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11 Introduction

We explore further the approach to the “Teichmüller cocycle map” developed in [14]
in terms of crossed 2-fold extensions. For intelligibility, we recall briefly the situation:
Let S be a unitary commutative ring, Q a group that acts on S by ring automorphisms
via a homomorphism κQ : Q → Aut(S), and let R denote the subring of S that consists
of the elements of S which are fixed under Q. A Q-normal S-algebra consists of a
central S-algebra A and a homomorphism σ : Q → Out(A) into the group Out(A) of
outer automorphisms of A that lifts the action of Q on S. With respect to the abelian
group U(S) of invertible elements of S, endowed with the Q-module structure coming
from the Q-action on S, the Teichmüller complex of (A, σ ) associated to a Q-normal
S-algebra (A, σ ) is a crossed 2-fold extension e(A,σ ) starting at U(S) and ending at Q,
and this crossed 2-fold extension represents a class, the Teichmüller class of (A, σ ),
in the third group cohomology group H3(Q,U(S)) of Q with coefficients in U(S).

We now review rapidly the contents of the sections of the present paper. A more
detailed introduction for the entire series that consists of [14], the present paper, and
[15] can be found in the introduction to [14].

In Section 12 we introduce the concept of a Q-normal Galois extension of commu-
tative rings; associated to such a Q-normal Galois extension T |S of commutative rings
is a structure extension e(T |S) : N � G � Q of Q by theGalois group N = Aut(T |S)

of T |S and an action G → Aut(T ) of G on T by ring automorphisms. In Section 13
we associate to a crossed pair (e, ψ) with respect to e(T |S) and U(T ), endowed with
the G-module structure coming from the G-action on T , see [13] or Section 13 below
for details on the crossed pair concept, a Q-normal crossed product algebra (Ae, σψ)
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Normality of algebras over commutative rings... 73

which we refer to as a crossed pair algebra. The crossed pair algebra (Ae, σψ) rep-
resents a member of the kernel XB(T |S; G, Q) of the obvious homomorphism from
XB(S, Q) to XB(T, G); this homomorphism exists and is unique, in view of the func-
toriality of the crossed Brauer group. The assignment to (e, ψ) of (Ae, σψ) yields
a natural homomorphism of abelian groups from the corresponding abelian group
Xpext(G, N ;U(T )) of congruence classes of crossed pairs introduced in [13] to the
subgroup XB(T |S; G, Q) of the crossed Brauer group.

Theorem 13.5 below says that a class k ∈ H3(Q,U(S)) is the Teichmüller class of
some crossed pair algebra (Ae, σψ) with respect to the data if and only if k is split in
T |S in the sense that, under inflation H3(Q,U(S)) → H3(G,U(T )), the class k goes
to zero. In Section 14, given a Q-normal Galois extension T |S of commutative rings,
we again focus our attention on theDeuring embedding problem of a central T -algebra
into a central S-algebra and establish two somewhat technical results, Theorems 14.9
and 14.10 below; these results entail, in particular that, if a class k ∈ H3(Q,U(S)) goes
under inflation to the Teichmüller class in H3(G,U(T )) of some G-normal central T -
algebra A, then k is itself the Teichmüller class of some Q-normal central S-algebra
B in such a way that, when A is an Azumaya T -algebra, B may be taken to be an
Azumaya S-algebra. Sections 15 and 16 are preparatory in character.

Given a Q-normal Galois extension T |S of commutative rings with associated
structure extension e(T |S) : Aut(T |S) � G � Q and G-action on T , we use the
notation EB(T |S; G, Q) for the kernel of the induced homomorphism from EB(S, Q)

to XB(T, G); the exact sequence (17.2) below involving the Teichmüller map t now
yields an extension of the kind

· · · −→ H2(Q,U(S)) −→ EB(T |S; G, Q) −→ XB(T |S; G, Q)

t−→ H3(Q,U(S))
inf−→ H3(G,U(T ))

of the corresponding classical low degree four term exact sequence by four more
terms. We refer to the resulting theory as the naive relative theory. In Theorem 18.1
we compare that exact sequence with the eight term exact sequence in the cohomology
of the group extension e(T |S) with coefficients in U(T ) constructed in [13].

Finally,wedevelop amore sophisticated variant of the relative theorywhichbehaves
better with regard to comparison of the theory with group cohomology than does the
naive relative theory; see Theorems 18.4–18.6 and 18.8.

The appendix recollects some material from the theory of stably graded symmetric
monoidal categories. We keep the section numbering from [14].

12 Normal ring extensions

As in [14], S denotes a commutative ring and κQ : Q → Aut(S) an action of a
group Q on S. Let T |S be a Galois extension of commutative rings with Galois group
N = Aut(T |S). We refer to T |S as being Q-normal when each automorphism κQ(q)

of S, as q ranges over Q, extends to an automorphism of T .
Somewhat more formally, given a Galois extension T |S of commutative rings with

Galois group N , denote by AutS(T ) the group of those automorphisms of T that
map S to itself, let res : AutS(T ) → Aut(S) denote the obvious restriction map,
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74 J. Huebschmann

so that N = Aut(T |S) is the kernel of res, let G denote the fiber product group
G = AutS(T ) ×Aut(S) Q relative to κQ : Q → Aut(S), and let πQ : G → Q denote

the canonical homomorphism and i N : N → G the obvious injection. The obvious
homomorphism κG : G → AutS(T ) makes the diagram

1 −−−−→ N
i N−−−−→ G

πQ−−−−→ Q
∥
∥
∥ κG

⏐
⏐
� κQ

⏐
⏐
�

1 −−−−→ Aut(T |S) −−−−→ AutS(T )
res−−−−→ Aut(S)

(12.1)

commutative, where the unlabeled arrow is the obvious homomorphism. This diagram
is a special case of a diagram of the kind [14, (3.19)]. The Galois extension T |S of
commutative rings is plainly Q-normal if and only if the homomorphismπQ : G → Q
is surjective, that is, if and only if the sequence

e(T |S) : 1 −→ N
i N−→ G

πQ−→ Q −→ 1 (12.2)

is exact, i.e., an extension of Q by N . Given a Q-normal Galois extension T |S of com-
mutative rings, we refer to the corresponding group extension (12.2) as the associated
structure extension and to the corresponding homomorphism

κG : G −→ AutS(T )

as the associated structure homomorphism. It is immediate that a Q-normal Galois
extension T |S with structure extension (12.2) and structure homomorphism

κG : G −→ AutS(T ),

the injection S ⊆ T being denoted by i : S ⊆ T , yields the morphism

(i, πQ) : (S, Q, κQ) −→ (T, G, κG) (12.3)

in the change of actions category Change introduced in [14, Subsection 3.7].

Example 12.1 Let K |P be a Galois extension of algebraic number fields, and denote
by G the Galois group of K |P . Let Z be a subfield of K that contains P and is a normal
extension of P , and let N = Gal(K |Z) and Q = Gal(Z |P). Let T, S and R denote the
rings of integers in, respectively, K , Z and P . Suppose that K |Z is unramified but that
Z |P is ramified. Then T |S is a Q-normal Galois extension of commutative rings but
T |R and S|R are not Galois extensions of commutative rings, cf. [14, Example 2.3].

Let (S, Q, κ) and (Ŝ, Q̂, κ̂) be objects of the change of actions category Change
introduced in [14, Subsection 3.7], and let T |S and T̂ |Ŝ be normal Galois extension
of commutative rings with respect to Q and Q̂, with structure extensions

e(T |S) : N � G � Q, e
(T̂ |Ŝ)

: N̂ � Ĝ � Q̂
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Normality of algebras over commutative rings... 75

and structure homomorphisms κG : G → AutS(T ) and κ̂G : Ĝ → AutŜ(T̂ ), respec-
tively. Then a morphism

(h, φ) : T |S −→ T̂ |Ŝ

of normal Galois extensions consists of a ring homomorphism h : T → T̂ and a group
homomorphism φ : Ĝ → G such that

(i) f = h|S is a ring homomorphism S → Ŝ,
(ii) the values of φ|N̂ lie in N , that is, φ|N̂ is a homomorphism N̂ → N , and
(iii) h(φ(x̂)t) = x̂ (h(t)), x̂ ∈ Ĝ, t ∈ T .

13 Crossed pair algebras

As before, S denotes a commutative ring and κQ : Q → Aut(S) an action of a group Q
on S. In this section we use the results of [13] to offer a partial answer to the question
as to which classes in H3(Q,U(S)) are Teichmüller classes. Our result extends the
classical answer of Eilenberg–Mac Lane [5] (reproduced in [11]); later in the paper
we shall give a complete answer.

13.1 Crossed pairs

For intelligibility, we recall that notion from [13, p. 152].
Let

1 −→ N
i N−→ G −→ Q −→ 1 (13.1)

be a group extension and M a G-module; we write the G-action G × M −→ M

on M as (x, y) �→ x y, for x ∈ G and y ∈ M . Further, let e : M � Γ
πN� N be a

group extension whose class [e] ∈ H2(N , M) is fixed under the standard Q-action on
H2(N , M). Given x ∈ G, we write

�x (y) = x y, y ∈ M, ix (n) = xnx−1, n ∈ N .

Write AutG(e) for the subgroup of Aut(Γ ) × G that consists of those pairs (α, x)

which make the diagram
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76 J. Huebschmann

0 −−−−→ M −−−−→ Γ −−−−→ N −−−−→ 1

�x

⏐
⏐
� α

⏐
⏐
� ix

⏐
⏐
�

0 −−−−→ M −−−−→ Γ −−−−→ N −−−−→ 1

commutative.
The homomorphism

β : Γ −→ AutG(e), β(y) = (iy, i N (πN (y))), y ∈ Γ,

together with the obvious action of AutG(e) on Γ , yields a crossed module

(Γ,AutG(e), β)

whence, in particular, β(Γ ) is a normal subgroup of AutG(e); we denote by OutG(e)
the cokernel of β and write the resulting crossed 2-fold extension as

ê : 0 −→ M N −→ Γ
β−→ AutG(e) −→ OutG(e) −→ 1. (13.2)

The map Der(N , M) −→ AutG(e) given by the association

Der(N , M) � d �−→ (αd , 1), αd(y) = (dπN (y))y, y ∈ Γ,

is an injective homomorphism; this homomorphism and the obvious map

AutG(e) −→ G

yield the group extension

0 −→ Der(N , M) −→ AutG(e) −→ G −→ 1,

the map AutG(e) → G being surjective, since the class [e] ∈ H2(N , M) is supposed
to be fixed under Q. Further, let ζ : M → Der(N , M) be the homomorphism defined
by (ζ(m))(n) = m(nm)−1, as m ranges over M and n over N . With these preparations
out of the way, the data fit into the commutative diagram
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Normality of algebras over commutative rings... 77

0 0
⏐
⏐
�

⏐
⏐
�

M N M N 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ M −−−−→ Γ
πN−−−−→ N −−−−→ 1

ζ

⏐
⏐
� β

⏐
⏐
� i N

⏐
⏐
�

0 −−−−→ Der(N , M) −−−−→ AutG(e) −−−−→ G −−−−→ 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ H1(N , M) −−−−→ OutG(e) −−−−→ Q −−−−→ 1
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

1 1 1

(13.3)

with exact rows and columns. We use the notation

e : 0 −−−−→ H1(N , M) −−−−→ OutG(e) −−−−→ Q −−−−→ 1

for the bottom row extension of (13.3). This extension is the cokernel, in the category
of group extensions with abelian kernel, of themorphism (ζ, β, i) of group extensions.

Suppose now that the extension e splits; we then say that e admits a crossed pair
structure, and we refer to a section ψ : Q → OutG(e) of e as a crossed pair struc-

ture on the group extension e : M � Γ
πN� N with respect to the group extension

(13.1). By definition, a crossed pair (e, ψ) with respect to the group extension (13.1)
and the G-module M consists of a group extension e : M � Γ � N whose class
[e] ∈ H2(N , M) is fixed under Q such that the associated extension e splits, together
with a section ψ : Q → OutG(e) of e [13, p. 152].

Suitable classes of crossed pairs with respect to (13.1) and the G-module M
constitute an abelian group Xpext(G, N ; M) [13, Theorem 1]. Moreover, cf. [13,
Theorem 2], suitably defined homomorphisms

j : H2(G, M) −→ Xpext(G, N ; M), Δ : Xpext(G, N ; M) −→ H3(Q, M N )

yield an extension of the classical five term exact sequence to an eight term exact
sequence of the kind

0 −→H1(Q, M N )
inf−→ H1(G, M)

res−→ H1(N , M)Q Δ−→ H2(Q, M N )

inf−→H2(G, M)
j−→ Xpext(G, N ; M)

Δ−→ H3(Q, M N )
inf−→ H3(G, M).

(13.4)
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78 J. Huebschmann

For later reference, we recall the construction of Δ. To this end, given a crossed pair

(e : 0 → M → Γ → N → 1, ψ : Q → OutG(e))

with respect to the group extension (13.1) and the G-module M , let Bψ denote the
fiber product group AutG(e) ×OutG (e) Q with respect to the crossed pair structure
map ψ : Q → OutG(e) and, furthermore, let ∂ψ : Γ → Bψ denote the obvious
homomorphism; togetherwith the obvious action of Bψ onΓ induced by the canonical
homomorphism Bψ → AutG(e), the exact sequence

eψ : 0 −→ M N −→ Γ
∂ψ−→ Bψ −→ Q −→ 1 (13.5)

is a crossed 2-fold extension and hence represents a class in H3(Q, M N ). We refer to
eψ as the crossed 2-fold extension associated to the crossed pair (e, ψ). The homomor-
phism Δ : Xpext(G, N ; M) → H3(Q, M N ) is given by the assignment to a crossed
pair (e, ψ) of its associated crossed 2-fold extension eψ .

Remark 13.1 By [12, Theorem 1], the association e �→ e yields a conceptual descrip-
tion of the differential d2 : E0,2

2 → E2,1
2 of the Lyndon-Hochschild-Serre spectral

sequence (Ep,q
r , dr ) associated with the group extension (13.1) and the G-module M .

Proposition 13.2 In the special case where the N-action on M is trivial, given a

group extension e : M � Γ
πN� N that admits a crossed pair structure, crossed

pair structures ψ : Q → OutG(e) on the group extension e correspond bijectively to
actions of G on Γ that turn i N ◦πN : Γ → G into a crossed module in such a way that
the canonical homomorphism G → Bψ = AutG(e) ×OutG (e) Q is an isomorphism.

�	

Remark 13.3 Given the group extension (13.1), consider a group extension

e : 1 −→ X −→ K
πN−→ N −→ 1,

the group X not necessarily being abelian, let φ = i N ◦ πN : K → G denote the
composite of i and πN , and let Aut(e) denote the subgroup of Aut(K ) that con-
sists of the automorphisms of K that map X to itself; such a homomorphism φ is
referred to in [17] as a normal homomorphism. Conjugation in K yields a homomor-
phism β : K → Aut(e) from K onto a normal subgroup β(K ) of Aut(e), and the
restriction ζ of β to X , that is, conjugation in K with elements of X , yields a homo-
morphism ζ : X → Aut(e) from X onto a normal subgroup ζ(X) of Aut(e) as well;
let can : Aut(e) → Aut(e)/ζ(X) denote the canonical surjection. A modular structure
on φ is a homomorphism θ : G → Aut(e)/ζ(X) making the diagram
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Normality of algebras over commutative rings... 79

K

β

πN

φ

N

i N

Aut(e)

can

G

θ

Aut(e)/ζ(X)

commutative [17]. A pseudo-module is defined to be a pair (φ, θ) that consists of a
normal homomorphism φ and a modular structure θ on φ [17].

Let (φ, θ) be a pseudo-module and consider the two abstract kernels G → Out(X)

and Q → Out(K ) induced by that pseudo-module. Now, fix an abstract G-kernel
structure ω : G → Out(X) on X in advance and consider the group AutG(e) that
consists of the pairs (α, x) ∈ Aut(e) × G which make the diagram

1 −−−−→ X −−−−→ K −−−−→ N −−−−→ 1

α|X
⏐
⏐
� α

⏐
⏐
� ix

⏐
⏐
�

1 −−−−→ X −−−−→ K −−−−→ N −−−−→ 1

commutative in such a way that the image of α|X in Out(X) coincides with the value
ω(x) ∈ Out(X). Then the modular structures on φ that induce, in particular, the
abstract G-kernel structure ω on X are given by homomorphisms

θ : G −→ AutG(e)/ζ(X).

In the special case where X is abelian, an abstract G-kernel structure on X is an
ordinary G-module structure, and those modular structures θ : G → AutG(e)/ζ(X)

correspond bijectively to crossed pair structures ψ : Q → OutG(e) on e.

13.2 Crossed pairs and normal algebras

Let T |S be a Q-normal Galois extension of commutative rings, with structure exten-
sion

e(T |S) : 1 −−−−→ N
i N−−−−→ G −−−−→ Q −−−−→ 1

and structure homomorphism κG : G → AutS(T ); in particular, the group N is finite.
Let (e : U(T ) � Γ � N , ψ : Q → OutG(e)) be a crossed pair with respect to the
group extension e(T |S) and the G-module U(T ). The corresponding crossed 2-fold
extension (13.2) now takes the form

ê : 0 −→ U(S) −→ Γ −→ AutG(e) −→ OutG(e) −→ 1.

To the crossed pair (e, ψ), we associate a Q-normal S-algebra (Ae, σψ) as follows.
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80 J. Huebschmann

The compositeϑ : Γ → N → Aut(T ) yields an action ofΓ on T ; let Ae denote the
crossed product algebra (T, N , e, ϑ). Since the group N is finite, Ae is an Azumaya
S-algebra; this fact also follows from [14, Proposition 5.4(xi)]. Recall that there is an
obvious injection i : Γ → U(Ae). The following is immediate.

Proposition 13.4 Setting

i�(α,x)(t y) = (x t)(α y), (13.6)

as t ranges over T, y over Γ , and (α, x) over AutG(e) (⊆ Aut(Γ ) × G), we obtain a
morphism

(i, i�) : (Γ, AutG(e), β) −→ (U(Ae), Aut(Ae, Q), ∂)

of crossed modules which, in turn, induces the morphism

ê : 0 U(S) Γ

i

β
AutG(e)

i�

OutG(e)

i�

1

e(Ae,Q): 0 U(S) U(Ae)
∂

Aut(Ae, Q) Out(Ae, Q) 1

of crossed 2-fold extensions, where i� denotes the induced homomorphism.

Given a crossed pair (e : 0 → U(T ) → Γ → N → 1, ψ : Q → OutG(e)) with
respect to the group extension e(T |S) and the G-module U(T ), let

σψ = i� ◦ ψ : Q −→ OutG(e) −→ Out(Ae, Q);

it is then obvious that (Ae, σψ) is a Q-normal (Azumaya) S-algebra, and we refer to
(Ae, σψ) as a Q-normal crossed pair algebra with respect to the Q-normal Galois
extension T |S of commutative rings.

Theorem 13.5 Let T |S be a Q-normal Galois extension of commutative rings, with
structure extension e(T |S) : N � G � Q and structure homomorphism

κG : G → AutS(T ),

cf. Section 12 above. Then a class k ∈ H3(Q,U(S)) is the Teichmüller class of some
crossed pair algebra (Ae, σψ) with respect to the Q-normal Galois extension T |S if
and only if k is split in T |S in the sense that k goes to zero under inflation

H3(Q,U(S)) −→ H3(G,U(T )).

With M = U(T ) and M N = U(S), the theorem is a consequence of the exactness,
at H3(Q,U(S)), of the sequence (13.4). Indeed, by construction, the homomorphism
Δ is given by the assignment to a crossed pair
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Normality of algebras over commutative rings... 81

(e : U(T ) � Γ � N , ψ : Q → OutG(e))

with respect to the group extension e(T |S) and theG-moduleU(T ) of the corresponding
crossed 2-fold extension (13.5), which now takes the form

eψ : 0 −→ U(S) −→ Γ
∂ψ−→ Bψ −→ Q −→ 1.

Theorem 13.5 is therefore a consequence of the following, which is again immedi-
ate.

Proposition 13.6 Given a crossed pair (e, ψ) with respect to the group extension
e(T |S) and the G-module U(T ), the morphism (i, i�) of crossed modules in Proposi-
tion 13.4 above induces a congruence morphism

eψ : 0 −−−−→ U(S) −−−−→ Γ
∂ψ−−−−→ Bψ −−−−→ Q −−−−→ 1

∥
∥
∥ i

⏐
⏐
� î

⏐
⏐
�

∥
∥
∥

e(Ae,σψ ) : 0 −−−−→ U(S) −−−−→ U(Ae)
∂

σψ−−−−→ Bσψ −−−−→ Q −−−−→ 1

of crossed 2-fold extensions.

Proof of Theorem 13.5. By exactness, it is immediate that the Teichmüller class of any
crossed pair algebra (Ae, σψ) with respect to T |S is split in T |S. Hence the condition
is necessary. To establish sufficiency, consider a class k ∈ H3(Q,U(S)) which is split
in T |S, that is, goes to zero under inflation

H3(Q,U(S)) −→ H3(G,U(T )).

By exactness, k then arises from some crossed pair (e, ψ) with respect to the group
extension e(T |S) and the G-module U(T ), that is,

k = [eψ ] ∈ H3(Q,U(S)).

By Proposition 13.6, the Teichmüller class of the associated crossed pair algebra
(Ae, σψ) with respect to T |S coincides with [eψ ] = k. �	

14 Normal Deuring embedding and Galois descent for Teichmüller
classes

As before, S denotes a commutative ring and κQ : Q → Aut(S) an action of a group
Q on S. Let T |S be a Q-normal Galois extension of commutative rings, with structure
extension
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e(T |S) : 1 −→ N
i N−→ G

πQ−→ Q −→ 1 (14.1)

and structure homomorphism κG : G → AutS(T ), cf. (12.1). In this section, we prove,
among others, that if a class k ∈ H3(Q,U(S)) goes under inflation to the Teichmüller
class in H3(G,U(T )) of some G-normal T -algebra, then k is itself the Teichmüller
class of some Q-normal S-algebra. To this end, we reexamine Deuring’s embedding
problem, cf. [14, Subsection 4.9 and Section 6].

14.1 The definitions

Let A be a central T -algebra, (C, σQ : Q → Out(C)) a Q-normal S-algebra, and
A ⊆ C an embedding of A into C . We refer to the embedding of A into C as a
Q-normal Deuring embedding with respect to σQ : Q → Out(C) and (14.1) if each
automorphism κG(x) of T , as x ranges over G, extends to an automorphism α of C
in such a way that

(i) [α] = σQ(πQ(x)) ∈ Out(C), and
(ii) α maps A to itself.

Remark 14.1 In the special case where Q is the trivial group, the group G boils down
to the group N = Aut(S|R) and, since each automorphism α of C that extends some
x ∈ N is required to map A to itself and to map to the trivial element of Out(C), that
automorphism α necessarily extends to an inner automorphism of C that normalizes
A; thus the notion of normal Deuring embedding then comes down to the notion of
Deuring embedding introduced in [14, Subsection 4.9].

Remark 14.2 Given an embedding of A into C such that A coincides with the cen-
tralizer of T in C , an automorphism α of C extending an automorphism κG(x) of T
for x ∈ G necessarily maps A to itself. Thus, in the definition of a Q-normal Deuring
embedding, condition (ii) is then redundant.

For technical reasons, we need a stronger concept of a normal Deuring embedding.
We now prepare for this definition.

Let A be a central T -algebra, C a central S-algebra, and suppose the algebra A to
be embedded into C . Recall the crossed module (U(C),Aut(C), ∂C ) associated to the
central S-algebra C , and consider the associated crossed 2-fold extension

eC : 0 −→ U(S) −→ U(C)
∂C−→ Aut(C) −→ Out(C) −→ 1, (14.2)

cf. [14, (4.1)]. The normalizer NU(C)(A) of A in U(C) and the centralizer CU(C)(T )

of T in U(C), together with U(A) and U(C), constitute an ascending sequence

U(A) ⊆ CU(C)(T ) ⊆ NU(C)(A) ⊆ U(C)

of groups. When A coincides with the centralizer of T in C , the inclusion
U(A) ⊆ CU(C)(T ) is the identity.
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We continue with the general case where A does not necessarily coincide with the
centralizer of T in C . Let AutA(C) denote the group of automorphisms of C that map
A to itself. The action of Aut(C) on U(C) induces an action of AutA(C) on each of the
groups U(A), CU(C)(T ), and NU(C)(A), and the restrictions of the homomorphism
∂C together with the actions yield three crossed modules

(NU(C)(A),AutA(C), ∂ N
C ), (14.3)

(CU(C)(T ),AutA(C), ∂T
C ), (14.4)

(U(A),AutA(C), ∂ A
C ), (14.5)

each homomorphism ∂ N
C , ∂T

C , ∂ A
C being the corresponding restriction of the homo-

morphism ∂C : U(C) → Aut(C). We write the associated crossed 2-fold extensions
as

eA
C : 0 −→ U(S) −→ U(A)

∂ A
C−→ AutA(C) −→ Out(C, A) −→ 1, (14.6)

eT
C : 0 −→ U(S) −→ CU(C)(T )

∂T
C−→ AutA(C) −→ Out(C, T ) −→ 1, (14.7)

eN
C : 0 −→ U(S) −→ NU(C)(A)

∂ N
C−→ AutA(C) −→ OutA(C) −→ 1, (14.8)

the groupsOut(C, A),Out(C, T ), andOutA(C) being defined by exactness. The inclu-
sions U(A) ⊆ CU(C)(T ) ⊆ NU(C)(A) induce a commutative diagram

eA
C : 0 U(S) U(A)

∂ A
C

AutA(C) Out(C, A) 1

eT
C : 0 U(S) CU(C)(T )

∂T
C

AutA(C) Out(C, T ) 1

eN
C : 0 U(S) NU(C)(A)

∂ N
C

AutA(C) OutA(C) 1

of morphisms of crossed 2-fold extensions and, by diagram chase, the induced homo-
morphisms Out(C, A) → Out(C, T ) and Out(C, T ) → OutA(C) are surjective.

Restriction induces canonical homomorphisms

res : Out(C, A) −→ OutS(A), res : Out(C, T ) −→ AutS(T )

(where the notation “res” is slightly abused) in such a way that the diagram
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Out(C, A)
res OutS(A)

res

Out(C, T )
res AutS(T )

is commutative. Moreover, the obvious homomorphism OutA(C) → Out(C) is injec-
tive, and we identify OutA(C) with its isomorphic image in Out(C) if need be.

Now, given a homomorphism χG : G → Out(C, A), its composite with the restric-
tion map res : Out(C, A) → Out(A) yields a G-normal structure on A. However,
in order for such a homomorphism to match the other data, in particular the given
Q-normal structure σQ : Q → Out(C), we must impose further conditions. We now
spell out the details.

Let ∂ A
C,� : U(A)/U(S) → AutA(C) denote the (injective) homomorphism induced

by the crossed module structure map ∂ A
C in the crossed module (14.5). The crossed

modules (14.3) and (14.5) yield the commutative diagram

1 1

0 U(S) U(A) U(A)/U(S)

∂ A
C,�

1

0 U(S) NU(C)(T )
∂ N

C
AutA(C) OutA(C) 1

1 NU(C)(A)/U(A) Out(C, A) OutA(C) 1

1 1

with exact rows and columns, the third row being defined by exactness. This third row
is an ordinary group extension, and we denote it by

e(A,C) : 1 → NU(C)(A)/U(A) → Out(C, A) → OutA(C) → 1. (14.9)

We define a strong Q-normal Deuring embedding of A into C with respect to the
Q-normal structure σQ : Q → Out(C) and the structure extension (14.1) to consist
of an embedding of A into C together with a homomorphism χG : G → Out(C, A)

that is compatible with the other data in the following sense:

– The restriction χN : N → NU(C)(A)/U(A) to N = Aut(T |S) of the homo-
morphism χG turns the embedding of A into C into a strong Deuring embedding
relative to the action Id : N → Aut(T |S) of N on T in such a way that the diagram
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e(T |S) : 1 N

χN

i N

G

χG

πQ
Q

σQ

1

e(A,C) : 1 NU(C)(A)/U(A) Out(C, A) OutA(C) 1

(14.10)

is commutative.
– The composite

G
χG−→ Out(C, A)

res−→ AutS(T ) (14.11)

coincides with κG : G → AutS(T ).

Remark 14.3 In the special case where Q is the trivial group, this notion of strong
normal Deuring embedding comes down to the notion of strong Deuring embedding
introduced in [14, Subsection 4.9].

Given a strong Q-normal Deuring embedding (A ⊆ C, χG) with respect to the
Q-normal structure σQ : Q → Out(C) and to the group extension (14.1), the com-
posite of χG with the restriction map res : Out(C, A) → Out(A) yields a G-normal
structure

σG : G −→ Out(A) (14.12)

on A relative to the action κG : G → AutS(T ) of G on T ; we refer to this structure as
being associated to the strong Q-normal Deuring embedding.

14.2 Discussion of the notion of normal Deuring embedding

Recall that G denotes the fiber product group AutS(T ) ×Aut(S) Q relative to the

action κQ : Q → Aut(S) of Q on S, that κG : G → AutS(T ) is the associated
obvious homomorphism, and that κG , restricted to N , boils down to the identity
N → Aut(T |S), cf. (12.1) above.

Let A be a central T -algebra, consider an embedding of A into a central S-algebra
C , and let σQ : Q → Out(C) be a Q-normal structure onC . Consider the fiber product
group B A,σQ = AutA(C)×Out(C) Q relative to the Q-normal structure σQ on C . The
following is immediate.

Proposition 14.4 Abstract nonsense identifies the kernel of the canonical homomor-
phism B A,σQ → Q with the normal subgroup IAutA(C) of AutA(C) that consists
of the inner automorphisms of C that map A to itself. Consequently the data deter-
mine a crossed module (NU(C)(A), B A,σQ , ∂ A,σQ ), the requisite action of B A,σQ on
NU(C)(A) being induced from the canonical homomorphism B A,σQ → AutA(C), in
such a way that the sequence
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0 U(S) NU(C)(A)
∂

A,σQ

B A,σQ Q (14.13)

is exact. �	

Since G = AutS(T ) ×Aut(S) Q (relative to the action κQ : Q → Aut(S) of Q on

S), and since the composite Q
σQ−→ Out(C)

res−→ Aut(S) coincides with the structure
map κQ : Q → Aut(S), by abstract nonsense, the combined homomorphism

B A,σQ can−→ AutA(C)
res−→ AutS(T )

and the canonical homomorphism can : B A,σQ → Q induce a homomorphism

πG : B A,σQ = AutA(C) ×Out(C) Q −→ AutS(T ) ×Aut(S) Q = G. (14.14)

The following is again immediate.

Proposition 14.5 The embedding of A into C is a Q-normal Deuring embedding with
respect to the Q-normal structure σQ : Q → Out(C) on C and the group extension
(14.1) if and only if the homomorphism πG : B A,σQ → G is surjective. �	

Whether or not the homomorphism πG is surjective, we now determine the kernel
of πG . To this end, let AutA(C |T ) denote the subgroup of AutA(C) that consists of
the automorphisms in AutA(C) that are the identity on T . Since T coincides with the
center of A, restriction induces a homomorphism from AutA(C) to Aut(T ), and since
S coincides with the center of C , the values of this restriction map lie in the subgroup
AutS(T ) of Aut(T ) that consists of the automorphisms of T which map S to itself.
Thus, all told, restriction yields an exact sequence

1 AutA(C |T ) AutA(C)
res AutS(T ) (14.15)

of groups.
Consider the fiber product groups

B A,κG = AutA(C) ×AutS(T )
G, B A,κQ = AutA(C) ×Aut(S) Q,

relative to the homomorphisms κG : G → AutS(T ) and κQ : Q → Aut(S), respec-
tively, and let can : B A,κG → G denote the canonical homomorphism. Since G is the
fiber product group AutS(T ) ×Aut(S) Q with respect to the homomorphism

κQ : Q −→ Aut(S),
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by abstract nonsense, the canonical homomorphism from B A,κG to B A,κQ is an iso-
morphism. Moreover, the exact sequence (14.15) induces an exact sequence

1 AutA(C |T ) B A,κG can
G (14.16)

of groups in such a way that

1 AutA(C |T ) B A,κG can
G

κG

1 AutA(C |T ) AutA(C)
res AutS(T )

is a commutative diagram with exact rows.
Abstract nonsense yields a canonical homomorphism

AutA(C) ×Out(C) Q = B A,σQ −→ B A,κQ = AutA(C) ×Aut(S) Q

and hence a canonical homomorphism B A,σQ → B A,κG whose composite

B A,σQ → B A,κG can−→ G

with can : B A,κG → G coincides with πG : B A,σQ → G.

Proposition 14.6 (i) The homomorphism B A,σQ → B A,κG is injective.
(ii) Under the identification of B A,σQ with its isomorphic image in the group B A,κG ,
the group AutA(C |T ) being identified with its isomorphic image in B A,κG via (14.16),
the kernel ofπG : B A,σQ → G gets identifiedwith the normal subgroup of AutA(C |T )

that consists of the automorphisms in AutA(C |T ) that are inner automorphisms of C .
(iii) Consequently the canonical homomorphism from the centralizer CU(C)(T ) of T
in U(C) to AutA(C |T ) yields a surjective homomorphism

CU(C)(T ) −→ ker(πG : B A,σQ → G).

Proof Since the canonical homomorphism B A,κG → B A,κQ is an isomorphism, the
right-hand square in the the commutative diagram

B A,σQ B A,κG can
Q

κQ

AutA(C) AutA(C)
res Aut(S)

is a pull back square, and hence inspection of the diagram reveals that the homomor-
phism B A,σQ → B A,κG is injective. This establishes (i).
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To justify (ii), we note first that the kernel of AutA(C) → Out(C) is the
normal subgroup IAutA(C) of AutA(C) that consists of the inner automorphisms
of C that map A to itself. Since the group B A,σQ is the fiber product group
B A,σQ = AutA(C) ×Out(C) Q, abstract nonsense identifies the kernel of the canon-

ical homomorphism B A,σQ → Q with IAutA(C), and it is immediate that ker(πG)

is a subgroup of IAutA(C) = ker(B A,σQ → Q). On the other hand, B A,σQ being
identified with the corresponding subgroup of B A,κG , the kernel of πG : B A,σQ → G
gets identified with the intersection B A,σQ ∩AutA(C |T ) ⊆ B A,κG and hence with the
intersection

IAutA(C) ∩ AutA(C |T ) ⊆ B A,κG .

Consequently the kernel of the homomorphism πG gets identified with the normal
subgroup of AutA(C |T ) that consists of the automorphisms in AutA(C |T ) that are
inner automorphisms of C .

Finally, statement (iii) is an immediate consequence of (ii). �	
Proposition 14.7 Suppose that the embedding of A into C is a Q-normal Deuring
embedding with respect to the Q-normal structure σQ : Q → Out(C) on C and the
group extension (14.1).
(i) The surjective homomorphism (14.14) yields a crossed 2-fold extension

eA,T
(C,σQ) : 0 U(S) CU(C)(T )

∂
A,T,σQ

B A,σQ
πG

G 1. (14.17)

(ii) The values of the Q-normal structure σQ : Q → Out(C) on C lie in the subgroup
OutA(C)(= coker(∂ N

C : NU(C)(A) −→ AutA(C)), cf. (14.8)).

Proof Statement (i) is an immediate consequence of Propositions 14.5 and 14.6 (iii).
Moreover, the diagram

NU(C)(A)
∂

A,σQ
B A,σQ Q

σQ

NU(C)(A)
∂ N

C
AutA(C)

can Out(C)

is commutative and, in view of Proposition 14.5, the canonical homomorphism from
B A,σQ to Q is surjective. Consequently the values of σQ : Q → Out(C) on C lie in
the subgroup OutA(C)(= coker(∂ N

C : NU(C)(A) −→ AutA(C))). �	
Given a Q-normal Deuring embedding of A into C with respect to the Q-normal

structure σQ : Q → Out(C) on C and the group extension (14.1), in view of Propo-
sition 14.7(ii), let

eA
(C,σQ) : 0 U(S) NU(C)(A)

∂
A,σQ

B A,σQ Q 1 (14.18)
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denote the associated crossed 2-fold extension induced from (14.8) via the Q-normal
structure σQ : Q → OutA(C) onC ; the underlying sequence of groups and homomor-
phisms plainly coincides with (14.13). Recall that the Teichmüller complex e(C,σQ)

of the kind [14, (4.7)] associated to the Q-normal S-algebra (C, σQ) is the crossed
2-fold extension

e(C,σQ) : 0 U(S) U(C)
∂

σQ

BσQ Q 1 (14.19)

induced from (14.2) via the Q-normal structureσQ : Q → Out(C)onC . The following
is again immediate.

Proposition 14.8 Suppose that the embedding of A into C is a Q-normal Deuring
embedding with respect to the Q-normal structure σQ : Q → Out(C) on C and the
group extension (14.1).
(i) The inclusion maps NU(C)(A) → U(C) and B A,σQ → BσQ yield a congruence

eA
(C,σQ) : 0 U(S) NU(C)(A)

∂
A,σQ

B A,σQ Q 1

e(C,σQ) : 0 U(S) U(C)
∂

σQ

BσQ Q 1

(14.20)

of crossed 2-fold extensions from the crossed 2-fold extension (14.18) to the crossed
2-fold extension (14.19).
(ii) The injection CU(C)(T ) → NU(C)(A) yields the morphism

eA,T
(C,σQ) : 0 U(S) CU(C)(T )

∂
A,T,σQ

B A,σQ G

πQ

1

eA
(C,σQ) : 0 U(S) NU(C)(A)

∂
A,σQ

B A,σQ Q 1

(14.21)

of crossed 2-fold extensions from the crossed 2-fold extension (14.17) to the crossed
2-fold extension (14.18). �	

14.3 Results related with the two notions of normal Deuring embedding

Theorem 14.9 Let A be a central T -algebra, C a central S-algebra, and A ⊆ C an
embedding of A into C having the property that A coincides with the centralizer of T
in C. Furthermore, let σQ : Q → Out(C) be a Q-normal structure on C, and suppose
that the embedding of A into C is a Q-normal Deuring embedding with respect to
σQ and the group extension (14.1). Then the data determine a unique homomorphism
χG : G → Out(C, A) that turns the given Q-normal Deuring embedding of A into C
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into a strong Q-normal Deuring embedding of A into C with respect to the given data
in such a way that, relative to the associated G-normal structure

σG : G
χG−→ Out(C, A)

res−→ Out(A)

on A, cf. (14.12),

[e(A,σG )] = inf[e(C,σQ)] ∈ H3(G,U(T )).

Proof Recall that theTeichmüller complex e(C,σQ ) of the Q-normal S-algebra (C, σQ),
spelled out above as (14.19), represents the Teichmüller class

[e(C,σQ)] ∈ H3(Q,U(S))

of the Q-normal central S-algebra (C, σQ).
Suppose that the embedding of A into C is a Q-normal Deuring embedding with

respect to the Q-normal structure σQ : Q → Out(C) on C and the group extension
(14.1). By Proposition 14.8(i), the crossed 2-fold extension eA

(C,σQ), cf. (14.18), is
available and is congruent to e(C,σQ), whence

[e(C,σQ)] = [eA
(C,σQ)] ∈ H3(Q,U(S)).

Moreover, by Proposition 14.8(ii), the crossed 2-fold extension (14.17) is available
and, since the centralizer of A in C coincides with T , the inclusion U(A) ⊆ CU(C)(T )

identifies the group U(A) of invertible elements of A with the centralizer CU(C)(T )

of T in U(C). Hence the crossed 2-fold extension (14.17) has the form

eA,T
(C,σQ) : 0 U(S) U(A)

∂
A,T,σQ

B A,σQ G 1, (14.22)

and the injection ι : U(A) → NU(C)(A) induces the morphism (14.21) of crossed
2-fold extensions in Proposition 14.8(ii); this is a morphism of crossed 2-fold exten-
sions of the kind (1, ι, 1, πQ) : eA,T

(C,σQ) → eA
(C,σQ).

Denote by i : U(S) → U(T ) the inclusion. The canonical homomorphism

B A,σQ = AutA(C) ×Out(C) Q −→ AutA(C)

induces a morphism

(Id, · ) : (U(A), B A,σQ , ∂ A,T,σQ ) −→ (U(A),AutA(C), ∂ A
C )
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of crossed modules and hence a homomorphism χG : G → Out(C, A) such that

eA,T
(C,σQ) : 0 U(S)

i

U(A)
∂

A,T,σQ

B A,σQ G

χG

1

eA : 0 U(T ) U(A)
∂ A

C
AutA(C) Out(C, A) 1

is a morphism of crossed 2-fold extensions from (14.22) to [14, (4.1)]. The homo-
morphism χG turns the given Q-normal Deuring embedding of C into A into a strong
Q-normal Deuring embedding of C into A with respect to the given data.

The G-normal structure σG : G
χG→ Out(C, A)

res→ Out(A) associated to the strong
Q-normal Deuring embedding, in turn, induces a morphism

eA,T
(C,σQ) : 0 U(S)

i

U(A)
∂

A,T,σQ

B A,σQ G 1

e(A,σG ) : 0 U(T ) U(A)
∂σG

BσG G 1

of crossed 2-fold extensions from (14.22) to the corresponding crossed 2-fold exten-
sion e(A,σG ) of the kind [14, (4.7)]. Consequently [e(A,σG )] = inf[e(C,σQ)]. �	

Theorem 14.9 has a converse; this converse sort of a characterizes the Teichmüller
classes in H3(Q,U(S)).

Theorem 14.10 Let k ∈ H3(Q,U(S)), let A be a central T -algebra, and let

σG : G −→ Out(A)

be a G-normal structure on A relative to the action κG : G → AutS(T ) of G on T .
Suppose that

inf(k) = [e(A,σG )] ∈ H3(G,U(T )).

Then there is a Q-normal S-central crossed product algebra

(C, σQ) = ((A, N , e, ϑ), σQ)

related with the other data in the following way.

– The Q-normal algebra (C, σQ) = ((A, N , e, ϑ), σQ) has Teichmüller class k;
– once the Q-normal algebra ((A, N , e, ϑ), σQ) has been fixed, the data determine

a homomorphism χG : G → Out(C, A) that turns the obvious embedding of A
into (A, N , e, ϑ) into a strong Q-normal Deuring embedding with respect to
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σQ : Q −→ Out(A, N , e, ϑ)

and the group extension (14.1);
– the associated G-normal structure

G
χG−→ Out(C, A)

res−→ Out(A)

on A, cf. (14.12), and the given G-normal structure σG : G → Out(A) on A
coincide.

Complement 14.11 In the situation of Theorem 14.10, if A is an Azumaya T -algebra,
the algebra (A, N , e, ϑ) is an Azumaya S-algebra.

Remark 14.12 In the special case where inf(k) = 0, the argument to be given comes
down to that given for the statement of Theorem 13.5, and this theorem is in fact a
special case of Theorem 14.10.

Proof of Theorem 14.10. For convenience, we split the reasoning into Proposi-
tions 14.13–14.15 below.

Consider a G-normal central T -algebra (A, σG), and denote by σN : N → Out(A) the
restriction of σG : G → Out(A) to N so that (A, σN ) is an N -normal central T -algebra.
The obvious unlabeled vertical arrow and the injection i N turn

e(A,σN ) : 0 −−−−→ U(T ) −−−−→ U(A)
∂σN−−−−→ BσN −−−−→ N −−−−→ 1

∥
∥
∥

∥
∥
∥

⏐
⏐
� i N

⏐
⏐
�

e(A,σG ) : 0 −−−−→ U(T ) −−−−→ U(A)
∂σG−−−−→ BσG −−−−→ G −−−−→ 1

into a commutative diagram having as its rows the (exact) Teichmüller complexes
e(A,σN ) and e(A,σG ) of (A, σN ) and (A, σG), respectively. Consequently the combined
homomorphism

BσG −−−−→ G
πQ−−−−→ Q

yields a group extension

1 −→ BσN −→ BσG −→ Q −→ 1. (14.23)

Let

ê : 0 −−−−→ U(T ) −−−−→ U(A) −−−−→ U(A)/U(T ) −−−−→ 1 (14.24)

and

1 −−−−→ U(A)/U(T )
φ−−−−→ BσN −−−−→ N −−−−→ 1
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be the obvious group extensions so that splicing them yields the Teichmüller complex

e(A,σN ) : 0 −−−−→ U(T ) −−−−→ U(A) −−−−→ BσN −−−−→ N −−−−→ 1

of (A, σN ). We denote the resulting morphism

1 U(A)/U(T )

φ

BσG G

πQ

1

1 BσN BσG Q 1

(14.25)

of group extensions by Φ.
Consider the Teichmüller complex

e(A,σG ) : 0 −→ U(T ) −→ U(A)
∂σG−→ BσG −→ G −→ 1

associated to the given G-normal structure σG : G → Out(A) on A, cf. [14, (4.7)].
Since U(T ) is a central subgroup of U(A), the group extension ê spelled out above
as (14.24) is a central extension and, as noted in Proposition 13.2, G-crossed pair
structures on ê are equivalent to BσG -actions on U(A) that turn U(A) → BσG into
a crossed module. Thus the action of BσG on U(A) that results from the given G-
normal structure σG : G → Out(A) via the associated crossed 2-fold extension e(A,σG )

induces a crossed pair structure ψ̂ : G → OutBσG (ê) on ê with respect to the group
extension U(A)/U(T ) � BσG � G and the G-module U(T ). Then the canonical
homomorphism γ̂ : AutBσG (ê) −→ Aut(A) yields a morphism

0 U(T ) U(A) AutBσG (ê)

γ̂

OutBσG (ê)

γ̂�

1

0 U(T ) U(A) Aut(A) Out(A) 1

of crossed 2-fold extensions such that the composite

G
ψ̂−→ OutBσG (ê)

γ̂�−→ Out(A) (14.26)

coincides with σG : G → Out(A).

Proposition 14.13 Let k ∈ H3(Q,U(S)), let (A, σG) be a G-normal central T -alge-
bra, and suppose that inf(k) = [e(A,σG )] ∈ H3(G,U(T )). Then there is a group
extension

ẽ : 0 −→ U(T ) −→ Γ −→ BσN −→ 1

together with a crossed pair structure ψ̃ : Q → OutBσG (ẽ) on ẽ with respect to the
group extension (14.23) and the BσG -module U(T ), the requisite module structure
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being induced by the map BσG → G in e(A,σG ), related with the other data in the

following way, where Bψ̃ denotes the fiber product group AutBσG (ẽ) ×OutBσG (ẽ) Q

with respect to ψ̃ : Q → OutBσG (ẽ).
(i) The crossed 2-fold extension

eψ̃ : 0 −→ U(S) −→ Γ −→ Bψ̃ −→ Q −→ 1

associated to the crossed pair (ẽ, ψ̃), cf. (13.5), represents k.
(ii) Relative to the obvious actions of the group AutBσG (ẽ) (⊆ Aut(Γ ) × BσG ) on the
groups U(T ),U(A),U(A)/U(T ), Γ, BσN and N, the extension group Γ in ẽ fits into
a commutative diagram of AutBσG (ẽ)-groups with exact rows and columns as follows:

1 1
⏐
⏐
�

⏐
⏐
�

ê : 0 −−−−→ U(T ) −−−−→ U(A) −−−−→ U(A)/U(T ) −−−−→ 1
∥
∥
∥

⏐
⏐
�

⏐
⏐
�φ

ẽ : 0 −−−−→ U(T ) −−−−→ Γ −−−−→ BσN −−−−→ 1
⏐
⏐
�

⏐
⏐
�

N N
⏐
⏐
�

⏐
⏐
�

1 1

(14.27)

Proof By [13, Theorem 2], the morphism (14.25) of group extensions induces a
morphism for the corresponding eight term exact sequences in group cohomology
constructed in [13]. In particular, Φ induces the commutative diagram

H2(BσG ,U(T )) Xpext(BσG , BσN ;U(T ))

Φ∗

Δ
H3(Q,U(S))

inf

H3(BσG ,U(T ))

H2(BσG ,U(T )) Xpext(BσG ,U(A)/U(T );U(T ))
Δ

H3(G,U(T )) H3(BσG ,U(T )).

By the construction of Δ, cf. Subsection 13.1 above or [13, Subsection 1.2],

Δ[(ê, ψ̂)] = [e(A,σG )],

and so, by exactness, inf(k) = [e(A,σG )] goes to zero in H3(BσG ,U(T )). Therefore k
goes to zero in H3(BσG ,U(T )), and hence there is a group extension

ẽ : 0 −→ U(T ) −→ Γ −→ BσN −→ 1
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of the asserted kind together with a crossed pair structure ψ̃ : Q → OutBσG (ẽ) on ẽ
with respect to the group extension (14.23) and the BσG -module U(T ) whose BσG -
module structure is induced by the projection BσG → G in e(A,σG ) so that

Δ[(ẽ, ψ̃)] = k ∈ H3(Q,U(S));

moreover, making a suitable choice of (ẽ, ψ̃) by means of some diagram chase if need
be, we can arrange for [(ẽ, ψ̃)] to go to [(ê, ψ̂)] in the sense that

Φ∗[(ẽ, ψ̃)] = [(ê, ψ̂)] ∈ Xpext(BσG ,U(A)/U(T );U(T )).

The crossed pair (ẽ, ψ̃) has the asserted properties. ForΔ[(ẽ, ψ̃)] = [eψ̃ ] by definition,
and so assertion (i) holds. Moreover, since Φ∗[(ẽ, ψ̃)] = [(ê, ψ̂)], assertion (ii) holds
as well. The details are as follows, cf. [13, Subsection 2.2].

Since Φ∗[(ẽ, ψ̃)] = [(ê, ψ̂)], we may identify (ê, ψ̂) with the induced crossed
pair (ẽΦ, ψ̃Φ), cf. [13]. Recall that ẽΦ is the group extension induced from ẽ via the
injective homomorphism φ : U(A)/U(T ) → BσN and let U = ker(Γ −→ N ); since
φ identifies U(A)/U(T )with the kernel of BσN → N , we can write the induced group
extension ẽΦ as

ẽΦ : 0 −→ U(T ) −→ U −→ U(A)/U(T ) −→ 1.

To explain the induced crossed pair structure ψ̃Φ : G → OutBσG (ẽΦ), we note first
that the injection U → Γ induces a morphism

0 U(S) U AutBσG (ẽ) OutBσG (ẽ) ×Q G 1

0 U(S) Γ AutBσG (ẽ) OutBσG (ẽ) 1

of crossed 2-fold extensions. Moreover, restriction of the operators on Γ to U yields
a homomorphism

res : AutBσG (ẽ) −→ AutBσG (ẽΦ),

and this homomorphism, in turn, yields a morphism

0 U(S) U AutBσG (ẽ)

res

OutBσG (ẽ) ×Q G

res�

1

0 U(T ) U AutBσG (ẽΦ) OutBσG (ẽΦ) 1
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of crossed 2-fold extensions. The crossed pair structure ψ̃Φ : G → OutBσG (ẽΦ) is
the composite

G
ψ̃G−→ OutBσG (ẽ) ×Q G

res�−→ OutBσG (ẽΦ)

of res� with the canonical lift of the crossed pair structure ψ̃ : Q → OutBσG (ẽ) on ẽ to
a homomorphism ψ̃G : G → OutBσG (ẽ)×Q G; see [13, Propositions 2.3 and 2.4]. The
identity Φ∗[(ẽ, ψ̃)] = [(ê, ψ̂)] means that the two crossed pairs (ê, ψ̂) and (ẽΦ, ψ̃Φ)

are congruent as crossed pairs. Thus wemay take U to be U(A) such that the following
hold:

– The injection U(A) → Γ induces a morphism ê → ẽ of group extensions whose
restriction to U(T ) is the identity, as displayed in diagram (14.27) above, and

– the crossed pair structure ψ̂ : G → OutBσG (ê) on ê is the composite

G
ψ̃G−→ OutBσG (ẽ)

res�−→ OutBσG (ê) (14.28)

of ψ̃G with the homomorphism res� : OutBσG (ẽ) ×Q G → OutBσG (ê) induced by
the obvious restriction homomorphism res : AutBσG (ẽ) −→ AutBσG (ê).

The morphism ê → ẽ of group extensions yields the commutative diagram (14.27)
and, by construction, this is a commutative diagram of AutBσG (ẽ)-groups. �	

We continue the proof of Theorem 14.10. Maintaining the hypotheses of Proposi-
tion 14.13, we write

e : 1 −→ U(A)
j−→ Γ −→ N −→ 1

for the group extension that arises as the middle column of diagram (14.27) and denote
by ϑ : Γ → Aut(A) the combined homomorphism

Γ −→ BσN −→ Aut(A).

Consider the crossed product algebra (A, N , e, ϑ). By construction

(A, N , e, ϑ) = AtΓ/〈a − j (a), a ∈ U(A)〉,

cf. [14, Section 5]. By [14, Proposition 5.3(iv)], since T |S is a Galois extension of
commutative rings with Galois group N , the group Γ now gets identified with the
normalizer NU(A,N ,e,ϑ)(A) of A in the crossed product algebra (A, N , e, ϑ).

Recall the notation BσG for the fiber product group Aut(A) ×Out(A) G with respect
to the given G-normal structure σG : G → Out(A) on A, cf. [14, Subsection 4.4].
Furthermore, recall from Subsection 13.1 above that AutBσG (ẽ) denotes the subgroup
of Aut(Γ ) × BσG that consists of the pairs (α, x) which render the diagram
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ẽ : 0 −−−−→ U(T ) −−−−→ Γ −−−−→ BσN −−−−→ 1

�x

⏐
⏐
� α

⏐
⏐
� ix

⏐
⏐
�

ẽ : 0 −−−−→ U(T ) −−−−→ Γ −−−−→ BσN −−−−→ 1

commutative; here, given x ∈ BσG , the notation ix : BσN → BσN refers to conjugation
by x ∈ BσG and �x : U(T ) → U(T ) to the canonical action of BσG on U(T ) (recall
that T denotes the center of A) induced from the action of BσG on A and hence on
U(T ) via the canonical homomorphism BσG → Aut(A).

Proposition 14.14 Setting

(α,x)(ay) = x aα y, a ∈ A, y ∈ Γ, (14.29)

where (α, x) ∈ AutBσG (ẽ) (⊆ Aut(Γ ) × BσG ⊆ Aut(Γ ) × Aut(A) × G), we obtain a
homomorphism

γ : AutBσG (ẽ) −→ AutA(A, N , e, ϑ),

and this homomorphism, in turn, yields morphisms

0 U(S) Γ AutBσG (ẽ)

γ

OutBσG (ẽ)

γ�

1

0 U(S) NU(A,N ,e,ϑ)(A) AutA(A, N , e, ϑ) OutA(A, N , e, ϑ) 1

and

0 U(S) U(A) AutBσG (ẽ)

γ

OutBσG (ẽ) ×Q G

γ�

1

0 U(S) U(A) AutA(A, N , e, ϑ) Out((A, N , e, ϑ), A) 1

of crossed 2-fold extensions. Furthermore, the homomorphisms γ�, γ�, and the obvious
unlabeled homomorphisms render the diagram

OutBσG (ẽ) ×Q G −−−−→ OutBσG (ẽ)

γ�

⏐
⏐
� γ�

⏐
⏐
�

Out((A, N , e, ϑ), A) −−−−→ OutA(A, N , e, ϑ)

(14.30)

commutative.

Proof The left A-module that underlies the twisted group ring AtΓ is the free A-
module having Γ as an A-basis, whence it is manifest that (14.29) yields an action of
the group AutBσG (ẽ) on that left A-module.
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Next we show that the AutBσG (ẽ)-action on the left A-module that underlies the
twisted group ring AtΓ is compatible with the multiplicative structure of AtΓ . To
this end, consider the crossed module (Γ,AutBσG (ẽ), β), cf. the middle columns of
the commutative diagram (13.3) above. Since β : Γ → AutBσG (ẽ) is a morphism of
AutBσG (ẽ)-groups, given y ∈ Γ and (α, x) ∈ AutBσG (ẽ),

β((α,x)y) = (α, x)β(y)(α, x)−1 ∈ AutBσG (ẽ).

Let can : AutBσG (ẽ) → Aut(A) denote the canonical homomorphism. It is now mani-
fest that the action ϑ : Γ → Aut(A) of Γ on A factors through β, that is, ϑ coincides
with the combined homomorphism

Γ
β−→ AutBσG (ẽ)

can−→ Aut(A).

Hence, given (α, x) ∈ AutBσG (ẽ) (⊆ Aut(Γ ) × BσG ), b ∈ A, and y ∈ Γ ,

xϑ(y)x−1
b = ϑ(α y)b. (14.31)

Thus, given (α, x) ∈ AutBσG (ẽ), y ∈ Γ, a ∈ A, in view of (14.31) we conclude

(α,x)(ya) = (α,x)(ϑ(y)a y) = (xϑ(y)x−1x a)α y = (ϑ(α y)x a)α y = α y x a.

Consequently (14.29) yields an action of AutBσG (ẽ) on the algebra AtΓ .
Finally, to show that the action of AutBσG (ẽ) on the algebra AtΓ preserves the two-

sided ideal < a − j (a), a ∈ U(A) > in AtΓ , let a ∈ U(A) and (α, x) ∈ AutBσG (ẽ).
In view of Proposition 14.13(ii), j (x a) = α( j (a)), whence

(α,x)(a − j (a)) = (x a − j (x a)).

�	
With respect to the crossed pair structure ψ̃ : Q → OutBσG (ẽ) on ẽ, the fiber

product group Bψ̃ = AutBσG (ẽ) ×OutBσG (ẽ) Q is defined. As before, we denote by

ψ̃G : G → OutBσG (ẽ)×Q G the canonical lift, into the fiber product groupwith respect
to the surjection πQ : G → Q, of the crossed pair structure ψ̃ : Q → OutBσG (ẽ) on
ẽ. Define χG : G → Out((A, N , e, ϑ), A) to be the combined homomorphism

χG : G
ψ̃G−→ OutBσG (ẽ)

γ�−→ Out((A, N , e, ϑ), A). (14.32)

Moreover, the composite homomorphism

σQ : Q
ψ̃−→ OutBσG (ẽ)

γ�−→ OutA(A, N , e, ϑ)
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yields a Q-normal structure σQ : Q → OutA(A, N , e, ϑ) on the central S-algebra
(A, N , e, ϑ). Denote by i : Γ → U(A, N , e, ϑ) the inclusion and by γ̃ the combined
homomorphism

γ̃ : Bψ̃ can−→ AutBσG (ẽ)
γ−→ AutA(A, N , e, ϑ). (14.33)

Proposition 14.15 Write C = (A, N , e, ϑ). The homomorphisms σQ, κG , χG , σG, i ,
and γ̃ match in the following sense.
(i) The homomorphisms σQ and χG yield a commutative diagram

e(T |S) : 1 −−−−−→ N −−−−−→ G
πQ−−−−−→ Q −−−−−→ 1

χN

⏐
⏐
� χG

⏐
⏐
� χQ

⏐
⏐
�

e(A,C) : 1 −−−−−→ NU(C)(A)/U(A) −−−−−→ Out(C, A) −−−−−→ OutA(C) −−−−−→ 1

(14.34)

with exact rows.
(ii) The composite homomorphism

G
χG−→ Out((A, N , e, ϑ), A)

res−→ Out(A) (14.35)

coincides with σG : G → Out(A).
(iii) The two homomorphisms i and γ̃ yield a morphism of crossed 2-fold extensions

1 U(S) Γ

i

Bψ̃

γ̃

Q

σQ

1

1 U(S) U(A, N , e, ϑ) AutA(A, N , e, ϑ) OutA(A, N , e, ϑ) 1

whence (i, γ̃ ) induces a congruence (1, i, ·, 1) : eψ̃ −→ e((A,N ,e,ϑ),σQ) of crossed
2-fold extensions.
(iv) The homomorphism χN : N → NU(C)(A)/U(A) turns the embedding of A into
C = (A, N , e, ϑ) into a strong N-normal Deuring embedding with respect to

Id : N −→ Aut(T |S).

Proof (i) It is obvious that the diagram

G
πQ−−−−→ Q

ψ̃G

⏐
⏐
� ψ̃

⏐
⏐
�

OutBσG (ẽ) ×Q G −−−−→ OutBσG (ẽ)

is commutative. Combining this diagram with the commutative diagram (14.30), we
obtain the right-hand square of (14.34). Since the lower row of that diagram is exact,
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the homomorphisms χG and σQ induce the requisite homomorphism

χN : N → NU(C)/U(A).

(ii) Consider the diagram

G

ψ̂

ψ̃G
OutBσG (ẽ) ×Q G

res�

γ�
Out((A, N , e, ϑ), A)

res

OutBσG (ê)
γ�

Out(A).

The right-hand square is commutative in an obvious manner. The left-hand triangle
is commutative since, as noted earlier, the composite (14.28) coincides with ψ̂ . The
upper row yields the homomorphism χG : G → Out((A, N , e, ϑ), A), by the very
definition (14.32) of χG .

As noted above, the composite (14.26), viz. G
ψ̂−→ OutBσG (ê)

γ̂�−→ Out(A), yields
the given G-normal structure σG : G → Out(A) on A. Consequently (14.35) coincides
with the structure map σG : G → Out(A) as asserted.
(iii) This is obvious.
(iv) Consider the commutative diagram

e(T |S) : 1 −−−−→ N −−−−→ G −−−−→ Q −−−−→ 1

χN

⏐
⏐
� χG

⏐
⏐
� σQ

⏐
⏐
�

e(A,C) : 1 −−−−→ NU(C)(A)/U(A) −−−−→ Out(C, A) −−−−→ OutA(C) −−−−→ 1

η�

⏐
⏐
� res

⏐
⏐
� res

⏐
⏐
�

1 −−−−→ Aut(T |S) −−−−→ AutS(T )
res−−−−→ Aut(S).

By construction, the outer-most diagram coincides with the commutative diagram
(12.1), and the left-most column is the composite [14, (4.9)], with N substituted for
Q and Aut(T |S) for Aut(S). Consequently the composite

η� ◦ χN : N −→ Aut(T |S)

is the identity. Since T |S is a Galois extension of commutative rings with Galois
group N , by [14, Proposition 5.3(ii)], the algebra A coincides with the centralizer of
T inC = (A, N , e, ϑ)whence, by [14, Proposition 4.11(iii)], the homomorphism η� is
injective. Consequently η� andχN are isomorphisms, andχN : N → NU(C)(A)/U(A)

turns the embedding of A into C into a strong N -normal Deuring embedding with
respect to Id : N → Aut(T |S). �	
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We can now complete the proof of Proposition 14.13: Since the structure homo-
morphism κG : G → Out(A) is a G-normal structure relative to the action

κG : G −→ AutS(T )

of G on T , by definition, the composite homomorphism

G
σG−→ Out(A)

res−→ AutS(T )

coincides with κG : G → AutS(T ); since, by Proposition 14.15(ii), the homomor-
phism (14.35) coincides with σG : G → Out(A), we conclude that the composite

G
χG−→ Out((A, N , e, ϑ), A)

res−→ AutS(T )

coincides with κG , cf. (14.11).
By Proposition 14.15(i), the diagram (14.34) is commutative, and by Proposition

14.15(iv), the homomorphism χN : N → NU(C)(A)/U(A) turns the embedding of A
into C into a strong N -normal Deuring embedding with respect to

Id : N −→ Aut(T |S).

Consequently, cf. (14.32), the homomorphism

χG : G −→ Out((A, N , e, ϑ), A)

turns the embedding of A into (A, N , e, ϑ) into a strong Q-normalDeuring embedding
with respect to the Q-normal structure σQ : Q → Out(A, N , e, ϑ) on (A, N , e, ϑ) and
the structure extension (14.1).

Proposition 14.15(ii) says that theG-normal structureG → Out(A)on A associated
to the strong Q-normal Deuring embedding, cf. (14.12), coincides with the given G-
normal structure σG : G → Out(A) on A.

Propositions 14.13 (i) and 14.15(iii) together entail that the Q-normal S-algebra
((A, N , e, ϑ), σQ) has Teichmüller class k as asserted since the crossed 2-fold exten-
sion eψ̃ represents k.

The proof of Theorem 14.10 is now complete. �	
Proof of Complement 14.11. This follows from [14, Proposition 5.4 (xi)]. �	

Recall that Bψ̃ denotes the fiber product group Bψ̃ = AutBσG (ẽ) ×OutBσG (ẽ) Q

with respect to the crossed pair structure ψ̃ : Q → OutBσG (ẽ) on ẽ, and that, likewise,
B A,σQ denotes the fiber product group

B A,σQ = AutA(A, N , e, ϑ) ×Out(A,N ,e,ϑ) Q

with respect to the Q-normal structure σQ : Q → Out(A, N , e, ϑ) on (A, N , e, ϑ).
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Complement 14.16 The canonical homomorphism Bψ̃ −→ B A,σQ induced by
the action γ̃ : Bψ̃ −→ AutA(A, N , e, ϑ) of Bψ̃ on the crossed product algebra
(A, N , e, ϑ), cf. (14.33) above, and the surjection Bψ̃ −→ Q is an isomorphism.

Proof The homomorphism Bψ̃ → B A,σQ makes the diagram

0 U(S) Γ Bψ̃ Q 1

0 U(S) NU(A,N ,e,ϑ)(A) B A,σQ Q 1

commutative whence the homomorphism Bψ̃ → B A,σQ is an isomorphism. �	

15 Behavior of the crossed Brauer group under Q-normal Galois
extensions

Consider a Q-normalGalois extension T |S of commutative rings,with structure exten-

sion e(T |S) : N � G
πQ
� Q and structure homomorphism κG : G → AutS(T ), cf.

Section 12 above, and denote the injection of S into T by i : S → T . Then the abelian
group XB(T |S; G, Q) is defined relative to the associated morphism

(i, πQ) : (S, Q, κQ) −→ (T, G, κG)

in the change of actions category Change, cf. (12.3) above.

Theorem 15.1 The sequence

XB(T |S; G, Q)
t−→ H3(Q,U(S))

inf−→ H3(G,U(T ))

is exact and, furthermore, natural in the data. Moreover, each class in the image of t
is also the Teichmüller class of some crossed pair algebra.

Proof The naturality of the constructions entails that inf ◦ t = 0. Moreover, by Theo-
rem 13.5, ker(inf) ⊂ im(t), and each class in the image of t comes from some crossed
pair algebra. �	

Let Pic(T |S) denote the kernel of the homomorphism Pic(S) → Pic(T ) induced
by i : S → T . Our next aim is to construct a homomorphism from H1(Q,Pic(T |S))

to XB(T |S; G, Q). To this end, view T as an S-module in the obvious way and let
A = EndS(T ). Now, given an automorphism α of A so that α|S is the identity, as above
we can turn T into a new A-module αT be means of α, and J (α) = HomA(αT, T )

is a faithful finitely generated projective rank one S-module; since A ⊗ T is a matrix
algebra, J (α) represents a member of Pic(T |S), and the association α �→ [J (α)]
yields a homomorphism Aut(A|S) → Pic(T |S) which we claim to be surjective. In
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order to justify this claim, we first observe that the obvious map j : T t N → A, as
explained in [14, Section 2], is an isomorphism, since T |S is a Galois extension of
commutative rings with Galois group N . Now, given a derivation d : N → U(T ),
define the automorphism αd of T t N by

αd(tn) = d(n)tn, t ∈ T, n ∈ N .

Then

Der(N ,U(T )) −→ Aut(T t N |S), d �−→ αd ,

is a homomorphism, and [J (αd)] ∈ Pic(T |S) is the imageof [d] ∈ H1(N ,U(T ))under
the standard isomorphism H1(N ,U(T )) → Pic(T |S) (with N and T substituted for
Q and S, respectively, this is, e.g., a consequence of the exactness of [14, (10.1)] at
the second term). Hence the homomorphism Aut(A|S) → Pic(T |S) is surjective as
asserted. Consequently the obvious homomorphism from Aut(A|S) to Aut(A, Q) fits
into a commutative diagram

Aut(A|S) Pic(T |S)
∼= Out(A|S)

Aut(A, Q) Out(A, Q)

where the horizontal maps are surjective. Since the G-action on T and that on N
induce a canonical section σ0 : Q → Out(A, Q), the canonical homomorphism from
Out(A, Q) to Q is surjective as well. Consequently the sequence

0 −→ Pic(T |S) −→ Out(A, Q) −→ Q −→ 1

is exact. Now, given a derivation d : Q → Pic(T |S), define the homomorphism

σd : Q −→ Out(A, Q)

by σ(q) = d(q)σ0(q), as q ranges over Q. Then (A, σd) is a Q-normal Azumaya
S-algebra.

We mention without proof the following.

Theorem 15.2 The association d �→ (EndS(T ), σd), as d ranges over derivations
from Q to Pic(T |S), yields a natural isomorphism

H1(Q, Pic(T |S)) −→ XB(S|S; {e}, Q) ∩ XB(T |S; G, Q)

of abelian groups in such a way that the resulting sequence

0 −→ H1(Q, Pic(T |S)) −→ XB(T |S; G, Q) −→ H0(Q,B(T |S)) (15.1)

is exact.
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16 Relative theory and equivariant Brauer group

Given a morphism ( f, ϕ) : (S, Q, κ) → (T, G, λ) in the change of actions category
Change introduced in [14, Subsection 3.7], we denote by EB(T |S; G, Q) the kernel of
the combined map

EB(S, Q) −→ XB(S, Q) −→ XB(T, G);

this kernel EB(T |S; G, Q) is the subgroup of EB(S, Q) that consists of classes of
Q-equivariant S-algebras (A, τ ) so that (A ⊗ T, τ( f,ϕ)) is an induced G-normal
split algebra and hence, in view of [14, Corollary 7.7], an induced G-equivariant
split algebra; see [14, Proposition 4.10(ii)] for the notation τ( f,ϕ). Thus, in particular,
EB(S|S; Q, Q) is the kernel of the canonical homomorphism

EB(S, Q) −→ XB(S, Q)

whereas EB(S|S; {e}, Q) is the kernel of the forgetful homomorphism from EB(S, Q)

to B(S). It is obvious that the restriction homomorphism

res : EB(S, Q) −→ XB(S, Q)

induces a homomorphism

res : EB(T |S; G, Q) −→ XB(T |S; G, Q).

Consider a Q-normal Galois extension T |S of commutative rings, with structure

extension e(T |S) : N � G
πQ
� Q and structure homomorphism κG : G → AutS(T ),

cf. Section 12 above, and denote the injection of S into T by i : S → T . Then
the abelian groups EB(T |S; G, Q) and XB(T |S; G, Q) are defined relative to the
morphism (i, πQ) : (S, Q, κQ) −→ (T, G, κG) in the change of actions category
Change associated with the data, cf. (12.3) above.

Theorem 16.1 Suppose that Q is a finite group. Then the sequence

EB(T |S; G, Q)
res→ XB(T |S; G, Q)

t→ H3(Q,U(S))
inf→ H3(G,U(T )) (16.1)

is exact and natural.

Proof The statement of the theorem is a consequenceof [14,Theorems6.1, 8.1 (ii), 9.1]
and Theorems 14.9 and 15.1.

For if (A, σ ) represents a member of XB(T |S; G, Q) with zero Teichmüller class,
by [14, Theorem 6.1], we may assume (A, σ ) to be equivariant, i.e., σ = στ for some
equivariant structure τ . Now the G-normal algebra (A ⊗ T, σ(i,πG )) represents zero in
XB(T, G) and hence is an induced G-normal split algebra, by [14, Theorem 8.1 (ii)].
By [14, Corollary 7.7], (A ⊗ T, τ(i,πG )) is an induced G-equivariant split algebra. �	
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Let R = SQ , let eG : U(T )
ieG� ΓG

πeG� G be a group extension, and denote

the restriction to N of the group extension eG by eN : U(T ) � ΓN

πeN� N . Then the
crossed product S-algebra A = (T, N , eN , πeN ) and the crossed product R-algebra

(T, G, eG , κG ◦ πeG )

are defined, the former being an Azumaya S-algebra, since T |S is a Galois exten-
sion of commutative rings with Galois group N (cf. [14, Proposition 5.4(xi)]), and
(T, G, eG , κG ◦ πeG ) contains A as a subalgebra. Consider the resulting group exten-

sion eQ : ΓN

jeQ
� ΓG

πeQ
� Q, of the kind [14, (5.1)], and introduce the notation

iΓN : ΓN → U(A) for the obvious injection. Conjugation in ΓG induces an action
ϑeG : ΓG → Aut(A) of ΓG on A such that the pair (iΓN , ϑeG ) is a morphism
(ΓN , ΓG, jeQ ) → (U(A),Aut(A), ∂) of crossed modules of the kind [14, (5.2)], and
this morphism, in turn, induces a Q-normal structure σϑeG

: Q → Out(A) on A; thus
the crossed product R-algebra

(T, G, eG , κG ◦ πeG )

can now be written as the crossed product R-algebra (A, Q, eQ, ϑeG ) relative to the
group extension eQ and the morphism (iΓN , ϑeG ) of crossed modules, cf. [14, Sec-
tion 5]. In particular, the left A-module MeQ that underlies the algebra

(T, G, eG , κG ◦ πeG ) ∼= (A, Q, eQ, ϑeG )

is free with basis in one-one correspondence with the elements of Q, and the Q-
equivariant structure τeQ : Q −→ Aut(AEnd(MeQ )) given as [14, (5.5)] is defined.
When the group Q is finite, the algebra AEnd(MeQ ) is an Azumaya S-algebra.

Proposition 16.2 Suppose that the group Q is finite. Then the assignment to a group
extension eG of G by U(T ) of the Q-equivariant algebra (AEnd(MeQ )op, τ

op
eQ ) yields

a homomorphism

cpr : H2(G,U(T )) −→ EB(T |S; G, Q) (16.2)

of abelian groups that is natural on the change of actions category Change. In the
special case where T = S and N is the trivial group, the homomorphism (16.2)
comes essentially down to [14, (9.2)], viz.

cpr : H2(Q,U(S)) −→ EB(S|S; Q, Q). (16.3)

�	
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17 The eight term exact sequence

Given a morphism ( f, ϕ) : (S, Q, κ) → (T, G, λ) in the change of actions category
Change introduced in [14, Subsection 3.7], the group Q being finite, the corresponding
relative version of the exact sequence [14, (10.1)] takes the following form:

· · ·
ωPicS,Q−→ H2(Q,U(S))

cpr−→ EB(T |S; G, Q)

res−→ XB(T |S; G, Q)
t−→ H3(Q,U(S))

(17.1)

Remark 17.1 In the special case where T = S and G is the trivial group, in view of
the isomorphism [14, (8.3)] from XB(S|S; {e}, Q) onto H1(Q,Pic(S)), the sequence
(17.1) has the form of the C(hase-)R(osenberg-)A(uslander-)B(rumer) sequence [3,
Theorem7.6 p. 62], [1].Other versions of theCRAB-sequencewere obtainedbyChilds
[4, Theorem 2.2], Fröhlich and Wall [7, Theorem 1], [6], [9, Theorem 4.2] (upper and
middle long sequence), Hattori [10], Kanzaki [16], Ulbrich [18], Yokogawa [20], and
Villamayor-Zelinski [19].

Consider a Q-normal Galois extension T |S of commutative rings, with structure

extension e(T |S) : N � G
πQ
� Q and structure homomorphism κG : G → AutS(T ),

cf. Section 12 above, and denote the injection of S into T by i : S → T . Then
the abelian groups EB(T |S; G, Q) and XB(T |S; G, Q) are defined relative to the
morphism (i, πQ) : (S, Q, κQ) −→ (T, G, κG) in the change of actions category
Change associated with the data, cf. (12.3) above.

Theorem 17.2 The group Q being finite, the extension

0 →H1(Q,U(S))
jPicS,Q→ EPic(S, Q)

μPicS,Q→ (Pic(S))Q
ωPicS,Q→ H2(Q,U(S))

cpr→EB(T |S; G, Q)
res→ XB(T |S; G, Q)

t→ H3(Q,U(S))
inf→ H3(G,U(T ))

(17.2)

of the exact sequence [14, (3.15)] is defined and yields an eight term exact sequence
that is natural in terms of the data. If, furthermore, S|R and T |R are Galois exten-
sions of commutative rings over R = SQ = T G, with Galois groups Q and G,
respectively, then, with Pic(S|R), Pic(R) and B(T |R) substituted for, respectively
H1(Q,U(S)),EPic(S, Q) and EB(S, Q), where R = SQ, the homomorphisms cpr
and res being modified accordingly, the sequence is exact as well.

Proof This is an immediate consequence of Theorem 16.1 and [14, Theorem 10.1]. �	
Remark 17.3 In terms of the notation B0(R;Γ ) for the group that corresponds to our
EB(S|S; Q, Q) (where our notation Q and S corresponds to Γ and R, respectively),
a homomorphism of the kind (16.3) above is given in [9, Theorem 4.2]. After the
statement of Theorem 4.2, the authors of [9] remark that there is no direct construction
for the map from H2(Γ ;U(R)) to B0(R;Γ ). Our construction of (16.3) is direct,
however.
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Remark 17.4 In the special case where T |S|R are ordinary Galois extensions of fields,
the exact sequence boils down to the classical low degree five term exact sequence

0 →H2(Q,U(S)) → H2(G,U(T )) → H2(N ,U(T ))Q

→ H3(Q,U(S)) → H3(G,U(T )),
(17.3)

see [11, p. 130].

18 Relationship with the eight term exact sequence in the cohomology of
a group extension

Let T |S be a Q-normal Galois extension of commutative rings, with structure exten-

sion e(T |S) : N � G
πQ
� Q and structure homomorphism κG : G → AutS(T ), cf.

Section 12 above; in particular, N is a finite group. Since U(T )N coincides with U(S),
the eight term exact sequence in [13] associated with the group extension e(T |S) and
the G-module U(T ), reproduced as (13.4) above, has the following form:

0 −→H1(Q,U(S))
inf−→ H1(G,U(T ))

res−→ H1(N ,U(T ))Q

Δ−→H2(Q,U(S))
inf−→ H2(G,U(T ))

j−→ Xpext(G, N ;U(T ))

Δ−→H3(Q,U(S))
inf−→ H3(G,U(T )).

(18.1)

18.1 Relationship between the two long exact sequences

Consider the morphism (i, πQ) : (S, Q, κQ) −→ (T, G, κG) associated to the given
Q-normal Galois extension, cf. 12.3, in the change of actions category Change intro-
duced in [14, Subsection 3.7]. The abelian groups EB(T |S; G, Q) andXB(T |S; G, Q)

are now defined relative to this morphism.
The assignment to a crossed pair (e : U(T ) � Γ � N , ψ : Q → OutG(e)) with

respect to e(T |S) andU(T )of its associated crossed pair algebra (Ae, σψ), cf. Section 13
above, yields a homomorphism

cpa : Xpext(G, N ;U(T )) −→ XB(T |S; G, Q). (18.2)

Let EPic(T |S, Q) denote the kernel of the induced homomorphisms

EPic(S, Q)
μPicS,Q−→ Pic(S)

i∗−→ Pic(T )

and Pic(T |S) that of the induced homomorphism i∗ : Pic(S) → Pic(T ). With T and
G substituted for S and Q, respectively, the isomorphism [14, (3.17)] takes the form

jPicT,G : H1(G,U(T )) −→ EPic(T |T, G), (18.3)
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and Galois descent, cf. [14, Subsection 2.2 (ii)], yields an isomorphism

EPic(T |S, Q) −→ EPic(T |T, G)

whence (18.3) induces a homomorphism

H1(G,U(T )) −→ EPic(T |S, Q) (18.4)

of abelian groups. The homomorphism (18.4) admits, of course, a straightforward
direct description. Likewise, with T and N substituted for Q and S, respectively, the
isomorphism [14, (3.17)] takes the form

jPicT,N : H1(N ,U(T )) −→ EPic(T |T, N ), (18.5)

and Galois descent, cf. [14, Subsection 2.2 (ii)], yields an isomorphism

Pic(T |S) −→ EPic(T |T, N )

whence (18.5) induces an isomorphism

H1(N ,U(T )) −→ Pic(T |S) (18.6)

of abelian groups, necessarily compatible with the Q-module structures; the isomor-
phism (18.6) is entirely classical. Below we do not distinguish in notation between
(18.4) and its composite

H1(G,U(T )) −→ EPic(T, Q)

with the canonical injection of EPic(T |S, Q) into EPic(T, Q), nor between (18.6) and
its compositeH1(N ,U(T )) → Pic(S)with the canonical injectionPic(T |S) → Pic(S).
Direct inspection establishes the following.

Theorem 18.1 The group Q being finite, the homomorphisms (18.4), (18.6), (16.2),
and (18.2) of abelian groups are natural on the category Change and induce a morphism
of exact sequences from (18.1) to (17.2). �	
Remark 18.2 Consider the classical case where R, S, and T are fields. Now the
group Xpext(G, N ;U(T )) comes down to H2(N ,U(T ))Q and, likewise, the group
XB(T |S; G, Q) to B(T |S)Q , and (18.2) boils down to the classical isomorphism

H2(N ,U(T ))Q → B(T |S)Q .

Furthermore, the groups H1(N ,U(T )),H1(G,U(T )),EPic(T |S, Q), and Pic(T |S)

are zero, and (16.2) is an isomorphism. Thus the morphism (18.1) → (17.2) of exact
sequences in Theorem 18.1 above is then an isomorphism of exact sequences.

123



Normality of algebras over commutative rings... 109

18.2 An application

Let T |S be a Galois extension of commutative rings, with Galois group N , suppose
that T carries a Q-action that extends the given Q-action on S, and define the group
EB(T |S, Q) to be the kernel of the induced homomorphism

EB(S, Q) −→ EB(T, Q).

Relative to the induced Q-action on N , the semi-direct product group N �Q is defined,
and T |S is a Q-normal Galois extension of rings, having as structure extension the
split extension e(T |S) : N � N � Q � Q. Consider the commutative diagram

0 0 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−−→ ˜EB(T |S, Q) −−−−−→ EB(T |S; N � Q, Q) −−−−−→ EB(T |T ; Q, Q)

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−−→ EB(T |S, Q) −−−−−→ EB(S, Q) −−−−−→ EB(T, Q)

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−−→ XB(T ; Q, N � Q) −−−−−→ XB(T, N � Q) −−−−−→ XB(T, Q)

(18.7)

of abelian groups with exact rows and columns, the abelian group ˜EB(T |S, Q), nec-
essarily (isomorphic to) a subgroup of EB(T |S, Q), being defined by the requirement
that the upper row be exact.

The group N being finite, suppose now that Q is a finite group as well. The corre-
sponding homomorphism (16.2), viz.

cpr : H2(N � Q,U(T )) −→ EB(T |S; N � Q, Q),

and the homomorphism (16.3), with T substituted for S, viz.

cpr : H2(Q,U(T )) −→ EB(T |T ; Q, Q),

yield the commutative diagram

0 −−−−−→ ker(res) −−−−−→ H2(N � Q,U(T ))
res−−−−−→ H2(Q,U(T ))

⏐
⏐
� cpr

⏐
⏐
� cpr

⏐
⏐
�

0 −−−−−→ ˜EB(T |S, Q) −−−−−→ EB(T |S; N � Q, Q) −−−−−→ EB(T |T ; Q, Q)

(18.8)

with exact rows and hence a homomorphism

ker(res) −→ EB(T |S, Q)
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of abelian groups. Suppose, furthermore, that S and T are fields. Then the homomor-
phism

XB(T, N � Q) −→ XB(T, Q)

in the lower row of the diagram (18.7) comes down to the obvious injection

B(T )N�Q −→ B(T )Q

whence the group XB(T ; Q, N � Q) is now trivial and the inclusion

˜EB(T |S, Q) ⊆ EB(T |S, Q)

is the identity. Moreover, the right-hand and the middle vertical arrow in (18.8) are
isomorphisms whence the induced homomorphism ker(res) → EB(T |S, Q) is an
isomorphism. This observation recovers and casts new light on the main result of
[2], obtained there via relative group cohomology. Our argument is elementary and
does not invoke relative group cohomology. Indeed, the main point of our reason-
ing is the identification of the group cohomology group H2(N � Q,U(T )) with the
group EB(T |S; N � Q, Q); under the present circumstances, this group is the sub-
group of the Q-equivariant Brauer group EB(S, Q) of S that consists of classes of
Q-equivariant central simple S-algebras A such that A ⊗ T is a matrix algebra over
T . Likewise, the group EB(T |T ; Q, Q) is the subgroup of the Q-equivariant Brauer
group EB(T, Q) of T that consists of classes of Q-equivariant matrix algebras over
T . The group EB(T |S, Q) then appears as the kernel of the canonical homomorphism
EB(T |S; N � Q, Q) → EB(T |T ; Q, Q) and, in view of the identifications of
H2(N�Q,U(T ))withEB(T |S; N�Q, Q) andofH2(Q,U(T ))withEB(T |T ; Q, Q),
the identification of ker(res : H2(N � Q,U(T )) → H2(Q,U(T ))) with EB(T |S, Q)

is immediate. In particular, when the group Q is trivial, that result comes down to
the classical Brauer–Hasse–Noether isomorphism between the corresponding second
group cohomology group and the corresponding subgroup of the ordinary Brauer
group.

18.3 A variant of the relative theory

In the situation of the relative versions (17.1) and (17.2) of the long exact sequence
[14, (10.1)], in general, there is no obvious reason for a homomorphism ω from
H0(Q,B(T |S)) to H2(Q,Pic(T |S)) to exist that would complete

H0(Q,B(T |S)) H2(Q,Pic(T |S))

H0(Q,B(S))
ω H2(Q,Pic(S))
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to a commutative square and hence would complete the exact sequence (15.1) to a
corresponding relative version of an exact sequence of the kind [14, (3.14)]. We now
show that a variant of the relative theory includes such a homomorphism.

The object (S, Q, κQ) of the category Change being given, let (T, G, κG) be another
object of Change, and let ( f, ϕ) : (S, Q, κQ) → (T, G, κG) be a morphism in Change
having ϕ : G → Q surjective, cf. [14, Subsection 3.7].

18.3.1 The standard approach

We say that two Q-normal Azumaya S-algebras (A1, σ1) and (A2, σ2) such that
T ⊗ A1 and T ⊗ A2 are matrix algebras over T are relatively Brauer equivalent if
there are faithful finitely generated projective S-modules modules M1 and M2 having
the property that T ⊗ M1 and T ⊗ M2 are free as T -modules, together with induced
Q-normal structures

ρ1 : Q → Out(B1), B1 = EndS(M1), ρ2 : Q → Out(B2), B2 = EndS(M2),

such that (A1 ⊗ B1, σ1 ⊗ ρ1) and (A2 ⊗ B2, σ2 ⊗ ρ2) are isomorphic Q-normal
S-algebras. Just as for XB(S, Q), under the operations of tensor product and that
of taking opposite algebras, the equivalence classes constitute an abelian group, the
identity element being represented by (S, κQ). We refer to this group as the T -relative
Q-crossed Brauer group of S with respect to the morphism ( f, ϕ) in Change, denote
this group by XBfr(T |S; G, Q), and we refer to the construction just given as the
standard construction. The T -relative Q-equivariant Brauer group EBfr(T |S; G, Q)

with respect to the morphism ( f, ϕ) in Change arises in the same way as the relative
Q-crossed Brauer group, save that, in the definition, ‘equivariant’ is substituted for
‘crossed’, and we likewise say that this construction is the standard construction. In
particular, when we forget the actions, that is, we take the groups G and Q to be trivial,
this construction yields an abelian group Bfr(T |S) which we refer to as the T -relative
Brauer group of S, obtained by the standard construction.

The group Bfr(T |S) acquires a Q-module structure. Indeed, let R = SQ . Given an
S-module M and x ∈ Q, let x M denote the S-module whose underlying R-module is
just M , and whose S-module structure is given by

S ⊗ M −→ M, (s ⊗ q) �−→ xs q, s ∈ S, q ∈ M.

Consider a faithful finitely generated projective S-module M such that T ⊗ M is a free
T -module, let x ∈ Q, and pick a pre-image y ∈ G of x ∈ Q. Then the association

T ⊗ x M −→ y(T ⊗ M), t ⊗ q �−→ yt ⊗ q, (18.9)

yields an isomorphism of T -modules, and since T ⊗ M is a free T -module, so is
y(T ⊗ M); further,

T ⊗ xEndS(M) ∼= y(T ⊗ EndS(M)) ∼= y(T ⊗ EndS(M)) ∼= EndS(y(T ⊗ M))
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is a matrix algebra over T . Likewise, given an Azumaya S-algebra A such that T ⊗ A
is a matrix algebra over T and x ∈ Q, to show that T ⊗ x A is a matrix algebra over T ,
pick a pre-image y ∈ G of x ∈ Q and note that the corresponding association (18.9)
yields an isomorphism of T -algebras. Since T ⊗ A is a matrix algebra over T , so is
y(T ⊗ A).

By construction, the canonical homomorphism

Bfr(T |S) −→ B(T |S)

is amorphismof Q-modules but in general there is no reason for this homomorphism to
be injective nor to be surjective. The assignment to a Q-equivariantAzumaya S-algebra
representing a member of EBfr(T |S; G, Q) of the associated Q-normal Azumaya
S-algebra yields a homomorphism resfr : EBfr(T |S; G, Q) → XBfr(T |S; G, Q) of
abelian groups, the assignment to a Q-normal Azumaya S-algebra (A, σ ) representing
a member of XBfr(T |S; G, Q) of its Teichmüller complex e(A,σ ) yields a homomor-
phism tfr : XBfr(T |S; G, Q) −→ H3(Q,U(S)) of abelian groups and, when the group
Q is finite, the construction of the homomorphism

cpr : H2(Q,U(S)) → EB(T |S; G, Q),

cf. (16.3) above, lifts to a homomorphism

cprfr : H2(Q,U(S)) −→ EBfr(T |S; G, Q).

Remark 18.3 The abelian groups EB(T |S; G, Q) and XB(T |S; G, Q) being defined
relative to the given morphism ( f, ϕ) in Change, the obvious maps yield homomor-
phisms

EBfr(T |S; G, Q) −→ EB(T |S; G, Q) (18.10)

XBfr(T |S; G, Q) −→ XB(T |S; G, Q) (18.11)

of abelian groups that make the diagram

EBfr(T |S; G, Q)
resfr−−−−→ XBfr(T |S; G, Q)

tfr−−−−→ H3(Q,U(S))
⏐
⏐
�

⏐
⏐
�

∥
∥
∥

EB(T |S; G, Q)
res−−−−→ XB(T |S; G, Q)

t−−−−→ H3(Q,U(S))

commutative and, when the group Q is finite, the homomorphisms

cprfr : H2(Q,U(S)) → EBfr(T |S; G, Q) and

cpr : H2(Q,U(S)) → EB(T |S; G, Q)

extend the diagram to a larger commutative diagram having four terms in each row.
However, there is no reason for the homomorphisms (18.10) or (18.11) to be injective
nor to be surjective, nor is there a reason, when Q is a finite group, for
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cprfr : H2(Q,U(S)) −→ EBfr(T |S; G, Q)

to be injective or surjective. In the classical situation where R, S, T are fields etc.,
these homomorphisms are, of course, isomorphisms.

Let Pic(T |S) denote the kernel of the homomorphism Pic(S) → Pic(T ) induced by
the ring homomorphism f : S → T , necessarily a morphism of G-modules when G
acts on S throughϕ : G → Q whence, in particular, the abelian subgroupPic(T |S)Q of
Q-invariants is defined, and let EPic(T |S, Q) denote the kernel of the homomorphism
EPic(S, Q) → EPic(T, G) induced by the morphism ( f, ϕ) in Change. It is immediate
that the low degree exact sequence [14, (3.14)] restricts to the exact sequence

0 −→ H1(Q,U(S))
jPicS,Q−→ EPic(T |S, Q)

μPicS,Q |
−→ Pic(T |S)Q

ωPicS,Q |
−→ H2(Q,U(S))

(18.12)

of abelian groups. In the Appendix (cf. Subsection 19.2 below), we shall show that,
with a suitably defined Picard category PicT |S;G,Q substituted for CQ , the sequence
(18.12) is as well a special case of the exact sequence [14, (3.10)].

Theorem 18.4 Suppose that the group Q is finite. Then the extension

· · ·
ωPicS,Q−→ H2(Q,U(S))

cprfr−→EBfr(T |S; G, Q)

resfr−→ XBfr(T |S; G, Q)
tfr−→ H3(Q,U(S))

(18.13)

of the exact sequence (18.12) is defined and yields a seven term exact sequence that
is natural in terms of the data.

Proof Essentially the same reasoning as that for [14, Theorem 10.1] establishes this
theorem as well. We explain only the requisite salient modifications.
Exactness at XBfr(T |S; G, Q): This follows again from [14, Theorem 6.1] or [14,
Theorem 9.1].
Exactness at H2(Q,U(S)): Let J represent a class in (Pic(T |S))Q , and proceed as in
the proof of the exactness at H2(Q,U(S)) in [14, Theorem 10.1]. Now T ⊗ J is free as
a T -module and, with reference to the associated group extension eJ , cf. [14, (10.2)],
by construction, MeJ is free as an S-module whence T ⊗ MeJ is free as a T -module.
Hence

T ⊗ HomS(J, MeJ )
∼= HomT (T ⊗ J, T ⊗ MeJ )

is free as a T -module. Consequently (EndS(MeJ ), τeJ ) represents zero in the group
EBfr(T |S; G, Q).

Conversely, let e : U(S) � Γ � Q be a group extension, and proceed as in
the proof of the exactness at H2(Q,U(S)) in [14, Theorem 10.1]. Thus suppose that
(EndS(Me), τe) represents zero in EBfr(T |S; G, Q). Then there are St Q-modules M1
and M2 whose underlying S-modules are faithful and finitely generated projective
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such that the following hold, where we denote by τ1 : Q → Aut(EndS(M1)) and
τ2 : Q → Aut(EndS(M2)) the associated trivially induced Q-equivariant structures:
The algebras (EndS(Me), τe) ⊗ (EndS(M1), τ1) and (EndS(M2), τ2) are isomorphic
as Q-equivariant S-algebras and, furthermore, the T -modules T ⊗ M1 and T ⊗ M2
are free as T -modules. Consequently the T -module T ⊗ S arising from the finitely
generated and projective rank one S-module J = HomEndS(Me⊗M1)

(Me ⊗ M1, M2)

is free of rank one whence [J ] ∈ Pic(T |S). The group extension eJ , cf. [14, (10.2)], is
now defined relative to J , whence [J ] ∈ (Pic(T |S))Q , and the Γ -action on J induces
a homomorphism Γ → Aut(J, Q) which yields a congruence (1, ·, 1) : e → eJ of
group extensions, and this congruence entails that ωPicS,Q [J ] = [e] ∈ H2(Q,U(S)).
Exactness atEBfr(T |S; G, Q): The argument in the proof of [14, Theorem10.1]which
shows that the composite res◦ cpr is zero shows as well that the composite resfr ◦ cprfr
is zero.

To show that ker(resfr) ⊆ im(cprfr), let (A, τ ) be a Q-equivariant Azumaya
S-algebra representing a member of EBfr(T |S; G, Q), and suppose that the class
of its associated Q-normal algebra (A, στ ) goes to zero in XBfr(T |S; G, Q). As
in the proof of the exactness at EB(S, Q) in [14, Theorem 10.1], there are two
induced Q-equivariant split algebras (EndS(M1), τ1) and (EndS(M2), τ2) over faith-
ful finitely generated projective S-modules M1 and M2, respectively, such that
(A, τ )⊗(EndS(M1), τ1) and (EndS(M2), τ2) are isomorphic as Q-equivariant central
S-algebras but now we may furthermore take M1 and M2 to have the property that the
T -modules T ⊗ M1 and T ⊗ M2 are free of finite rank. Essentially the same reasoning
as that in the proof of the exactness at EB(S, Q) in [14, Theorem 10.1] yields a group
extension

e : U(S) � Γ � Q

such that

cprfr([e]) = [(EndS(Me), τe)] = [(A, τ )] ∈ EBfr(T |S; G, Q).

�	

Consider a Q-normal Galois extension T |S of commutative rings, with structure

extension e(T |S) : N � G
πQ
� Q and structure homomorphism

κG : G −→ AutS(T ),

cf. Section 12 above, and take the morphism ( f, ϕ) to be the morphism

(i, πQ) : (S, Q, κQ) −→ (T, G, κG)

in Change associated to that Q-normal Galois extension, cf. (12.3).
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Theorem 18.5 Suppose that the group Q is finite. Then the extension

0 −→H1(Q,U(S))
jPicS,Q |
−→ EPic(T |S, Q)

μPicS,Q |
−→ (Pic(T |S))Q

ωPicS,Q |
−→ H2(Q,U(S))

cprfr−→ EBfr(T |S; G, Q)
resfr−→ XBfr(T |S; G, Q) (18.14)

tfr−→H3(Q,U(S))
inf−→ H3(G,U(T ))

of the exact sequence (18.12) is defined and yields an eight term exact sequence that
is natural in terms of the data.

Proof Essentially the same reasoning as that for Theorem17.2 establishes this theorem
as well. We leave the details to the reader. �	

The homomorphism (18.2) now lifts to a homomorphism

Xpext(G, N ;U(T )) −→ XBfr(T |S; G, Q) (18.15)

such that (18.2) may be written as the composite

Xpext(G, N ;U(T )) −→ XBfr(T |S; G, Q) −→ XB(T |S; G, Q) (18.16)

and, when Q and hence G is a finite group, the homomorphism (16.2) lifts to a
homomorphism

H2(G,U(T )) −→ EBfr(T |S; G, Q) (18.17)

such that (16.2) may be written as the composite

H2(G,U(T )) −→ EBfr(T |S; G, Q) −→ EB(T |S; G, Q).

Theorem 18.1, adjusted to the present circumstances, takes the following form which,
again, we spell out without proof.

Theorem 18.6 The group Q being finite, the maps (18.15), (18.4), (18.6), and (18.17)
are natural homomorphisms of abelian groups and induce a morphism

(18.1) −→ (18.14)

of exact sequences.

18.3.2 The Morita equivalence approach

We define the Q-graded relative Brauer precategory associated with the morphism
( f, ϕ) in Change to be the precategory PreBT |S;G,Q that has as its objects the Azumaya
S-algebras A such that T ⊗ A is a matrix algebra over T , a morphism

([M], x) : A −→ B
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in PreBT |S;G,Q of grade x ∈ Q between two Azumaya algebras A and B in BT |S;G,Q ,
necessarily an isomorphism in PreBT |S;G,Q , being a morphism in BS,Q , that is, a pair
([M], x) where [M] is an isomorphism class of an invertible (B, A)-bimodule M of
grade x ∈ Q, such that, furthermore, T ⊗ M is free as a T -module. There is no
reason for composition in the ambient category BS,Q to induce an operation of com-
position in PreBT |S;G,Q since, given three Azumaya algebras A, B, C in PreBT |S;G,Q
and morphisms ([B MA], x) : A → B and ([A MC ], x) : C → A of grade x ∈ Q in
PreBT |S;G,Q , while the composite ([B MA ⊗A A MC ], x) : C → B of grade x ∈ Q in
BS,Q is defined, there is no reason for the (T ⊗ B, T ⊗ C)-bimodule

T ⊗ (B MA ⊗A A MC ) ∼= T ⊗B(T ⊗ M)T ⊗A ⊗(T ⊗A) T ⊗A(T ⊗ M)T ⊗C

to be free as a T -module. To overcome this difficulty, we take the Q-graded relative
Brauer category associated with the morphism ( f, ϕ) in Change to be the subcategory
BT |S;G,Q of BS,Q generated by PreBT |S;G,Q . Thus a morphism in BT |S;G,Q of grade
x ∈ Q between two objects A and B of BT |S;G,Q is a morphism ([B MA], x) : A → B
in BS,Q of grade x ∈ Q such that there are objects A1,…, An of BT |S;G,Q and
morphisms ([A j+1 MA j ], x) : A j → A j+1 in PreBT |S;G,Q such that, when we write A
as A0 and B as An ,

B MA ∼= An MAn−1 ⊗An−1 · · · ⊗A2 A2 MA1 ⊗A1 A1 MA0 . (18.18)

We then define composition, monoidal structure, the operation of inverse, and the unit
object as in BS,Q . The resulting category BT |S;G,Q is a group-like stably Q-graded
symmetric monoidal category. Hence the category Rep(Q,BT |S;G,Q) is group-like and
thence kRep(Q,BT |S;G,Q) is an abelian group. When the groups G and Q are trivial,
that is, we consider merely the homomorphism f : S → T of commutative rings, the
same construction yields a precategory PreBT |S and, accordingly, the corresponding
group-like symmetric monoidal category BT |S which we refer to as the relative Brauer
category associated with the homomorphism f : S → T of commutative rings. The
category BT |S has U(BT |S) = Pic(T |S) as its unit group, is group-like, and kBT |S
is therefore an abelian group. The ring homomorphism f : S → T being a con-
stituent of the morphism ( f, ϕ) in Change having ϕ surjective, the category BT |S;G,Q
has Ker(BT |S;G,Q) = BT |S and

U(BT |S;G,Q) = U(BT |S) = Pic(T |S)

as its unit group.
Given two objects A and B of BT |S;G,Q we define, with respect to the morphism

( f, ϕ) in Change, a relative Morita equivalence of grade x ∈ Q between A and B to
be a string of isomorphisms in PreBT |S;G,Q of the kind (18.18) above. It is immediate
that, as in the classical situation, given two objects A1 and A2 ofBT |S , a relative Brauer
equivalence

A1 ⊗ EndS(M1) ∼= A2 ⊗ EndS(M2)
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between A1 and A2 induces a string

A1 � A1 ⊗ EndS(M1) ∼= A2 ⊗ EndS(M2) � A2

of isomorphisms in PreBT |S and hence a relative Morita equivalence between A1 and
A2 (of grade e ∈ Q) whence the obvious association induces a homomorphism

Bfr(T |S) −→ kBT |S (18.19)

of abelian groups, necessarily surjective. Moreover, since Ker(BT |S;G,Q) is stably
graded, kBT |S = kKer(BT |S;G,Q) acquires a Q-module structure, and the homomor-
phism (18.19) is a morphism of Q-modules.

Proposition 18.7 The homomorphism (18.19) is an isomorphism, that is, relative
Brauer equivalence is equivalent to relative Morita equivalence.

Proof The classical argument, suitably rephrased, carries over: Let A and B be two
Azumaya S-algebras A in BT |S and consider a morphism [M] : A → B in PreBT |S .
We must show that A and B are relatively Brauer equivalent. Now Bop ∼= AEnd(M)

(the algebra of left A-endomorphisms of M), and

EndS(M) ∼= A ⊗ (AEnd(M)) ∼= A ⊗ Bop

whence

EndS(M) ⊗ B ∼= A ⊗ Bop ⊗ B ∼= A ⊗ EndS(B).

Since T ⊗ M and T ⊗ B are free as T -modules, A and B are relatively Brauer
equivalent. �	

With N , T, S substituted for, respectively, Q, S, R, the standard homomorphism
[14, (5.6)] from H2(N , U ) to B(T |S), necessarily a morphism of Q-modules, lifts to
a morphism

H2(N , U )) −→ Bfr(T |S) (18.20)

of Q-modules. By construction, the assignment to an automorphism in BT |S;G,Q of
an Azumaya algebra A in BT |S;G,Q of its grade in Q yields a homomorphism

π
AutBT |S;G,Q

(A) : AutBT |S;G,Q (A) −→ Q

which is surjective if and only if the Brauer class [A] ∈ Bfr(T |S) of A in
Bfr(T |S) ∼= kBT |S is fixed under Q, and the group AutBT |S;G,Q (A) associated to an
Azumaya S-algebra A in BT |S whose Brauer class [A] ∈ Bfr(T |S) is fixed under Q
fits into a group extension of the kind [14, (3.6)], viz.

ePic(T |S)

A : 1 −→ Pic(T |S) −→ AutBT |S;G,Q (A)
π

AutBT |S;G,Q
(A)

−→ Q −→ 1, (18.21)
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with abelian kernel in such a way that the assignment to A of ePic(T |S)

A yields a homo-
morphism

ωBT |S;G,Q : H0(Q,Bfr(T |S)) −→ H2(Q,Pic(T |S)). (18.22)

The sequence [14, (3.10)] now takes the form

0 −→H1(Q,Pic(T |S))
jBT |S;G,Q−→ kRep(Q,BT |S;G,Q)

μBT |S;G,Q−→ Bfr(T |S)Q
ωBT |S;G,Q−→ H2(Q,Pic(T |S))

(18.23)

and is an exact sequence of abelian groups since the category BT |S;G,Q is group-like.
Furthermore, the association that defines the homomorphism [14, (8.4)] yields an
injective homomorphism

θfr : XBfr(T |S; G, Q) −→ kRep(Q,BT |S;G,Q) (18.24)

in such a way that the diagram

XBfr(T |S; G, Q)
θfr−−−−→ kRep(Q,BT |S;G,Q)

⏐
⏐
�

⏐
⏐
�

XB(S, Q)
θ−−−−→ kRep(Q,BS,Q)

is commutative, the unlabeled vertical arrows being the obvious maps, and the argu-
ment for [14, Theorem 8.10 (iii)], adjusted to the present situation, shows that if Q
(and hence G) is a finite group, the homomorphism θfr is surjective and hence an
isomorphism of abelian groups. Thus when the group Q is finite, the exact sequence
(18.23) is available with XBfr(T |S; G, Q) substituted for kRep(Q,BT |S;G,Q).

Consider a Q-normal Galois extension T |S of commutative rings, with structure

extension e(T |S) : N � G
πQ
� Q and structure homomorphism

κG : G −→ AutS(T ),

cf. Section 12 above, and take the morphism ( f, ϕ) to be the morphism

(i, πQ) : (S, Q, κQ) −→ (T, G, κG)

in Change associated with that Q-normal Galois extension, cf. 12.3. Comparison of the
exact sequences [14, (3.14)] and (18.23) with [13, (1.9)] yields the following result,
which we spell out without proof.
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Theorem 18.8 Write U = U(T ). The various groups and homomorphisms fit into a
commutative diagram

H1(Q,H1(N , U ))

∼=

Xpext(G, N ; U ) H0(Q,H2(N , U ))
d2

H2(Q,H1(N , U ))

∼=

H1(Q, Pic(T |S))
j

kRep(Q,BT |S;G,Q)
μ

H0(Q,Bfr(T |S))
ω

H2(Q, Pic(T |S))

H1(Q, Pic(S))
j

kRep(Q,BS,Q)
μ

H0(Q,B(S))
ω

H2(Q, Pic(S))

with exact rows; here the top row is the exact sequence [13, (1.9)], the middle row
the sequence (18.23), the bottom row the exact sequence [14, (3.14)], the unlabeled
arrow from H0(Q,H2(N , U )) to H0(Q,Bfr(T |S)) is induced by the homomorphism
(18.20), and the other unlabeled arrows are either the obvious ones or have been
introduced before. If, furthermore, the group Q is a finite group, the above diagram
is available with XBfr(T |S; G, Q) substituted for kRep(Q,BT |S;G,Q) and XB(S, Q)

for kRep(Q,BS,Q).

Remark 18.9 The exact sequences (18.14) and (18.23) are presumably related with an
equivariant Amitsur cohomology spectral sequence of the kind given in [4, Sections 1
and 2] and [3, Theorem 7.3 p. 61] in the same way as the exact sequences (13.4) and
[13, (1.9)] are related with the spectral sequence associated with a group extension
and a module over the extension group, cf. also [12].

Acknowledgements I am indebted to the referee for a number of valuable comments.

19 Appendix

As a service to the reader, we recollect some more material from the theory of stably
graded symmetric monoidal categories [6,8,9] and use it to illustrate some of the
constructions in the present paper.

Recall that an S-progenerator is a faithful finitely generated projective S-module.
Given two Q-equivariant Azumaya S-algebras (A, τA) and (B, τB), a (B, A, Q)-bi-
module (M, τM ) is a (B, A)-bimodule M together with an St Q-module structure
τM : Q → Aut(M) which is compatible with the Q-equivariant structures

τA : Q −→ Aut(A), τB : Q −→ Aut(B)

in the sense that

x (bya) = xb xy xa, x ∈ Q, a ∈ A, b ∈ B. (19.1)
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The object (S, Q, κQ) of the category Change being given, let (T, G, κG) be another
object of Change, and let ( f, ϕ) : (S, Q, κQ) → (T, G, κG) be a morphism in Change
having ϕ : G → Q surjective, cf. [14, Subsection 3.7].

19.1 Examples of symmetric monoidal categories

– ModS : the category of S-modules, a symmetric monoidal category under the oper-
ation of tensor product, with S as unit object, and U(ModS) = U(S);

– GenS [6, §2p. 17], [8, p. 229], [9, §2]: the symmetricmonoidal subcategoryofModS ,
necessarily a groupoid, whose objects are the S-progenerators, with morphisms
only the invertible ones, having S as its unit object and

U(GenS) = U(S)

as its unit group;
– PicS : the symmetric monoidal subcategory of GenS , necessarily group-like, of
invertible modules, written in [6, §2 p. 17], [9, §2] as CR , reproduced in [14,
Subsection 3.6];

– AzS : the symmetric monoidal subcategory of GenS , necessarily a groupoid, having
the Azumaya S-algebras as objects, invertible algebra morphisms between Azu-
maya S-algebras as morphisms, the ground ring S as its unit object, and unit group
U(AzS) trivial [6, § 2 p. 18], [8, p. 229], [9, §2];

– XAzS : the quotient category ofAzS , necessarily a groupoid, having the sameobjects
asAzS , andhaving asmorphisms A → B between twoobjects A and B equivalence
classes of morphisms h : A → B in AzS under the equivalence relation

h1 ∼ h2 : A → B if h1 = h2 ◦ Ia for some a ∈ U(A)

[6, §5 p. 43], [9, §2], where the notation Ia refers to the inner automorphism of
A induced by a ∈ U(A); this category has S as its unit object, and its unit group
U(XAzS) is trivial;

– BS , the Brauer category of the commutative ring S, reproduced in [14, Subsec-
tion 3.2];

– with respect to the ring homomorphism f : S → T , with the obvious interpreta-
tions, the relative categories ModT |S,GenT |S, PicT |S,AzT |S,XAzT |S , taken as full
subcategories of, respectively, ModS,GenS, PicS,AzS,XAzS ;

– BT |S , with respect to the ring homomorphism f : S → T , the relative Brauer
category, introduced in Subsection 18.3.2 above;

– EBS,Q , the equivariant Brauer category EBS,Q of S relative to the given action
of Q on S, written as B(R, Γ ) in [6, §5 p. 41] and [9, §3]; its objects are the Q-
equivariant Azumaya algebras (A, τ ); given two Q-equivariant Azumaya algebras
(A, τA) and (B, τB), a morphism

[(M, τM )] : (A, τA) −→ (B, τB)
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inEBS,Q , necessarily an isomorphism inEBS,Q , is an isomorphismclass [(M, τM )]
of a (B, A, Q)-bimodule (M, τM : Q → Aut(M)) whose underlying (B, A)-
bimodule M is invertible; the operations of tensor product and that of assigning
to a Q-equivariant Azumaya S-algebra its opposite algebra (as a Q-equivariant
Azumaya S-algebra) turn EBS,Q into a group-like symmetric monoidal category
having (S, κQ) is its unit object and U(EBS,Q) = EPic(S) as its unit group [9, §3],
[9, Proposition 3.1].

– EBT |S;G,Q , the relative equivariant Brauer category associated with the mor-
phism ( f, ϕ) in Change; it has as its objects the Q-equivariant Azumaya algebras
(A, τ ) such that the G-equivariant Azumaya algebra (T ⊗ A, τ G) that arises
by scalar extension has its underlying central T -algebra T ⊗ A isomorphic
to a matrix algebra; given two Q-equivariant Azumaya algebras (A, τA) and
(B, τB) in EBS,Q , a morphism (A, τA) → (B, τB) in the associated precate-
gory PreEBT |S;G,Q , necessarily an isomorphism in EBT |S;G,Q , is a morphism
[M, τM ] : (A, τA) −→ (B, τB) in EBS,Q , that is, an isomorphism class of
a (B, A, Q)-bimodule (M, τM : Q → Aut(M)) whose underlying (B, A)-
bimodule M is invertible, such that, furthermore, the resulting T t G-module T ⊗M
is free as a T -module. We then take EBT |S;G,Q to be the resulting subcategory of
EBS,Q generated by PreEBT |S;G,Q , that is, we define morphisms and composi-
tion of morphisms as finite strings in EBS,Q , of morphisms in PreEBT |S;G,Q , and
we define the monoidal structure, the operation of inverse, and the unit object as
in EBS,Q . The resulting category EBT |S;G,Q is a group-like symmetric monoidal
category and has U(EBT |S;G,Q) = EPic(T |S).

19.2 Examples of stably Q-graded symmetric monoidal categories

– ModS,Q , a stably Q-graded symmetric monoidal category that arises from ModS

as follows: Given two S-modules M and N , a morphism M → N of S-modules
of grade x ∈ Q is a pair (ϕ, x) having ϕ : M → N a morphism over R = SQ

such that ϕ(sy) = (xs)y (s ∈ S, y ∈ M) [8, p. 229], [9, §2].

Enhancing each of the categories C = GenS, PicS,AzS,XAzS,BS in Subsection 19.1
above to a stably Q-graded symmetric monoidal category CQ in the same was
as enhancing the category ModS of S-modules to the stably Q-graded symmetric
monoidal category ModS,Q just explained yields the following stably Q-graded sym-
metric monoidal categories:

– GenS,Q , written in [9] as GenR ;
– PicS,Q , written in [9, §3] as CR , reproduced in [14, Subsection 3.6];
– AzS,Q , written in [9, §2] as AzR ;
– XAzS,Q , written in [6, §5 p. 43] as Q − ÃzR and in [9, §2] as QAzR (beware: the
notation Q in [op. cit.] has nothing to do with our notation Q for a group, and
the tilde-notation in [6, §5 p. 43] refers to the additional structure of a twisting
and need not concern us here); morphisms are now enhanced via the Q-grading,
that is to say, a morphism ([h], x) : A → B in AzS,Q of grade x ∈ Q has [h] an
equivalence class of an isomorphism h : A → B of algebras over R = SQ such
that (h, x) is, furthermore, a morphism inModS,Q of grade x ∈ Q;
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– BS,Q , the stably Q-graded Brauer category associated with the commutative ring
S and the Q-action κQ : Q → Aut(S) on S, reproduced in [14, Subsection 3.5].

The morphism ( f, ϕ) : (S, Q, κQ) → (T, G, κG) in Change having ϕ surjective
being given, similarly to the construction of the category BT |S;G,Q in Subsection 18.3
above, for each of the stably Q-graded symmetric monoidal categories

CS,Q = ModS,Q,GenS,Q, PicS,Q,

the stably Q-graded symmetric monoidal category CT |S;G,Q is the subcategory
that arises from the ambient category CS,Q in essentially the same way as
BT |S;G,Q arises from the ambient category BS,Q save that there is no need to
pass through a corresponding precategory: The objects of CT |S;G,Q are those
objects C of CS,Q that have the property that T ⊗ C is free as a T -module, and
CT |S;G,Q = ModT |S;G,Q,GenT |S;G,Q, PicT |S;G,Q is the respective full subcategory of
CS,Q . Likewise, for the stably Q-graded symmetricmonoidal categoriesCS,Q = AzS,Q

and CS,Q = XAzS,Q , the stably Q-graded symmetric monoidal category CT |S;G,Q
arises as the subcategory that has as its objects Azumaya S-algebras A such that
T ⊗ A is a matrix algebra over T , and AzT |S;G,Q is the corresponding full subcategory
of AzS,Q and XAzT |S;G,Q that of XAzS,Q . Now, with PicT |S;G,Q substituted for CS,Q ,
the exact sequence [14, (3.10)] yields the exact sequence (18.12).

Remark 19.1 For an object of GenS,Q , that is, for a faithful finitely generated projec-
tive S-module M , the group Aut(M, Q) introduced in [14, Section 7] is canonically
isomorphic to the group AutGenS,Q (M).

19.3 The standard constructions revisited

The endomorphism functor End : GenS → AzS induces an exact sequence

0 −→ Pic(S) −→ kGenS
End−→ kAzS −→ B(S) −→ 0 (19.2)

of abelian monoids [6, §5 p. 38], [8, Introduction], [9, §3]. This yields Pic(S) as the
maximal subgroup of the abelianmonoid kGenS and recovers the standard construction
of B(S), cf. [14, Subsection 4.2], as the cokernel of the homomorphism End of abelian
monoids, the cokernel of amorphismofmonoids being suitably interpreted (in terms of
the associated equivalence relation and “cofinality”, cf. [8, §12]). The obvious functor
Ω : AzS → BS induces the isomorphism B(S) → kBS of abelian groups [6, §5 p. 38],
[9, §3, Theorem 3.2 (i)] quoted in [14, Subsection 4.2].

Likewise, the endomorphism functor End : GenS,Q → AzS,Q induces an exact
sequence

0 −→ EPic(S, Q) −→ kRep(Q,GenS,Q)
End−→ kRep(Q,AzS,Q)

−→ EB(S, Q) −→ 0
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of abelianmonoids [6, §5 p. 38], [8, Introduction], [9, §3]. This yieldsEPic(S, Q) as the
maximal subgroup of the abelian monoid kRep(Q,GenS,Q) and recovers the standard
construction of EB(S, Q), cf. [14, Section 9], as the cokernel of the corresponding
homomorphism End of abelian monoids. The obvious functor Ω : AzS,Q → BS,Q

induces an isomorphism EB(S, Q) → kEBS,Q of abelian groups [6, §5 p. 38], [9,
§ 3, Theorem3.2 (i)], that is, equivariantBrauer equivalence is equivalent to equivariant
Morita equivalence. Moreover, that obvious functor Ω factors as

AzS,Q
ΩAz−→ XAzS,Q

ΩXAz−→ BS,Q, (19.3)

and the functor ΩXAz : XAzS,Q −→ BS,Q induces the injection

θ : XB(S, Q) −→ kRep(Q,BS,Q)

of abelian groups spelled out as [14, (8.4)].
Recall that, given a stably Q-graded category CQ , the notation kQCQ refers to the

monoid kC = kKer(CQ) = kCQ , viewed as a Q-monoid, cf. [14, Subsection 3.4]. The
functor End : GenS,Q → AzS,Q induces, furthermore, a homomorphism

H0(Q, kQGenS,Q) −→ kRep(Q,XAzS,Q) (19.4)

of monoids [9, §3]. Indeed, let M be an object of GenS,Q . By construction, the grading
homomorphism AutGenS,Q (M) → Q is surjective if and only if the isomorphism class
of M in kGenS,Q is fixed under Q. Hence an object M of GenS,Q whose isomorphism
class in kGenS,Q is fixed under Q determines the exact sequence

1 −→ AutS(M) −→ AutGenS,Q (M) −→ Q −→ 1, (19.5)

plainly congruent to the exact sequence [14, (7.4)]; in particular, the group
AutGenS,Q (M) is canonically isomorphic to the group Aut(M, Q), cf. [14, (7.3)]. Now,
for any object M of GenS , the groups AutGenS (M),AutS(M), and U(EndS(M)) coin-
cide, and the induced action of AutGenS,Q (M) on EndS(M) yields a commutative
diagram of the kind

1 −−−−−→ AutS(M) −−−−−→ AutGenS,Q (M) −−−−−→ Q −−−−−→ 1
∥
∥
∥

⏐
⏐
�

⏐
⏐
�

U(EndS(M)) −−−−−→ Aut(EndS(M), Q) −−−−−→ Out(EndS(M), Q) −−−−−→ 1

and hence an induced Q-normal structure Q → Out(EndS(M)) on the split algebra
EndS(M). Thus the endomorphism functor End : GenS,Q → AzS,Q induces an exact
sequence

0 −→ H0(Q, Pic(S)) −→ H0(Q, kQGenS,Q)
End−→ kRep(Q,XAzS,Q)

−→ XB(S, Q) −→ 0
(19.6)

123
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of abelian monoids [9, §3] which, in turn, recovers the standard construction of the
crossed Brauer group XB(S, Q) of S relative to Q given in [14, Section 8.1]. The
unit object of XAzS,Q is represented by (S, κQ). This kind of construction is given
in [6, Theorem 4 p. 43], [9, Section 3, a few lines before Theorem 3.2] (the coker-
nel of End being written as Q B(R, Γ )). In general, for the “crossed” versions, the
equivalence between Brauer and Morita equivalence persists only when the group
Q is finite, that is the canonical homomorphism θ : XB(S, Q) → kRep(Q,BS,Q) of
abelian groups given as [14, (8.4)] is injective, see [14, Theorem 8.10 (i)], but to prove
that θ is surjective we need the additional hypothesis that Q be a finite group, see [14,
Theorem 8.10 (iii)].

The above constructions, applied, with respect to the morphism ( f, ϕ) in Change,
to the functors End : GenT |S → AzT |S and End : GenT |S;G,Q → AzT |S;G,Q , yield the
exact sequences

Pic(T |S) � kGenT |S
End−→ kAzT |S � Bfr(T |S)

EPic(T |S, Q) � kRep(Q,GenT |S;G,Q)
End−→ kRep(Q,AzT |S;G,Q) � EBfr(T |S; G, Q)

H0(Q, Pic(T |S)) � H0(Q, kQGenT |S;G,Q)
End−→ kRep(Q,XAzT |S;G,Q) � XBfr(T |S; G, Q)

of abelian monoids. These recover the standard constructions of the abelian groups
Bfr(T |S),EBfr(T |S; G, Q), and XBfr(T |S; G, Q), cf. Subsection 18.3.1 above.
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