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20 Introduction

We describe various non-trivial examples that illustrate the approach to the “Teich-
müller cocycle map” developed in [21,22] in terms of crossed 2-fold extensions. We
recall the classical situation for number fields and show how it extends to rings of
integers in number fields. We then construct explicit examples of a non-trivial Teich-
müller class that arise in Grothendieck’s theory of the Brauer group of a topological
space. We finally interpret various group 3-cocycles constructed in C∗-algebra theory
as variants of the Teichmüller 3-cocycle.We keep the section numbering from [21,22].

21 Number fields

21.1 General remarks

Consider an algebraic number field K (a finite-dimensional extension of the field Q

of rational numbers). Let Q be a finite group of operators on K , let k = K Q , and
consider the resulting Galois extension K |k. Let JK denote the abelian group of idèles
of K |k and CK that of idèle classes, and consider the familiar Q-module extension

0 −→ U(K ) −→ JK −→ CK −→ 0 (21.1)

[30, (III.2) p. 117]. By the “main theorem of class field theory”,

H2(Q, CK ) ∼= 1
[K :k]Z/Z

[1, §VII.3 Lemma 6 p. 49], [38, RESULT p. 196], [30, (III.6.8) Theorem p. 150], the
groupH2(Q, CK ) has a canonical generator, referred to as the fundamental class of the
extension K |k and written as uK |k ∈ H2(Q, CK ). As a side remark we note that, given
a group extension CK � WK |k � Q that represents the class uK |k ∈ H2(Q, CK ),
the group WK |k is referred to as the Weil group of the field extension K |k [1, Ch. XV],
[38, §11.6 p. 200], [37]. The Weil group is uniquely determined since H1(Q, CK ) is
zero [1, Ch. XV].

Let m denote the l.c.m. of the local degrees. We summarize the results of [27,
Theorem 2, Theorem 3], [29], and others as follows, cf. [1, §VII.4 Theorem 12 and
Theorem 14 p. 53], [38, §11.4 Case r = 3 p. 199].
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Normality of algebras over commutative rings… 129

Proposition 21.1 (i) The boundary homomorphism

δ : H2(Q, CK ) −→ H3(Q,U(K ))

in the long exact cohomology sequence associated with (21.1) is surjective, and
the group H3(Q,U(K )) is cyclic of order s = [K :k]

m , generated by the image

tK |k = δ(uK |k) ∈ H3(Q,U(K )).

(ii) The class tK |k splits in some extension field L of K that is normal over k, indeed,
things may be arranged in such a way that L|K is cyclic.

Under the present circumstances, the eight term exact sequence [22, (17.2)] boils
down to the classical five term exact sequence, cf. [22, (17.3)], given, e.g., in [18,
p. 130], combined with the canonical isomorphisms

H2(Q,U(K )) ∼= B(K |k), H2(G,U(L)) ∼= B(L|k), H2(N ,U(L))Q ∼= B(L|K )Q,

and the exactness of this sequence entails that tK |k is the Teichmüller class associated
to some Q-normal crossed product central simple K -algebra having L as maximal
commutative subalgebra. In the literature, the generator

tK |k = δ(uK |k) ∈ H3(Q,U(K ))

is referred to as the Teichmüller 3-class [1, §VII.4 p. 52], [38, §11.4 Case r = 3
p. 199], here interpreted as the obstruction to the global degree being computed as the
l.c.m. of the local degrees.

21.2 Explicit examples

Thus to get examples, all we need is a Galois extension K |k having s > 1. While,
in view of the Hilbert–Speiser Theorem, this is impossible when the Galois group Q
is cyclic, for example, the fields K = Q(

√
13,

√
17) or K = Q(

√
2,

√
17) have as

Galois group Q the four group and s = 2 [27], see also [38, §11.4 p. 199] and [28,
Ch. VIII Exampe 4.5 p. 238].

Since it is hard to find truly explicit examples in the literature, we now briefly sketch
a construction of such examples. According to classical results due to Albert, Brauer,
Hasse, and E. Noether, every member of B(K ) has a cyclic cyclotomic splitting field
[10, Satz 4, Satz 5 p. 118], [28, VIII.2 Theorem 2.6 p. 229], [38, 10.5 Step 3. p. 191].
Indeed, the argument in the last reference shows that, given a central simple K -algebra
A, there is a cyclic cyclotomic field L|K such that [LP : Kp] ≡ 0(mp) for every prime p
of K and such that [L : K ] = l.c.m.(mp). Thus, consider a cyclic cyclotomic extension
L = K (ζ ) having Galois group N cyclic of order n (say). Let σ denote a generator of
N , let η ∈ U(K ), and consider the cyclic central simple K -algebra D(σ, η) generated

123



130 J. Huebschmann

by L = K (ζ ) and some (indeterminate) u subject to the relations

uλ = σ(λ)u, un = η, λ ∈ L = K (ζ ), (21.2)

necessarily a crossed product of N with L relative to the U(L)-valued 2-cocycle of N
determined by η. By construction, D(σ, η) is split by L . Moreover, given ϑ ∈ U(L),
the member ηϑ = η

∏n−1
j=0 ϑσ j

of K yields the algebra D(σ, ηϑ), and the association
u �−→ ϑu induces an isomorphism

D(σ, η) −→ D(σ, ηϑ) (21.3)

of central K -algebras. The field L|k is the composite field k(ζ )K . Hence L|k is a Galois
extension, and the Galois group G of L|k is a central extension of Q = Gal(K |k)
by the cyclic group N = Gal(k(ζ )|k) of order n, a split extension if and only if
k(ζ ) ∩ K = k. The member η of K represents the corresponding cohomol-
ogy class [η] ∈ H2(N ,U(L)), and [η] ∈ H2(N ,U(L))Q if and only if, given
x ∈ Q = Gal(K |k), there is some ϑx ∈ U(L) such that the association u �−→ ϑx u
induces an automorphism

Θx : D(σ, η) −→ D(σ, η) (21.4)

of central K -algebras that extends the automorphism x : K → K over k.
The sequence

0 −→ H2(N ,U(L)) −→ H2(N , JL)
inv1−→ 1

|N |Z/Z −→ 0 (21.5)

is well known to be exact, cf., e.g., [30, III.5.6 Proposition p. 143], and taking Q-
invariants, we obtain the injection

0 −→ H2(N ,U(L))Q −→ H2(N , JL)Q . (21.6)

Given a prime p of K , for each prime P of L above p, the local extension LP|Kp is
likewise a cyclic cyclotomic extension. From a given system of local invariants in
H2(N , JL)Q that goes to zero under inv1 : H2(N , JL) → 1

|N |Z/Z, at each prime P of
L above p that occurs in that system of local invariants, we can construct an explicit
cyclic central Kp-algebra D(σP, ηP) defined in terms of a prime element of Kp and,
using, e.g., the recipe in the proof of [10, Satz 9 p. 119 ff.], we can then construct a
member η of K such that the cyclic algebra D(σ, η) has the given local invariants. By
construction, then, the class of D(σ, η) in H2(N ,U(L)) is Q-invariant. Hence D(σ, η)

acquires a Q-normal structure, necessarily non-trivial when its Teichmüller class is
non-zero, and the above reasoning classifies those cyclic Q-normal algebras that are
non-trivially Q-normal.
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Normality of algebras over commutative rings… 131

22 Rings of integers and beyond

Let R be a regular domain, and let K denote its quotient field. By [3, Theorem 7.2
p. 388], the induced homomorphism B(R) → B(K ) between the Brauer groups is a
monomorphism. It is known that, furthermore, the canonical map B(R) → ∩pB(Rp)

from the Brauer group B(R) to the intersection ∩pB(Rp) taken over all height one
primes p is an isomorphism, cf., e.g., [35, Theorem 9.7 p. 64].

Let K be an algebraic number field, S its ring of integers, and let r denote the number
of embeddings of K into the reals. The Brauer group B(S) of S is zero when r = 1 and
isomorphic to a direct product of r − 1 copies of the cyclic group with two elements
when r ≥ 2. This is a consequence of a result in [2], see, e.g., [4, (6.49) p. 151]. While
a central S-Azumaya algebra representing a non-trivial member of B(S) need not be
representable as an ordinary crossed product with respect to a Galois extension of S,
see, e.g., [6] and the literature there, a right H -Galois extension T |S of rings of integers
with respect to a general finite-dimensional Hopf algebra H which splits all classes in
the Brauer group B(S) can easily be found [6, Proposition 2.1 p. 246]. The question
as to, whether or not, given a finite group Q of operators on K and hence on S, along
these lines, Q-normal S-Azumaya algebras arise is a largely unexplored territory. The
example [6, Remark 2.6 p. 249] yields a Q-equivariant Q-normal Azumaya algebra
for Q the cyclic group with two elements.

Consider now an algebraic number field K , a finite group Q of operators on K ,
let k = K Q , and let S be the ring of integers in K and R that in k. Consider a field
extension L|K such that K |k is normal, with Galois group G, let N = Gal(L|K ), so
that the Galois groups fit into an extension N � G � Q, and let T denote the ring of
integers in L . Let SL|K denote the finite set of primes of K that ramify in L and let SL

denote the finite set of primes of L above the primes in SL|K . Inverting the primes in SL

and those in SL|K we obtain a Galois extension TSL |SSL|K of commutative rings with
Galois group N . Let, furthermore, SK |k denote those primes of k such that the primes
in SL|K are exactly the primes above SK |k, and let RSK |k denote the corresponding
ring that arises from R by inverting the primes in SK |k. Then the data constitute a

Q-normal Galois extension of commutative rings but, while RSK |k = SQ
SL|K , the ring

extension SSL|K |RSK |k need not be a Galois extension of commutative rings. Recall the
exact sequence [22, (18.1)], for TSL |SSL|K |RSK |k as well as for L|K |k. The inclusions
into the quotient fields yield a commutative diagram

H2(G,U(TSL ))
j−−−−→ Xpext(G, N ;U(TSL ))

Δ−−−−→ H3(Q,U(SSL|K ))
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

H2(G,U(L))
j−−−−→ H2(N ,U(L))Q Δ−−−−→ H3(Q,U(K )).

(22.1)

Suitably interpreting the constructions in Section21 above, we can then construct
crossed pair extensions that represent members of Xpext(G, N ;U(TSL )) whose
images in H2(N ,U(L))Q have non-zero values in H3(Q,U(K )). Hence the associ-
ated crossed pair algebras then have non-zero Teichmüller class in H3(Q,U(SSL|K )).
This yields non-trivial examples of Teichmüller classes of normal Azumaya algebras
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132 J. Huebschmann

over rings of algebraic numbers with finitely many primes inverted. We intend to give
the details at another occasion. The Galois module structure of groups like U(S) and
Pic(S) is delicate, cf., e.g., [13], and the calculation of the relevant group cohomology
groups is not an easy matter. More work is called for in this area.

23 Examples arising in algebraic topology

23.1 General remarks

Let X be a topological space, and let S denote the algebra of continuous complex-
valued functions on X . Isomorphism classes of Azumaya S-algebras of rank n > 1
correspond bijectively to isomorphism classes of principal PGL(n,C)-bundles.

When X is a finite CW-complex, by a Theorem of Serre [14, Theorem 1.6], the
Brauer group B(S) is canonically isomorphic to the torsion part H3(X)tors of the third
integral cohomology group H3(X) of X . The isomorphism is realized explicitly as
follows: Let Map(X,C) denote the sheaf of germs of continuous C-valued functions
on X andMap(X,C∗) that of continuous C∗-valued functions on X . The exponential
exact sequence

0 −→ Z −→ Map(X,C) −→ Map(X,C∗) −→ 0

of sheaves on X yields an isomorphism H2(X,Map(X,C∗)) ∼= H3(X) of sheaf coho-
mology groups (valid more generally for paracompact X ). The theorem of Serre’s just
quoted says that, X being a finite CW-complex, the canonical map from the Brauer
group B(S) to H2(X,Map(X,C∗)) is an isomorphism

B(S) −→ H2(X,Map(X,C∗))tors.

Let ξ : P → X be a principal PGL(n,C)-bundle and, relative to the adjoint action
of PGL(n,C) on Mn(C), let ζ denote the associated vector bundle

ζ : E = P ×PGL(n,C) Mn(C) −→ X

on X . The S-module of continuous sections A = Γ (ζ ) of ζ acquires the structure of
an Azumaya S-algebra in an obvious manner in such a way that the group U(A) of
units of A gets naturally identified with the space of sections of the associated fiber
bundle

uξ : P ×PGL(n,C) GLn(C) −→ X

relative to the adjoint action of PGL(n,C) on GLn(C), endowed with the pointwise
group structure. Thus the group U(A) of units of A can be written as the group

G ξ
∼= MapPGL(n,C)(P,GL(n,C))

of PGL(n,C)-equivariant maps from P to GL(n,C), and the group G ξ , in turn, maps
canonically onto the group Gξ

∼= MapPGL(n,C)(P,PGL(n,C)) of gauge transforma-

123



Normality of algebras over commutative rings… 133

tions of ξ . The group Aut(ξ) of bundle automorphisms of ξ , i. e., pairs (Φ, ϕ) of
homeomorphisms that make the diagram

P
Φ−−−−→ P

ξ

⏐
⏐
� ξ

⏐
⏐
�

X
ϕ−−−−→ X

(23.1)

commutative, yields, in a canonical way, a subgroup of the group Aut(A) of ring
automorphisms of A, and the assignment to a section of uξ of the induced gauge
transformation of the kind (23.1) with ϕ = Id yields a homomorphism

∂ : G ξ −→ Aut(ξ).

Denote by Zn(C) ∼= C∗ the central diagonal subgroup of GLn(C). Identifying the
kernel of ∂ with the space of sections of the associated bundle

P ×PGL(n,C) Zn(C) −→ X,

necessarily trivial, since Zn(C) is the center of GLn(C), we see that the kernel of ∂ is
canonically isomorphic to the abelian group U(S) of continuous functions from X to
C∗. Denote the group of homeomorphisms of X by Homeo(X), and let

Out(ξ) ⊆ Homeo(X)

denote the image of Aut(ξ) in Homeo(X) under the forgetful map which assigns to a
member (Φ, ϕ) of Aut(ξ) the second component ϕ. The group Out(ξ) is the group of
homeomorphisms ϕ of X such that the induced principal bundle ϕ∗ξ is isomorphic to
ξ . Thus the principal bundle ξ determines the crossed 2-fold extension

0 −→ Map(X,C∗) −→ G ξ
∂−→ Aut(ξ) −→ Out(ξ) −→ 1. (23.2)

Consider a group Q, and suppose that Q acts on X via a homomorphism σ from
Q to Out(ξ). Requiring that the action be via a homomorphism σ : Q → Out(ξ) is
equivalent to requiring that some group Γ that maps onto Q act on the total space P
of ξ in such a way that, given q ∈ Q, there exists some γ ∈ Γ such that

P
γ−−−−→ P

ξ

⏐
⏐
� ξ

⏐
⏐
�

X
q−−−−→ X

is an automorphism of principal PGL(n,C)-bundles. Requiring that Γ act by bun-
dle automorphisms is equivalent to requiring that the Γ -action on P commute with
the PGL(n,C)-action. The homomorphism σ then induces the requisite Q-action
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134 J. Huebschmann

κQ : Q → Aut(S) = Aut(Map(X,C)) on S = Map(X,C), and (A, σ ) = (Γ (ζ ), σ )

is a Q-normal Azumaya S-algebra.

23.2 Explicit examples involving metacyclic groups

Consider a metacyclic group G given by a presentation

G(r, s, t, f ) = 〈x, y; yr = 1, xs = y f , xyx−1 = yt 〉 (23.3)

where

s > 1, r > 1, t s ≡ 1 mod r, t f ≡ f mod r,

so that, in particular, the numbers t s−1
r and (t−1) f

r are positive integers. The group G
is an extension

1 −→ N −→ G −→ Q −→ 1 (23.4)

of the cyclic group Q = Cs of order s by the cyclic group N = Cr of order r generated
by y. The upshot of the present subsection is an explicit Q-normal crossed pair algebra
having a ring of the kind S = Map(X,C) for some topological space X as its center
and having non-zero Teichmüller class in H3(Q,U(S)), to be given as (23.25) below.

Suppose that the g.c.d. ( t s−1
r , r) is non-trivial, let � > 1 denote a non-trivial divisor

of ( t s−1
r , r), let C�r denote the cyclic group of order �r , let v denote a generator of

C�r , and let C� denote the cyclic subgroup of C�r of order � generated by vr . The
assignment to v of y yields a group extension

e�r : 0 −→ C� −→ C�r −→ Cr −→ 1 (23.5)

representing the generator of H2(Cr ,Z/�) ∼= Z/�.
Since t s−1

�r is an integer, the association Q × C�r −→ C�r given by (x, v) �−→ vt

yields an action of the group Q = Cs on C�r = 〈v; v�r = 1〉. The induced action

G × C�r −→ C�r (23.6)

of G on C�r via the projection G → Cs and the obvious homomorphism ∂ : C�r → G
then constitute a crossed module.

Proposition 23.1 With respect to a suitable choice of the isomorphism

H3(Cs,Z/�) ∼= Z/(�, s),

the resulting associated crossed 2-fold extension

e2 : 0 −→ C� −→ C�r −→ G −→ Cs −→ 1 (23.7)

represents the class in H3(Cs,Z/�) that corresponds to (t−1) f
r mod (�, s).
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Normality of algebras over commutative rings… 135

Proof Let Fx denote the free group on x , let ZCs〈b〉 denote the free Cs-module on
a single generator b, view ZCs〈b〉 as an Fx -group via the canonical projection from
Fx to Cs , define the morphism ∂ : ZCs〈b〉 → Fx of Fx -groups by ∂(b) = xs , and
note that ∂ : ZCs〈b〉 → Fx is the free crossed module associated to the presentation
〈x; xs〉 of the group Cs . Using the familiar notation ICs ⊆ ZCs for the augmentation
ideal of Cs , consider the associated crossed 2-fold extension

0 −→ ICs〈b〉 −→ ZCs〈b〉 ∂−→ Fx −→ Cs −→ 1, (23.8)

and lift the identity of Cs to a morphism

0 −−−−→ ICs〈b〉 −−−−→ ZCs〈b〉 ∂−−−−→ Fx −−−−→ Cs −−−−→ 1

α2

⏐
⏐
� α1

⏐
⏐
� α0

⏐
⏐
�

∥
∥
∥

0 −−−−→ C� −−−−→ C�r
∂−−−−→ G −−−−→ Cs −−−−→ 1

(23.9)

of crossed 2-fold extensions as follows: With an abuse of the notation x , let
α0(x) = x , and let α1(b) = v f . Then

α1((x − 1)b) = x (v f )v− f = v(t−1) f = (vr )
(t−1) f

r ∈ C� ⊆ C�r .

Consequently α2((x − 1)b) = (vr )
(t−1) f

r ∈ C� ⊆ C�r , whence α2 represents the
member of H3(Cs,Z/�) ∼= Z/(�, s) that corresponds to (t−1) f

r mod (�, s). ��

Remark 23.2 It is immediate that, for a suitable choice of the parameters, (t−1) f
r is

non-trivial modulo (�, s). For example, as in the situation of [20, Theorem E], suppose
that p is a prime that divides r , s, t s−1

r and f , but that it does not divide (t−1) f
r . Then,

with � = p, the 2-cocycle α2 and hence the crossed 2-fold extension e2 represent a
generator of H3(Cs,Z/p) ∼= Z/p. Indeed, for a suitable choice of the data, in the
notation of [20, Theorem E], this class is that written there as ωx cx .

Since H2(Cs,C
∗) is trivial, the homomorphism H3(Cs,Z/�) → H3(Cs,C

∗)
induced by the canonical injection C� → C∗ is injective whence, when α2 repre-
sents a non-trivial cohomology class, the composite of α2 with the canonical injection
C� → C∗ yields a non-trivial cohomology class in H3(Cs,C

∗) ∼= Z/s. To construct
a crossed 2-fold extension representing that cohomology class, let Ĉ�r denote the
universal group characterized by the requirement that the diagram

e�r : 0 −−−−→ C� −−−−→ C�r −−−−→ Cr −−−−→ 1
⏐
⏐
�

⏐
⏐
�

∥
∥
∥

e∗ : 0 −−−−→ C∗ −−−−→ Ĉ�r −−−−→ Cr −−−−→ 1

(23.10)
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136 J. Huebschmann

be commutative with exact rows. The G-action (23.6) on C�r and the trivial G-action
on C∗ combine to a G-action

G × Ĉ�r −→ Ĉ�r (23.11)

on Ĉ�r that turns the obvious map ∂̂ : Ĉ�r → G into a crossed module. The coho-
mology class under discussion is represented by the resulting crossed 2-fold extension

e∗
2 : 0 −→ C∗ −→ Ĉ�r

∂̂−→ G −→ Cs −→ 1. (23.12)

Since the groupC∗ is a divisible abelian group, the bottom row extension e∗ in (23.10)
splits in the category of abelian groups. However, when the class represented by α2 is
non-trivial, such a splitting cannot be compatible with the G-module structures.

Under the present circumstances, since the action of N on C∗ is trivial, the bottom
diagram of what corresponds to [22, (13.3)], with M = C∗, takes the form

0 −−−−→ Hom(N ,C∗) −−−−→ AutG(e∗) −−−−→ G −−−−→ 1

∼=
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ H1(N ,C∗) −−−−→ OutG(e∗) −−−−→ Q −−−−→ 1

(23.13)

with exact rows and, cf. [22, Proposition 13.2], the G-action (23.11) (turning Ĉ�r

together with the canonical homomorphism ∂̂ : Ĉ�r → G into a G-crossed module)
determines and is determined by a crossed pair structure ψ : Q → OutG(e∗) on the
group extension e∗. The resulting crossed pair

(e∗ : C∗ � Ĉ�r � Cr , ψ : Q → OutG(e∗))

represents a non-trivial class

[(e∗, ψ)] ∈ Xpext(G, N ;C∗) (23.14)

in the group Xpext(G, N ;C∗) of crossed pair extensions with respect to the group
extension (23.4) and the (trivial) G-module C∗, cf. [19, Theorem 1] and [22, Sub-
section 13.1] for these notions and, cf. [19, Theorem 2] or [22, Subsection 13.1], the
homomorphism

Δ : Xpext(G, N ;C∗) −→ H3(Q,C∗)
sends the class (23.14) to [e∗

2] ∈ H3(Q,C∗) ∼= Z/s.
Let π : X̃ → X be a regular covering projection having the group N = Cr as

deck transformation group, and let S = Map(X,C) and T = Map(X̃ ,C). Then T |S
is a Galois extension of commutative rings with Galois group N , cf. [21, Example
2.4]. Suppose that X̃ is endowed with a G-action that extends the N -action. Then the
quotient group Q = G/N acts on X in an obvious manner, and T |S is a Q-normal
Galois extension of commutative rings, with structure extension (23.4) and structure
homomorphism κG : G → AutS(T ). By construction,

U(S) = Map(X,C∗), U(T ) = Map(X̃ ,C∗).
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Since the groups N , G, and Q are finite, the homomorphisms

H∗(N ,C∗) −→ H∗(N ,U(T )), (23.15)

H∗(Q,C∗) −→ H∗(Q,U(S)), (23.16)

Xpext(G, N ;C∗) −→ Xpext(G, N ;U(T )), (23.17)

induced by the canonical injections C∗ → Map(X̃ ,C∗) and C∗ → Map(X,C∗)
(induced by the assignments to a member of C∗ of the associated constant maps),
respectively, are isomorphisms, the third homomorphism being an isomorphism in
view of the naturality of the exact sequence [19, (1.9)] (spelled out as the top sequence
in the diagram in [22, Theorem 18.8]).

For later reference, we now give an explicit description of a representative of the
image of (23.14) under (23.17). To this end, let CT denote the universal group char-
acterized by the requirement that the diagram

e∗ : 0 −−−−→ C∗ −−−−→ Ĉ�r −−−−→ Cr −−−−→ 1
⏐
⏐
�

⏐
⏐
�

∥
∥
∥

eT : 0 −−−−→ U(T ) −−−−→ CT −−−−→ Cr −−−−→ 1

(23.18)

be commutative with exact rows. The G-action (23.11) on Ĉ�r and the G-action on
U(T ) combine to a G-action

G × CT −→ CT (23.19)

on CT . With M = U(T ), diagram [22, (13.3)] takes the form

0 0
⏐
⏐
�

⏐
⏐
�

U(S) U(S) 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ U(T ) −−−−→ CT −−−−→ N −−−−→ 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ Der(N ,U(T )) −−−−→ AutG(eT ) −−−−→ G −−−−→ 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ H1(N ,U(T )) −−−−→ OutG(eT ) −−−−→ Q −−−−→ 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

1 1 1 ,

(23.20)
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with exact rows and columns, the G-action (23.19) on CT induces a section

ΨT : G −→ AutG(eT )

for the third row group extension in (23.20), and this section, in turn, induces a section
ψT : Q → OutG(eT ) for the bottom row extension in (23.20) in such a way that
(eT , ψT ) is a crossed pair. By construction, then, the image

Δ[(eT , ψT )] ∈ H3(Q,U(S))

of the class
[(eT , ψT )] ∈ Xpext(G, N ;U(T )) (23.21)

is represented by the crossed 2-fold extension that arises as the top row of the com-
mutative diagram

e2T : 0 −−−−→ U(S) −−−−→ CT
∂T−−−−→ BψT −−−−→ Q −−−−→ 1

∥
∥
∥

∥
∥
∥

⏐
⏐
� ψT

⏐
⏐
�

0 −−−−→ U(S) −−−−→ CT −−−−→ AutG(eT ) −−−−→ OutQ(eT ) −−−−→ 1,

the group BψT being characterized by the requirement that the right-hand square be a
pull back square.

The naturality of the constructions entails that the diagram

Xpext(G, N ;C∗) Δ−−−−→ H3(Q,C∗)

∼=
⏐
⏐
� ∼=

⏐
⏐
�

Xpext(G, N ;U(T ))
Δ−−−−→ H3(Q,U(S))

(23.22)

is commutative. In the case at hand the commutativity of (23.22) is an immediate
consequence of the observation that the above homomorphism ΨT : G → AutG(eT )

induces a homomorphism G → BψT which makes the diagram

e∗
2 : 0 −−−−→ C∗ −−−−→ Ĉ�r

∂̂−−−−→ G −−−−→ Q −−−−→ 1
∥
∥
∥

∥
∥
∥

⏐
⏐
� ψT

⏐
⏐
�

e2T : 0 −−−−→ U(S) −−−−→ CT
∂T−−−−→ BψT −−−−→ Q −−−−→ 1

(23.23)

commutative. This commutativity, in turn, implies that (i) the class (23.21) yields a non-
trivial class in the group Xpext(G, N ;U(T )) of crossed pair extensions with respect
to (23.4) and U(T ) and that (ii) this class goes underΔ to the image in H3(Q,U(S)) of
the class [e2] ∈ H3(Q,C∗) ∼= Z/s, non-trivial for suitable choices of the parameters,
cf. Remark 23.2 above.
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Recall the homomorphism [22, (18.2)], of the kind

cpa : Xpext(G, N ;U(T )) −→ XB(T |S; G, Q).

This homomorphism fits into the commutative diagram

H1(Q,H1(N ,U(T )))
d2−−−−→ H3(Q,U(S))

α

⏐
⏐
�

∥
∥
∥

Xpext(G, N ;U(T ))
Δ−−−−→ H3(Q,U(S))

cpa
⏐
⏐
�

∥
∥
∥

XB(T |S; G, Q)
t−−−−→ H3(Q,U(S)).

(23.24)

Here the upper square is part of the diagram in [19, Subsection 1.4], and the lower
square results from [22, Theorem 18.1]. Consequently the Q-normal crossed pair
algebra

(AeT , σψT ) (23.25)

with respect to the Q-normal Galois extension T |S of commutative rings that arises
from the crossed pair (eT , ψT ) with respect to (23.4) and U(T ) via the construction
in [22, Subsection 13.2] has non-zero Teichmüller class in H3(Q,U(S)).

To realize this kind of example concretely, consider a faithful unitary representation
E of complex dimension n of the metacyclic group G [9, §47 p. 335]. Things can
be arranged in such a way that the unitary G-representation yields an action of G on
the unit sphere S2n−1 ⊆ Cn so that the restriction of the action to N = Cr is free
but, apart from trivial cases, the G-action itself will not be free. Thus we may take
X̃ = S2n−1 and X = S2n−1/Cr (a lens space) and carry out the above construction.

Remark 23.3 The above observation that the bottom row in (23.10) splits in the cate-
gory of abelian groups translates, in view of the exactness of the sequence [19, (1.9)]
(spelled out as the top sequence in the diagram in [22, Theorem 18.8]) to the fact that
the above homomorphism α is an isomorphism.

Remark 23.4 Apart from trivial cases, while CT acquires a G-action, this action does
not turn the obvious map CT → G into a crossed module since the action of N on
the kernel U(T ) of CT → G is non-trivial when N is non-trivial. Thus we cannot get
away with the crossed pair concept, more general than that of a crossed module.

24 Examples arising from C∗-dynamical systems

The group 3-cocycle in [36, II 3.1 p. 147] with values in the group of units of the center
of a von Neumann algebra is an instance of a Teichmüller cocycle in the von Neumann
algebra context. The aim of this 3-cocycle was indeed to explore a crossed product
construction formally of the same kind as the crossed product in [21, Section 5]. In
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[25,26], V. Jones pushed these ideas further and showed that, for an arbitrary discrete
group, such a 3-cohomology class can be realized on a hyperfinite factor. To our
knowledge, the relationship with the Teichmüller cocycle was not observed in the
literature, however.

Given a topological space X , the results of [11,12] are nowadays well known to
establish an isomorphism

δ : B(X) −→ Ȟ3(X,Z) (24.1)

between the Brauer group B(X) of Morita equivalence classes [A] in the sense of
Rieffel of continuous-trace C∗-algebras A having spectrum X and the third Čech-
cohomology group Ȟ3(X,Z), see, e.g., [7,34]. The continuous-trace C∗-algebras A
having spectrum X can be characterized as the C∗-algebras which are locally Morita
equivalent to the commutative algebraC0(X) of continuous complex-valued functions
on X that vanish at infinity, and theDixmier–Douady class is the obstruction to building
a global equivalence with C0(X) from the local equivalences.

Let now Q denote a group and suppose that Q acts on X and hence onC0(X). Given
a continuous-trace C∗-algebras A having spectrum X , just as before, we define a Q-
normal structure on A to be a homomorphism κ : Q → Out(A) = Aut(A)/Inn(A).
Then, with a suitable definition of the group U(A) of units of A, the Teichmüller class
in H3(Q,U(A)) is defined, just as before in the ordinary algebraic case. Since the
algebraic theory developed in [21,22] involves only the objects themselves but does
not involve any cocycles, it is now a laborious but most likely rather straightforward
endeavor to extend that theory to the C∗-algebra case.

In [7], the theory of C∗-algebra Brauer groups was extended so that group actions
can be accomodated, and a corresponding equivariant Brauer group was defined. In
[7, Lemma 4.6], even a version of a Teichmüller cocycle shows up (but the authors
did not recognize that the cocycle they constructed is a kind of Teichmüller cocycle).

In this area there are presumably many examples of a non-trivial Teichmüller class
to be found and new phenomena are lurking behind. See also [8,31–33,39].

25 Complements

Other explicit examples of a non-trivial Teichmüller cocycle can be found in [5] and
[23].

Remark 25.1 In [16], the Teichmüller cocycle serves as a crucial means for building a
Galois theory of skew fields. It is worthwhile noting that, in “non-commutative Galois
theory”, a counterexample in [40, p. 141] serves as well as a counterexample in [15,
p. 558], [17, p. 298], and [24, §VI.11 p. 147].
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