ F ′
), the isomorphism of λ-twisted vector bundles

ψ : E ⊕ F ⊕ F ′ → E ′′ ⊕ F ⊕ F ′ is defined by the composition

E ⊕ F ⊕ F ′ ϕ⊕1−→ E ′ ⊕ F ⊕ F ′ 1⊕σ−→ E ′ ⊕ F ′ ⊕ F
ϕ′⊕1−→ E ′′ ⊕ F ′ ⊕ F

1⊕σ−1−→ E ′′ ⊕ F ⊕ F ′,

each of which is an isomorphism, and σ is the canonical λ-twisted vector bundle
isomorphism F ⊕ F ′ → F ′ ⊕ F . Furthermore,

CS(Γ ⊕ Γ F ⊕ Γ F ′
, ψ∗(Γ ′′ ⊕ Γ F ⊕ Γ F ′

))

= CS(Γ ⊕ Γ F ⊕ Γ F ′
, (ϕ ⊕ 1)∗(Γ ′ ⊕ Γ F ⊕ Γ F ′

))

+ CS((ϕ ⊕ 1)∗(Γ ′ ⊕ Γ F ⊕ Γ F ′
), ψ∗(Γ ′′ ⊕ Γ F ⊕ Γ F ′

)) by Remark 4.9
∗= ω − ω′ + CS(Γ ′ ⊕ Γ F ⊕ Γ F ′

,
(

(1 ⊕ σ−1) ◦ (ϕ′ ⊕ 1) ◦ (1 ⊕ σ)
)∗

(Γ ′′ ⊕ Γ F ⊕ Γ F ′
))

∗∗= ω − ω′ + CS(Γ ′ ⊕ Γ F ′ ⊕ Γ F ,
(

(1 ⊕ σ−1) ◦ (ϕ′ ⊕ 1)
)∗

(Γ ′′ ⊕ Γ F ⊕ Γ F ′
))

= ω − ω′ + CS(Γ ′ ⊕ Γ F ′ ⊕ Γ F , (ϕ′ ⊕ 1)∗(Γ ′′ ⊕ Γ F ′ ⊕ Γ F ))

= ω − ω′ + ω′ − ω′′ = ω − ω′′,

At ∗ and ∗∗, 3.33 for the twisted bundle isomorphism (ϕ ⊕ 1)−1 and (1 ⊕ σ−1)−1,
respectively. Hence (E, Γ, ω) is equivalent to (E ′′, Γ ′′, ω′′). ��
Lemma 4.12 Let [(E, Γ E , ω)]and [(F, Γ F , η)]be equivalence classes of K 0(U ;̂λ)-
generators. The equivalence class of the K 0(U ;̂λ)-generator (E ⊕ F, Γ E ⊕Γ F , ω+
η) is independent of the choice of representatives of [(E, Γ E , ω)] and [(F, Γ F , η)].
Definition 4.13 The addition + between two equivalence classes of ̂K 0(U ;̂λ)-
generators is defined by [(E, Γ E , ω)]+[(F, Γ F , η)] := [(E ⊕ F, Γ E ⊕Γ F , ω+η)].

Hence the set of all equivalence classes of ̂K 0(U ;̂λ)-generators forms a commu-
tative monoid (G,+).
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Definition 4.14 Let̂λ ∈ Twisttor
̂K

(U ). The twisted differential K -group is

̂K 0(U ,̂λ) := K (G),

where K denotes the group completion functor from commutative monoid to abelian
groups.

4.3 Functoriality

Lemma 4.15 Let ̂λ be a differential twist, E = (U , {g ji }, {λk ji }) a λ-twisted vec-
tor bundle of rank n, and Γ = {Γi }i∈Λ connection on E compatible with ̂λ. Also
let f : (Y,V ) → (X,U ) be a map with V = f −1U . If two triples (E, Γ, ω)

and (E ′, Γ ′, ω′) are equivalent, then ( f ∗E, f ∗Γ, f ∗ω) and ( f ∗E ′, f ∗Γ ′, f ∗ω′) are
equivalent.

Proposition 4.16 Given a map f : (Y,V ) → (X,U ) with V = f −1U , the assign-
ment

f ∗ : ̂K 0(U ,̂λ) → ̂K 0(V , f ∗̂λ)

[(E, Γ E , ω)] − [(F, Γ F , η)] 
→ [( f ∗E, f ∗Γ E , f ∗ω)] − [( f ∗F, f ∗Γ F , f ∗η)]
is a well-defined group homomorphism.

Let Man be the category whose objects are connected compact smooth manifolds
equipped with an open cover. A morphism from (Y,V ) to (X,U ) is a smooth map
satisfying V = f −1(U ). Also let Ab be the category of abelian groups.

Corollary 4.17 ̂K 0(−,̂λ) : Manop → Ab is a functor.

4.4 Naturality of twists

Proposition 4.18 Let̂λ = ({λk ji }, {A ji }, {Bi }) and̂λ′ = ({λ′
k ji }, {A′

j i }, {B ′
i }) be any

two objects of Twisttor
̂K

(U ) satisfying that̂λ′ =̂λ+ Dα̂ for some α̂ = ({χ j i }, {Πi }).
Let E = (U , {g ji }, {λk ji }) be a λ-twisted vector bundle of rank n and Γ = {Γi }i∈Λ

a connection on E compatible witĥλ. Define:

E ′ := (U , χ j i g ji , λ
′
k ji )

Γ ′ := {Γ ′
i }i∈Λ where Γ ′

i := Γi + Πi · 1
ω′ := ω

(3)

(1) The assignment

φα̂ : ̂K 0(U ;̂λ)
∼=→ ̂K 0(U ;̂λ′)

[(E, Γ, ω)] − [(F,∇, η)] 
→ [(E ′, Γ ′, ω′)] − [(F ′,∇′, η′)]
is an induced group isomorphism that is natural in U .
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(2) Let ξ ∈ Ω2(X; iR). The assignment

Ξ : ̂K 0(U ;̂λ)
∼=→ ̂K 0(U ;̂λξ )

[(E, Γ, ω)] − [(F,∇, η)] 
→ [(E, Γξ , ω ∧ exp(−ξ))] − [(F,∇ξ , η ∧ exp(−ξ))]

is a group isomorphism that is natural in U .

Remark 4.19 The family Γ ′ above is a connection on the λ′-twisted vector bundle E ′
compatible witĥλ′:

g−1
j i χ−1

j i Γ ′
jχ j i g ji + g−1

j i χ−1
j i d(χ j i g ji ) − A′

j i · 1
= g−1

j i Γ j g ji + Π j · 1 + χ−1
j i dχ j i · 1 + g−1

j i dg ji − (A ji + Π j − Πi + d logχ j i ) · 1
= Γi + Πi · 1 = Γ ′

i .

Proof of Proposition 4.18 (1) Suppose (E, Γ, ω) ∼ (E, Γ , ω), i.e., there exists a
twisted vector bundle F and a connection Γ F compatible with ̂λ and a λ-twisted
vector bundle isomorphism ϕ = {ϕi } : E ⊕ F → E ⊕ F such that

CS(Γ ⊕ Γ F , ϕ∗(Γ ⊕ Γ F )) = ω − ω.

We verify that (E ′, Γ ′, ω′) and (E
′
, Γ

′
, ω′) are equivalent so that well-definedness

of the map follows. We take a λ′-twisted vector bundle F ′ and a connection Γ ′F
compatible with ̂λ′ by applying the same rule in (3) to (F, Γ F ). There exists a λ′-
twisted vector bundle isomorphism ϕ = {ϕi } : E ′ ⊕ F ′ → E

′ ⊕ F ′ defined exactly
the same as the above ϕ.1 We have to show that

CS(Γ ′ ⊕ Γ ′F , ϕ∗(Γ ′ ⊕ Γ ′F )) = ω′ − ω′.

Suppose ˜Γ is a connection on p∗(E⊕F) over X×I defined by a path of connections
joining Γ ⊕ Γ F and ϕ∗(Γ ⊕ Γ F ) on E ⊕ F over X . By definition,

cs(Γ t ) :=
∫

I
ch(˜Γ ) =

∫

I
rank(E ⊕ F) +

∞
∑

m=1

1

m! tr(˜Ri − p∗Bi · 1)m .

1 Let g ji , h ji be transition maps of E and F , respectively. Since ϕ is an isomorphism, we have

ϕ j (x)
(

g ji (x) ⊕ h ji (x)
) = (

g ji (x) ⊕ h ji (x)
)

ϕi (x)

for all x ∈ Ui j . From this we have

ϕ j (x)
(

g ji (x)χ j i (x) ⊕ h ji (x)χ j i (x)
) = (

g ji (x)χ j i (x) ⊕ h ji (x)χ j i (x)
)

ϕi (x)

for all x ∈ Ui j .
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We see that:

CS(Γ ′ ⊕ Γ ′F , ϕ∗(Γ ′ ⊕ Γ ′F )) = CS(Γ ⊕ Γ F + Π · 1, ϕ∗(Γ ⊕ Γ F + Π · 1))
= CS(Γ ⊕ Γ F + Π · 1, ϕ∗(Γ ⊕ Γ F ) + Π · 1)
= cs(Γ t + Π · 1) mod Im(d + H)

=
∫

I
ch(˜Γ + p∗Π · 1) mod Im(d + H). (4)

Since

d
(

˜Γi + p∗Πi · 1) + (

˜Γi + p∗Πi · 1) ∧ (

˜Γi + p∗Πi · 1) = ˜Ri + p∗dΠi · 1,

we have

∫

I
ch(˜Γ + p∗Π · 1) =

∫

I
rank(E ′ ⊕ F ′) +

∞
∑

m=1

1

m! tr(˜Ri + p∗dΠi · 1 − p∗ B ′
i · 1)m

=
∫

I
rank(E ⊕ F) +

∞
∑

m=1

1

m! tr(˜Ri − p∗ Bi · 1)m

=
∫

I
ch(˜Γ ).

Hence the far RHS of (4) is

∫

I
ch(˜Γ )/Im(d + H) = CS(Γ ⊕ Γ F , ϕ∗(Γ ⊕ Γ F )) = ω − ω.

The map φα̂ being bijective, a group homomorphism and natural in U is straight-
forward.

(2) We first show that, if (E, Γ, ω) ∼ (E, Γ , ω), then (E, Γξ , ω ∧ exp(−ξ)) ∼
(E, Γ ξ , ω ∧ exp(−ξ)). By the premise, there exists a λ-twisted vector bundle G and
a connection Γ G on G compatible witĥλ and an isomorphism ϕ : E ⊕ G → E ⊕ G,
such that ω − ω = CS(Γ ⊕ Γ G , ϕ∗(Γ ⊕ Γ G)) = ∫

I ch(˜Γ ) mod Im(d + H), where
˜Γ is a connection on p∗(E ⊕ G) defined by pullback of connections on a straight line
path joining Γ ⊕ Γ G and ϕ∗(Γ ⊕ Γ G). Accordingly,

CS(Γξ ⊕ Γ G
ξ , ϕ∗(Γ ξ ⊕ Γ G

ξ )) =
∫

I
(ch(˜Γ ) ∧ exp(−p∗ξ)) mod Im(d + H + dξ)

=
(∫

I
ch(˜Γ )

)

∧ exp(−ξ) mod Im(d + H + dξ)

= (ω − ω) ∧ exp(−ξ) mod Im(d + H + dξ).

From this, well-definedness of the mapΞ follows. The mapΞ being one-to one, onto,
group homomorphism, and natural in U are all obvious. ��
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4.5 The I and R map

Proposition 4.20 Let̂λ ∈ Twisttor
̂K

(U ). The assignment

I : ̂K 0(U ,̂λ) → K 0(U , λ)

[(E, Γ E , ω)] − [(F, Γ F , η)] 
→ [E] − [F]

is a group homomorphism which is natural in U .

Proposition 4.21 Let̂λ ∈ Twisttor
̂K

(U ). The assignment

R : ̂K 0(U ,̂λ) → Ωeven(X;C)

[(E, Γ E , ω)] − [(F, Γ F , η)] 
→ ch(Γ E ) + (d + H)ω − ch(Γ F ) − (d + H)η

is a group homomorphism which is natural in U .

4.6 Odd twisted Chern character forms

In this subsection, we define odd twisted Chern character forms which will be used in
Sects. 4.7, 4.8, and 4.9.

Definition 4.22 Let X be a manifold, U a good open cover of X , ̂λ = ({λk ji },
{A ji }, {Bi }) a U (1)-gerbe with connection on U whose Dixmier–Douady class is
torsion. Also let E be a λ-twisted vector bundle, φ an automorphism on E , and Γ a
connection compatible witĥλ. The total twisted odd Chern character form of the
triple (E, φ, Γ ) is cs

(

t 
→ (1 − t)Γ E + tφ∗Γ E
)

.

By Propositons 3.26 and 3.14, cs
(

t 
→ (1 − t)Γ E + tφ∗Γ E
)

represents an odd
twisted cohomology class.

The odd twisted Chern character form is functorial.

Proposition 4.23 Given a map f : (Y,V ) → (X,U ) with V = f −1(U ), the
following holds:

Ch( f ∗E, (φ ◦ f ), f ∗Γ ) = f ∗Ch(E, φ, Γ )

Proof Note that f ∗φ∗Γ E = (φ ◦ f )−1 ◦ f ∗Γ E ◦ (φ ◦ f ) + (φ ◦ f )−1d(φ ◦ f ) =
(φ ◦ f )∗Γ E . The proof of this statement is similar to the proof of Lemma 4.15. ��

The total odd twisted Chern character form respects change of differential twist in
a manner that is similar to the even case. (Compare Propositions 3.16 and 3.19.)

Proposition 4.24 (1) Let ̂λ, ̂λ′, E, E ′, Γ , and Γ ′ be as in Proposition 3.16. The
following holds:

Ch(E ′, φ, Γ ′) = Ch(E, φ, Γ )
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(2) Let ξ ∈ Ω2(X; iR), and̂λ and̂λξ be as in Notation 3.18. The following holds:

Ch(E, φ, Γξ ) = Ch(E, φ, Γ ) ∧ exp(−ξ)

Proof (1) Ch(E, φ, Γ ′) = cs(t 
→ (1 − t)Γ ′ + tφ∗Γ ′) = cs(t 
→ (1 − t)Γ +
tφ∗Γ + Π · 1) = cs(t 
→ (1 − t)Γ + tφ∗Γ ) = Ch(E, φ, Γ ), where the third
equality follows from a similar calculation appearing in the proof of Proposition
4.18.

(2) Let ˜Γ be a connection on p∗E defined by pullback of connections on the path
(1− t)Γ E + tφ∗Γ E . We have Ch(E, φ, Γ E

ξ ) = cs(t 
→ (1− t)Γ E
ξ + tφ∗Γ E

ξ ) =
∫

I ch(˜Γ ) ∧ exp(−p∗ξ) = (
∫

I ch(˜Γ )) ∧ exp(−ξ) = Ch(E, φ, Γ E ) ∧ exp(−ξ).
��

4.7 The a map and the exact sequence involving the a and I maps

Notation 4.25 We denote by ΩH,Ch the abelian group Im(Ch) + Im(d + H), where
Im(Ch) is the abelian group generated by all odd twisted Chern character forms.

Definition 4.26 Let̂λ ∈ Twisttor
̂K

(U ). Define:

a : Ωodd(X;C)/ΩH,Ch → ̂K 0(U ,̂λ)

θ 
→ [(O, 0, θ)].

Lemma 4.27 The map a is well-defined, a group homomorphism and is natural in
U .

Proof We prove well-definedness.

a(θ + Ch(E, φ, Γ E )) = [(O, 0, θ + Ch(E, φ, Γ E ))]
= [(O ⊕ E, 0 ⊕ Γ E , θ + cs((1 − t)Γ E + tφ∗Γ E ))] − [(E, Γ E , 0)]
= [(O, 0, θ)] + [(E, Γ E , cs((1 − t)Γ E + tφ∗Γ E ))] − [(E, Γ E , 0)]
= [(O, 0, θ)] = a(θ).

��

Proposition 4.28 The following sequence is exact:

0 → Ωodd(X;C)/ΩH,Ch
a→ ̂K 0(U ,̂λ)

I→ K 0(U , λ) → 0.

Proof It is obvious that I is surjective, and Im a ⊆ ker I . We show the other inclusion.
Let [(E, Γ E , ω)] − [(F, Γ F , η)] ∈ ̂K 0(U ,̂λ) and suppose I

([(E, Γ E , ω)] −
[(F, Γ F , η)]) = 0. Then there exists a λ-twisted vector bundle G and an isomorphism
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of λ-twisted vector bundles ϕ : E ⊕ G → F ⊕ G. Choose any connection Γ G on G
that is compatible witĥλ. Then

[(E, Γ E , ω)] − [(F, Γ F , η)] = [(E ⊕ G, Γ E ⊕ Γ G , ω)] − [(F ⊕ G, Γ F ⊕ Γ G , η)]
∗= [(E ⊕ G, Γ E ⊕ Γ G , ω)] − [(E ⊕ G, Γ E ⊕ Γ G , μ)],

where μ := η + CS(Γ E ⊕ Γ G, ϕ∗(Γ F ⊕ Γ G)), and ∗ follows from the fact that
(E ⊕ G, Γ E ⊕ Γ G , μ) is equivalent to (F ⊕ G, Γ F ⊕ Γ G , η). We now add and
subtract (O, 0, 0), and get:

[(E ⊕ G, Γ E ⊕ Γ G , ω)] − [(E ⊕ G, Γ E ⊕ Γ G , μ)]
= [(E ⊕ G ⊕ O, Γ E ⊕ Γ G ⊕ 0, ω)] − [(E ⊕ G ⊕ O, Γ E ⊕ Γ G ⊕ 0, μ)]
= [(E ⊕ G, Γ E ⊕ Γ G , 0)] + [(O, 0, ω)] − [(E ⊕ G, Γ E ⊕ Γ G , 0)] − [(O, 0, μ)]
= [(O, 0, ω − μ)] = a(ω − μ).

We now show injectivity of the a map. Suppose a(θ) = 0. Equivalently, there exists
a λ-twisted vector bundle with connection (E, Γ E ) whose connection is compatible
with ̂λ and an automorphism ϕ ∈ Aut(E) satisfying that θ = CS(Γ E , ϕ∗Γ E ) =
Ch(E, ϕ, Γ E ) mod Im(d + H) Hence the result. ��
Notation 4.29 LetU := {Ui }i∈Λ be an open cover of a space X . Recall that a refine-
ment ofU is a pair (V , τ ) consisting of an open cover V := {Vr }r∈L of X and a map
τ : L → Λ such that Vr ⊂ Uτ(r) for all r ∈ L . It induces the following restriction
maps on the totality of U (1)-gerbes with connection, λ-twisted vector bundles, and
the space of connections on a λ-twisted vector bundle E , respectively.

̂λ = (λk ji , A ji , Bi ) 
→ τ ∗̂λ = (τ ∗λtsr , τ
∗ Asr , τ

∗ Br ) := (λτ(t)τ (s)τ (r), Aτ(s)τ (r), Bτ(r))

E = (U , {g ji }, {λk ji }) 
→ τ ∗E := (V , {gτ(s)τ (r)}, {τ ∗λtsr })
Γ = {Γi }i∈Λ 
→ τ ∗Γ = {(τ ∗Γ )r := Γτ(r)}r∈L

Corollary 4.30 Let U := {Ui }i∈Λ be a good cover of X and (V , τ ) consisting of an
open cover V := {Vr }r∈L of X and a map τ : L → Λ be a choice of refinement of
U . The restriction map induced by τ

̂Rτ : ̂K 0(U ;̂λ) → ̂K 0(V ; τ ∗̂λ)

[(E, Γ E , ω)] − [(F, Γ F , η)] 
→ [(τ ∗F, τ ∗Γ E , ω)] − [(τ ∗F, τ ∗Γ F , η)]
is an isomorphism of abelian groups.

Proof Consider the following diagram.

0 Ωodd(X;C)/ΩH,Ch
a

̂K 0(U ,̂λ)

̂Rτ

I
K 0(U ; λ)

∼= Rτ

0

0 Ωodd(X;C)/ΩH,Ch
a

̂K 0(V , τ ∗̂λ)
I

K 0(V ; τ ∗λ) 0
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The map Rτ is an isomorphism (See Karoubi [19, p. 233] Theorem 3.6), and all square
diagrams commute. Hence ̂Rτ is an isomorphism by the five-lemma. ��
Definition 4.31 Let ̂λ be the element in the colimit of Deligne 2-cocycles over X
defined on a good open cover U along a choice of refinements of U represented by
̂λ ∈ Twisttor

̂K
(U ). The twisted differential K -group of X , denoted by ̂K 0(X,̂λ), is

defined by the colimit of ̂K 0(U ,̂λ) over all refinements ofU . The twisted K -group
of X , denoted by K 0(X, λ), is defined by the colimit of K 0(U , λ) over all refinements
of U .

4.8 The hexagon diagram

Notation 4.32 We denote by Pr : Ωeven(X;C)closed → H even
H (X;C) the map taking

twisted de Rham cohomology class, and r : Hodd
H (X;C) → Ωodd(X;C)/ΩH,Ch the

map that sends an odd twisted de Rham cohomology class [ω] to ω+ΩH,Ch. The map
r is well-defined by definition of ω + ΩH,Ch (see Notation 4.25).

Proposition 4.33 For the maps I , R, and a from or into ̂K 0(U ;̂λ), the following
holds:

(1) ch ◦ I = Pr ◦ R.
(2) R ◦ a = d + H.

Definition 4.34 We define maps α and β as follows:

α : Hodd
H (X;C) → ker R β : ker R → K 0(U , λ)

[ω] 
→ (O, 0, ω) (E, Γ E , ω) − (F, Γ F , η) 
→ [E] − [F].

Remark 4.35 The maps α and β are well-defined group homomorphisms.

Proposition 4.36 (1) a ◦ r = incl ◦ α.
(2) β = I ◦ incl.
(3) The following sequences are exact:

Hodd
H (X;C)

α→ ker R
β→ K 0(U , λ)

ch→ Heven
H (X;C)

Hodd
H (X;C)

r→Ωodd(X;C)/Im(d + H)
d+H→ Ωeven(X;C)closed

Pr→ Heven
H (X;C)

Proof All claims are obvious except that ker(β) ⊆ Im(α), which we prove presently.
Take an arbitrary element [(E, Γ E , ω)]−[(F, Γ F , η)] ∈ ker R whose image under β
is zero, i.e., there exists a λ-twisted vector bundle G defined onU and an isomorphism

ϕ : E ⊕ G
∼=→ F ⊕ G. Choose any connection Γ G on G that is compatible witĥλ. At

this point we introduce the following notation:

ζ := CS(Γ E ⊕ Γ G, ϕ∗(Γ F ⊕ Γ G)).
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We see that

[(E, Γ E , ω)] − [(F, Γ F , η)] = [(E, Γ E , ω)] − [(F, Γ F , ω − ζ )] + [(O, 0, ω − ζ − η)]
= a([ω − ζ − η]),

(5)
where in the first equality we add and subtract [(O, 0, ω − ζ − η)] and in the second
use Definition 4.10.

We have to verify that the differential form ω − η − ζ represents an odd degree
twisted cohomology class. Since [(E, Γ E , ω)] − [(F, Γ F , η)] ∈ ker R, we have
ch(Γ E ) − ch(Γ F ) + (d + H)(ω − η) = 0. Now (d + H)(ω − η − ζ ) = ch(Γ E ) −
ch(Γ F ) − (ch(Γ E ⊕ Γ G) − ch(Γ F ⊕ Γ G)) = 0. ��

Corollary 4.37 In the following diagram for ̂K 0(X;̂λ), all square and triangles are
commutative and all sequences are exact.

0

Hodd
H (X;C)

ker(R)

0

Ωodd(X)/ΩH,Ch

̂K 0(X;̂λ)

K 0(X, λ)

0

Im(R)

H even
H (X;C)

0

�

�

�

�

α

β

I ch

r a

d+H

R

Remark 4.38 When the differential twist iŝλ = ({1}, {0}, {0}), the diagram reduces to
the differential K -theory hexagon diagram of Simons and Sullivan (see [24, p. 596]).

4.9 Compatibility with change of twist map

Proposition 4.39 Let α̂′ = (χ ′
j i ,Π

′
i ) be an isomorphism ̂λ → ̂λ′ such that ̂λ′ =

̂λ + Dα′. Then the diagram in Corollary 4.37 is natural under change of twist by α̂′:

(1) Îλ′ ◦ φα̂′ = φα′ ◦ Îλ.
(2) φα̂′ ◦ âλ = âλ′ .
(3) R

̂λ′ ◦ φα̂′ = R
̂λ.
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Proof (1)

Îλ′ ◦ φα̂′([(E, Γ E , ω)] − [(F, Γ F , η)]) = Îλ′([(φα′ E, Γ E + Π ′ · 1, ω)]
− [(φα′ F, Γ F + Π ′ · 1, η)])

= [φα′ E] − [φα′ F]
= φα′ ◦ Îλ([(E, Γ E , ω)] − [(F, Γ F , η)]).

(2) Obvious.
(3)

R
̂λ′ ◦ φα′([(E, Γ E , ω)] − [(F, Γ F , η)])
= R

̂λ([(φα′ E, {Γ E
i + Π ′

i }, ω)] − [(φα′ F, {Γ F
i + Π ′

i }, η)])
= (ch(Γ E + Π ′ · 1) + (d + H)ω − ch(Γ F + Π ′ · 1) − (d + H)η)

= (ch(Γ E ) + (d + H)ω − ch(Γ F ) − (d + H)η) by Lemma 3.16.

= R
̂λ([(E, Γ E , ω)] − [(F, Γ F , η)]).

��
Proposition 4.40 Let ξ ∈ Ω2(X; iR) that induces an isomorphism ̂λ → ̂λξ . Then
the diagram in Corollary 4.37 is natural under change of twist by ξ :

(1) Ξ ◦ a = a ◦ exp(−ξ).
(2) I ◦ Ξ = I .
(3) R ◦ Ξ = exp(−ξ) ◦ R.
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