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728 N. D. Turgay, S. Kaji

1 The mod 2 Leibniz–Hopf algebra and its dual

Let F2 be the free associative algebra over F2 generated by the indeterminates
S1, S2, S3, . . . of degree |Si | = i . We often denote the unit 1 by S0. This algebra
is equipped with a co-commutative co-product given by

�(Sn) =
n∑

i=0

Si ⊗ Sn−i , (1)

which makes it a graded connected Hopf algebra. This algebra F2 is often called the
mod 2 Leibniz–Hopf algebra. As an F2-module,F2 has the following canonical basis:

{SI := Si1 Si2 · · · Sin | I = (i1, i2, . . . , in) ∈ N
n, 0 ≤ n < ∞},

where we regard SI = 1 when n = 0.
Note that the integral counterpart of F2 is called the Leibniz–Hopf algebra and is

isomorphic to the ring of non-commutative symmetric functions [7] and the Solomon
Descent algebra [17]. Its graded dual is the ring of quasi-symmetric functions with the
outer co-product, which has been studied by Hazewinkel, Malvenuto, and Reutenauer
in [8–12].

The mod 2 Steenrod algebra A2 is defined to be the quotient Hopf algebra of F2
by the ideal generated by the Adem relations:

Si S j −
�i/2�∑

k=0

(
j − k − 1

i − 2k

)
Si+ j−k Sk . (2)

Denote the quotient map by π : F2 → A2 and Sqi = π(Si ). It is well-known (see,
for example, [18]) that the admissible monomials

{Sq J := Sq j1 Sq j2 · · · Sq jn | J =( j1, j2, . . . , jn) ∈ N
n
>0, 0 ≤ n<∞, jk−1 ≥ 2 jk∀k}

form a module basis forA2. We will adhere to this purely algebraic definition and will
not use any other known facts about A2.

By taking the graded dual of π , we obtain the following inclusion of Hopf algebras

π∗ : A∗
2 → F∗

2 .

F∗
2 is given a module basis SI dual to SI , that is,

〈SI ′
, SI 〉 =

{
1 (I = I ′)
0 (I �= I ′)

.
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The mod 2 dual Steenrod algebra as a subalgebra of the mod 2… 729

Similarly, we have the dual basis {SqJ | J admissible} for A∗
2 determined by

〈Sq J ′
, SqJ 〉 =

{
1 (J = J ′)
0 (J �= J ′)

.

The commutative product among the basis elements inF∗
2 is given by the overlapping

shuffle product (see §2) and the co-product is given by

�(Sa1,...,an ) = Sa1,...,an ⊗ 1 + 1 ⊗ Sa1,...,an +
n−1∑

i=1

Sa1,...,ai ⊗ Sai+1,...,an . (3)

The purpose of this paper is to deduce some of the classical results on A∗
2 and its

generalisations by considering it as a subalgebra of F∗
2 . We are particularly interested

in the following problems.

Problem 1 (i) Determine the coefficients in

π∗(SqJ ) =
∑

I

C I
J SI (4)

for all admissible sequences J . This is important since in the dual it is equivalent
to computing the coefficients of the Adem relations

Sq I =
∑

J :admissible

C I
J Sq

J (5)

for all sequences I .
(ii) Give an expansion of the dual Milnor bases in terms of the dual admissible mono-

mial bases, i.e., determine the coefficient BL
J in

ξ L =
∑

J :admissible

BL
J SqJ ,

where ξn = Sq2n−1,2n−2···21,20 and ξ L = ξ
l1
1 ξ

l2
2 · · · ξ lnn for L = (l1, l2, . . . , ln).

(iii) Generalise Milnor’s conjugation formula [13] in A∗
2 to F∗

2 . The formula for A∗
2

is:

χ(ξn) =
∑

α

l(α)∏

i=1

ξ2
σ(i)

α(i) ,

where α = (α(1)|α(2)| . . . |α(l(α)) runs through all the compositions of the

integer n and σ(i) = ∑i−1
j=1 α( j).
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730 N. D. Turgay, S. Kaji

Several different methods are known for resolving (i) and (ii) (see for example,
[15,19]), but our argument (Sect. 4) is new in that it is purely combinatorial using the
overlapping shuffle product on F∗

2 . We implemented our algorithm into a Maple code
[16]. In Sect. 5 we discuss the conjugation (or antipode) in F∗

2 and give an answer to
(iii). Finally, we give an explicit duality between the conjugation invariants in F2 and
F∗
2 in Sect. 6.

2 Overlapping Shuffle product

We recall the definition of the overlapping shuffle product ([2, Section 2],[8]). LetW
be the set of finite sequences of natural numbers:

W = {(i1, i2, . . . , in) | 0 ≤ n < ∞}.
Note that we allow the length 0 sequence. Consider the F2-module F2〈W〉 freely
generated by W . For a sequence I = (i1, i2, . . . , in), denote its tail partial sequence
(ik, ik+1, . . . , in) by Ik . When n < k, we regard Ik as the length 0 sequence. We use
the convention

(a1, a2, . . . , ak, (b1, . . . , bi ) + (c1, . . . , c j ))

:= (a1, a2, . . . , ak, b1, . . . , bi ) + (a1, a2, . . . , ak, c1, . . . , c j ).

The overlapping shuffle product on F2〈W〉 is defined as follows:

Definition 1 For A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bm), define their product
inductively by

A · B :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A (m = 0)

B (n = 0)∑
0≤i≤n(a1, . . . , ai , b1, Ai+1 · B2)

+∑
1≤i≤n(a1, . . . , ai + b1, Ai+1 · B2) (otherwise).

The product on F2〈W〉 is defined by the linear extension of the above.

We say a term in A · B is a-first if there exists k such that ak goes1 to an entry to the
left of bk and ai goes to the same entry as bi (that is, the entry makes ai + bi ) for all
i < k. For example, (a1 + b1, a2, b2, b3, a3) is a-first while (a1 + b1, b2, a2, a3, b3)
is not. Observe that

Lemma 1 For equal length sequences, we have

(a1, . . . , an) · (b1, . . . , bn) = (a1 + b1, . . . , an + bn) + Z + τ(Z),

where Z is a sum of a-first terms and τ flips the occurrence of ai and bi for all i . In
particular, the product is commutative.

1 When calculated symbolically.
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The mod 2 dual Steenrod algebra as a subalgebra of the mod 2… 731

Example 1

(a1, a2) · (b1, b2) = (a1 + b1, a2 + b2)

+ (a1 + b1, a2, b2) + (a1, b1, a2 + b2) + (a1, b1 + a2, b2)

+ (a1, a2, b1, b2) + (a1, b1, a2, b2) + (a1, b1, b2, a2)

+ (b1 + a1, b2, a2) + (b1, a1, b2 + a2) + (b1, a1 + b2, a2)

+ (b1, b2, a1, a2) + (b1, a1, b2, a2) + (b1, a1, a2, b2),

where the second line consists of a-first terms and the third line is the τ -image of the
second line.

Corollary 1 For A = (a1, . . . , an),

A · A = (2a1, . . . , 2an), A2m = (2ma1, . . . , 2
man).

Proof In this case, the flip map τ in Lemma 1 is the identity. ��
It is easy to see from the duality relation 〈SI SJ , SK 〉 = 〈SI ⊗ SJ ,�(SK )〉 that the

product on F∗
2 dual to (1) is given by SI SJ = ∑

K∈I ·J SK .

3 Dual Steenrod algebra as a sub-Hopf algebra of F∗
2

To identify the image of the inclusion π∗ : A∗
2 → F∗

2 , we prove some lemmas in this
section. Let ξn = Sq2n−1,2n−2,...,20 .

Lemma 2 (cf. [2,19])We have

π∗(Sq2n ) = S2n ,

π∗(ξn) = S2n−1,2n−2,...,20 .

Proof For the first equation, we have to show that for any non-admissible sequence
I , the right-hand side of

Sq I =
∑

J :admissible

C I
J Sq

J

does not contain Sq2
n
. If there exists such an I , we can assume it has length two, that

is, I = (i, j). (Because the right-hand side is obtained by successively applying the
length two relations.) By the Adem relations in Eq. (2), we have i + j = 2n and

1 ≡
(
j − 1

i

)
≡

(
2n − 1 − i

i

)
mod 2.

However, the binary expressions of 2n −1− i and i are complementary and the binary
expression of 2n −1− i contains at least one digit with 0. Hence, by Lucas’ Theorem,
we have

(2n−1−i
i

) ≡ 0 mod 2; we arrive at a contradiction.
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732 N. D. Turgay, S. Kaji

For the second equation, suppose that there exists an I = (i, j) such that i < 2 j
and

Sqi, j =
�i/2�∑

k=0

(
j − k − 1

i − 2k

)
Sqi+ j−k Sqk

contains Sq2
n−k

or Sq2
n−k

Sq2
n−k−1

as a summand. The former case is already ruled
out by the first equation. For the latter case to happen, we should have

i + j = 2n−k + 2n−k−1, �i/2� ≥ 2n−k−1.

But this implies j ≤ 2n−k−1 so i ≥ 2 j ; we arrive at a contradiction. ��
Put ξ̄n = π∗(ξn) = S2n−1,2n−2,...,20 . We denote by Ã∗

2 the subalgebra of F∗
2 gener-

ated by {ξ̄n | 0 < n}. For a sequence L = (l1, l2, . . . , ln) of non-negative integers, we

denote ξ̄
l1
1 ξ̄

l2
2 · · · ξ̄ lnn by ξ̄ L . Then, the monomials ξ̄ L span Ã∗

2. Now, we identify Ã∗
2

with Im(π∗).
Recall the definition of the excess vector of an admissible sequence J =

( j1, j2, . . . , jn):

γ ( j1, j2, . . . , jn) = ( j1 − 2 j2, j2 − 2 j3, . . . , jn−1 − 2 jn, jn).

This gives a bijection between admissible sequences and sequences of non-negative
integers. The inverse is given by

γ −1(l1, l2, . . . , ln) = (l1 + 2l2 + 22l3 + · · · + 2n−1ln, . . . , ln−1 + 2ln, ln).

We put the right lexicographic order on W , i.e.,

(a1, a2, . . . , an) > (b1, b2, . . . , bm) ⇔ (n > m) or (∃k, ak >bk and ai = bi∀i > k).

This induces an ordering on the basis elements SI which is compatible with the
overlapping shuffle product. Observe that the lowest term in the product SI · SI ′ for
I = (i1, i2, . . .) and I ′ = (i ′1, i ′2, . . .) is S(i1+i ′1,i2+i ′2,...).

Lemma 3 For an admissible sequence J ,

〈ξ̄ γ (J ), SI 〉 =
{
1 (I = J )

0 (I < J ).

Proof We proceed by induction on J = ( j1, . . . , jn). Put J ′ = ( j1 − 2n−1, j2 −
2n−2, . . . , jn − 20). Then by induction hypothesis,

ξ̄ γ (J ′) = SJ ′ + (terms higher than SJ ′).
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The mod 2 dual Steenrod algebra as a subalgebra of the mod 2… 733

It follows that

ξ̄ γ (J ) = ξ̄ γ (J ′) · ξ̄n

= (SJ ′ + (terms higher than SJ ′)) · S2n−1,2n−2,...,20

= SJ + (terms higher than SJ ).

��
By this upper-triangularity, the monomials ξ̄ L are linearly independent and we have

Theorem 1

Im(π∗) = Ã∗
2 = F2[ξ̄1, ξ̄2, . . . , ].

Proof By Lemma 3 in each degree Ã∗
2 has the same dimension as A∗

2 (the number of
admissible sequences). ��

This is nothing but the well-known fact:

Corollary 2 [13]

A∗
2 = F2[ξ1, ξ2, . . . , ],

where

ξγ (J ) = SqJ + (terms higher than SqJ ).

4 Computation with π∗

Recall from [19, Section 4] the linear left inverse r : F∗
2 → A∗

2 of π∗:

r(SI ) =
{
SqI (I : admissible)

0 (otherwise).

For (ii) of Problem 1, we can compute

ξ (l1,l2,...,ln) = rπ∗(ξ (l1,l2,...,ln))

= r(ξ̄ l11 ξ̄
l2
2 · · · ξ̄ lnn )

= r((S20)
l1(S21,20)

l2 · · · (S2n−1,2n−2,...,20)
ln ) (6)

and it reduces to computing admissible sequences occurring in the overlapping shuffle
product.

For (i) of Problem 1, by Corollary 2 we have

π∗(ξγ (J )) = π∗(SqJ + (terms higher than SqJ ))
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734 N. D. Turgay, S. Kaji

and the left-hand side can be computed by the overlapping shuffle product. Thus, we
can compute inductively the coefficients C I

J in

π∗(SqJ ) =
∑

I

C I
J SI .

We implemented the algorithm into a Maple code [16].

Example 2 We demonstrate the above algorithm in low degrees. First, compute π∗-
image of monomials ξ L :

π∗(ξ22 ) = S2,1S2,1 = S4,2

π∗(ξ31 ξ2) = (S3 + S1,2 + S2,1)S2,1
= S5,1 + S4,2 + S3,3 + S2,4 + S2,3,1 + S1,4,1

+ S3,1,2 + S2,2,2 + S1,2,3 + S2,1,2,1 + S1,2,1,2

π∗(ξ61 ) = S6 + S4,2 + S2,4.

Taking r on the both sides of equations, we obtain

ξ22 = Sq4,2, ξ31 ξ2 = Sq5,1 + Sq4,2, ξ61 = Sq6 + Sq4,2.

Again taking π∗ on the both sides of the equations, we obtain

π∗(Sq4,2) = S4,2
π∗(Sq5,1 + Sq4,2) = S5,1 + S4,2 + S3,3 + S2,4 + S2,3,1 + S1,4,1

+ S3,1,2 + S2,2,2 + S1,2,3 + S2,1,2,1 + S1,2,1,2
π∗(Sq6 + Sq4,2) = S6 + S4,2 + S2,4.

Finally, by using the upper-triangularity, we obtain

π∗(Sq4,2) = S4,2
π∗(Sq5,1) = S5,1 + S3,3 + S2,4 + S2,3,1 + S1,4,1 + S3,1,2 + S2,2,2

+ S1,2,3 + S2,1,2,1 + S1,2,1,2
π∗(Sq6) = S6 + S2,4.

5 Formula for the conjugation

Anyconnected commutative or co-commutativeHopf algebra has a unique conjugation
χ satisfying

χ(1) = 1, χ(xy) = χ(y)χ(x), χ2(x) = x,
∑

x ′χ(x ′′) = 0,
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The mod 2 dual Steenrod algebra as a subalgebra of the mod 2… 735

where �(x) = ∑
x ′ ⊗ x ′′ and deg(x) > 0 [14]. The conjugation invariants in A∗

2 is
studied in [5] because it is relevant to the commutativity of ring spectra [1, Lecture 3].
The same problem in F∗

2 has been also studied in [3,4]. Here we investigate them
through our point of view.

Since π∗ is a Hopf algebra homomorphism, we have π∗ ◦ χA∗
2

= χF∗
2
◦ π∗, where

χA∗
2
and χF∗

2
denote the conjugation operations in A∗

2 and F∗
2 respectively. For the

module basis SI in F∗
2 , the conjugation χF∗

2
is calculated combinatorially.

Definition 2 The coarsening set C(I ) of a sequence I = (i1, . . . , il) is defined recur-
sively as

C(I ) := {(i1, I ′), (i1 + i ′1, I ′
2) | I ′ ∈ C((i2, . . . , il))} and C((i)) = {(i)},

where I ′
2 is the tail partial sequence (i ′2, . . . , i ′l ′) of I

′ = (i ′1, i ′2, . . . , i ′l ′).

Example 3 C((a, b, c)) = {(a, b, c), (a + b, c), (a, b + c), (a + b + c)}.

A formula for the conjugation operation in the dual Leibniz–Hopf algebra is given
by Ehrenborg [6, Proposition 3.4].We now give a simple proof for its mod 2 reduction.

Proposition 1

χF∗
2
(SI ) =

∑

I ′∈C(I−1)

SI ′ ,

where I−1 = (il , . . . , i1) is the reverse sequence of I = (i1, . . . , il).

Proof The conjugation is uniquely characterised by

χF∗
2
(1) = 1,

∑
x ′χF∗

2
(x ′′) = 0,

where�(x) = ∑
x ′ ⊗ x ′′ and deg(x) > 0.We put χ ′(SI ) = ∑

I ′∈C(I−1) SI ′ and show
that it satisfies the above equations. It is obvious that χ ′(1) = 1. Since the co-product
is given in (3), the second equation reads

l∑

k=0

Si1,...,ikχ
′(Sik+1,...,in ) = 0 (∀I = (i1, i2, . . . , in)).

We regard an element of F2〈W〉 with a finite subset of W in the obvious way. We
investigate relation between coarsening and the overlapping shuffle product. Define

Ck(I ) =
∑

I ′∈C((Ik+1)
−1)

I ′ · (i1, . . . , ik).
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736 N. D. Turgay, S. Kaji

We observe2 that C(I−1) ⊂ C1(I ) and C ′
1(I ) := C1(I )\C(I−1) consists of those

sequences that i1 appears to the left of i2. In turn, C ′
1(I ) ⊂ C2(I ) and C ′

2(I ) :=
C2(I )\C ′

1(I ) consists of those sequences that i2 appears to the left of i3. Continuing
similarly, we obtain

C(I−1) =
l∑

k=1

Ck(I ).

It follows that

χ ′(SI ) =
l∑

k=1

∑

I ′∈C((Ik+1)
−1)

S(i1,...,ik ) · SI ′ =
l∑

k=0

Si1,...,ikχ
′(Sik+1,...,in ) − χ ′(SI )

and
∑l

k=0 Si1,...,ikχ
′(Sik+1,...,in ) = 0. ��

We give another formula for χF∗
2
(SI ).

Definition 3 For a sequence a1, a2, . . . , an , the set of ordered block partitions
P(a1, a2, . . . , an) consists of elements of the form

β = ((a1, a2, . . . , ai1)|(ai1+1, . . . , ai2)| . . . |(ail−1+1, . . . , ail )),

where 1 ≤ i1 < i2 < · · · < il = n.Wedenote l(β) = l andβ(k) = (aik−1+1, . . . , aik ).
Or inductively, we can define

P(a1, a2, . . . , an) =
n⋃

k=1

{
((a1, . . . , ak)|β)

∣∣∣∣β ∈ P(ak+1, ak+2, . . . , an)

}
. (7)

Theorem 2

χF∗
2
(SI ) =

∑

β∈P(I )

l(β)∏

k=1

Sβ(k).

Proof Let I = (a1, a2, . . . , an). Put

χ ′(Sa1,a2,...,an ) =
∑

β∈P(a1,a2,...,an)

l(β)∏

k=1

Sβ(k)

2 Here, we deal with sequences symbolically so that we avoid cancellations like (i3+i2, i1)+(i3+i1, i2) =
0 when i1 = i2.
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The mod 2 dual Steenrod algebra as a subalgebra of the mod 2… 737

and we check that

χ ′(1) = 1,
n∑

k=0

Sa1,...,akχ
′(Sak+1,...,an ) = 0.

Then, by the uniqueness of the conjugation, we have χF∗
2

= χ ′. The first assertion is
trivial. For the second, observe that by (7)

χ ′(Sa1,a2,...,an ) =
n∑

k=1

Sa1,...,ak

⎛

⎝
∑

β∈P(ak+1,ak+2,...,an)

l(β)∏

j=1

Sβ( j)

⎞

⎠

=
n∑

k=1

Sa1,...,akχ
′(Sak+1,...,an ).

Hence, we have

n∑

k=0

Sa1,...,akχ
′(Sak+1,...,an ) = χ ′(Sa1,a2,...,an ) +

n∑

k=1

Sa1,...,akχ
′(Sak+1,...,an )

= 2χ ′(Sa1,a2,...,an )
= 0.

��
Example 4

χF∗
2
(S1,2,3) = S3,2,1 + S5,1 + S3,3 + S6

= S1,2,3 + S1S2,3 + S1,2S3 + S1S2S3.

The first line is computed by Proposition 1, and the second by Theorem 2.

Theorem 2 can be thought of as a generalisation of Milnor’s conjugation formula
in A∗

2. To see this, we first show a small lemma:

Lemma 4

ξ̄2
m

n = (S2n−1,2n−2,...,20)
2m = S2n+m−1,2n+m−2,...,2m .

Proof This is a direct consequence of Corollary 1 combined with Lemma 2. ��
Corollary 3 [13, Lemma 10]

χA∗
2
(ξn) =

∑

α

l(α)∏

k=1

ξ2
σ(k)

α(k) , (8)

where α = (α(1)|α(2)| . . . |α(l(α)) runs through all the compositions of the integer n
and σ(k) = ∑k−1

j=1 α( j).
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738 N. D. Turgay, S. Kaji

Proof We apply the injection π∗ to the both sides of (8) and show that they coincide.
For the left-hand side, by Lemma 4 we have

π∗(χA∗
2
(ξn)) = χF∗

2
(π∗(ξn)) = χF∗

2
(S2n−1,2n−2,...,20).

Since π∗(ξ2σ(k)

α(k) ) = S2α(k)+σ(k)−1,...,2σ(k) by Lemma 4, we see

π∗
⎛

⎝
l(α)∏

k=1

ξ2
σ(k)

α(k)

⎞

⎠ = S2n−1,...,2n−α(l(α)) · S2n−1−α(l(α)),...,2n−α(l(α))−α(l(α)−1) · · · S2α(1)−1,...,20 .

So when α ranges over all compositions of n, we get all the ordered block partitions
of the sequence 2n−1, 2n−2, . . . , 20. The assertion follows from Theorem 2. ��

6 Duality between F2 and F∗
2

In the previous section we discussed how to compute the conjugation in F∗
2 . Here,

we relate the conjugation in F2 with that in F∗
2 by using a self-duality of W . Denote

I � I ′ if I ∈ C(I ′). We think of I ∈ W as a string of 1’s separated by ‘+’ and
commas; (1 + 1 + · · · + 1︸ ︷︷ ︸

i1

, 1 + 1 + · · · + 1︸ ︷︷ ︸
i2

, . . . , 1 + 1 + · · · + 1︸ ︷︷ ︸
il

).

Definition 4 We define the dual Ī ∈ W of I by switching + and the commas.

Example 5 For I = (1, 3, 2) = (1, 1 + 1 + 1, 1 + 1), its dual is

Ī = (1 + 1, 1, 1 + 1, 1) = (2, 1, 2, 1).

It is easily seen that ¯̄I = I and I � I ′ ⇔ Ī � Ī ′. Extend the duality to one between
F2 and F∗

2 by

D(SI ) = SĪ , D−1(SI ) = S Ī .

Theorem 3 We have D ◦ χF2 = χF∗
2

◦ D. In particular, f ∈ F2 is a conjugation

invariant if and only if so is f̄ ∈ F∗
2 .

Proof We compute

D−1 ◦ χF∗
2

◦ D(SI ) = D−1χF∗
2
(SĪ ) = D−1

⎛

⎝
∑

I ′�( Ī )−1

SI ′

⎞

⎠ = D−1

⎛

⎝
∑

Ī ′�I−1

SI ′

⎞

⎠

=
∑

Ī ′�I−1

S Ī
′ =

∑

I ′�I−1

SI
′
.
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Put χ ′(SI ) = ∑
I ′�I−1 SI

′
. Then, one can check χ ′(1) = 1 and

∑
x ′χ ′(x ′′) = 0 for

�x = ∑
x ′ ⊗ x ′′ as in Proposition 1. Hence, by the uniqueness of the conjugation,

we have χ ′ = χF2 . ��
Example 6 f = S1,1,2 + S2,1,1 + S1,1,1,1 is a χF2 -invariant, whilst D( f ) = S3,1 +
S1,3 + S4 is a χF∗

2
-invariant.

Remark 1 The sub-module of the conjugation invariants inF2 is ker(χF2 −1) and that
inF∗

2 is ker(χF∗
2
−1). The conjugations inF2 andF∗

2 are dual to each other, and hence,
the linear map χF2 − 1 is transpose to χF∗

2
− 1 with the kernel of same dimension [3].

Theorem 3 gives more information by specifying an explicit correspondence between
their elements.
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