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Abstract We introduce the notion of Whitehead sequence which is defined for a base
category together with a system of abstract actions over it. In the classical case of
groups and group actions the Whitehead sequences are precisely the crossed modules
of groups. For a general setting we give sufficient conditions for the existence of a
categorical equivalence between internal groupoids and Whitehead sequences.
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1 Introduction

This work may be seen as the continuation of the project initiated in 1982 by Porter
[17] in order to generalize the so-called Brown–Spencer result [5] from groups to other
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structures. The Brown–Spencer result establishes a categorical equivalence between
crossed modules of groups and internal groupoids in the category of groups, an impor-
tant result connecting two types of objects, apparently with a very different nature. As
a consequence, this result has significant applications in homotopy theory, homology,
cohomology, K-theory and higher dimensional categorical algebra, among others.

Over the last three decades many authors studied this specific problem. The original
result, although already known, was first published in 1976 [5] (it was also indepen-
dently discovered by Lavendhomme and Roisin). In 1982 Loday generalizes it to
higher-dimensions [9] by introducing the notion of Cat-n-group. The Brown–Spencer
result is the non abelian version of the much more easy, but still important fact that
groupoids in abelian groups (or in any abelian category) are the same as morphisms
of abelian groups. In the same way, Loday generalization of Brown–Spencer is the
truncated non abelian version of Dold–Kan correspondence. During the 80’s much
work was done, either as applications of the original result or as generalizations of it,
especially in categories of groups with operations, as it can be seen for example in
[18]. In the 90’s Brown and his School were still active in this area as one can see in [4]
and its references, as well as several other authors. For example internal categories and
internal groupoids started to be exhaustively studied, first in the context of Mal’tsev
categories and later in the context of semiabelian categories. This work culminated
with the notion of internal crossed module by Janelidze, see [8] which also contains
some historical notes.

The main motivation for the present work was the possibility of moving from the
category of internal actions, defined in the context of a semiabelian category, to a more
general context of categories and functors such as the one we introduce in Sect. 2, in
which B is any pointed category while A can be interpreted as a category of abstract
actions on B.

After a close analysis of some of the results obtained during the last three or four
decadeswe concluded thatmany of the generalizations of the notion of crossedmodule
were obtained by calculating simpler descriptions of internal groupoids. The perspec-
tive that we have adopted in this work is somehow different.We study a general system
in which a certain sequence of twomorphisms without any further assumptions is con-
sidered. We call it a Whitehead sequence. Accordingly, we define a crossed module
as a Whitehead sequence to which an internal groupoid structure can be associated in
a canonical manner, an idea that we will make precise later.

Consider a system of functors and categories displayed as

A
I

J

BG (1)

and such that IG = 1B = JG. A sequence of morphisms in A of the form

GJ A
v

A
u

GI A

is called aWhitehead sequence whenever

I (u) = 1I A, J (v) = 1J A, I (v) = J (u).
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Crossed modules 895

Our main goal here is to find reasonable conditions under which we have an equiv-
alence of categories

W(A) ∼ Gpd(B) (2)

between the category of Whitehead sequences in A and the category of internal
groupoids in B, the guiding example being the case where B is the category of groups
andA is the category of group actions on groups. The functors I and J are the obvious
projections (see Sect. 3) while G gives the action by conjugation [17]. The functor G
has a left adjoint, F , which corresponds to the well known construction of the semidi-
rect product in groups (see also [3,8]). In this case a Whitehead sequence is precisely
a crossed module.

A crossed module, as introduced by J.H.C. Whitehead [19], in the category of
groups consists of a pair (A, h) in which A ∈ A is an action (the group I A acts on
the group J A) and h : J A −→ I A is a group homomorphism such that there is a
Whitehead sequence

GJ A
v

A
u

GI A

with J (u) = h = I (v).
This notion of crossed module was already presented in [17]. Here we illustrate the

general system of categories and functors (1) and motivate the definition ofWhitehead
sequence which, in the particular case where B is the category of groups and A the
category of group actions, gives the classical notion of a crossed module.

First we give additional conditions on the general system of categories and functors
(1) in which B is a pointed category while A (under some reasonable conditions) is to
be understood as a category of actions.More specifically, an object A inA is considered
as an action of the object I A on the object J A in B and if B is an object in B then
G(B) is considered as an action (by conjugation) of B onto itself.

One of the important aspects of this construction is that we can always define the
notion of Whitehead sequence as a triple (A, u, v), in A, of the form

GJ A
v

A
u

GI A

such that

I (u) = 1I A, J (v) = 1J A, I (v) = J (u),

and the question is: when does it make sense to call such a sequence a crossedmodule?
One possible answer is: whenever it has an associated groupoid structure.

Next we describe the main ideas that lead us to the notion of category of actions
we introduce here.

Concerning the one dimensional case, we assume that I and J are jointly faithful.
This restriction means that an action, in general, can be understood as a triple A =
(X, ξ, B) where ξ is some kind of structure defined on B and X , while a morphism
f : A −→ A′ is always a pair of morphisms f1 : J A −→ J A′ and f2 : I A −→ I A′
in B satisfying some compatibility conditions with respect to the structures involved.
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896 N. Martins-Ferreira

With this restriction we have that aWhitehead sequence is determined by a pair (A, h)

where A is an action, i.e. an object in A, h : J A −→ I A is a morphism in B, and the
existence of u and v as in the definition of Whitehead sequence becomes a property
of A and h, giving, in the case of groups [17], the celebrated conditions for a crossed
module (Eqs. (13), (14) of Sect. 3). Note that Eq. (13) is equivalent to the existence
of u, while the Eq. (14) is equivalent to the existence of v.

In higher dimensions, to assume the above restriction is too much. We will often be
interested in considering that the 2-cells are also involved and in that case a morphism
between actions can be a triple f = ( f1, f2, f3) where f1 and f2 are still morphisms
as above but f3 may be a 2-cell linking the two structures. This is what happens in
the case of categorical groups [6]. However, also in this case, the 2-cells involved
are determined up to equivalence. In the following we are going to consider only the
one-dimensional level. Nevertheless, the theory of action-systems presented here is
delineated having in mind its application in a two-dimensional setting.

This work is organized as follows. In Sect. 2 we introduce the setting and give the
basic definitions. A (right) patch is a jointly epimorphic cospan with the property that
there exists a retraction of the right inclusion. If this retraction is the cokernel of the left
inclusion then we speak of an exact (right) patch (Definitions 1, 2). A patch is stable if
the pullback of its retraction along any morphism exists and is a (right) patch (Defini-
tion 3).We briefly recall the well-known concepts of cartesianmorphism and fibration.
With respect to an ordered pair, (I, J ), of functors we define the notion of organic
morphism (Definition 4): a morphism f : A −→ E is organic (or (I, J )-organic) if
I E ∼= J E and the two components I ( f ) and J ( f ) give rise to an exact patch.

The notion of a system such as (1) that models a system of actions over the base
categoryB is given in Definition 7 and it is called an action-system ofA overB. One of
the key ingredients of the definition is what we call the L-condition (in honour of Jean
Louis Loday [9]). We point out that this condition (see Definition 6) in the context of
a semiabelian category is precisely the so-called Smith is Huq condition [15].

In Sect. 3 we present the main examples that have been the guiding lines for this
work. If B is a pointed category with pullbacks along split epimorphisms and binary
coproducts then we can always consider the two extreme cases. The first case is
displayed as

A = B × B
π2

π1

B� , (3)

while the second one is obtained by taking a system such as the one displayed in (1)
with IG = 1B = JG, in which A is a subcategory of Pt(B) consisting of those split
epimorphisms in B

X
k

Y
p

B
s

such that the kernel k and the section s are jointly epimorphic. In order to have the
functor G well defined with G(B) the canonical split epimorphism
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Crossed modules 897

B
〈0,1〉

B × B
π2

B,
〈1,1〉

for every object B in B, the pair of morphisms (〈0, 1〉 , 〈1, 1〉) must be jointly epimor-
phic. Concrete examples can be constructed by taking B equipped with a forgetful
(faithful and preserving binary products) functor into the category of algebras with
one constant and one binary operation, say (X, 0, /), satisfying the conditions

x/y = x ′/y �⇒ x = x ′ (4)

x/x = y/y (5)

where the homomorphisms are the mappings f : X −→ X ′ such that

f (x/y) = f (x)/ f (y) (6)

f (0) = 0. (7)

In this case, the left adjoint to G, which is comparable to the semidirect product
construction in the monadic approach of internal actions, is simply the projection of
the middle object of a split extension. Some attempts were done in order to find a
categorical notion of semidirect product (see for example [1]). We believe that, in the
setting of an action-system (1) as we proposed in this paper, the notion of semidirect
product for an object A in A is the object F(A) in B, with F the left adjoint of the
functor G, when it exists (this agrees with the notion of semidirect product introduced
in [3]).

Our main result is presented in Sect. 6. It gives sufficient conditions to have the
desired categorical equivalence betweenWhitehead sequences and internal groupoids.
This result relies on several other more technical results, such as a simplicial construc-
tion (Proposition 2), or an induced functor from certain kind of Whitehead sequences
into the category of internal categories (Theorem 1) which are developed on Sects. 4
and 5.

Finally, in Sect. 7, we present the case when the category B is pointed and proto-
modular.

2 Basic definitions and properties

Let B be a pointed category.

Definition 1 A (right) patch in B is a cospan

X
k

Y B
s

in which the pair (k, s) is jointly epimorphic and there exists a (necessarily unique)
morphism p : Y −→ B with ps = 1B and pk = 0. It will be written as a triple
(k, s, p) in spite of the fact that the morphism p is uniquely determined.
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898 N. Martins-Ferreira

Similarly we can define a left patch (by requiring the existence of a morphism
q : Y −→ X with qk = 1X and qs = 0) but, since here we are going to deal only with
right patches we will call them just patches.

Two examples that illustrate the notion can be obtained as follows. Let B be a
pointed category with kernels and pushouts.

1. Every coproduct diagram in B is a patch

X
ιX

X + B
[0,1]

B.
ιB

2. If we denote by k0 : B�X −→ X + B the kernel of [0, 1] : X + B −→ B and let
ηX : X −→ B�X be such that k0ηX = ιX , then every morphism ξ : B�X −→ X
satisfying the condition ξηX = 1X induces, by taking the pushout of ξ and k0, a
patch in B as illustrated by

X�B
k0

ξ

X + B

ι2

[0,1]
B

ιB

X

ηX

ι1

ιX

Q
p

B
ι2ιB

The needed morphism p is uniquely determined by pι2 = [0, 1] and pι1 = 0.
Moreover, since (Q, ι1, ι2) is a pushout diagram, we have that (ι1, ι2) is a jointly
epimorphic pair. In order to prove that the pair (ι1, ι2ιB) is jointly epimorphic we
observe that ι1 = ι2ιX , indeed

ι1 = ι1ξηX = ι2k0ηX = ι2ιX ,

and from here it follows that (X, Q, B, ι1, ι2ιB, p) is a patch.

It will be relevant for us to differentiate the patches that are exact and the patches
that are stable under pullback, according to the following definitions:

Definition 2 Apatch (X,Y, B, k, s, p) inB is said to be an exact patch if themorphism
k : X −→ Y is the kernel of the morphism p : Y −→ B.

The morphisms ξ : B�X −→ X , in the second example above, that induce an exact
patch are precisely the strict actions in the sense of [14], see also [7]. Moreover, in
the category of pointed sets and in the category of abelian groups every coproduct
diagram is an exact patch. Indeed, in both cases, we have that ιX is the kernel of [0, 1].
Definition 3 A patch (X,Y, B, k, s, p) in B is said to be a stable patch if for every
h : Z −→ B, the pullback of p along h exists in B, and the induced cospan

X
〈k,0〉

Y ×B Z Z
〈sh,1Z 〉

is a patch in B.

123



Crossed modules 899

Clearly, if a patch is exact and stable, then every patch it induces is exact.
In the category of abelian groups every coproduct diagram is a stable patch. This

is not true in the category of pointed sets. Indeed any cospan

X
〈ιX ,0〉

(X + B) ×B Y Y
〈ιBh,1Y 〉

which is obtained by taking the pullback of the morphism

[0, 1] : X + B −→ B

along a given morphism h : Y −→ B is a patch if and only if the kernel of h is trivial.
Let I : A −→ B be a functor. We recall that:

Amorphismα : E −→ A inA is cartesian if for every g : W −→ A inA and every
h : I (W ) −→ I (E) in B, with I (α)h = I (g), there exists a unique u : W −→ E
in A such that αu = g and I (u) = h. We also say that α is I -cartesian.
When every morphism in B can be lifted to an I -cartesian morphism in A we say
that the functor I is a fibration. More specifically, the functor I is a fibration if for
every A in A and p : Y −→ I A in B there exists a cartesian morphism (called the
cartesian lifting of p along A), α : E −→ A, with I (α) = p.

From now on we consider, other than the functor I another functor J . Let (I, J )

be an ordered pair of functors I, J : A −→ B, which will be displayed as

A
J

I
B.

In this context we consider a special class of morphisms inA that we call organic (due
to the fact that their components under I and under J form an exact patch). Moreover,
we observe that the notions of patch and exact patch are stable (in the obvious sense)
under isomorphisms Y ∼= Y ′.
Definition 4 A morphism f : A −→ E in A is said to be a organic morphism (or
(I, J )-organic) if J (E) ∼= I (E) and the cospan

J A
J ( f )

J E ∼= I E I A
I ( f )

is an exact (right) patch in B.

Finally, we complete the setting by introducing another ingredient—theWhitehead
sequence—and the definition of L-condition and of action-system.

Let (I,G, J ) be an ordered triple of functors, displayed as

A
I

J

BG (8)

and such that IG = 1B = JG.
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900 N. Martins-Ferreira

Definition 5 A Whitehead sequence is a triple (A, u, v) where A is an object in A,
while u and v are morphisms in A, of the form

GJ (A)
v

A
u

GI (A), (9)

satisfying the following conditions

I (u) = 1I A (10)

J (v) = 1J A (11)

I (v) = J (u). (12)

Definition 6 We say that the L-condition holds for the triple of functors (I,G, J )

when for every diagram of solid arrows

GJ E
g′

g

E
f ′

α

GI E

A

β
f

with I (β) = I ( f ), J (α) = J (g), I (α)J ( f ) = I (g)J (β) and αβ = 1A, if α is
cartesian and f is organic then there exists a unique Whitehead sequence ( f ′, g′)
such that αg′ = g and f ′β = f .

Definition 7 A triple of functors (I,G, J ) is called an action-system of A over B
when:

1. The functor I is a fibration and J (α) is an isomorphism whenever α is an I -
cartesian morphism;

2. For every A in A there exists an object Y ∈ B and a morphism

f : A −→ G(Y )

such that f is organic and, moreover, it is universal from A to G;
3. The L-condition holds.

In general, in order to have an action-system, we can always take A to be the
category of all stable and exact patches in B. This example is further developed in the
last section.

The three main examples that have motivated these definitions, that is groups,
abelian groups and pointed sets, are presented in some detail in the following section.

Some immediate consequences of the definitions are the following.

Proposition 1 Let (I,G, J ) be an action-system of A over B. Then

(i) The functor G has a left adjoint;
(ii) There exists a unique natural transformation π : 1A −→ GI such that for every

object A in A, I (πA) = 1I A and J (πA) = 0;

123
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(iii) There exists a functorA −→ Pt(B) such that every split epimorphism associated
to an object A in A, together with its kernel, is an exact patch;

(iv) For everyWhitehead sequence (A, u, v) there exists, up to isomorphism, a unique
diagram in A

E
μ

α

GFA

A

β
ηA

in which ηA is the universal arrow from A to the functor G, α is a cartesian
morphism, I E ∼= FA, and such that

G I (α)ηA = u

αβ = 1A
I (β) = I (ηA)

μβ = ηA

I (μ) = 1FA;

(v) Every Whitehead sequence (A, u, v) induces another Whitehead sequence, say
(E, μ, ν), with the property that there exists a cartesian split epimorphism

α : E −→ A

(with a section β) such that μβ = ηA and αν = vGJ (α);
(vi) Every Whitehead sequence (A, u, v) induces an infinite sequence of cartesian

split epimorphisms

· · · A3
α3

A2
α2

A1
α1

A0 = A

which is uniquely determined by GI (α1)ηA = u and if βi is the section of αi ,
for every i = 1, 2, . . ., by the equations

αiβi = 1Ai−1

I (βi ) = I (ηAi−1)

GI (αi+1)ηAi βi = ηAi−1

I (αi+1)I (ηAi ) = 1I Ai .

Proof (i) Since, by Definition 7(2), for every object A in A, there exists an object
FA in B and an arrow ηA : A −→ GFA which, in particular, is universal from
A to the functor G, it follows directly from Theorem 2(ii), on page 83 of [10],
that G is (the right) part of an adjuntion (F,G, η, ε).
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(ii) Using the previous adjunction (F,G, η, ε), we observe that the existence of a
morphism πA : A −→ GI A such that I (πA) = 1I A and J (πA) = 0, is equiva-
lent to the existence of a morphism

FA
εI A F(πA)

I A

such that εI AF(πA)I (ηA) = 1I A and εI AF(πA)J (ηA) = 0. The assumption
[see Definitions 7(2), 4 and 1] that ηA : A −→ GFA is a patch guarantees the
existence, aswell as the uniqueness, of εI AF(πA) andhence ofπA. The naturality
of π follows from the naturality of η and ε. Further details on this construction
can be found in [13].

(iii) Using again the adjunction (F,G, η, ε) and the natural transformation

π : 1A −→ GI ,

from the two items above, we observe that to every A in A we can associate the
split extension

J A
J (ηA)

FA
εI A F(πA)

I A.
I (ηA)

Recall that the category Pt(B) is the category whose objects are split epi-
morphisms (with specified section) and whose morphisms are the squares that
preserve the sections. Further details about this construction can be found in [13]
(see also Sect. 4 of this paper).

(iv) Let (A, u, v) be a Whitehead sequence. We will first show how to obtain the
morphisms α, β and μ and then show that they are uniquely determined by
the properties required. The morphism α : E −→ A is the cartesian lifting of
the morphism εI AF(u) : FA −→ I A, which exists because the functor I is a
fibration, and it is such that I E = FA and I (α) = εI AF(u) or equivalently, via
the adjunction, GI (α)ηA = u. The morphism β : A −→ E is obtained as the
unique morphism such that αβ = 1A and I (β) = I (ηA) which exists because
α is cartesian and I (α)I (ηA) = 1A (this is a consequence of I (u) = 1I A). The
morphism μ is obtained by applying the L-condition [Definitions 7(3) and 6] to
the diagram

GJ E
ν

GJ (α)

E
μ

α

GFA

GJ A
v

A,

β
ηA

which satisfies the needed conditions to guarantee the existence of μ such that
μβ = ηA and I (μ) = 1FA. It remains to show that μ is uniquely determined
by this two conditions. The morphism ν is uniquely determined because α is
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cartesian and hence, by the uniqueness property in the L-condition, we conclude
that also μ is uniquely determined.

(v) It follows from the Whitehead sequence constructed in the previous item.
(vi) Having a Whitehead sequence (A, u, v) and using the construction on the pre-

vious item we obtain α1 and β1 together with a new Whitehead sequence
(A1, μ1, ν1). This gives us the first element of the infinite sequence. We can
continue the sequence by replacing (A0, u, v) with (A1, μ1, ν1) and thus suc-
cessively iterate in order to obtain (An, μn, νn) for an arbitrary n. At each level
i = 1, 2, . . ., the morphism βi is completely determined by αiβi = 1Ai−1 and
I (βi ) = I (ηAi−1). In the same way the morphism α, being a cartesian mor-
phism, is completely determined by GI (αi+1)ηAi = μi . But, since μi itself is
determined by μiβi = ηAi−1 and I (μi ) = 1I (Ai ), the two equations

GI (αi+1)ηAiβi = ηAi−1

I (αi+1)I (ηAi ) = 1I Ai

uniquely determine αi .

�

We observe that there exists a functor A −→ Pt(B)

We are now going to see the main examples of action-systems that motivated the
definitions above.

3 Pointed sets, groups and abelian groups

3.1 Pointed sets and abelian groups

Let B be the category of abelian groups and A the category B × B with I the second
projection, J the first projection and G the diagonal functor. The triple of functors
(I,G, J ) is an action system of A over B. As we will see, the same is true for the
category of pointed sets and, more generally, in any category B provided it is pointed,
has binary coproducts and such that, for every two objects X and B, the morphism
ιX : X −→ X + B is the kernel of [0, 1] : X + B −→ B.

Some simple observations presented next to support our claims are to be compared
with the respective items from Definition 7 of an action-system:

1. the functor I is a fibration and J (α) is an isomorphism if and only ifα is I -cartesian;
indeed, α = (α1, α2) is I -cartesian if and only if α1 is an isomorphism;

2. every A = (X, B) in A has an object X + B in B and an arrow

(ιX , ιB) : (X, B) −→ (X + B, X + B)

which is organic and universal;
3. to check that the L-condition holds we have to consider a diagram of solid arrows

of the form
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(X, X)
(1,k)

(1,h)

(X,Y )
(k,1)

α

(Y,Y )

(X, B)

β
(k,s)

where we assume that α is cartesian, which means that, up to an isomorphism, we
can write it as α = (1X , α2), and (k, s) is an exact patch, which means that (k, s)
is a jointly epimorphic cospan and there exists p : Y −→ B with ps = 1B and
k the kernel of p; the remaining assumptions only give α2k = h and we easily
confirm the existence of a unique Whitehead sequence (dashed arrows) satisfying
the desired equations.
Note that a Whitehead sequence (A, u, v), in this case, is completely determined
by either I (v) or J (u). In other words, it is completely determined by a morphism
h : X −→ B and it is of the form

(X, X)
(1,h)

(X, B)
(h,1)

(B, B).

3.2 Groups

Another example, in fact the main example since it was the main motivation of this
work, is the case where B is the category of groups and A is the category of group
actions.

Classically, an action of a group B on a set X is amap ξ : B × X −→ X assigning to
everypair (b, x) in B×X an elementb·x in X such that 1·x = x and (bb′)·x = b·(b′·x).
Equivalently it may be presented as a group homomorphism

φ : B −→ Aut(X)

from the group B to the automorphism group of X . Another approach consists on
considering the group B as a one object groupoid and an action as a functor

B −→ Set

assigning the set X to the (only) object of the groupoid B and an automorphism of
X to each morphism in the groupoid B (that is to each element of the group B). A
convenient notation that illustrates this situation is the following one.

B
X

Set

◦
b

X◦
Xb

◦ X◦
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Crossed modules 905

In this language the conditions above are written as

X1 = 1X◦

and

Xb′ Xb = Xb′b.

Again, in classical terms, a morphism between actions is a pair ( f, g)

(X, ξ, B)

( f,g)

(X ′, ξ ′, B ′)

in which g : B −→ B ′ is a group homomorphism while f : X −→ X ′ is a map, such
that

f (b · x) = g(b) · f (x).

Equivalently, it may be considered as a morphism in a comma-category

B

g

X

⇓ f

Set

B ′ X ′
Set

where f : X −→ X ′g is a natural transformation.
It is clear that instead of the categorySetwecan consider other categories, obtaining

there an appropriate notion of group action. In particular, if we consider the category
Grp of groups we obtain the category of group actions on groups.

Let us consider now the case of an action-system where B is the category of groups
and A is the category of group actions on groups. An object A in A is a pair (X, B)

in which B is a group (considered as a one object groupoid) and X : B −→ Grp is a
functor. Themorphisms are the pairs ( f, g)with g : B −→ B ′ a group homomorphism
and f : X −→ X ′g a natural transformation.

In this case I is the second projection, J is the first projection (in the sense that
J (X, B) = X◦) and, for every group B, G(B) = (B̄, B) where B̄ : B −→ Grp
corresponds to the action by conjugation of B onto itself, that is B̄◦ = B and B̄b(b′) =
bb′b−1.

It follows that (I,G, J ) is an action-system of A over B in which the Whitehead
sequences are precisely the crossed modules of groups. Indeed it is not difficult to
check that a Whitehead sequence is determined by a pair (A, h) where A is an object
in A, h : J A −→ I A is a morphism in B, and there exist two morphisms u and v
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906 N. Martins-Ferreira

GJ A
v

A
u

GI A

such that

I (u) = 1I A, J (v) = 1J A, I (v) = J (u) = h.

In other words aWhitehead sequence becomes a property on the object A and the mor-
phism h which is equivalent to the two well-known conditions for a crossed module,
namely

h(b · x) = bh(x)b−1 (13)

h(x) · x ′ = x + x ′ − x (14)

in which we write X = J A additively, B = I A multiplicatively and denote by
b · x = Xb(x) the result of the action of the element b in B on the element x in X .
Condition (13) is equivalent to the existence of u, while condition (14) is equivalent
to the existence of v.

The functor I is a fibration: the cartesian lifting of a morphism g : B ′ −→ B in B
along an action (X, B) in A is given by

B ′

g

Xg

⇓1

Grp

B
X Grp

where 1 denotes the identity natural transformation for the functor Xg. If α is a
cartesian morphism in A then J (α) is an isomorphism in B. To each action (X, B) in
A we can associate the semidirect product diagram

X◦
k

F(X, B) B
s

in which F(X, B) = X◦ � B is the set of pairs (x, b) ∈ X◦ × B with the operation

(x, b) + (x ′, b′) = (x + Xb(x
′), bb′)

and k, s are the canonical injections. This diagram is an exact patch and, moreover,
the pair (k, s) can be seen as a universal arrow

(k, s) : (X, B) −→ GF(X, B).

In order to conclude that the triple (I,G, J ) is an action-system of A over B it
remains to analyse the L-condition. In this case it simplifies to a diagram in A as the
one displayed below

123



Crossed modules 907

(X̄◦, X◦)
(1,k)

(1,h)

(Xα2,Y )
(k,1)

(1Xα2 ,α2)

(Ȳ ,Y )

(X, B)

(1X ,s)
(k,s)

in which α2s = 1B and α2k = h. This diagram comes from assuming that α =
(1Xα2 , α2) is a cartesian morphism and that all the conditions in the statement of
the L-condition are satisfied. The extra piece of information is the assumption that
f = (k, s) is a organic morphism. From this we have to show that (1, k) and (k, 1) are
morphisms inA. The fact that (1, h) is a morphism implies that (in fact, it is equivalent
to) Xh being equal to the conjugation action on X◦, or in other words Xh = X̄◦. From
here we can conclude that (1, k) is a morphism since we have Xα2k = Xh = X̄◦.

The requirement that (k, 1) is a morphism in A is equivalent to the requirement
that

k(α2(y) · x ′) = y + k(x ′) − y

holds for all x ′ ∈ X◦ and all y ∈ Y (note that we write Xα2(y)(x
′) as α2(y) · x ′ in order

to simplify notation). To prove this condition, we now make use of the assumption
that the morphism (k, s) is a organic morphism, which means that the cospan

X◦
k

Y B
s

is an exact patch and hence, every element y ∈ Y can be written in a unique way as
y = (x, b) with x ∈ X◦ and b ∈ B and, moreover, α2(y) = h(x) + b. It is now an
easy calculation to verify the desired condition since we have h(x) · x ′ = x + x ′ − x
because Xh = X̄◦.

4 A simplicial construction

In this section we introduce a simplicial construction which will be used in the proof
of the main result. We construct a simplicial object in a category B from a sequence
of cartesian split epimorphisms in a category A, which is equipped with a realization
functor into the category of points in B.

Let A and B be two categories and suppose that it is given a functor

A −→ Pt(B)

from the category A into the category of points (i.e. split epimorphisms) in B. We call
such functor a realization functor since it allows to consider (or realise) an object in
A as a split epimorphism in B. Giving such a functor is to give an ordered pair of
functors

F, I : A −→ B
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(we think of F as the domain functor and of I as the codomain functor) together with
two natural transformations

π : F −→ I and ι : I −→ F

which are related by the following condition

πι = 1I .

With this data, (F, I, π, ι), we are able to associate to every A inA a split epimorphism
in B of the form

FA
πA

I A.
ιA

In the proof of the following proposition we explain how to construct a simplicial
object in the category B, using the canonical split epimorphisms associated to each
object A in A, together with a sequence of cartesian split epimorphisms in A.

Proposition 2 Let (F, I, π, ι) : A −→ Pt(B) be a functor from A into the category
of split epimorphisms in B. Suppose that for every split epimorphism in A,

E
α

A,
β

if α is I -cartesian then the pair (Fβ, ιE ) is jointly epimorphic. Then, every sequence
of split epimorphisms in A of the form

... An

αn
An−1

βn

... A2
α2

A1
α1

β2

A0
β1

(15)

in which αn is cartesian for all n, and

I An = FAn−1

I (αn)ιn−1 = 1I An−1

I (αn+1)F(βn) = 1I An , (16)

induces a simplicial object in B.

Note that we denote πAn and ιAn by πn and ιn and omit some parenthesis, so that
I (A) becomes I A.
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Proof The simplicial object has the following form

... I A3 = FA2

π2

I (α3)

F(α2)

F2(α1)

I A2 = FA1

π1

I (α2)

F(α1)

ι2

F(β2)

F2(β1)

I A1 = FA0

π0

I (α1)

ι1

F(β1)
I A0

ι0

· · · I An+1 = FAn

πn

I (αn+1)

F(αn)

F2(αn−1)
...

Fi (αn−i+1)
...

Fn(α1)

I An = FAn−1

ιn

F(βn)

F2(βn−1)

Fi (βn−i+1)

Fn(β1)

· · ·

in which F2(α1) = F(F(α1)
∗) with F(α1)

∗ the unique morphism in A such that
α1F(α1)

∗ = α1α2 and I (F(α1)
∗) = F(α1), as illustrated in the following picture

A1

α1

I A1

Iα1

A2

F(α1)
∗

α1α2
A0 I A2

F(α1)

I (α1α2)
I A0,

that exists because α1 is I -cartesian and the triangle on the right is commutative (see
Eq. (17) below). Similarly, F2(β1) = F(F(β1)

∗) with F(β1)
∗ the unique morphism

inA such that α2F(β1)
∗ = 1A1 and I (F(β1)

∗) = F(β1), as displayed in the following
picture

A2

α2

I A2

Iα2

A1

F(β1)
∗

A1 I A1

F(β1)

I A1.
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910 N. Martins-Ferreira

In a similar fashion we can obtain Fi (αn−i+1) and Fi (βn−i+1) for all i up to n. The
details are omitted since we will not work with n greater than 2.

The necessary equations for the construction of Fi (αn−i+1) are satisfied because
the pair

(F(βn), ιn)

is jointly epimorphic for all n. Indeed, for example, the construction of F2(αn−1)

depends on the equation
I (αn)F(αn) = I (αnαn+1) (17)

which is true because we have

I (αn)F(αn)F(βn) = I (αn) = I (αnαn+1)F(βn)

and (since ι is natural)

I (αn)F(αn)ιn = I (αn)ιn−1 I (αn) = I (αn) = I (αnαn+1)ιn .

Using the same technique it is possible to check that all the simplicial equations
are satisfied, a routine but demanding task. 
�

Let us now consider a simple example of this simplicial construction.
Let B be a pointed category with binary coproducts. Take A to be the category

B × B and, for every pair (X, B) of its objects, define

I (X, B) = B

F(X, B) = X + B

πX,B = [0, 1] : X + B −→ B

ιX,B = ιB : B −→ X + B.

In this case the functor I is a fibration and a morphism α = (α1, α2) in A is cartesian
if and only if α1 is an isomorphism. Moreover, for any split epimorphism

(E1, E2)
(α1,α2)

(A1, A2)
(β1,β2)

in A, if α1 is an isomorphism then the cospan

A1 + A2
β1+β2

E1 + E2 E2
ιE2

is jointly epimorphic (observe that (β1 + β2)ιA1α1 = ιE1 ).
Now, in the particular case of abelian groups, a sequence such as the one displayed

in (15) with αn cartesian for all n and satisfying Eq. (16) is completely determined,
up to isomorphism, by a morphism
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h : X −→ B

and it is of the following form

A0 = (X, B)

A1 = (X, X + B)

A2 = (X, X + (X + B)) ∼= (X, 2X + B)

An = (X, nX + B)

α1 = (1X , [h, 1B])
β1 = (1X , ιB)

α2 = (1X , [ιX , 1X+B])
β2 = (1X , ιX+B)

αn+1 = (1X , [ιX , 1nX+B])
βn+1 = (1X , ιnX+B).

In other words, it is completely determined by the first element of the sequence. This
is not true in general but it gives a way to generate examples. Going back again to a
category B, pointed with binary coproducts, we can consider a sequence of the form
just describd and, by Proposition 2, we are able to construct the following simplicial
object

X + (2X + B)

[0,1]

[ιX ,12X+B ]

1+[ιX ,1]

1+(1+[h,1])

X + (X + B)
∼=

2X + B

[0,1]

[ιX ,1X+B ]

1+[h,1B ]

ι2X+B

1+ιX+B

1+(1+ιB )

X + B

[0,1]

[h,1]
ιX+B

1+ιB
B

ιB

(18)

which, for simplicity, we truncated at level 3.

5 The category of Whitehead sequences

Let (I,G, J ) be a triple of functors as displayed in (8) such that

IG = 1B = JG.

We consider the category W(A) whose objects are the Whitehead sequences in A
(see Definition 5). A morphism f : (A, u, v) −→ (A′, u′, v′) between twoWhitehead
sequences is a morphism f : A −→ A′ in A such that the two squares below are
commutative
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GJ A
v

GJ ( f )

A
u

f

G I A

GI ( f )

GJ A′ v′
A′ u′

GI A′.

When, moreover, the triple of functors (I,G, J ) is an action-system of A over B
(definition 7) and denoting by (F,G, η, ε) the adjunction in which F is the left adjoint
of G [Proposition 1(i)], then we can define a full subcategory of W(A), denoted by
W∗(A), as follows: a Whitehead sequence (A, u, v) is an object in W∗(A) if every
cartesian morphism α : E −→ A in its induced sequence of cartesian morphisms [as
in Proposition 1(vi)] has the property that the square

FE
εI E F(πE )

Fα

I E

Iα

FA
εI A F(πA)

I A

is a pullback square. The morphisms πE : E −→ GI E and πA : A −→ GI A are
the components of the natural transformation that is obtained as in the item (ii) of
Proposition 1. For example, in the case of the category of groups, together with the
action-system of group actions over it (as illustrated in Sect. 3), we have that to each
cartesian morphism α : E −→ A its associated square in the sense above is of the
form

J (E) � I (E)
[0,1]

J (α)�I (α)

I (E)

I (α)

J (A) � I (A)
[0,1]

I (A)

which is always a pullback square. Indeed, it simply follows from the fact that α is
cartesian and hence J (α) is an isomorphism.

We denote bySimp(B) the category of internal simplicial objects inB and consider
the category of internal categories in B, Cat(B), as a full subcategory of Simp(B).

Theorem 1 Let (I,G, J ) be an action-system of A over B. There is a functor from
W(A) into Simp(B) such that its restriction to W∗(A) factors through Cat(B)

W(A) Simp(B)

W ∗(A) Cat(B).

Proof Following Proposition 1, to every Whitehead sequence (A, u, v) we can asso-
ciate an infinite sequence of cartesian split epimorphisms αi , with section βi ,
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· · · A3
α3

A2
α2

A1
α1

A0 = A

such that I (α1) = εI AF(u) and for every i = 1, 2, . . .

I (αi+1) = εI Ai F(μi )

αiβi = 1Ai−1

I (βi ) = I (ηAi−1).

Here, (F,G, η, ε) is the adjunction as in Proposition 1(i), and (A1, ν1, μ1) is the
Whitehead sequence obtained (as in item (v) of Proposition 1) from the Whitehead
sequence (A, u, v). Similarly we obtain (Ai+1, νi+1, μi+1) from (Ai , νi , μi ) for all
i ∈ N.

It follows that

I (Ai ) ∼= F(Ai−1)

I (αi )I (ηAi−1) = I (αi )I (βi ) = 1I Ai−1

I (αi+1)F(βi ) = εAi F(μi )F(βi ) = εI Ai F(μiβi )

= εI Ai F(ηAi−1) = εFAi−1F(ηAi−1)

= 1FAi−1 = 1I Ai .

In order to make use of Proposition 2 with the sequence of cartesian morphisms as
constructed above, the natural transformation πi = εI Ai F(πAi ) (with πAi obtained
as in item (ii) of Proposition 1) and with ιi = I (ηAi ) we have to verify that the
pair (F(βi ), I (ηAi )) is jointly epimorphic. This is a consequence of the fact that,
for each A ∈ A, ηA is a organic morphism (Definition 4) and hence the cospan
(J (ηA), I (ηA)) is jointly epimorphic. In particular, this implies that (F(βi ), I (ηAi ))

is jointly epimorphic because each J (βi ) is an isomorphism (since α is cartesian then
J (α) is an isomorphism and so also J (β) is an isomorphism) and we have

J (ηAi ) = F(βi )J (ηAi−1)J (βi )
−1.

From here we can construct a simplicial object, in the same way as it was done in
the proof of Proposition 2, which is displayed up to level 3 (to compare it with the
notion of an internal category we will not need to go further) as follows:

FA2

π2

I (α3)

F(α2)

F2(α1)

I A2 = FA1

π1

I (α2)

F(α1)

ι2

F(β2)

F2(β1)

I A1 = FA0

π0

I (α1)

ι1

F(β1)
I A0

ι0

Again, checking the simplicial conditions is a routine (although a demanding) task.
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This shows that we can assign a simplicial object to everyWhitehead sequence and,
moreover, that this construction is functorial. Indeed, if

f : (A, v, u) −→ (A′, u′, v′)

is a morphism betweenWhitehead sequences then it can be lifted to the level of infinite
sequences of cartesian split epimorphisms so that it respects the simplicial equations.
This is possible because the morphisms αi are cartesian and we will have

Ai+1
αi

fi

Ai−1

fi−1

A′
i

α′
i A′

i−1

for all i ∈ N with f0 = f .
This gives us a functor fromW(A) intoSimp(B). In order to be able to compare the

simplicial structure defined above with the one of an internal category, we now give
a diagram with the standard notation for an internal category object in B. An internal
category in B is a diagram of the form

C3

q2

m2

m1

q1

C2

p2

m

p1

i2

i0

i1

C1

d

c

e2

e1
C0

e

(19)

where C0 and C1 are, respectively, the object of objects and the object of morphisms,
while d, e, c are, respectively, domain, identity, and codomain; C2 is the object of
composable pairs, obtained by the following pullback (with p1, p2 the canonical
projections and e1, e2 the induced inclusions)

C2

p2

p1

C1
e2

c

C1

e1

d
C0.

e

e

Similarly,C3 is the object of composable triples, specifically calculated for generalized
objects as

C3 = {(( f, g), (h, k))|( f, g), (h, k) ∈ C2, g = hk}
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in other words it is the object in the following pullback diagram, of m along p2

C3

q2

m1

C2
i2

m

C2

i1
p2

C1.

e1

e2

Note that C3 can also be given by the following pullback

C3

q2

q1

C2
i2

p1

C2

i1
p2

C1

e1

e2

which is equivalent, being then C3

C3 = {(( f, g), (h, k))|( f, g), (h, k) ∈ C2, g = h}.

To the reader not familiar with the above notation for internal categories, and in order
to easily compare it with themore standard simplicial one, it may be helpful to consider
the particular case where C0 = 1 and write m(x, y) = xy, in this case we have

p2(x, y) = y

p1(x, y) = x

e1(x) = (x, 1)

e2(y) = (1, y)

q2(x, y, z) = (y, z)

q1(x, y, z) = (x, y)

m1(x, y, z) = (x, yz)

m2(x, y, z) = (xy, z)

i1(x, y) = (x, y, 1)

i2(y, z) = (1, y, z)

i0(x, z) = (x, 1, z). (20)

Table 1 translates the (relevant) simplicial equations into the definition of internal
category. The first column contains the equation in the context of an internal cate-
gory; the middle column presents the equivalent simplicial equation, obtained by the
simplicial construction above; the last column gives the corresponding equation in
the context of A and W(A) where we can easily see why the equation is true: lines
1 to 6, by definition; lines 7, 10 and 11 by naturality; lines 9 and 12, see Eq. (17);
it remains to explain line 8—it follows from the fact that I (μ) = 1 = I (πA1) and
π0 J (ηA) = 0 = J (πA1), since ηA is organic for every A in A. 
�
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Table 1 Translation between equations: from the language of internal categories, to simplicial objects, to
Whitehead sequences

Cat(B) Simp(B) W(A)

1 de = 1 π0ι0 = 1 I (πA) = 1

2 ce = 1 I (α1)ι0 = 1 I (μ) = 1

3 p2e2 = 1 π1ι1 = 1 I (πA1 ) = 1

4 me2 = 1 mι1 = 1 I (μ) = 1

5 me1 = 1 mF(β1) = 1 μ1β1 = ηA

6 p1e1 = 1 F(α1)F(β1) α1β1 = 1

7 cp2 = dp1 I (α1)π1 = π0F(α) πAα = GI (α)πA1

8 dp2 = dm π0π1 = π0m G(π0)μ1 = G(π0)πA1

9 cp1 = cm I (α1)F(α1) = I (α1)I (α2) uα1 = GI (α1)μ1

10 p2e1 = ed π1F(β1) = ι0π0 πA1β1 = GI (β1)πA

11 p1e2 = ec F(α1)ι1 = ι0 I (α1) F(α1)I (ηA1 ) = I (ηA)I (α1)

12 mm1 = mm2 I (α2)F(α2) = I (α2)I (α3) μ1α2 = GI (α2)μ2

We now have the following: if the squares

FA1
π1

F(α1)

I A1

I (α1)

FA
π0

I A

, FA2
π2

F(α2)

I A2

I (α2)

FA1
π1

I A1

are pullbacks, then the simplicial object constructed above is, in fact, an internal
category object inB. This proves thatW∗(A) factors throughCat(B). Indeed an object
ofW(A) is inW∗(A) as soon as every morphism α in its induced infinite sequence of
cartesian split epimorphisms has the property that the square

FE
εI E F(πE )

F(α)

I E

I (α)

FA
εI A F(πA)

I A

is a pullback.

6 Groupoids and Whitehead sequences

We are now interested in the case when there is an equivalence between the category
of Whitehead sequences in A and the category of internal groupoids in B, as it is the
case, for example, for the category of groups and group actions.
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Theorem 2 Let (I,G, J ) be an action-system of A over B. If the pair of functors
(I, J ) is jointly conservative and there is an equivalence of categories

A ∼ Pt(B),

compatible with the system (I,G, J ), then there is an equivalence of categories

W∗(A) ∼ Gpd(B).

Proof Suppose we have an equivalence of categories

A
∼−→ Pt(B)

which is compatible with the action-system, that is, an object A in A is realized as a
point of the form

FA
εI A F(πA)

I A,
I (ηA)

where F is the left adjoint of G. The equivalence allows us to assume that for any
given split extension

X
k

Y
p

B
s

we can find an object A in A such that the following diagram commutes

J A
J (ηA)

FA
εI A F(πA)

∼=
I A

I (ηA)

X
k

Y
p

I A.
s

This fact, together with the assumption that the pair of functors is jointly con-
servative, proves that B satisfies the Split Short Five Lemma and hence any internal
category object inB is also a internal groupoid (see [2] and references there). It remains
to prove that given a internal groupoid in B we can find a Whitehead sequence such
that, after applying the simplicial construction, the original groupoid is recovered, up
to isomorphism.

The procedure is as follows. Given a internal groupoid as in (19), using

C1
d

C0
e
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we obtain an object A in A such that

J A
J (ηA)

FA
εI A F(πA)

∼=

I A
I (ηA)

X
k

C2
d

C0.
e

The morphism c gives

u : A −→ GI A

with u = G(c)ηA which is such that I (u) = 1 and J (u) = h = c ◦ ker(d).
In order to obtain v : GJ A −→ A with J (v) = 1 and I (v) = J (u) = h, we

consider the pair (m, 1) as a morphism of points

C2

dp2

m

C0
e2e

C1
d

C0,
e

and transfer it, via the equivalence, from Pt(B) to A, in order to obtain, say

E

m∗

A.

It follows that J E = FAh where h∗ : Ah −→ A is the cartesian lifting of h : J A −→
I A, given by h = J (u) as defined above. This is possible because, on the one hand
J E is the kernel of dp2, while on the other hand, FAh is the pullback of h along d.

In this way we have a morphism

J E = FAh
J (m∗)

J A

and, via the adjuntion [see Proposition 1(i)], we also have a morphism

Ah
ρ =GJ (m∗)ηA

G J A

such that I (ρ) = 1J A and J (ρ) = 1J A. Now, using the fact that I and J are jointly
conservative we conclude that ρ is an isomorphism, and so we obtain the desired
v = h∗ρ−1. This gives a Whitehead sequence

GJ A
v

A
u

GI A
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such that, applying the simplicial construction to it, we obtain, up to isomorphism, the
original groupoid as

FA1
I (α2)

∼=

FA

π0)

I (α1)∼=

I Aι0

C2
m

C1

d

c

C0e

and this completes the proof. 
�
We say that Pt(B) is an action-system on B if the triple of functors (I,G, J ),

with I (A, B, p, s) = B the codomain functor, J (A, B, p, s) = ker(p) the kernel
functor and G the right adjoint of the domain functor F(A, B, p, s) = A (for a split
epimorphism p : A −→ B with section s : B −→ A) is an action system.

Corollary 1 If Pt(B) is an action system on B, then W ∗(Pt(B)) is equivalent to
Gpd(B).

7 Conclusion

We conclude with an application of the previous result in the case where the category
B is pointed and protomodular [2].

In general, in order to have an action-system, we can always take A to be the
category of all stable and exact patches in B. Then, for an object A = (X,Y, k, s, p)
as in Definition 2, we define I (A) = B, J (A) = X and F(A) = Y . Moreover, if for
every object B in B the diagram

B
〈1,0〉

B × B
π2

B〈1,1〉

is a stable patch (as it is always the case in a pointed protomodular category) then we
have a functor G and the system (I,G, J ) is an action system of A over B provided
that the L-condition holds. In the case whenB is a protomodular category, considering
the system (I,G, J ) as before, if f : A −→ Y ′ is a organic morphism then we have
Y ′ ∼= FA, which is an immediate consequence of the Split Short Five Lemma. This
means that the L-condition can be simplified and it becomes equivalent, in this context,
to the following condition:

Every Peiffer graph is a multiplicative graph.

In the paper [15] it is proved that if B is a semi-abelian category then this condition is
equivalent to the so-called Smith is Huq condition.

As an application of Theorem 2 we can state a similar result to the one presented
in [12] concerning the description of internal groupoids in a pointed protomodular
category.
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Let B be a pointed and protomodular category in which every Peiffer graph is a
multiplicative graph. Then, giving an internal groupoid in B is to give an exact patch

X
k

Y B
s

together with a morphism

h : X −→ B

such that the two dashed arrows can be inserted in the diagram

X
〈1,0〉

X × X X
〈1,1〉

h

X

h

k
Y B

s

B
〈1,0〉

B × B B
〈1,1〉

in order to make it commutative.
Further details can be found in [12], see also [11,16].
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