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Abstract Fix a symbol a in the mod-� Milnor K -theory of a field k, and a norm
variety X for a. We show that the ideal generated by a is the kernel of the K -theory
map induced by k ⊂ k(X) and give generators for the annihilator of the ideal. When
� = 2, this was done by Orlov, Vishik and Voevodsky.
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1 Introduction

Let � be a prime and k a field containing 1/�. Given units a1, . . . , an ∈ k× we can
form the Steinberg symbol a = {a1, . . . , an} in KM

n (k); we wish to study the ideal
(a) generated by a in KM

n (k)/�. What is the quotient ring (KM∗ (k)/�)/(a), and what
is the annihilator ideal ann(a), so that (a) = (KM∗ (k)/�)/ ann(a)?
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1034 C. Weibel, I. Zakharevich

Here is the main result of this paper; it was proven for � = 2 by Orlov, Vishik and
Voevodsky in [12, 2.1].

Theorem 1.1 Suppose that char k = 0, and let X be a norm variety for a nontrivial
symbol a in K M

n (k)/�. Then:

(a) the kernel of K M∗ (k)/� KM∗ (k(X))/� is the ideal of K M∗ (k)/� generated by
a;

(b) the annihilator of a is the ideal of K M∗ (k)/� generated by the norms

{N (α) ∈ KM∗ (k)/� | α ∈ KM∗ (k(x)), x a closed point in X}.

Theorem 1.1 uses the notion of a norm variety; see Definition 3.1 below. The
existence of norm varieties is due to Rost; the terminology comes from [13] and [6,
1.18].

Examples 1.2 Theorem 1.1(a) implies that KM
i (k)/� KM

i (k(X))/� is an injection
when i < n, that the kernel of KM

n (k)/� KM
n (k(X))/� is exactly the cyclic

subgroup generated by a and that the kernel of KM
n+1(k)/� KM

n+1(k(X))/� is the
subgroup a ∪ k×.

The group of units b in k×/k×� such that {a1, . . . , an, b} = 0 in KM
n+1(k)/� forms

the degree 1 part of the ideal ann(a). This group, described in Theorem 1.1(b) was
originally described by Voevodsky. If Hp,q(X) is the motivic homology of a norm
variety for a, X , and k has no extensions of degree �, Voevodsky proved in [13, A.1
and 2.9] that the pushforward π∗ : H−1,−1(X) H−1,−1(Spec k) = k× induces an
exact sequence

1 H−1,−1(X)
π∗ k× a∪

KM
n+1(k)/�. (1.2a)

Here H p,q(X) denotes the coequalizer of the two projections Hp,q(X × X) ⇒
Hp,q(X). Thus the degree 1 part of ann(a) is H−1,−1(X): {a, b} = 0 if and only
if b ∈ H−1,−1(X).

When n = 1, write a = (a) for a ∈ k×, and set E = k( �
√
a). Then X = Spec(E)

is a norm variety for a. For simplicity, suppose that k contains an �th root of unity,
ζ . The degree 2 part of (a) is the group of symbols a ∪ b; under the isomorphism
H2
et(k,Z/�) ∼= �Br(k), a ∪ b is identified with the class of the cyclic algebra Aζ (a, b)

in the Brauer group. Theorem 1.1 describes the group of units b for which Aζ (a, b)
is a matrix algebra, and the class of division algebras (or classes [A] ∈ �Br(k)) which
are equivalent to cyclic algebras. In this case, Kummer theory gives the answer: the
group of units is the image N (E×) of the norm map E× k×, and the class of
division algebras equivalent to cyclic algebras is the class of algebras split by E . (See
[20, 6.4.8].) In fact, we have the classical exact sequence

1 N (E×) k× a∪ H2
et(k,Z/�) H2

et(E,Z/�)Gal(E/k). (1.2b)
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When n = 1, Theorem 1.1 states that for every unit a not in k×� there are exact
sequences

1 KM
i (E)Gal(E/k)

N K M
i (k) ∪a K M

i+1(k)/� (KM
i+1(E)/�)Gal(E/k);

(1.2c)
when i = 1 this is exactly (1.2b). This follows fromVoevodsky’s Galois computations
[6, 3.2 and 3.6] (cf. [14, 5.2 and 6.11]) and the fact that � · KM

i (k) ⊆ N (KM
i (E)).

Theorem1.1 follows from themore technical Theorem1.3.Wenote that the analysis
in [12] did not need toworry about roots of unity, as anyfield of characteristic 0 contains
the square roots of unity, and Pfister quadrics always have points of degree 2. For an
odd prime �, the existence of a norm variety with points of degree � is established in
[13, 1.21] modulo the Norm Principle, proven in [5, 0.3]; see Chapter 10 of [6].

Theorem 1.3 Let char k = 0. Suppose that X is a norm variety for a symbol a
in K M

n (k)/� containing a point x with [k(x) : k] = �. Write q = n + i and let
˜KM
q (k(X))/� denote the equalizer of the maps K M

q (k(X))/� KM
q (k(X × X))/�;

X denotes the 0-coskeleton of X (see Definition 3.3).

(a) If μ� ⊂ k×, there is an exact sequence for all i :

H−i,−i (X)
π∗ KM

i (k)
a∪

KM
q (k)/�

ι
˜KM
q (k(X))/� Hq+1,q−1(X,Z/�).

(b) If μ� 	⊂ k×, set e = [k(ζ ) : k] and X ′ = X ×k1 k(ζ ), where k1 = k(ζ ) ∩ k(X).
If X′ denotes the 0-coskeleton of X ′ over k(ζ ), then for all i there is an exact
sequence:

H−i,−i (X)[e−1] π∗ KM
i (k)[e−1] a∪

KM
q (k)/� ι

˜KM
q (k(X))/� Hq+1,q−1(X′,Z/�)G .

The map ι is induced by the homomorphism k k(X), and G = Gal(k′/k1).

The sequences (1.2a), (1.2b) and (1.2c) begin with an injection. This is often, but
not always, the case.

Question 1.4 In the situation of Theorem 1.3(a) with μ� ⊂ k×, when is π∗ an injec-
tion?

For i = 0, the map π∗ is an injection: H0,0(X) = Z, and its image in K0(k) = Z is
�Z. (This observation goes back to [9, 8.7.2].) This calculation shows that the mod-�
reduction H0,0(X,Z/�) KM

0 (k)/� of π∗ is not always an injection.
The map π∗ is an injection for i = 1 by Eq. (1.2a), and for n = 1 by Lemma 2.5

below. However, if k does not contain the �th roots of unity, π∗ need not be an injection
even for i = n = 1, as the classical Hilbert Theorem 90 can fail; see Example 2.6
below.
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1036 C. Weibel, I. Zakharevich

Theorem 1.1(b) could be strengthened to only look at norms of elements in
KM
1 (k) = k× if we knew that the answer to the following question was affirmative:

Question 1.5 If E/F is a Galois extension of prime degree, is K M
n+1(E) always gen-

erated by symbols {a1, . . . , an, b} with ai ∈ F× and b ∈ E×?
It suffices to check the case n = 1: is K M

2 (E) is always generated by symbols {a, b}
with a ∈ F× and b ∈ E×?

If � = 2, � = 3 or k is �-special, this is the case; KM
2 k(x) is generated by symbols

{a, b} with a ∈ k× and b ∈ k(x)×; see [8, Lemma 2], [1, p. 388]. By Becher [2,
1.1], KM

n k(x) is also generated by symbols {α, β} with α ∈ KM
n−m(k), β ∈ KM

m (k) if
� < 2m+1.

The restriction to prime degree is necessary in Question 1.5. Becher has pointed
out in [2, 3.1] that if E = k(x, y) and F = k(x�, y�) then {x, y} cannot be written
in this form, as the tame symbol ∂y : KM

2 (E) k(x)×/k×� shows. In this case,
[E : F] = �2.

Remark 1.6 Although most of our results work over perfect fields of arbitrary char-
acteristic, the assumption that k has characteristic 0 is needed in two places.

1. To prove that norm varieties exist for symbols of length n. This would go through
for any perfect field of positive characteristic (by induction on n) if we could prove
that for symbols of length n − 1 over k, a norm variety Y exists which satisfies
the Norm Principle (see [5, 0.3] or [6, 10.17]). The inductive step is given in [6,
10.21].

2. We also need characteristic 0 to show that the symmetric characteristic class sd(X)

of a norm variety is nonzero modulo �2. The proof in characteristic 0 is due to
Rost (unpublished), and given in Proposition 10.13 of [6], and depends upon
the Connor–Floyd theory of equivariant cobordisms on complex G-manifolds (as
given by Theorem 8.16 in loc. cit.) It is possible that a proof in characteristic p > 0
could be given along the lines of [13, 5.2], if we assume resolution of singularities.

We will therefore state as many of our results in as much generality as possible, only
restricting to characteristic zero when absolutely necessary.

Remark 1.7 After writing this paper, we discovered that many of our results are in
Yagita’s paper [21] and in the Merkurjev–Suslin paper [10] whenμ� ⊂ k×. (Compare
[21, Thm.10.3] to our 1.3a and [10, 2.1] to our 1.1 and 1.3.) The basic technique
in these papers, and in ours, is the same: generalize the ideas in [12], using Rost’s
norm varieties for � > 2. Yagita’s proof is somewhat sketchy as it predated a clear
understanding of norm varieties. Merkurjev and Suslin prove Theorem 1.1(b) when
μ� ⊂ k×, but their result does not discuss KM

n (k) in the absence of roots of unity.
Since neither of these results directly addresses the ring structure of KM∗ (k)/�, nor do
they contain the final term Hq+1,q−1 in our Theorem 0.3, we feel that our exposition
should be added to the public record.

Notation and conventions We fix a prime � and an �th root of unity ζ . We write
H p,q(Y,Z/�) for H p

nis(Y,Z/�(q)).

123



Principal ideals in mod-� Milnor K -theory 1037

2 Borel–Moore homology

The first term in Theorem 1.3 uses themotivic homology group H−i,−i (X) of a smooth
projective variety X (with coefficients in Z). However, it is more useful to think of it
as the Borel–Moore homology group HBM−i,−i (X), which is covariant for proper maps
between smooth varieties, and contravariant for finite flat maps; see [4, p. 185] or [11,
16.13].Wedefine HBM−i,−i (X) to be HBM−i,−i (X,Z) if char k = 0, and HBM−i,−i (X,Z[1/p])
if char k = p>0.

Let X be smooth and projective. We then have H−i,−i (X) = HBM−i,−i (X), and more

generally Hp,q(X,Z) = HBM
p,q (X,Z), because the natural map from M(X) = Ztr(X)

toMc(X) inDM is an isomorphism for smooth projective X . Recall from [11, 2.8] that
Ztr(X)denotes the sheafwith transfers represented by X , andVoevodsky’s triangulated
category DM is a localization of the derived category of sheaves with transfers; see for
example [11, p. 110]. The motivic homology groups Hp,q(X,Z) of X are defined to
be HomDM(Z(q)[p], M(X)), while the Borel–Moore homology groups HBM

p,q (X,Z)

are defined to be HomDM(Z(q)[p], Mc(X)); see [4, p. 185] or [11, 14.17, 16.20].
The case i = 1 of the following result was proven in [13].

Proposition 2.1 Let X be a smooth variety over a perfect field k; write X (0) for the
closed points of X and X (1) for the dimension 1 points of X. If i ≥ 0, H BM−i,−i (X) is
the abelian group generated by symbols [x, α], where x is a closed point of X and
α ∈ KM

i (k(x)), modulo the relations

(i) [x, α][x, α′] = [x, α + α′] and
(ii) the image of the tame symbol K M

i+1(k(y))
⊕

KM
i (k(x)) HBM−i,−i (X) is

zero for every dimension 1 point y of X.

That is, we have an exact sequence

∐

y∈X (1)

KM
i+1(k(y))

tame
∐

x∈X (0)

KM
i (k(x)) HBM−i,−i (X) 0.

In addition, H BM−i,−i (X) is isomorphic to H2d+i,d+i (X,Z).

Proof Let A denote the abelian group with generators [x, α] and relations (i) and (ii),
described in the Proposition, and set d = dim(X). We first show that A is isomorphic
to Hd(X,H d+i ), where H q denotes the Zariski sheaf associated to the presheaf
Hq,d+i (−,Z). For each q, H q is a homotopy invariant Zariski sheaf, by [11, 24.1].
As such, it has a canonical flasque “Gersten” resolution on each smooth X (given in
[11, 24.11]), whose cth term is the coproduct over codimension c points z of X of the
skyscraper sheaves Hq−c,d+i−c(k(z)). Takingq = d+i , and recalling that KM

i
∼= Hi,i

on fields, we see that the stalks of the skyscraper sheaves in the (d−1)st and dth terms
are groups KM

i+1(k(y)) and K
M
i (k(x)). Moreover, themap KM

i+1(k(y)) KM
i (k(x))

is the tame symbol if x ∈ {y}, and zero otherwise. As Hd(X,H d+i ) is obtained by
taking global sections and then cohomology, it is isomorphic to A.

Next, we show that A is isomorphic to H2d+i,d+i (X,Z). To this end, consider
the hypercohomology spectral sequence E p,q

2 = H p(X,H q) ⇒ H p+q,d+i (X,Z).
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Since Hq,d+i (k(z)) = 0 for q > d + i , the spectral sequence is zero unless p ≤ d
and q ≤ d + i . From this we deduce that H2d+i,d+i (X,Z) ∼= Hd(X,H d+i ) ∼= A.

Finally, we show that HBM−i,−i (X) is isomorphic to H2d+i,d+i (X,Z). Suppose first

that i = 0. Then the presentation describes CH0(X) ∼= H2d,d(X,Z), and by [17] we
also have HBM

0,0 (X) = CH0(X). Thus we may assume that i > 0.
If char(k) = 0, the proof is finished by the duality calculation, which uses Motivic

Duality with d = dim(X) (see [11, 16.24] or [4, 7.1]):

HBM−i,−i (X,Z) =HomDM(Z, Mc(X)(i)[i]) = HomDM(Z(d)[2d], Mc(X)(d + i)[2d + i])
=HomDM(M(X),Z(d + i)[2d + i]) = H2d+i,d+i (X,Z).

Now suppose that k is a perfect field of char(k) = p > 0. As we show below in
Lemma 2.2, KM

i (k(x)) and KM
i+1(k(y)) are uniquely p-divisible for i ≥ 1 (when x

is closed in X and trdegkk(y) = 1). Thus A must also be uniquely p-divisible. Since
H2d+i,d+i (X,Z) ∼= A, the duality calculation above goes through with Z replaced by
Z[1/p], using the characteristic p version of Motivic Duality (see [7, 5.5.14]) and we
have HBM−i,−i (X,Z[1/p]) ∼=H2d+i,d+i (X,Z[1/p]) ∼=H2d+i,d+i (X,Z). ��
Lemma 2.2 (Izhboldin) Let E be a field of transcendence degree t over a perfect field
k of characteristic p. Then K M

m (E) is uniquely p-divisible for m > t .

Proof For any field E of characteristic p, the group KM
m (E) has no p-torsion by

Izhboldin’s Theorem ([20, III.7.8]), and the dlog map KM
m (E)/p 	m

E is an injec-
tion with image ν(m); see [20, III.7.7.2]. Since k is perfect, 	1

k = 0 and 	1
E is

t-dimensional, so if m > t then 	m
E = 0 and hence KM

m (E)/p = 0. ��
Example 2.3 (i) H−i,−i (Spec E) = KM

i (E) for every field E over k, as is evident
from the presentation in Proposition 2.1.

(ii) If E is a finite extension of k, the proper pushforward from KM
i (E) =

H−i,−i (Spec E) to KM
i (k) = H−i,−i (Spec k) is just the norm map NE/k ; see

[20, III. 7.5.3].
(iii) If π : X Spec(k) is proper, and x ∈ X is closed, the restriction of the

pushforward

π∗ : H−i,−i (X) H−i,−i (Spec k) = KM
i (k)

to KM
i (k(x)) sends [x, α] to the norm Nk(x)/k(α). This follows from (ii) by

functoriality of H−i,−i for the composite Spec k(x) X Spec k, x ∈ X
closed. From the presentation in Proposition 2.1, the map NX/k is completely
determined by the formula π∗[x, α] = Nk(x)/k(α).
In particular, the image of π∗ is the subgroup of KM

i (k) generated by the norms
Nk(x)/k(α) of α ∈ k(x)× as x ranges over the closed points of X .

Lemma 2.4 Suppose that μ� ⊂ k. Let E = k( �
√
a) and write X = Spec(E), G =

Gal(E/k). Then X × X ∼= ∐

G X.

Proof Since E is a Galois extension, E ⊗ E ∼= ∏

G E ; thus X × X ∼= Spec(E ⊗ E) ∼=
∐

G X . ��
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Lemma 2.5 Suppose that μ� ⊂ k and a ∈ k×, and set E = k( �
√
a), X = Spec(E).

Then H−i,−i (X) ∼= KM
i (E)Gal(E/k), and H−i,−i (X) KM

i (k) is an injection.

Proof Note that E/k is Galois with group G, so X × X ∼= ∐

G X by Lemma 2.4 and
H−i,−i (X) ∼= (KM

i E)G by Example 2.3(i). In this case, (KM
i E)G is a subgroup of

KM
i (k) by (1.2c). ��

Example 2.6 If E/k is not Galois, H−i,−i (Spec(E)) KM
i (k) need not be an

injection, even for n = 1. One way to think of this is to realize that the classical
Hilbert 90 asserts exactness of (E ⊗ E)× ⇒ E× k×, and Hilbert 90 requires
E/k to be Galois [19, 6.4.7]. A concrete example is given by � = 3, k = Q, and
E = Q(

3
√
2). In this case, Spec(E) × Spec(E) ∼= Spec(E × F), where F = E(

3
√
1),

and the coequalizer H−1,−1(Spec(E)) of (E × F)× ⇒ E× does not inject into Q
×.

This shows that π∗ in Theorem 1.3(a) is not always an injection.

3 Norm varieties

Let a = (a1, . . . , an) be a sequence of units in a field k of characteristic not equal to
�.

Definition 3.1 A field F over k is said to be a splitting field for a if a vanishes in
KM
n (F)/�. We say that a variety X is a splitting variety for a if k(X) is a splitting field

for a, i.e., if a vanishes in KM
n (k(X))/�.

Let X be a splitting variety for a. We say that X is an �-generic splitting variety for
a if any splitting field F has a finite extension E of degree prime to � with X (E) 	= ∅.

A norm variety for a is a smooth projective variety X of dimension d = �n−1 − 1
which is an �-generic splitting variety for a. When char(k) = 0, a norm variety for a
always exists (see [6, 10.16]).

For example, E = k( �
√
a1) is a splitting field for a = (a1, . . . , an). Since a norm

variety X is �-generic, there is a finite field extension E ′/E of degree prime to � and
an E ′-point of X . The following result, due to Rost, is proven in Chapter 10 of [6].

Theorem 3.2 If a is a nonzero symbol over k and char(k) = 0, then there exists a
norm variety X for a having a closed point x with [k(x) : k] = �.

We will frequently use the following fact, proven in [13, 1.21] (see [6, 10.13]): if
k has characteristic 0 and n ≥ 2, the symmetric characteristic class sd(X) of a norm
variety X is nonzero modulo �2 (i.e., X is a νn−1-variety).

Definition 3.3 Given a norm variety X , let X denote its 0-coskeleton, i.e., the sim-
plicial scheme p �→ X p+1 with the projections X p+1 X p as face maps and the
diagonal inclusions as degeneracies.

For simplicity, we write L for Z(�)(1)[2], R for Z(�), and Rtr(X) for Ztr (X)(�). We
also regard X as a Chow motive. Recall [11, 20.1] that Chow motives form a full
subcategory of DM, and that an idempotent element e ∈ CHdim X (X × X) gives rise
to a summand (X, e) of X in this category. Switching factors in X × X yields the
transpose idempotent et and a summand (X, et ).

123



1040 C. Weibel, I. Zakharevich

Theorem 3.4 Let X be a norm variety for a such that sd(X) is nonzero modulo �2.
Then there is a Chow motive M = (X, e) with coefficients Z(�), such that

(i) M = (X, e) is a symmetric Chow motive, i.e., (X, e) = (X, et );
(ii) The projection X Z(�) factors as X (X, e) Z(�), i.e., is zero on

(X, 1 − e);
(iii) There is a motive D related to the structure map y : M Rtr(X) and its twisted

dual yD by two distinguished triangles in DM, where b = d/(� − 1):

D ⊗ L
b M

y
Rtr(X)

s D ⊗ L
b[1], (3.4a)

Rtr(X) ⊗ L
d yD

M u D r Rtr(X) ⊗ L
d [1]. (3.4b)

Proof This is proven carefully in [6, Ch.5]; the construction is due to Voevodsky [16,
pp. 422–428] and appears in Section1 of [18]. Specifically, a determines amotive A by
(5.1), Definition 5.5 and 5.13.1 of [6]; by definition,M = S�−1(A) and D = S�−2(A),
where Sm(A) is the mth symmetric product of A. Part (i) follows from 5.19; part (ii)
follows from 5.9; and part (iii) follows from 5.7 of loc. cit. ��

Althoughmany of our techniques require the field k to contain the �th roots of unity,
we can sometimes remove this restriction using the following observation. Given a
norm variety X over a field k, let k1 denote the largest subfield of k(ζ ) contained in
k(X). Then X is also a norm variety for a over k1.

Lemma 3.5 Given a nonzero symbol a ∈ KM∗ (k)/�, let X be a norm variety for a
over k. Then every component X ′ of Xk(ζ ) is a norm variety for a over k(ζ ).

Proof Clearly, X ′ is a splitting variety for a of the right dimension. Given a splitting
field F of a over k(ζ ), there is a prime-to-� extension E of F such that k(ζ ) ⊂ E
and such that there exists a map Spec E X over k. By basechange, there is a map
Spec E ⊗k k(ζ ) Xk(ζ ) over k(ζ ). As k(ζ ) ⊂ E , E ⊗k k(ζ ) is a Gal(k(ζ )/k)-
indexed product of copies of E . SinceGal(k(ζ )/k) acts transitively on the components
of Xk(ζ ), each component X ′ of Xk(ζ ) has an E-point. Thus X ′ is a norm variety over
k(ζ ). ��
Remark 3.6 Xk(ζ ) is a Gal(k1/k)-indexed coproduct of copies of X ′ = X ×k1
Spec k(ζ ).

4 Reducing to Theorem 1.3 over fields containing �-th roots

We are now ready to prove Theorem 1.1 assuming Theorem 1.3. Fix a field k of
characteristic 0, a symbol a and a norm variety X for a. We first observe that, given
Example 2.3(ii), the statement of Theorem 1.1 is equivalent to the exactness of the
sequence

H−i,−i (X)/�
π∗ KM

i (k)/�
a∪

KM
i+n(k)/�

ι KM
i+n(k(X))/�. (4.1)
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As observed in Example 1.2, Theorem 1.1 for n = 1 follows from (1.2c) when
μ� ⊂ k×.

Proposition 4.2 Suppose that Theorem 1.3 holds over k. Then so does Theorem 1.1.

Proof As the equalizer K̃ M
i+n(k(X))/� is a subgroup of KM

i+n(k(X))/�, Theorem 1.3
implies that there is an exact sequence

H−i,−i (X)[e−1] π∗ KM
i (k)[e−1] a∪

KM
i+n(k)/�

ι KM
i+n(k(X))/�.

(If μ ⊂ k× then e = 1). Exactness of (4.1) is immediate. ��
Thus we have reduced the proof of Theorem 1.1 to Theorem 1.3. We will now

show that proving Theorem 1.3 over fields containing �th roots of unity suffices.

Proposition 4.3 Suppose that Theorem1.3holds for all fields of characteristic0which
contain �th roots of unity. Then Theorem 1.3 holds for all fields of characteristic 0.

Proof Let k be any field of characteristic 0 not containing an �th root of unity, ζ .
Set q = n + i , k′ = k(ζ ), k1 = k′ ∩ k(X), e = [k′ : k] and G = Gal(k′/k1), as
in the statement of Theorem 1.3(b). By Lemma 3.5 and Remark 3.6, the component
X ′ = X ×k1 Spec(k

′) of Xk′ is a norm variety for a over k′. The action of G on k′
induces actions of G on X ′ and its 0-skeletonX′, and induces the last map in Theorem
1.3(b):

K̃ M
q (k(X))/�

j
(K̃ M

q (k′(X ′))/�)G ∂ Hq+1,q−1(X′)G .

Since e is prime to �, inverting e in the exact sequence of Theorem 1.3 for k′ yields
the exact sequence forming the bottom row of the following diagram, in which the
downward arrows are base change maps and the upward arrows are the norm maps.

H−i,−i (X)[e−1] KM
i (k)[e−1] KM

q (k)/� K̃ M
q (k(X))/� Hq+1,q−1(X′)G

H−i,−i (X
′)[e−1] KM

i (k′)[e−1] KM
q (k′)/� K̃ M

q (k′(X ′))/� Hq+1,q−1(X′)

π∗ a∪ ι ∂ j

π ′∗ a∪ ι ∂

jN N N

As each K -group is covariantly functorial, the diagram with the downward set of
arrows commutes; the diagram with the upward set of arrows commutes by naturality
and the projection formula [20, III.7.5.2]. The downward map KM∗ (k) KM∗ (k′),
followed by the norm map, is multiplication by e = [k′ : k]. A diagram chase now
shows that the top row of the diagram is exact. ��
Remark 4.4 The map j is also injective in the above diagram. To see this, note that
(by the projection formula) the norm KM

q (k′(X ′))/� KM
q (k(X))/� induces a map

Ñ from K̃ M
q (k(X ′))/� to K̃ M

q (k(X))/�, and the composition Ñ j is multiplication by

[k′ : k1], not e. Note that Ñ does not commute with the norm KM
q (k′)/� KM

q (k)/�
unless k = k1.

123



1042 C. Weibel, I. Zakharevich

5 The exact sequence

In this section and the next, we assume that our field k contains an �th root of unity, ζ .
As before, we fix a symbol a and a norm variety X for a, writingX for the 0-coskeleton
of X .

Given a complex F • of étale sheaves, let Hq = Hq
nis(F •) denote the Nisnevich

sheaf associated to the presheaf Hq
et(−,F •). If F is a locally constant étale sheaf

(such as μ⊗i
� ), Hq(F) is a Nisnevich sheaf with transfers, by [11, 6.11, 6.21 and

13.1].

Lemma 5.1 If F is a sheaf, H0(X,Hq) is the equalizer of H0(X,Hq) H0(X ×
X,Hq).

Proof This is the definition of H0 on a simplicial scheme; see [3, 5.2.2]. Alternatively,
it follows from the spectral sequence E p,q

1 = Hq(X p+1,F) ⇒ H p+q(X,F) for the
cohomology of a sheaf on a simplicial scheme. ��
Remark 5.2 The Nisnevich sheaves Hq(μ

⊗q
� ) are homotopy invariant sheaves with

transfers, by [11, 24.1]. By [11, 11.1], if X is smooth then H0(X,Hq(μ
⊗q
� ))—and

hence H0(X,Hq(μ
⊗q
� ))—injects into Hq(μ

⊗q
� )(Spec k(X)) = Hq

et(k(X), μ
⊗q
� ) ∼=

KM
q (k(X))/�.

Proposition 5.3 If μ� ⊂ k×, there is a distinguished triangle in DM for each q ≥ 0:

Z/�(q − 1)
ζ

Z/�(q) Hq(μ
⊗q
� )[−q] .

Proof For any Nisnevich complex C and any q we have a distinguished triangle

τ≤q−1C τ≤qC Hq(C)[−q] .

Now let C be the total direct image Rπ∗μ⊗q
� , where π : Smet Smnis, so

H∗
nis(X,C) = H∗

et(X, μ
⊗q
� ). Since μ� ⊂ k×, multiplication by ζ induces an iso-

morphism μ
⊗q−1
�

∼= μ
⊗q
� . Thus we have an isomorphism ∪ζ : Rπ∗μ⊗q−1

�
� C . In

this case, the triangle reads:

τ≤q−1Rπ∗(μ⊗q−1
� )

ζ
τ≤q Rπ∗(μ⊗q

� ) Hq(μ
⊗q
� )[−q] .

By the Beilinson–Lichtenbaum conjecture (which has now been proven; see [16, 6.17]
or [6, Thm.B]), Z/�(q) ∼= τ≤qC and Z/�(q − 1) ∼= τ≤q−1Rπ∗μ⊗q−1

�
∼= τ≤q−1C .

Combining these facts yields the distinguished triangle in question. ��
Let X̃ denote the simplicial cone of X Spec k. As a consequence of the

Beilinson–Lichtenbaum conjectures, Voevodsky observed that

Lemma 5.4 If X is smooth, the map H p,q(k,Z/�) H p,q(X,Z/�) is an isomor-
phism if p ≤ q and an injection if p = q+1. That is, H p,q(X̃,Z/�) = 0 if p ≤ q+1.
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Proof See [14, 6.9 and 7.3] or [6, 1.37]. ��
Proposition 5.5 If μ� ⊂ k×, there is a natural five-term exact sequence:

0 Hq, q−1(X,Z/�)
ζ

KM
q (k)/� H0(X,Hq(μ

⊗q
� ))

∂ Hq+1,q−1(X,Z/�).

Proof Apply Hq(X,−) to the distinguished triangle in Proposition 5.3. Using the fact
that Hq(X,C[ j]) = Hq+ j (X,C) and writingHq forHq(μ

⊗q
� ), we get

H−1(X,Hq)
∂ Hq,q−1(X,Z/�)

ζ

Hq,q(X,Z/�) H0(X,Hq)
∂ Hq+1,q−1(X,Z/�).

The first term (H−1) is 0 because the coefficients are a sheaf. By Lemma 5.4 with
p = q, the third term is Hq,q(k,Z/�) = KM

q (k)/� [11, Theorem 5.1]. ��
Corollary 5.6 Theorem 1.3 holds for n = 1.

Proof By Proposition 4.3, we may assume ζ ∈ k so that X = Spec(E), E = k( �
√
a)

and X × X = ∐

G X (by Lemma 2.4), where G = Gal(E/k). By Lemma 5.1 with

F being μ
⊗q
� , H0(X,Hq) is the equalizer of Hq(X, μ

⊗q
� )

∏

G Hq(X, μ
⊗q
� ),

i.e., Hq(X, μ
⊗q
� )G . Since Hq(X, μ

⊗q
� ) is KM

q (E)/�, we have H0(X,Hq) ∼=
(KM

q (E)/�)G . Proposition 5.5 yields exactness of

KM
q (k)/� (KM

q (E)/�)G
∂ Hq+1,q−1(X,Z/�).

Now combine this with the exact sequence (1.2c), using Lemma 2.5 to identify
H−i,−i (X). ��

Our next goal, achieved in Corollary 5.8, is to connect the first map in Proposition
5.5 to the cup product with a. We assume that n ≥ 2, so that d = dim(X) > 0 and
sd(X) is defined.

Proposition 5.7 Let X be a norm variety for a such that sd(X) 	≡ 0 (mod �2). For
i ≥ 0, there is a four-term exact sequence

H−i,−i (X)(�)
π∗ KM

i (k)(�)
r∗ Hi+2d+1,i+d(D,Z(�)) 0.

Suppose in addition that X has a point of degree �. Then the following sequence is
exact:

H−i,−i (X)
π∗ KM

i (k) r∗ Hi+2d+1,i+d(D,Z(�)) 0.
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1044 C. Weibel, I. Zakharevich

Proof Let M , D and L be as in Theorem 3.4. Since H p,q(M[1]) = H p−1,q(M),
applying Hi+2d+1,i+d(−,Z(�)) to the distinguished triangle in (3.4b) gives us the
exact sequence

Hi+2d,i+d (M,Z(�)) Hi+2d,i+d (X ⊗ L
d )

r∗ Hi+2d+1,i+d (D,Z(�))
u∗

Hi+2d+1,i+d (M,Z(�))

where for brevitywehavewrittenH p,q (X⊗L
d) forHomDM(Rtr(X)⊗L

d ,Z(�)(q)[p]).
We will show that this may be rewritten as the 4-term sequence of the proposition.

Because M is a direct summand of X , H p,q(M,Z(�)) is a summand of
H p,q(X,Z(�)), which vanisheswhenever p−q > dim(X); see [11, 3.6].Hence the last
term Hi+2d+1,i+d(M,Z(�)) vanishes. Similarly, the first term, Hi+2d,i+d(M,Z(�)),
is a summand of Hi+2d,i+d(X,Z(�)), which we showed to be isomorphic to
H−i,−i (X,Z(�)) if i ≥ 0, in the proof of Proposition 2.1. Therefore we may replace
the first term by H−i,−i (X,Z(�)). Since X Spec(k) factors through X, the map
π∗ : H−i,−i (X,Z(�)) H−i,−i (k,Z(�)) = KM

i (k)(�) factors through the coequal-
izer H−i,−i (X,Z(�)) of the two projections from H−i,−i (X × X,Z(�)). We also know
that

Hi+2d,i+d (X ⊗ L
d ) = HomDM(X ⊗ L

d ,Z(�)(i + d)[i + 2d]) = HomDM(X,Z(�)(i)[i])
= Hi,i (X,Z(�)) ∼= Hi,i (Spec k,Z(�)) ∼= KM

i (k) ⊗ Z(�) = KM
i (k)(�),

where the last two isomorphisms follow from Lemma 5.4 and the Nestorenko–Suslin–
Totaro Theorem [11, 5.1]. Thus we have constructed an exact sequence

H−i,−i (X,Z(�))
π∗ KM

i (k)(�)
r∗ Hi+2d+1,i+d(D,Z(�)) 0.

When X has a point x of degree � over k, every element α of KM
i (k) has � α =

π∗([x, α]), so the cokernel of π∗ : H−i,−i (X) H−i,−i (k) = KM
i (k) has exponent

�, and is the same as the cokernel of H−i,−i (X,Z(�)) KM
i (k)(�). Thus we can

replace thefirst two termsof the exact sequencewith these to get the desired sequence.��
Corollary 5.8 Ifμ� ⊂ k×, there aremapsαi : Hi+2d+1,i+d(D,Z(�)) Hn+i,n+i−1

(X,Z/�) for all i so that a∪ : KM
i (k)/� KM

n+i (k)/� (the cup product with a) fac-
tors as

K M
i (k)/� r∗ Hi+2d+1,i+d(D,Z(�))

αi Hn+i,n+i−1(X,Z/�)
ζ

KM
n+i (k)/�.

Proof Set q = n + i . For each closed point x of X , the diagram

KM
i (k(x))/� KM

i (k)/�

KM
q (k(x))/� KM

q (k)/�

N

a∪
N

a∪ = 0
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commutes by the projection formula [20, III.7.5.2]. Thus the map
H−i.−i (X) KM

q (k)/� is zero, since by Proposition 2.1 it is induced by the maps

KM
i (k(x))/� N K M

i (k)/�
a∪

KM
q (k)/�.

ByProposition 5.7, the cup product factors through the quotient Hi+2d+1,i+d (D,Z(�))

of KM
i (k)/�. It remains to show that the image aK M

i (k) of the cup product lands in

the subgroup Hq,q−1(X,Z/�) of KM
q (k)/�. Since H0(X,Hq(μ

⊗q
� )) is a subgroup of

KM
q (k(X))/� (by Remark 5.2), it suffices by Proposition 5.5 to show that aK M

i (k)

vanishes in KM
q (k(X))/�. This is so because k(X) splits a. ��

In Corollary 5.12, we will show that the map αi is an isomorphism. The inverse of
αi will be constructed using the cohomology operations Qi constructed in [15, p. 51].
Each Qi has bidegree (2�i − 1, �i − 1); see loc. cit. or [6, 13.3] for a summary of
their properties. Thus the composite Q = Qn−1Qn−2 · · · Q0 has bidegree (2b�− n+
2, b� − n + 1), where b = d/(� − 1) = �n−2 + · · · + � + 1.

Definition 5.9 Define the Z-graded ring H∗(k) by

H
i (−) =

⊕

s∈Z
Hi+s,s(−,Z/�).

In particular, H0(k) ∼= KM∗ (k)/�. The cohomology operation Q maps H
i (Y ) to

H
i+b�+1(Y ). Note that Hi (X̃) = 0 for i ≤ 1, by Lemma 5.4.

Now the operations Q j vanish on each KM
p (k)/� = H p,p(k,Z/�), because

H p,q(k,Z/�) = 0 for p > q. Since the Q j are derivations for � odd ([6,
13.10]), this means that H

∗(Y ) is a graded KM∗ (k)/�-module for each Y , and

each Q j : H
i (Y ) H

i+� j
(Y ) is a KM∗ (k)/�-module homomorphism. Thus

Q : Hi
H

i+b�+1 is also a KM∗ (k)/�-module homomorphism.

Lemma 5.10 Let X be a norm variety over a field of characteristic 0, and let X be its
0-coskeleton. Then the map Q : H1(X) H

b�+2(X) is an injection.

Proof Since H p,q(Spec k,Z/�) = 0 for p > q, we have Hi (Spec k) = 0 for i > 0.

This yields isomorphisms Hi (X)
∼=

H
i+1(X̃) for all i > 0. In particular, H1(X) ∼=

H
2(X̃). Thus it suffices to show that Q is injective onH2(X̃). Setting a( j) = 2 + � j−1

�−1 ,

Q j−1 · · · Q0 maps H
2(X̃) to H

a( j)(X̃). In particular it suffices to show that Q j is
injective on H

a( j)(X̃) for all 0 ≤ j ≤ n − 1. Because X is a norm variety, we know
from [14, 3.2] (or [6, 10.14]) and [6, 13.20] that the Margolis sequence is exact for
each Q j , j < n:

H
a( j)−� j

(X̃)
Q j

H
a( j)(X̃)

Q j
H

a( j)+� j
(X̃).

By Lemma 5.4, the left term is zero because a( j) − � j ≤ 1. The result follows. ��
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Since X is a splitting variety, a vanishes in KM
n (k(X))/�. ByRemark 5.2, a vanishes

in H0(X,Hn(μ⊗n
� )). It follows fromProposition 5.5 (or [16, 6.5]) that there is a unique

element δ in Hn,n−1(X,Z/�) whose image in KM
n (k)/� is a.

In the following proposition, ζ is the map defined in Proposition 5.5, α is the direct
sum of the maps αi defined in Corollary 5.8, and the maps r∗, s∗ are given in Theorem
3.4.

Proposition 5.11 If sd(X) 	≡ 0 (mod �2), the following diagram commutes up to
sign, and the top composite is multiplication by a.

H
0(X) H

1(X) KM∗ (k)/�

H
d+1(D) H

b�+2(X)

δ∪

Q

s∗
r∗

ζ

α

Proof Note that all maps in the diagram are (right) module maps over the ring
KM∗ (k)/� ∼= H

0(X). This is clear for multiplication by δ, and we have already seen
that the cohomology operation Q is also a H0(X)-module map. Finally, the maps r∗
and s∗ are also H

0(X)-module maps, since they come from morphisms in DM; see
(3.4a) and (3.4b).

The top row sends x ∈ H
0(X) to ζ(δ ∪ x) = a ∪ x ; since ζ is an injection (by

Proposition 5.5), and a ∪ x = ζ ◦ α∗r∗(x) (by Corollary 5.8), the upper triangle
commutes: δ ∪ x = α∗r∗(x).

We will show that s∗r∗(1) = (−1)n−1Q(δ). By linearity for H0(X), it will fol-
low that s∗r∗(x) = (−1)n−1Q(δ ∪ x) for all x ∈ H

0(X). Since r∗ is surjective by
Proposition 5.7, the result will follow.

We need to recall the definition of φV (μ) from [16, p. 413] and [6, 5.10]. Given an

element μ in H2b+1,b(X,Z/�), form the triangle A X
μ

X(b)[2b + 1] and set
S = S�−2A. Since H2b�+2,b�(X,Z/�) ∼= HomDM(Rtr(X), Rtr(X)(b�)[b� + 2]), to
define φV (μ) it suffices to assign it a map Rtr (X) Rtr (X)(b�)[b�+ 2]. We define
φV (μ) to be represented by the composition

Rtr(X)
s S(b)[2b + 1] r ⊗ 1

Rtr(X)(b�)[b� + 2].

When μ = Qn−2 · · · Q0(δ), we get the distinguished triangles (3.4a) and (3.4b) with
D = S. Thus the composition s∗ ◦ r∗ in the above diagram is multiplication by the
element φV (μ). By [16, Thm. 3.8] (cf. [6, Cor. 6.33]), φV agrees with Q0Pb, where
Pb is the reduced power operation. In addition, since μ is annihilated by the Qi with
i ≤ n − 2 we have

s∗r∗(1) = Q0P
b(μ) = (−1)n−1Qn−1(μ) = (−1)n−1Q(δ);

see [16, p. 427] or [6, 5.14]. This shows that the bottom right triangle commutes in
the above diagram. ��
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Remark In the proof of Proposition 5.11, we have cited Definition 5.10, Corollary
6.33 and Lemma 5.14 from the book [6]. These are slightly improved versions of
Lemma 3.2 and (5.2), Theorem 3.8 and Lemma 5.13 in Voevodsky’s paper [16]. Note
that [16, 5.13] is missing several minus signs.

Corollary 5.12 In Proposition 5.11, Q and α are isomorphisms, and the maps r∗ and
δ ∪ − are surjections.

Proof From Proposition 5.7, we see that r∗ is surjective. By [6, 4.16], s∗ is an iso-
morphism (because d + 1 > d), and Q is an injection by Lemma 5.10. The results
follows from a diagram chase. ��

Note that Hq,q−1(X) = 0 for q < n, because by Corollary 5.12 this is a quotient
of Hq−n,q−n(X). Recall that ˜KM

q (k(x))/� is the equalizer of the two maps

ι1, ι2 : KM
q (k(X))/� ⇒ KM

q (k(X × X))/�.

The following result was proved for n = 1 in Corollary 5.6, and will be proved for
n ≥ 2 in the next section.

Proposition 5.13 H0(X,Hq(μ
⊗q
� )) ∼= K̃ M

q (k(X))/�.

We are now ready to prove Theorem 1.3 when n ≥ 2.

Proof of Theorem 1.3 Putting Proposition 5.5 for q = n + i and Proposition 5.7
together, we get that the rows are exact in the following diagram, where H p,q(−)

denotes H p,q(−,Z/�).

H−i,−i (X) KM
i (k) Hi+2d+1,i+d(D,Z(�))

Hq+1,q−1(X) H0(X,Hq(μ
⊗q
� )) KM

q (k)/� Hq,q−1(X)

r∗

ζ

a∪ α
δ∪

From Corollary 5.12 we can conclude that the five-term sequence indicated by the
dotted arrow is exact:

H−i,−i (X) KM
i (k)

a∪
KM
q (k)/� H0(X,Hq (μ

⊗q
� )) Hq+1,q−1(X).

(5.1a)
Theorem 1.3 now follows from Proposition 5.13. ��

6 The fourth term

Let ι1, ι2 be the two inclusions k(X) k(X × X) induced by the projections X ×
X X . To finish the proof of Theorem 1.3, we need to prove Proposition 5.13 for
n ≥ 2.

Lemma 6.1 Fix n ≥ 2. Let Ei be the equalizer of the morphisms pi and p′
i in the

following diagram. Then in the commutative diagram
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1048 C. Weibel, I. Zakharevich

H0(X,Hq) H0(X,Hq) H0(X × X,Hq)

E0 KM
q (k(X))/� KM

q (k(X × X))/�

E1

⊕

x∈X (1)

KM
q−1(k(x))/�

⊕

y∈(X×X)(1)

KM
q−1(k(y))/�

p0

p′
0

p1

p′
1

the first row and all of the columns are exact.

Proof Exactness of the first row (i.e., that H0(X,Hq) is the equalizer) is immediate
from Lemma 5.1. The two right-hand columns are exact, as they are obtained from the
Gersten resolutions forHq . The homomorphisms which are known to be injective are
denoted . By an elementary diagram chase, the left-hand column is also exact. ��

In order to prove Proposition 5.13 it thus suffices to show that E1 ∼= 0 in Lemma
6.1.

Lemma 6.2 If n ≥ 2, E1 = ker p1 = ker p′
1.

Proof Since n > 1, we have dim X = �n−1 − 1 ≥ 1. For any point x ∈ X (1) the
summand indexed by x is mapped by p1 and p′

1 to the summands indexed by the
generic points of x × X and X × x , respectively. Since these points (and hence the
summands) are distinct, the images of p1 and p′

1 intersect in 0. It follows that their
equalizer is ker(p1) = ker(p′

1), as asserted. ��
Proposition 6.3 If X is a smooth variety of dimension ≥ 1, then p1 is injective.

Proof For each x ∈ X (1), let yx denote a generic point of x × X ; since X is smooth,
x × X is reduced. We will show that the composition of p1 with the projection πx

onto KM
q−1(k(yx ))/�,

⊕

x∈X (1)

KM
q−1(k(x))/�

p1
⊕

y∈(X×X)(1)

KM
q−1(k(y))/�

πx K M
q−1(k(yx ))/�,

is an injection on the x-summand; since πx p1 is zero on all the other summands of
the left term, it will follow that p1 is an injection.

Fix x and write F for k(X); as X is smooth, the function field of x × X is a finite
product of fields. Choosing an affine neighborhood Spec R of x , x is given by a height 1
prime ideal p of R: k(x) = frac(R/p) and F = frac(R). Note that k(x)⊗R is a regular
ring because X is smooth over k. The kernel m of the multiplication map

k(x) ⊗ R k(x) ⊗ k(x)
μ

k(x)

is a maximal ideal of k(x)⊗R, and the localization R′ = (k(x)⊗R)m atm is a regular
local ring with residue field k(x) and fraction field k(yx ). Choose a regular sequence
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r1, . . . , rd generating the maximal ideal of R′; by iterated use of [20, III.7.3], there is
a specialization map

K M∗ (k(yx ))
λ KM∗ (k(x))

which is a left inverse to the component px1 : KM∗ (k(x)) KM∗ (k(yx )) of p1. ��
Proposition 5.13 now follows for n ≥ 2, since norm varieties are smooth by defi-

nition. This completes the proof of Theorem 1.3.
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