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Abstract For any Moore spectrum M and any homology theory H∗, we associate a
homology theoryHM∗ which is related toH∗ by a universal coefficient exact sequence
of classical type. On the other hand the category of Moore spectra is not the category
of Z-modules, but it can be identified to a full subcategory of an abelian category D .
We prove thatH∗ can be lifted to a homology theory ̂H∗ with values inD and we give
a new universal coefficient exact sequence relating HM∗ and ̂H∗ which is in general
more precise than the classical one. We prove also a similar result for cohomology
theories and we illustrate its convenience by computing the real K-theory of Moore
spaces.

Keywords Generalized homology and cohomology theories ·Moore spectra · Tensor
product and derived functors · Universal coefficient exact sequences

1 Introduction

In [4],we defined for every generalized homology theoryH∗, another homology theory
̂H∗ taking values in a certain abelian category D . This homology ̂H∗ is related to the
generalized homology with values in a Moore spectrum M by a universal coefficient
exact sequence, using a tensor product and its derived functors in the category D .
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994 I. Saihi

In this paper, besides the proofs of results announced in [4], we give a similar
construction for every generalized cohomology theory and a convenient universal
coefficient sequence.We also give a wide study of homological algebra of the category
D which is of independent interest.

Let A be a Z-module and n ≥ 2 be an integer. A Moore space M(A, n) is a
simply connected CW-complex X such that Hn(X) � A and ˜Hi (X) = 0 for i �= n.
The homotopy type of M(A, n) is uniquely determined by the pair (A, n) (see [6]).
The sequence {M(A, n)}n leads to a spectrum which will be denoted by M(A). This
spectrum has the property that Hi (M(A)) = 0 if i �= 0. So a Moore spectrum is
defined as a spectrum M such that one has Hn(M) = 0 for n �= 0.

The category of Z-modules is denoted by Mod . Observe that the construction
associating to a module A the Moore spectrum M(A) is not functorial. In fact, if
A and B are two objects of Mod , the homotopy classes [M(A), M(B)] of maps
between the associated Moore spectra is not isomorphic to Hom(A, B), unlike what
is happening in the case of Eilenberg–MacLane spectra. Actually we have a natural
exact sequence (see [2]):

0 Ext(A, B/2) [M(A), M(B)] Hom(A, B) 0. (1.1)

Moreover this exact sequence doesn’t split in general, which does prove that the
correspondance A �→ M(A) is not functorial.

Let M = M(A) be aMoore spectrum. For any homology theoryH∗ wemay define
a homology theory H′∗ by:

H′∗(X,Y ) = H∗(X ∧ M,Y ∧ M)

for every pair (X,Y ) in the category of pairs of topological spaces T op2. This new
homology theory is functorial in M but not in A and will be denoted by HM∗ or
H∗(−, M).

By using a projective resolution of A, we get the universal coefficient exact
sequence:

0 Hi (X, Y ) ⊗Z A HM
i (X, Y ) TorZ1 (Hi−1(X, Y ), A) 0

(1.2)

By doing the same thing for cohomology theories, we may define for any coho-
mology theory H∗ a cohomology theory H∗

M by:

H∗
M (X,Y ) = H∗(X ∧ M,Y ∧ M)

and we have the universal coefficient exact sequence:

0 ExtZ(A,Hi−1(X, Y )) Hi
M (X, Y ) Hom(A,Hi (X, Y )) 0.

(1.3)
Notice that if H∗ is defined by a spectrum E , then HM∗ is obtained from H∗ by
replacing E with E ∧ M . But that’s not the case for cohomology theories.
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Generalized homology and cohomolgy theories with coefficients 995

As well asHM∗ , the construction ofH∗
M is functorial in M but not in A = H0(M).

Let M denote the category whose objects are Moore spectra and whose morphisms
are homotopy classes of spectra maps.

The category M is linear but not abelian. We identify it with a subcategory of the
abelian category D of [4] the definition of which is recalled below:

Definition 1.1 Let D be the category of diagrams in the category Mod

A
2

A

α

B
β

(1.4)

such that 2α = 2β = βα = 0 and αβ = 2.

Remark 1.2 We have two forgetful functors F0 and F1 from D toMod by assigning
to the diagram (1.4) the modules A and B respectively. These are exact functors.

Proposition 1.3 The category D is abelian and has enough projectives and enough
injectives. Moreover, D has a tensor product ⊗D : D ⊗ D −→ Mod which is right
exact.

The derived functors of the tensor product are denoted byTorD∗ ; the derived functors
of HomD are denoted by Ext∗D .

Definition 1.4 The full subcategory ofD whose objects are diagrams which are exact
couples, will be denoted by De. The objects of De are then called exact objects of D .

Proposition 1.5 There is an equivalence between the categoryM and the subcategory
De of D .

Consider a generalized homology theoryH∗ (or a generalized cohomology theory
H∗). If M is a Moore spectrum corresponding to a diagram D ∈ De, we have a
homology (or cohomology) theory with coefficient defined by:

HD∗ (X,Y ) = HM∗ (X,Y ) = H∗(X ∧ M,Y ∧ M)

or:

H∗
D(X,Y ) = H∗

M (X,Y ) = H∗(X ∧ M,Y ∧ M).

The main result of this paper, proved in Sect. 4, gives exact sequences which connect
the functorsHD∗ andH∗

D respectively to the functors⊗D andHomD , and their derived
functors.

Theorem 1.6 For every homology (or cohomology) theory H with values in Mod,
there is a homology (or cohomology) theory ̂Hwith values inD satisfying the following
properties:

F0 ◦ ̂H = H
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996 I. Saihi

and for every pair (X,Y ) ∈ T op2 and every exact diagram D ∈ D , there are exact
sequences, natural on (X,Y ) and on D:

0 ̂Hi (X, Y ) ⊗D D HD
i (X, Y ) TorD1 ( ̂Hi−1(X, Y ), D) 0

(1.5)

0 Ext1D (D, ̂Hi−1(X, Y )) Hi
D(X, Y ) HomD (D, ̂Hi (X, Y )) 0

(1.6)

Remark 1.7 It can be shown that for every exact object D, TorDi (· , D) = 0 and
ExtiD (· , D) = 0, for i ≥ 2.

The exact sequences (1.2) and (1.5) are related, but different in general. It is the same
for the two exact sequences (1.3) and (1.6). The examples, studied in the last section,
of the stable homotopy and the real K -theory, show that the new exact sequences (1.5)
and (1.6) can be more interesting.

2 General properties of the category D

2.1 C -module structure on the objects of D

For simplicity of notation, an object D of D will be denoted

A
α

B.
β

(2.1)

We set D0 = F0(D) = A and D1 = F1(D) = B.
Let C be the Z-linear category having two objects 0 and 1, and whose morphisms

are given by Hom(0, 0) = Z, Hom(1, 1) = Z/4, Hom(0, 1) = Z/2 · α, Hom(1, 0) =
Z/2 · β and satisfying:

2α = 0, 2β = 0, β ◦ α = 0, α ◦ β = 2.

The category D is then identified with the category of covariant functors from C
toMod . Then, each object ofD is naturally endowed with a left C -module structure
and D can be seen as the category C -Mod of left C -modules.

There is a unique isomorphism of category ρ: C −→ C op which exchanges α

and β. Due to ρ, a right C -module structure can be assigned to each left C -module
structure on the object of D .

2.2 Tensor product in the category D

Due to the C -module structure on the objects of D and the category isomorphism ρ,
we can define a tensor product of C -modules, denoted by ⊗D , and taking values in
Mod .
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Generalized homology and cohomolgy theories with coefficients 997

Definition 2.1 Let D and D′ be two objects of D , given respectively by:

A
α

B
β

A′ α′
B ′

β ′

the tensor product D ⊗D D′ is defined by the pushout diagram:

(A ⊗ B ′) ⊕ (B ⊗ A′)1⊗β ′+β⊗1

α⊗1+1⊗α′

A ⊗ A′

B ⊗ B ′ D ⊗D D′

Let S and P be the exact objects given respectively by:

Z

pr
Z/2

0
Z/2

2
Z/4

pr

The next result can be easily shown:

Proposition 2.2 If D is an object of D , then

D ⊗D S = D0, D ⊗D P = D1,

HomD (S, D) = D0, HomD (P, D) = D1 and

HomD (D, P) = Hom(D1, Z/4).

2.3 Subcategory of exact objects and category equivalence

Let us fix respectively two Moore spectra � and � of type M(Z) and M(Z/2). Then,
there is a cofibration sequence:

θ
�

δ
�

2
�

θ
�

δ (2.2)

where θ is of degree 0 and δ of degree −1. If λ denotes the composition of δ by
the Hopf map from � to � (which is of degree +1), then we get the Moore spectra
diagram, called 
:

�
2

�

θ

�

λ

(2.3)

verifying 2θ = 0, 2λ = 0, λθ = 0 and θλ = 2.
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998 I. Saihi

For every Moore spectrum M , the diagram (2.3) induces by functoriality a diagram
DM = HomM (
, M):

[�, M] = H0(M)
2 [�, M] = H0(M)

λ∗

[�, M]
θ∗

(2.4)

Here is another way to define the diagram DM : consider the unique functor � from
the category C toM assigning � to the object 0 and � to the object 1, and assigning
to the morphisms α and β the morphisms θ and λ. If M is a Moore spectrum, then
HomM (�(−), M) is a contravariant functor from C to Mod or a covariant functor
from C op to Mod. Now using the isomorphism ρ : C −→ C op of sect. 2.1 we get
a functor from C to Mod , which define an object of the category D . This object is
exactly the diagram DM .

The following statement makes the Proposition 1.5 more precise:

Proposition 2.3 The diagram DM defined by (2.4) is exact. Moreover, the functor �

fromM toDe, assigning to a Moore spectrum M the diagram DM, is an equivalence
of categories.

A key result used in the proof is the fact that the group [�,�] is cyclic of order 4
(see [2,7]).
Comment The Propositon 2.3 has to be compared with the theorem 1.6.7 in the book
Homotopy Type andHomology byBaues [1]. The categoryG appearing in this theorem
is essentially equivalent to the category De defined in (1.4).

Remark 2.4 By means of this category equivalence, we note indifferently the Moore
spectrum M and the exact diagram DM . In particular we identify � and � with S and
P respectively.

3 Homological algebra in D

3.1 Projectives, injectives and resolutions in D

Let D be an object of D given by the following diagram

A
2

A

α

B
β

This can be seen as a Z/3-graded differential complex where B is indexed by 0, and A
by 2 and then 1, following the direction of the arrows. The homology of this complex
is denoted by H∗(D), with ∗ ∈ Z/3.
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Generalized homology and cohomolgy theories with coefficients 999

Remark 3.1 Let D be an object of D .

(i) H∗(D) = 0 ⇔ D is exact.
(ii) Since HomD (S, D) = D0 and HomD (P, D) = D1, we can deduce that S and

P are projectives.

The next result characterizes the projectives of D .

Proposition 3.2 Let L be an object of D .

(i) If L is projective then L is exact.
(ii) L is projective if and only if L is a direct sum of copies of S and copies of P.

Proof Let L be a object in D . Because of Proposition 2.2, there is an object X ∈ D ,
which is a direct sum of copies of S and P , and a surjection λ : X → L . Suppose L
is projective.
(i) In this case λ has a section μ, and in homology we get:

1 = λ∗ ◦ μ∗.

But H∗(X) is trivial and the identity on H∗(L) factorizes through 0. Then H∗(L) is
also trivial and L is exact.
(ii) Since L0 is a direct summand of X0, L0 is the direct sum of a free Z-module
and a Z/2-module. Therefore λ can be chosen in such a way that λ0 : X0 → L0

is an isomorphism. Using five lemma one checks that λ1 : X1 → L1 is also an
isomorphism. Therefore λ is an isomorphism.

Remark 3.3 What precedes shows that the abelian categoryD has enough projectives.

Now, we give a characterization of injectives in D .

Lemma 3.4 A sum of copies of P is injective in D .

Proof Let D be an object ofD and D′ = ⊕P . Then HomD (D, D′) = Hom(D1, D′1)
and D′1 = ⊕Z/4. But freeZ/4-modules are injective in the category ofZ/4-modules,
then D′ is injective in D .

Lemma 3.5 Let A be an injective Z-module and J = M(A). Then J is injective in
D .

Proof Let

A
α

A′.
β

be the object J . Since A is an injective Z-module, A is divisible and α : A → A′ is
trivial. Then A′ is the 2-torsion part of A and we have for every D ∈ D :

HomD (D, J ) = Hom(D0, A) (3.1)

Since A is injective, this functor is exact and J is injective in D .
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1000 I. Saihi

Remark 3.6 Using the above lemma we deduce that M(Z/p∞) (p is any prime num-
ber) and M(Q) are injectives.

To characterize completely the injectives in D , we need to define new objects Qi ,
i = 0, 1, 2 in D , given respectively by the following diagrams

0 Z/2 Z/2
Id

Z/2
0

Z 0.

Remark 3.7 The diagram (2.3) induces a long exact sequence in D :

· · · λ
S

2
S

θ
P

λ
S

2 · · · (3.2)

and the objects Qi , i = 0, 1, 2, appear to be the images of the maps of (3.2). Therefore
there are related by the following exact sequences:

0 Q1
ξ1

P Q0 0

0 Q2
ξ2

S Q1 0

0 Q0
ξ0

S Q2 0.

An easy computation proves that, for each i , the homology of Q−i is concentrated
in degree i and that Hi (Q−i ) is isomorphic to Z/2. The generator of Hi (Q−i ) will be
denoted by ei .

Lemma 3.8 Let D be a diagram in D and u ∈ Hi (D). There exists a morphism
λ : Q−i −→ D such that λ∗(ei ) = u. Moreover if λ and λ′ are two morphisms
satisfying this property, the difference λ − λ′ factorizes through a projective object.

Proof Let D be an object of D given by:

A
α

B
β

and let u ∈ Hi (D). Suppose i = 0; the element u is represented by an element
u′ ∈ B such that β(u′) = 0 and then 2u′ = 0. So, there exists a unique morphism
λ : Q0 −→ D sending the unique nonzero element to u′.

Suppose now i = 2. The element u is represented by an element u′ ∈ A such that
2u′ = 0. In this case, there is a unique morphism λ : Q1 −→ D sending the generator
of (Q1)

0 to u′ and the generator of (Q1)
1 to α(u′).
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Generalized homology and cohomolgy theories with coefficients 1001

Finally, suppose i = 1. The element u is represented by u′ ∈ A such that α(u′) = 0.
Then, there exists a unique morphism λ : Q2 −→ D sending the generator of (Q2)

0

on u′.
In all cases, the morphism λ takes the generator of Hi (Q−i ) to u.
The morphism λ is determined by the cycle u′ representing the class u. If u′ is the

boundary of an element v, the map λ factorizes through S or P via the map ξi defined
in Remark 3.7.

Proposition 3.9 Let I be an injective ofD . Then I is an exact object and I = M(J )⊕
I ′ where J is an injective Z-module and I ′ is a direct sum of copies of P.

Proof Let I be an injective in D and u ∈ Hi (I ). Due to Lemma 3.8, there exists
λ : Q−i −→ I realizing u when taking Hi . But each Q−i can be injected in S or P ,
as indicated in Remark 3.7, then λ factors through S or P , which are exact objects,
so, necessarily λ∗ = 0 on Hi and then u = 0.

Let I be the diagram

I = A
α

B
β

Let J be the injective hull of A and M(J ) be the corresponding Moore spectrum. By
Lemma 3.5, M(J ) is injective in D . Due to (3.1), the inclusion A → J induces a
morphism μ : D → M(J ). Since μ is injective on A, its kernel K is of the following
form

0 X.

Then, K is a sum of copies of Q0. Because Q0 injects in P , we get an injective
morphism f from K to a sum I ′ of copies of P . And since I ′ is injective, f extends to
D by a morphism g : D → I ′. The morphism μ⊕ g is injective from D to M(J )⊕ I ′
which is injective object of D .

In the next result, we give a characterisation of exact objects in D .

Proposition 3.10 Let D be an object of D . Then

(i) D is an exact object if and only if D has a projective resolution 0 −→ L ′ −→
L −→ D −→ 0 with L and L ′ projectives.

(ii) D is an exact object if and only if D has an injective resolution 0 −→ D −→
I −→ I ′ −→ 0 with I and I ′ injectives.

Remark 3.11 The objects Qi have the following 3-periodic projective resolutions:

· · · −→ S −→ S −→ P −→ S −→ S −→ P −→ Q0

· · · −→ P −→ S −→ S −→ P −→ S −→ S −→ Q1

· · · −→ S −→ P −→ S −→ S −→ P −→ S −→ Q2

They are the only non-exact objects which can be injected in S or P .
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1002 I. Saihi

Using the above resolutions, we can verify that every non-exact object has a stably
3-periodic projective resolution.

We can also deduce thatD has enough injectives and then prove the Proposition 1.3.

3.2 The derived functors TorD∗ (− , −) and Ext∗D (− , −)

Lemma 3.12 For each object D ∈ D , there exists free Z-modules Ei , i ∈ Z/3 and a
morphism

ϕ :
⊕

i

Ei ⊗ Q−i −→ D

inducing an isomorphism on the modules H∗. Moreover, for all i ,

Ei ⊗ Z/2 � Hi (D).

Proof Let D ∈ D and let Bi = {ei j } j be a basis of Hi (D) for i ∈ Z/3. Each vector
ei j induces a map λi j : Q−i −→ D. We choose a family B ′

i = {e′
i j } j in bijection with

the basis Bi , and note Ei the free Z-module generated by B ′
i . Then we define ϕ by

e′
i j ⊗ x �→ λi j (x).
Notice that the morphism ϕ is not canonical, and that the construction is not func-

torial on D .
To avoid the functoriality problem,we consider the category ˜D defined as a quotient

ofD as follows: two morphisms ofD are equivalent if they have the same source and
the same target and their difference factorizes through a projective object. This relation
is compatible with the composition and the quotient ˜D of D is a category.

Notice that every functor on D which is trivial on projective objects factorizes
through this quotient category.

The next result gives the functoriality in the previous lemma:

Lemma 3.13 Let D and D′ be two objects of D , and ϕ (respectively ϕ′) a morphism
⊕i Ei ⊗ Q−i −→ D (respectively ⊕i E ′

i ⊗ Q−i −→ D′) inducing an isomorphism
in homology. Let f be a morphism from D to D′ and g = ⊕i gi a map from ⊕Ei

to ⊕E ′
i such that for each i , the mod 2-reduction of gi : Ei −→ E ′

i is the map
f∗ : Hi (D) −→ Hi (D′). Then, the following diagram is commutative in ˜D

⊕

i Ei ⊗ Q−i
ϕ

⊕gi⊗1

D

f

⊕

i E
′
i ⊗ Q−i

ϕ′
D′

Proof Consider a basis {uk} of ⊕Ei . For a given k, if uk ∈ Ei , then, there are two
maps from uk ⊗ Q−i to D′ obtained by the two possibilities of composition in the
diagram. Due to Lemma 3.8, the difference between these two maps factors through
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Generalized homology and cohomolgy theories with coefficients 1003

a projective Lk . Then, the difference between the two maps from ⊕Ei ⊗ Q−i to D′
factors by the direct sum of all the Lk , so that the diagram commutes in the quotient
category.

The remaining of this section is devoted to determining the groups Tor∗D (D, D′)
and Ext∗D (D, D′), for any two objects D and D′ of D . It’s easy to verify the next
lemma.

Lemma 3.14 Let D and D′ be two objects of D . For all k > 0,

(i) TorDk (D, D′) is functorial on D and D′, in the category ˜D .
(ii) ExtkD (D, D′) is functorial on D in ∈ ˜D and on D′ inD .

(iii) TorDk (Qi , D) = Hi+k(D) and ExtkD (Qi , D) = H−k−i (D).

Theorem 3.15 If D and D′ are two objects of D , then

(i) for each k > 0, there exists a morphism, natural on D and D′

⊕

i+ j≡k

Hi (D) ⊗ Hj (D
′) −→ TorDk (D, D′).

Moreover, this morphism is a bijection if k ≥ 2 and an injection if k = 1.
(ii) for each k > 0, there exists a morphism, natural on D and D′

ExtkD (D, D′) −→
⊕

i− j≡k

Hom(Hi (D), Hj (D
′)).

Moreover, this morphism is a bijection if k ≥ 2 and a surjection if k = 1.

Proof Let D ∈ D . By Lemma 3.12, there exists Z-modules Ei , for i ∈ Z/3, and a
morphism ϕ : ⊕i Ei ⊗ Q−i −→ D inducing isomorphisms on the modules H∗. We
can then find two projective objects L and L ′, and an exact sequence:

0 −→ L ′ −→ L ⊕ ⊕i Ei ⊗ Q−i −→ D −→ 0

Applying the functor TorDk (−, D′) (respectively ExtDk (−, D′) ) gives the desired
result.

Remark 3.16 The functoriality in the first assertion of the previous theorem is in the
category ˜D . Since Ext∗D (D, D′) is functorial for D ∈ ˜D and D′ ∈ D , the same func-
toriality property remains for the second assertion and then we deduce a functoriality
for D and D′ in D .

4 New universal coefficient exact sequences

4.1 Proof of Theorem 1.6

Let H∗ be a generalized homology theory. Using the Moore spectra diagram (2.3),
for each degree n and each pair (X,Y ) in T op2, we get an object of D denoted by
̂Hn(X,Y ):
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Hn(X,Y ; S)
2 Hn(X,Y ; S)

Hn(X,Y ; P)

(4.1)

Similarly, ifH∗ is a generalized cohomology theory and (X,Y ) a pair, we have the
following diagram

H∗(X/Y ∧ S)

λ∗

H∗(X/Y ∧ S)

H∗(X/Y ∧ P)

θ∗

(4.2)

which is an object of D and will be denoted by ̂H∗(X,Y ).
Let L be a projective of D . The characterization of the projective objects, together

with the Proposition 2.2, allow to easily express the functorsHL∗ andH∗
L using respec-

tively the two objects ̂H∗(X,Y ) and ̂H∗(X,Y ).

Lemma 4.1 If L is a projective of D , then, there are isomorphisms:

HL∗ (X,Y ) � ̂H∗(X,Y ) ⊗D L and H∗
L(X,Y ) � HomD (L , ̂H∗(X,Y )).

If D is an exact object of D , there is a projective resolution:

0 −→ L ′ −→ L −→ D −→ 0.

Then, we obtain the exact sequence:

−→ HL ′
i (X,Y ) −→ HL

i (X,Y ) −→ HD
i (X,Y ) −→ HL ′

i−1(X,Y ) −→ HL
i−1(X,Y )

that is:

→ ̂Hi (X,Y ) ⊗ L ′ → ̂Hi (X,Y ) ⊗ L → HD
i (X,Y ) → ̂Hi−1(X,Y ) ⊗ L

→ ̂Hi−1(X,Y ) ⊗ L

and then:

0 −→ ̂Hi (X,Y ) ⊗ D −→ HD
i (X,Y ) −→ TorD1 ( ̂Hi−1(X,Y ), D) −→ 0

This gives the exact sequence (1.5).
The projective resolution of D gives also the long exact sequence:

←− Hi
L ′(X,Y ) ←− Hi

L(X,Y ) ←− Hi
D(X,Y ) ←− Hi−1

L ′ (X,Y ) ←− Hi−1
L (X,Y )
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Since L and L ′ are projectives, and using the second isomorphism of the previous
lemma, we deduce the exact sequence (1.6):

0 ←− HomD (D, ̂Hi (X,Y )) ←− Hi
D(X,Y ) ←− Ext1D (D, ̂Hi−1(X,Y )) ←− 0

4.2 Relations between the new and the classical universal coefficient exact
sequences

Let D = A B be an exact object ofD andH∗ a generalized homology theory.
For every topological spaces pair (X,Y ), we have the commutative square:

Hi (X,Y ) ⊗Z A HD
i (X,Y )

̂Hi (X,Y ) ⊗D D HD
i (X,Y )

Filling by the horizontal map cokernels, we obtain the following diagram allowing to
compare the two exact sequences:

0 Hi (X,Y ) ⊗Z A HD
i (X,Y ) TorZ1 (Hi−1(X,Y ), A) 0

0 ̂Hi (X,Y ) ⊗D D HD
i (X,Y ) TorD1 ( ̂Hi−1(X,Y ), D) 0

Similarly, if H∗ is a generalized cohomology theory, we have the commutative
diagram:

HomD (D, ̂Hi (X,Y )) Hi
D(X,Y )

Hom(A,Hi (X,Y )) Hi
D(X,Y )

Filling by the horizontal map kernels, we get the following diagramwhich can be used
to compare the classical and the new exact sequences:

0 HomD (D, ̂Hi (X, Y )) Hi
D(X, Y ) Ext1D (D, ̂Hi−1(X, Y )) 0

0 Hom(A,Hi (X, Y )) Hi
D(X, Y ) Ext1

Z
(D,Hi−1(X, Y )) 0
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4.3 Differences between the classical and new exact sequences

The two pairs of exact sequences are pairwise different. In fact, in the homology case,
applying the exact sequences to the stable homotopy theory shows that the new exact
sequence is more precise than the classical one. Using the first stable homotopy groups
of the sphere (given, among others, in [3]) and those of the projective plane (see [7]),
we find:

π̂ S
0 = S π̂ S

1 = Q1 π̂ S
2 = P π̂ S

3 = M(Z/24) π̂ S
4 = Q0,

where π̂∗ denotes π̂∗(pt).
If D = A B is an exact object of D , applying the two exact sequences

(1.2) et (1.5) for i = 3, we get:

0 A ⊗ Z/24 � A/24 π S
3 (D) Tor(A, Z/2) � A2 0

(4.3)

0 M(Z/24) ⊗D D
�

π S
3 (D) TorD1 (π̂ S

2 , D) = 0 0 (4.4)

This shows that the second exact sequence allows to deduceπ S
3 (D) � M(Z/24)⊗D D.

In the cohomology case, the real K -theory illustrates the interest of the new exact
sequence. In fact, using the real K -theory of the projective plane, given in [5], we find

the following diagrams, where K̂ O
∗
denotes K̂ O

∗
(pt):

K̂ O
0 = S K̂ O

1 = Q0 K̂ O
2 = K̂ O

3 = 0 K̂ O
4 = Q2

K̂ O
5 = Q0 K̂ O

6 = Q1 K̂ O
7 = P.

Applying the two exact sequences (1.3) and (1.6), for i = 0, D = P and X = pt,
we get the two different sequences:

0 Ext1
Z
(Z/2, Z/2) � Z/2 KO0(P) Hom(Z/2, Z/2) � Z/2 0

(4.5)

0 Ext1D (P, P) = 0 KO0(P)
� HomD (P, P) � Z/4 0

(4.6)
The same method gives KO0(D) for every Moore spectrum D. In fact,

Ext1D (D, P) = 0 since P is injective, and then, the exact sequence (1.6) induces
the isomorphism KO0(D) � HomD (D, S) = D0.

Remark 4.2 Using the diagrams K̂ O
∗
and the exact sequence (1.6), we can compute

real K -theory of Moore spaces.
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