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Abstract This paper studies questions of coherence and strictification related to self-
similarity—the identity S = S ® S in a semi-monoidal category. Based on Saavedra’s
theory of units, we first demonstrate that strict self-similarity cannot simultaneously
occur with strict associativity—i.e. no monoid may have a strictly associative (semi-)
monoidal tensor, although many monoids have a semi-monoidal tensor associative
up to isomorphism. We then give a simple coherence result for the arrows exhibiting
self-similarity and use this to describe a ‘strictification procedure’ that gives a semi-
monoidal equivalence of categories relating strict and non-strict self-similarity, and
hence monoid analogues of many categorical properties. Using this, we characterise
a class of diagrams (built from the canonical isomorphisms for the relevant tensors,
together with the isomorphisms exhibiting the self-similarity) that are guaranteed to
commute, and give a simple intuitive interpretation of this characterisation.

Keywords Category theory - Coherence - Self-similarity

1 Introduction

An object S in a semi-monoidal category (C, ®) is self-similar when it satisfies
the identity S = S ® S. In a I-categorical sense, self-similar objects are simply
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(pseudo-)idempotents and thus share many categorical properties with unit objects as
characterised by Saavedra (see Sect. 2.1); they also provide particularly well-behaved
examples of split idempotents (see Sect. 3.1). The most familiar non-unit example of
a self-similar object is undoubtedly the natural numbers in the monoidal categories
(Set, x) and (Set, W), as illustrated by Hilbert’s parable of the *’Grand Hotel’ (see [40]
for a good exposition in a general context). Topologically, self-similarity is clearly seen
in the Cantor set and other fractals [14,32]; algebraically, it is very closely connected
with Thompson’s groups (see Sect. 5), the polycyclic monoids [14,15,30], and finds
applications to algebraic models of tilings [25].

In computer science, self-similarity plays a key role in categorical models of untyped
systems such as the C-monoids of [29] (single-object Cartesian closed categories
without unit objects modelling untyped lambda calculus—see [12] for a survey). It is
particularly heavily used in Girard’s Geometry of Interaction program [10, 11] where,
as well as being a key feature of the ‘dynamical algebra’ it is implicitly used together
with compact closure to construct monoids isomorphic to their own endomorphism
monoid [1,14,15]. More recently, it has found applications in linguistic and grammat-
ical models [18] and categorical models of quantum mechanics [20]. Self-similarity
also has a very close connection with Thompson’s group F (see Sect. 5), and thus is
relevant to cryptography and cryptanalysis [21,39], and homotopy idempotents [6].

This paper gives a strictification procedure for self-similarity and coherence results
relating the isomorphisms exhibiting self-similarity with canonical isomorphisms for
the relevant (semi-)monoidal structures. The motivation for this is the observation
(Theorem 5), based on Saavedra’s theory of units (See Sect. 2.1), that strict self-
similarity and strict associativity are mutually exclusive—either one or the other of
these properties must be up to non-trivial isomorphism.

2 Categorical preliminaries

We refer to [33] for the theory of monoidal categories. We work with a slight gener-
alisation that satisfies all the axioms for a monoidal category except for the existence
of a unit object; following [28], we refer to these as semi-monoidal.

Definition 1 A semi-monoidal category is a category C with a functor _® _: C x
C — C that is associative up to an object-indexed family of natural isomorphisms
xyz X®XY ®Z)— (X®Y)® Z satisfying MacLane’s pentagon condition

(twxy ®lz) twxerz lw® T™xvz) = Twex.y.z TW.X.YoZ

A functor between semi-monoidal categories that (strictly) preserves the tensor is a
(strict) semi-monoidal functor. We assume the obvious definition of semi-monoidal
equivalence of categories.

(The above definition differs from that of [28] in that we do not assume strict
associativity—see Theorem 5 for the motivation for this). When we do consider unit
objects, we will use Saavedra’s characterisation, rather than MacLane and Kelly’s
original definition—see Sect. 2.1 below.
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Coherence and strictification for self-similarity 849

Remark 1 Any category C may be given a (degenerate) semi-monoidal tensor by
fixing some object X € Ob(C), and and defining A® B = X, f ® g = 1x for
all objects A, B € Ob(C) and arrows f, g € Arr(C). Standing assumptions such as
well-pointedness or monoidal well-pointedness are commonly used to exclude such
pathologies (see, for example [2], for definitions and applications of monoidal well-
pointedness). As we will consider semi-monoidal monoids where the unique object is
frequently neither terminal, nor a unit object, we will instead use the related assumption
of ‘faithful objects’ given below.

Definition 2 We say that an object A of a semi-monoidal category (C, ®) is faithful
when the functors A ® _, _ ® A : C — C are faithful.

Convention 1 Objects of semi-monoidal categories are faithful We make the stand-
ing assumption of faithful objects as a replacement for the notions of well -pointedness
ormonoidal well-pointedness, and instead indicate when an object of a semi-monoidal
category is not faithful.

2.1 Saavedra’s theory of units

MacLane’s original presentation of the theory of coherence for monoidal categories
gave a single coherence condition for associativity (the Pentagon condition) and four
coherence conditions for the units isomorphisms. Three of these four axioms were
shown to be redundant in [26], leaving a single coherence condition expressing the
relationship between the units isomorphisms, and associativity. In [38] an alterna-
tive characterisation of units objects was given that required no additional coherence
conditions—albeit at the expense of replacing the single coherence condition with a
conditional statement about the category as a whole (see [28] for a comprehensive
study of this, and [23] for extensions of this theory). We follow this approach because
of the close connection with the theory of self-similarity. Definition 3 and Theorem 2
below are taken from [23,28].

Definition 3 A (Saavedra) unit in a semi-monoidal category (C, ®, T) is a can-
cellable pseudo-idempotent, i.e. an object U € Ob(C) equipped with an isomorphism
a:U ®U — U, where the functors (U ® _), (_® U) : C — C are fully faithful.

We also refer to [28] for the following key results:

Theorem 2 1. Saavedra units are units in the sense of MacLane / Kelly, and thus a
semi-monoidal category with a (Saavedra) unit is a monoidal category.

2. Saavedra units are idempotents; i.e. a @ [y = 1y @ «

3. The functors U @ _and _ Q@ U are equivalences of categories.

Remark 2 The (equivalent) definitions of a unit object due to MacLane/Kelly, and
Saavedra/Kock are very different in approach; we do not present one as more funda-
mental than the other, but instead take a purely pragmatic viewpoint. Abstractly, the
MacLane/Kelly definition offers finitary conditions that are close in character to the
treatment of associativity; however, the Saavedra/Kock definition provides us with a
neat way of characterising when a ‘collapse to the unit object’ occurs (e.g. Theorem
5).
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850 P. Hines

3 Self-similar objects and structures

The theory of self-similarity is precisely the theory of pseudo-idempotents in (semi-
)monoidal categories. The difference in terminology arises for historical reasons—in
particular, differing conventions in computer science, mathematics, and pure category
theory.

Definition 4 An object S in a semi-monoidal category (C, ®) is called self-similar
when § = S ® S. Making the isomorphism exhibiting this self-similarity explicit, a
self-similar structure is a tuple (S, <1) consisting of an object S € Ob(C), and an
isomorphism <1 : § ® § — § called the code isomorphism. We denote its inverse by
< '=p: S5 — S® S and refer to this as the decode isomorphism.

A strictly self-similar object is an object S such that (S, 1g) is a self-similar
structure. The endomorphism monoid of a strictly self-similar object is thus itself a
semi-monoidal category with a single object—i.e. it is a semi-monoidal monoid.

Examples 3 Examples of non-strict self-similarity are discussed in Sect. 1. Strict
examples include Thompson’s group F (see [5] for the semi-monoidal tensor and
associativity isomorphism of this group, and Sect. 5 for the explicit connection with
strict self-similarity), and the group of bijections on the natural numbers, with the
semi-monoidal tensor given by

2.1 (%) n even,

(fxg)n) = 1
2.g (”T) +1 nodd,

and canonical associativity and symmetry isomorphisms respectively given by
2n n (mod 2) =0,

tn)=1n+1 n(mod4) =1, , o) =
23 n(mod 4) = 3.

n+1 neven,
n—1 nodd.

An elementary arithmetic proof that the above data specifies a semi-monoidal monoid
is given in [17]. More generally, it arises from a special case of a large class of repre-
sentations of Girard’s dynamical algebra (viewed as the closure of the two-generator
polycyclic monoid [34] under the natural partial order of an inverse semigroup) as
partial functions, given in [14,30]. Readers familiar with the Geometry of Interac-
tion program will recognise the (_ « _) operation as Girard’s model (up to Barr’s
> : pInj — Hilb functor—see [3,13]) of the (identified) multiplicative conjunction
& disjunction of [10,11].

3.1 Self-similarity as idempotent splitting

Self-similar structures are a special case of idempotent splittings. We refer to [9,29,
36,37] for the general theory and reprise some basic properties below:
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Coherence and strictification for self-similarity 851

Definition 5 An idempotent e =e e C(A, A splits when there exists some B €
Ob(C) together with arrows f € C(A, B), g € C(B, A) such that e = gf and
fg = 1. We refer to the pair (f, g) as a splitting of the idempotent e? = e.

Remark 3 'We may characterise self-similar structures in terms of splittings of identi-
ties: a self-similar structure (S, <1) uniquely determines, and is uniquely determined
by, an isomorphism < such that (<1, I>) is a splitting of 15 and (I>, <) is a splitting of
Lsgs-

This characterisation allows us to use standard results on idempotent splittings, such
as their uniqueness up to unique isomorphism:

Lemma 1 Given an idempotent ¢* = e € C(A, A) together with a pair of splittings
(f €C(A,B),g €C(B,A) and (f € C(A, B"), g’ € C(B', A)), then there exists a
unique isomorphism ¢ : B — B’ such that the following diagram commutes:

f
A——B
f ’J/ ¢/ J{g
yd
B —A
g/
Proof This is a standard result of the theory of idempotent splittings. See, for example,
[36]. O

Corollary 4 Self-similar structures at a given self-similar object are unique up to
unique isomorphism

Proof The proof of this is somewhat simpler than the general case, as the splittings have
both left and right inverses. Given a self-similar structure (S, <1), and an isomorphism
U:S — S, then (S, U<) is also a self-similar structure. Conversely, let (S, <) be a
self-similar structure, and define U = <'>. Then (S, U<)) = (S, <) and U = <'>
is the unique isomorphism satisfying this condition. O

Remark 4 Uniqueness of self-similar structures Corollary 4 provides an illustration
of the distinction between ‘unique up to unique isomorphism’, and ‘actually unique’.
If a self-similar structure at some object S € Ob(C) is actually unique, then the only
isomorphism from § to itself is the identity. Theorem 5 below then shows that S must
be the unit object for the tensor given in Theorem 9.

4 Strict self-similarity and strict associativity

Unit objects are special cases of self-similar objects—the distinction being that for
an arbitrary self-similar object S, the functors § ® _ and _ ® S need not be fully
faithful. We now describe how Saavedra’s characterisation relates strictness for both
associativity and self-similarity.
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852 P. Hines

Lemma 2 Let (M, x) be semi-monoidal monoid. The endomorphisms (_ % 1) and
(1 % _) are injective, and are isomorphisms precisely when the unique object of M is
the unit.

Proof Functoriality implies that _ % 1 and 1 x _ are monoid homomorphisms, and
injectivity follows from the assumption (Convention 1) of faithful objects. These
homomorphisms are isomorphisms precisely when they are fully faithful, in which
case the unique object of M satisfies Saavedra’s characterisation of a unit object. O

Theorem 5 Let (M, %, T) be a semi-monoidal monoid. Then _x_is strictly associative
if and only if the unique object of M is the unit for _x _.

Proof (=) From Lemma 2 above, and strict associativity, 1 x (_* 1), (I x_) x 1 :
M — M are identical injective monoid homomorphisms. Let us denote this monoid
embedding by 1 : M <— M. By injectivity, for every arrow F € n(M), there exists
aunique arrow f € M satisfying F = 1 x f % 1.

Define a (strict) semi-monoidal tensor (_ ® _) : n(M) x n(M) — n(M) by
FOG=1x(fxg)x1l,forall F =1xfx1,G = 1xgx1.Itisimmediate that this
is well-defined, and a semi-monoidal tensor. By definition, n(f * g) = n(f) © n(g),
50 (M, %) = (n(M), ©).

Finally 10 F) =1x(I*x f)x1 =1x1xfx1 =1x% f«x1=F, for arbitrary
F = 1x fx1l,andhence 1©_ : n(M) — n(M) is the identity isomorphism. Similarly,
_O1 = Idypm), and thus by Lemma 2, the unique object of (M, *) = (n(M), ©) is
the unit object.

(«=) It is a standard result of monoidal categories that the endomorphism monoid
of a unit object is an abelian monoid, and the tensor at this object coincides (up to
isomorphism) with this strictly associative composition. O

Remark 5 No simultaneous strictification This paper is about strictification and
coherence for self-similarity and its interaction with associativity. From Theorem
5, strictifying the associativity of a semi-monoidal monoid will result in non-strict
self-similarity; conversely, strictifying self-similarity in a strictly associative setting
will give a monoid with a non-strict semi-monoidal tensor (Proposition 3).

Examples 6 Finite and infinite matrices An illustrative example is given by infinitary
matrix categories. Countable matrices over a 0-monoid R enriched with a suitable
(partial, infinitary) summation' R form a category Matg, with Ob(Matg) = NU
{o0}. Hom-sets Maty (a, b) are subsets? of the set of functions Fun([0, b) x [0, a), R),
and composition is given by the Cauchy product.

Assuming technical conditions on summation are satisfied, the subcategory of finite
matrices has a strictly associative monoidal tensor, denoted _@_. On objectsitis simply
addition; given arrows, m € Matg(a,b),n € Matr(p, q), witha, b, p, g < o0, it is

1 See [16] for a suitable unification of various notions of summation from theoretical computer science and
analysis, and some associated category theory.

2 The set of allowable matrices is generally restricted by some summability condition, the details of which
do not affect the substance of the following discussion.
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Coherence and strictification for self-similarity 853

given by the familiar block diagonal formula,

m(x, y) x<a,y<b
médn)(x,y)=1nx—a,y—>b)yx>a, y>b
0 otherwise.

Although this definition cannot be extended to infinite matrices, the endomorphism
monoid Matg, (0o, 00) can be given a non-strict semi-monoidal tensor (again, assum-
ing technicalities on summation), such as

A(3.3) X,y even,
(A@c B,y =18 (55 5) xy odd,
0 otherwise.

This is the familiar ‘interleaving’ of infinite matrices, determined by the Cantor pairing
c: NWN — N given by c¢(n,i) = 2n + i, and used to great effect in modelling
the structural rules (as opposed to logical rules) of linear logic [10,11]. Any such
isomorphism < : N&W N — N will determine a (non-strict) semi-monoidal tensor on
this monoid. However, by Theorem 5, no strict semi-monoidal tensor on Matg (0o, 00)
may exist.

5 The group of canonical isomorphisms

In a semi-monoidal monoid, the isomorphisms canonical for associativity are closed
under composition, tensor, and inverses, and thus form a group with a semi-monoidal
tensor. As demonstrated in [8], in the free case this group is the well-known Thompson
group F (see [7] for a non-categorical survey). An algebraic connection between
this group and associativity laws is well-established (see [4] for a more categorical
perspective), and the tensor was given in [5]—although not in categorical terms. An
explicit connection with semi-monoidal monoids was observed in [31] where F is
given in terms of canonical isomorphisms and single-object analogues of projection /
injection arrows for the tensor.

An interesting connection between Thomson’s group F and the theory of idempo-
tent splittings is given in [6], in the context of (connected, pointed) CW complexes.
The unsplittable homotopy idempotents of a CW complex K are characterised by the
fact that they give rise to a copy of F in 71 (K). The categorical interpretation of this
is unfortunately beyond the scope of this paper.

6 A simple coherence result for self-similarity
We now give a simple result that guarantees commutativity for a class of diagrams

built inductively from the code/decode isomorphisms of a self-similar structure, and
the relevant semi-monoidal tensor. This is modelled very closely indeed on MacLane’s
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854 P. Hines

original presentation of his coherence theorem for associativity (briefly summarised
in Sect. 6.1), in order to describe the interaction of self-similarity and associativity.

6.1 Coherence for associativity—the unitless setting

We first briefly reprise some basic definitions and results on coherence for associativity,
taken from MacLane’s original presentation [33], in the semi-monoidal setting. This
is partly to fix notation and terminology, and partly to ensure that the absence of a unit
object does not lead to any substantial difference in theory. We also restrict ourselves
to the monogenic case, as this suffices to describe the interaction of associativity and
self-similarity.

More structural approaches to coherence may be found in [24,27,35]—these moti-
vate the approach taken in Sect. 7 onwards.

Definition 6 The set Tree of free non-empty binary trees over some symbol x is
is inductively defined by: x € Tree, and for all u,v € Tree then (uldv) € Tree.
The rank of a tree t € Tree is the number of occurrences of the symbol x in 7, or
equivalently, the number of leaves of 7.

We denote (the unitless version of) MacLane’s monogenic monoidal category
by (W, ). This is defined by: Ob(W) = Tree and there exists a unique arrow
(t < 5) € W(s, t) iff rank(s) = rank(t). Composition is determined by uniqueness.
Given p,q € Ob()W), their semi-monoidal tensor is p[lg; the tensor of arrows is
again determined by uniqueness.

Remark 6 MacLane’s definition [33] included the empty tree as a unit object, giving
a monoidal, rather than semi-monoidal, category. Applying the common technique of
adjoining a strict unit to a semi-monoidal category will recover MacLane’s original
definition, and MacLane’s original theory in the exposition below.

Definition 7 Given a semi-monoidal category (C, ®, T ., ), and some A € Ob(C),
MacLane’s associativity substitution functor WSub,4 : W, ) — (C, ®)isdefined
inductively below. When the context is clear, we elide the subscript on WSub .

— (Objects) For all u, v € Ob(W),

- WSubuldv) = WSub(u) @ WSub(v)

- WSub(x) = A € 0Ob(C).
— (Arrows) Given a, b, ¢, u, v € Tree, where rank(u) = rank(v),
WSub(a < a) = lyygupa) € COVSub(a), WSub(a)).
WSub((allb)Uc <« all(bUc)) = twsuba),Wsubb), WSub(c)
WSub(alv < alu) = hyysup@) ® WSub(v < u)
WSub(bUu < allu) = WSub(b < a) @ Iywsupw)

Remark 7 1t is non-trivial that WSub : W,0) — (Ca, ®) is a semi-monoidal
functor. This is a consequence of MacLane’s Pentagon condition [33].

Remark 8 As )V isposetal, all diagrams over VV commute, so all (canonical) diagrams
in C that are the image of a diagram in WV are guaranteed to commute. Naturality and
substitution are then used [33] to extend this to the general setting.
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6.2 A preliminary coherence result for self-similarity

We now exhibit a class of diagrams based on identities, tensors, and the code / decode
maps for a self-similar structure that are guaranteed to commute. This is based on a
substitution functor from a posetal monoidal category that contains MacLane’s (W, [J)
as a semi-monoidal subcategory.

Definition 8 The monogenic self-similar category (X', [J) was defined in [14] as
follows:

— Objects Ob(X) = Tree

— Arrows There exists unique (b <— a) € X(a, b) foralla,b € Ob(X).

— Composition This is determined by uniqueness.

— Tensor Given u, v € Ob(X), their tensor is the binary tree u[Jv. The definition
on arrows again follows from uniqueness.

— Unit object All objects e € Ob(X) are unit objects; by definition, the unique
arrow (e < ellJe) is an isomorphism, and the functors (e[J_), (_[e) : X — X
are fully faithful.

Remark 9 Abstractly, (X, [J) may be characterised as the free monogenic indis-
crete monoidal category. Thus, it is monoidally equivalent to the terminal monoidal
category—in the semi-monoidal setting, it is more interesting.

Definition 9 Let (S, <) be a self-similar structure of a semi-monoidal category (C, ®).
We define XSub4- : (X,00) — (C, ®), the self-similarity substitution functor,
inductively by, for all u, v, p, g € Ob(X):

XSub(x) = S, and XSubuldv) = XSub(u) @ XSub(v).
— XSub(x < ulv) = (X Sub(x < u) @ XY'Sub(x < v))
XSub(uldv < x) = >(XSub(u < x) @ XSub(v < x))
- XSub(ulv < plg) = XSub(ulv < x)XSub(x < pUg)

(We again omit the subscript when the context is clear).

Remark 10 In stark contrast to MacLane’s substitution functor, it is immediate that
XSub : (X,0) - (C, ®) is a strict semi-monoidal functor—no coherence conditions
are needed to ensure functoriality.

We may now give a preliminary coherence result on self-similarity.

Lemma 3 Let (S, <) be a self-similar structure of a semi-monoidal category (C, ®),
and let X Sub : (X, ) — (C, ®) be as above. Then every diagram over C of the form
XSub(®), for some diagram ®© over X, is guaranteed to commute.

Proof As (X, 1) is posetal, ©® commutes; by functoriality so does X' Sub (D). O

Remark 11 The diagrams predicted to commute by Lemma 3 are ‘canonical for
self-similarity’, with arrows built from code / decode isomorphisms, identities, and
the tensor. The more important question is about diagrams that are ‘canonical for
self-similarity and associativity’—when may these be guaranteed to commute? This
follows as a special case of a more general result (Sect. 8).
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856 P. Hines

Fig. 1 Under what
circumstances does the (W, D) (X ) D)

following diagram commute? Commutes?
WSub X Sub

(€, ®)

L

Remark 12 Does VW Sub factor through X Sub? There is an immediate semi-monoidal
embedding ¢ : W, ) — (&, ). An obvious question is whether, or under what
circumstances, the above substitution functors will factor through this embedding—
i.e. when does the diagram of Fig. 1 commute?

It is immediate that this can only commute under very special conditions. Func-
toriality of WWSub requires coherence conditions (i.e. MacLane’s pentagon), whereas
none are required for the functoriality of X' Sub. Further, commutativity of this dia-
gram would give a decomposition of canonical (for associativity) isomorphisms of
(C, ®) into ‘more primitive’ operations built from {<, >, ®}; in particular, 75 5 5 =
(>®15)(1s®<). A slight generalisation of Isbell’s argument on the skeletal category
of sets [33] would show that when (C, ®) admits projections, S is the terminal object.
Instead of giving a direct proof of this, we will give a more general result in Corollary
13.

7 Strictification for self-similarity

We first describe a strictification procedure for self-similarity that gives a semi-
monoidal equivalence between a monoid and a monogenic category, then use this
to give a coherence theorem that answers the question posed in Remark 11 in a more
general setting. This strictification procedure generalises the ‘untyping’ construction
of [14,15] (and indeed corrects it in certain cases—see Remark 15).

Definition 10 Given a semi-monoidal category (C,®, t ) and arbitrary S €
0b(C), the semi-monoidal category freely generated by S, denoted Fg, is defined
analogously to the usual monoidal definition. The assignment Inst : Tree — Ob(C)
is defined inductively by Inst(x) = S € Ob(C), and Inst(pOg) = Inst(p) ®
Inst(q) and based on this, objects and arrows are given by Ob(Fs) = Tree, and
Fs(u,v) = C(Inst(u), Inst (v)).

Composition is inherited in the natural way from C, as is the tensor: on objects this
is simply the formal pairing _[1_, and given arrows f € Fs(u,v), g € Fs(x, y) we
have

fOg = f ® g € Fs(uOx, vy) = C(Inst(u) ® Inst(x), Inst(v) ® Inst(y)).
The assignment Inst : Tree — Ob(C) extends in a natural way to a strict semi-
monoidal functor; using computer science terminology, we call this the instantiation

functor Insts : (Fs,00) — (C, ®). It is as above on objects, and the identity on
hom-sets, as Fs(u, v) = C(Inst(u), Inst(v)). It is immediate that this epic strict
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Coherence and strictification for self-similarity 857

semi-monoidal functor is a semi-monoidal equivalence of categories. When the object
is clear from the context, we simply write Inst : (Fg, ) — (C, ®)

The image of I nstg is the full semi-monoidal subcategory of C inductively generated
by the object S, together with the tensor _ ® _. We refer to this as the semi-monoidal
category generated by S within (C, ®), denoted (Cs, ®).

Based on the above definitions, the following are immediate:

Lemma 4 Let (S, <) be a self-similar structure of a semi-monoidal category (C, ®).
Then the small semi-monoidal categories (W, 1)), (X, 0) and (Fs, OJ) have the same
set of objects, and

1. The tuple (x, <) is a self-similar structure of (Fs, ).

2. The functors XSub : (X,0) — (Fs,0) and WSub(W,0J) — (Fs,0) are
monic.

3. The following diagram commutes:

ow,0) — 22 (pg,0) <5 (), D)
\
WSub Inst X Sub
(Cs, ®)

Remark 13 The commutativity of the left hand triangle in the above diagram is well-
established, and part of a standard approach to coherence for associativity and other
properties. In particular, Joyal and Street phrased MacLane’s theorem as an equiva-
lence between the free monoidal category on a category and the free strict monoidal
category on a category (see [24] for details and extensions of this approach).

7.1 Functors from categories to monoids

The monic functor X'Sub : (X, ) — (Fs, 1) specifies a distinguished wide semi-
monoidal subcategory of (Fgs, [J); we use the following notation and terminology for
its arrows:

Definition 11 Given a self-similar structure (S, <1) of a semi-monoidal category, we
define an object-indexed family of arrows, the generalised code isomorphisms, by
{<u = XSub(x < u) € Fsu, x)}yconFs)- We refer to their inverses, {>, =
XSub(u < x) € Fs(x, u)},conFs) as the generalised decode isomorphisms.

Remark 14 As observed in Remark 16 below, the above object-indexed families of
arrows are the components of a natural transformation. An alternative perspective
is that (<, >,) is a splitting of 1,, and (>>,, <) is a splitting of 1. The unique
isomorphism X Sub(v < u) = >, <, € Fs(u, v) is then the isomorphism exhibiting
the uniqueness up to isomorphism of idempotent splittings described in Corollary 4.

Remark 15 As (Fs, ) is freely generated, we may give an inductive characterisation
of the generalised code arrows by:
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- <y =15 €C(S,S) = Fs(x, x).
- L =<€lS®S,S) =Fs(xUx, x)
- <y = <G (<O<) € Fo(x, ullv).

and similarly for the generalised decode arrows. This is used as a definition in [15],
where it is (incorrectly) assumed that (Cs, ®) = (Fgs, [J) in every case—an assump-
tion holds for the particular examples considered there, but not more generally.

These generalised code/decode arrows allow us to define a fully faithful functor from
Fs to the endomorphism monoid Fs(x, x), considered as a single-object category.

Definition 12 Let (S, <) be a self-similar object of a semi-monoidal category (C, ®).
We denote the endomorphism monoid Fg(x, x), considered as a single-object cat-
egory, by End(x), and define the generalised convolution functor ®, : 75 —
End(x) by

— Objects ®4(A) = x, forall A € Ob(Fs).
— Arrows Given f € Fs(A, B), then ®4(f) = <p fI>4, where <_and > _are as
in definition 11.

When the self-similar structure in question is apparent from the context, we will omit
the subscript and write ® : Fg — End(x).

Proposition 1 The generalised convolution functor given above is indeed a fully faith-
ful functor.

Proof For all a € Ob(Fs), ©(1,) = 1,. Given f € Fs(a,b), g € Fs(b, c), then
D(gf) = <egfDy=<gp < fy=D(g)P(f), and thus P is a functor. For all
h e Fs(x,x), ®(h) = h € End(x) = Fs(x, x), and thus & is full. Finally, given
f., f' € Fs(a, b), then

(D(f):(l)(f/) < <]bf|>a=|>bf/<]a < |>b<]bf|>a <a
Dp<lp f Da<a & f=f

and thus ® : Fg — End(x) is faithful. O

A simple corollary is that the category freely generated by a self-similar object, and
the endomorphism monoid of that object (considered a a single-object category) are
equivalent:

Corollary 7 Let (S, <) be a self-similar object of a semi-monoidal category (C, ®).
Then the categories Fs and End(x) are equivalent.

Proof Since & is fully faithful, it simply remains to prove that it is isomorphism-
dense. For arbitrary u € Ob(Fs), the generalised code/decode arrows <1, € Fs(u, x)
and >, = <u_1 € Fs(x, u) exhibit the required isomorphism End(x) = Fg(x, x) =
Fs(u, u). O

In Definition 13 below, we give a semi-monoidal tensor on End(x) that makes the
above equivalence a semi-monoidal equivalence of categories.
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v

u n w
T

xT x

@(h) @(h)

Fig.2 © and ®(®) as a single diagram

Remark 16 Corollary 7 guarantees the existence of suitable functors exhibiting this
equivalence of categories; more explicitly, let us denote the obvious inclusion by
t: End(x) < Fs. Then ®1 = Idg,q(x), and there is a natural transformation from
t® to Idrg whose components are the generalised decode isomorphisms of Definition
11:

Id]:s
Fs Fs Fs
%mmut& \ Hﬁ/
(0] L
End(x) End(x) End(x)

1dEna(x)

It is also almost immediate that a diagram over Fs commutes iff its image under
® commutes; due to the issues mentioned in Remark 15, we prove this explicitly in
order to illustrate how this relies on uniqueness of generalised code / decode arrows:

Corollary 8 Let (S, <) be a self-similar object of a semi-monoidal category (C, ®).
Then a diagram ® over Fs commutes iff ® (D) commutes.

Proof (=) This is a simple, well-known consequence of functoriality.

(«<) Let © be an arbitrary diagram over (Fg, ). Up to the obvious inclusion
t: End(x) — Fs,© and O (D) are diagrams in the same category; we treat their
disjoint union ® W & (D) as a single diagram. We then add edges to ® W ®(D) by
linking each node n with its image using the unique generalised code/decode arrows.
This is illustrated in Fig. 2.

Each additional polygon added to © & ®(®) commutes by definition of ®. Thus
the entire diagram commutes iff © commutes iff ®(®) commutes. O

7.2 Semi-monoidal tensors on monoids

We now exhibit a semi-monoidal tensor on the endomorphism monoid of a self-similar
object such that the equivalence of Corollary 7 becomes a semi-monoidal equivalence.
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Lemma 5 Let (S, <) be a self-similar structure of a semi-monoidal category and let
(Fs,O,t ) be the semi-monoidal category freely generated by S. Then, up to the
inclusion End(x) — Fg,

1. ®(fUg) = P (P(fHUDP(g)).
2. Dty pw) = Pty x.x), forallu, v, w € Ob(Fys).

Proof 1. Given f € Fs(a,b)and g € Fs(u, v),then ®( flg) =<, (fUL) >0, =

<O (K O<) (UG (o) >0 = < (K f o U <1y g5>0) Dy
= <O (@(NHUD(Q) >y = @ (P(HUD(g))

2. By definition, ®(t,v,») = <(uw)Owlu,v,w>uOww)> and by Remark 15, the
following diagram commutes:

Dx X 1XD[>); X |>u|:| ‘>v|:|>w
X s xOx = xO(xOx) (4; uJ(vOw)
q>(tll¢,l).ll(‘) tlt,l‘),w
X O xOx)Ox <——— (wv)dw
<Ox r QXDXDIJC ( ) (QMDQU)DQw ( )

By naturality of associativity isomorphisms, ® (4 w) =

<x[x (<]x|:[xD1x)((<’uD<’v)D<]w)((DMDDU)DDw)tx,x,x (Le > x> O
= <O (e Ol e 2 (LA 00 > 5 s
= (D(tx,x,x)

as required. O

Based on the above lemma, we give a semi-monoidal tensor on the endomorphism
monoid of a self-similar object.

Definition 13 Let (S, <) be a self-similar object of a semi-monoidal category. We
define the semi-monoidal tensor induced by (S, <) to be the monoid homomorphism
_*gq_: End(x) x End(x) — End(x) given by

Frag L o(fOg) = <o (FOQB 0

When the self-similar structure is clear from the context, we elide the subscript, and
write _x _ : End(x) x End(x) — End(x)

Theorem 9 The operation _ x _ defined above is a semi-monoidal tensor, and thus
(End(x), _*_) is a semi-monoidal monoid.

Proof Functoriality of @ gives 1 x 1 = &(1,01,) = &(1,q,) = 1, and

(f * &) (hx k) = O(fUg)P(hLk) = P((fLg)(hLk)) = ®(fhligk) = fh gk
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Let us define o = P (#y x ). From Part 2. of Lemma 5, ®(#,,,,,) = «, for arbitrary
u,v,w € Ob(Fgs). From Part 1. of Lemma 5, and Corollary 8,

a(fx(gxh)=((frgxha Vf g heEnd(x)

and o2 = (a » Da(l * «). Thus both naturality and MacLane’s pentagon condition
are also satisfied. O

Corollary 10 The functor ® : Fs — End(x) satisfies ®(fg) = ®(f) » P(g),
and thus is a strict semi-monoidal functor ® : (Fs,J) — (Cs, ®).

Proof This follows from Theorems 5 and 9. O

At a given self-similar object S € Ob(C), the semi-monoidal tensor is determined by
the choice of isomorphism <1 € C(S® S, §); however, these are related by conjugation
in the obvious way, and thus _ » _ is unique up to unique isomorphism.

Proposition 2 Let (S, ¢) and (S, <) be self-similar structures at a given self-similar
object. Then f xq g = <lc™ (f ¢ g)c> forall f, g € End(x).

Proof This follows by direct calculation on Definition 13; alternatively, and more
structurally, it follows from the uniqueness up to unique isomorphism of idempotent
splittings, and hence self-similar structures (Corollary 4). O

Remark 17 The above Proposition does not imply that all semi-monoidal tensors on a
given monoid are related by conjugation. As a counterexample, the monoid of functions
on N has distinct semi-monoidal tensors, arising from the fact that it is a self-similar
object in both (Fun, x) and (Fun, W), that are clearly not related in this way (the
relationship between the two is highly non-trivial and a key part of Girard’s Geometry
of Interaction program [10,11], the details of which are beyond the scope of this
paper—see [19] for details).

From Theorem 5, (End(x), _» _) can only be strictly associative when x is the
unit object for _ » _. When (S, <) is a self-similar structure of a strictly associative
semi-monoidal category (e.g. the rings isomorphic to their matrix rings characterised
in [22]), the associativity isomorphism for _ x _ has the following neat form:

Proposition 3 Let (S, <) be a self-similar object of a strictly associative semi-
monoidal category (C, ®). Then the associativity isomorphism for (End(x), %) is
givenbya = (< ® lg)(1s  >)> € End(x) =C(S, S).

Proof This follows by direct calculation on Part 2. of Lemma 5. O
7.3 The strictly self-similar form of a monogenic category

The following is now immediate:

Theorem 11 Let (S, <1) be a self-similar structure of a semi-monoidal category
(C, ®). Then (Cs, ®), (Fs, ) and (End(x), x) are semi-monoidally equivalent.
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Proof The semi-monoidal equivalence between (Fs, [1) and (Cg, ®) is given by the
semi-monoidal functor of Definition 10. From Corollary 10, the equivalence of cate-
gories between Fg and End(x) gives a semi-monoidal equivalence between (Fyg, [J)
and (End(x), *). O

Corollary 12 Every monogenic semi-monoidal category with a self-similar generat-
ing object is semi-monoidally equivalent to a semi-monoidal monoid. This justifies the
description of (End(x), x) as the self-similarity strictification of (Cs, ®).

Remark 18 A general principle is that ‘categorical structures’ are preserved by equiv-
alences of categories. For example, if Cg is closed, then so is End(x); this is used
implicitly in [29] to construct single-object analogues of Cartesian closed categories,
and in [14,15] to construct single-object analogues of compact closure. Similarly,
when (Cs, ®) admits projections / injections, (End(x), x) contains a copy of Girard’s
dynamical algebra [14,15,30] and under relatively light additional assumptions, admits
a matrix calculus [20]. In general, we may find single-object (i.e. monoid) analogues
of a range of categorical properties. This is particularly relevant to the ‘objects as
types’ paradigm of some branches of theoretical computer science, where ‘untyped’
systems are more properly thought of as ‘single-type’ systems.

We may now answer the question posed in Remark 12.

Corollary 13 The diagram of Fig. 1 commutes precisely when the self-similar object
in question is the unit object.

Proof In the self-similarity strictification of (Cs, ®), the self-similarity is exhibited
by identity arrows. Commutativity of the diagram of Fig. 1 implies that (End(x), x)
has a strictly associative semi-monoidal tensor, so by Theorem 5, the unique object of
End(x) is the unit object for _ » _. The equivalences of Theorem 11 then imply that
S is the unit object for (Cy, ®). O

Self-similarity strictification also illustrates a close connection between the gener-
alised convolution and instantiation functors; informally, generalised convolution is
simply instantiation in an isomorphic category:

Proposition 4 Let (S, <) be a self-similar object of a semi-monoidal category (C, ®),
and denote by (Fs, ) and (Fyx, Q) the semi-monoidal categories freely generated
by S, and the unique object of (End(x), %), respectively. Then there exists a semi-
monoidal isomorphism K : (Fg,0) — (Fx, Q) such that the following diagram of
semi-monoidal categories commutes:

//—K\
(]:S’ D) \K_I/ (-7:)“ <>)

(End(x), %)

Proof We define the semi-monoidal functor K : (Fs, ) — (Fy, O) as follows:
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— The small categories (Fy, ¢) and (Fg, [J) have the same underlying set of objects;
we take K to be the identity on objects.
— Given f € Fg(u, v) we define K(f) = <, f>, € Fs(x, x) = Fy(u, v).

The inverse is immediate, as is the (strict) preservation of the semi-monoidal tensor.
The commutativity of the above diagram follows by expanding out the definitions of
® and Inst. O

8 General coherence for self-similarity

We now consider coherence in the general case. Let us fix a a self-similar structure
_____ ). We will abuse notation slightly;
based on the monoid isomorphism End(x) = C(S, S), we treat the semi-monoidal
tensor _ x« _ equally as an operation on C(S, §) = Fs(x, x) and denote the (unique)
associativity isomorphism for _x _as o € C(S, §).

The question we address is the following:
Given a diagram over Cg with arrows built inductively from

(L®_.t._ . <. _*_,a, (O}

when may it be guaranteed to commute?
We first fix some terminology.

Notation 14 Given a category C and a class T of operations and arrows of C, we say
that a diagram is canonical for I" when its edges are built inductively from members
of I'. For example, in a semi-monoidal category (C, _®_, T __ ), adiagram canonical
for{_®_,t __,()~"Yisadiagram canonical for associativity, as usually understood.

The following demonstrates that a simple appeal to freeness is not sufficient:

Proposition 5 Let (Fg,U, ¢t ) be the semi-monoidal category freely generated by
S. Then, over Fg

1. All diagrams canonical for {_O_,t ___, ()~} commute.
2. All diagrams canonical for {__, <, ( )_1} commute.
, <L ( )_1} commute iff S is a unit object

——

for (Cs, ®).

Proof 1. is well-established, and follows from the monic-epic decomposition of
MacLane’s substitution functor described in Lemma 4 and (in the monoidal case)
is commonly used [24] to study coherence. 2. follows similarly from Lemma 4. For
3., the following diagram is canonical for self-similarity and associativity:

xOx
Dxm)cy WDX
(xOx)Ox - xO(xOx)

XXX
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v

h > o<y

Y Yy
By <z D <z
P q P q
xr z xr
- -

z

Fig.3 T~ Y when all ‘vertical’ squares commute in the rhs diagram

Applying @ : (Fs, ) — (End(x), %) to this diagram gives the associativity isomor-
phism for (End(x), x) as @ = 1, so by Theorem 5 the unique object of End(x) is
the unit object for _  _. Appealing to the semi-monoidal equivalences of Theorem 11
gives that S € Ob(Cs) is the unit object for _ ® _. O

We now introduce an equivalence relation on diagrams over Fg that allows us to
answer this question in the free case:

Definition 14 As Fy is a small category, we may treat a diagram © over Fg, with
underlying directed graph G = (V, E), as a pair of functions Dy : V — Ob(Fs)
and O : E — Arr(Fy) satisfying

De(e) € Fs(Dy(v), Dy (w)) foralledges v —> w € E

We will omit the subscripts on ®y and ® g when the context is clear.
Given diagrams T, 4 with underlying graphs G = (V, E) and G’ = (V', E')
respectively, we say they are self-similarity equivalent, written ‘T ~ . 4{ when there

exists a graph isomorphism 1 : G — G’ such that, for all edges s —% 1 of G, the
following diagram commutes:

T(s) 9

D (5) st (n(s)) PEAORTIOIO)

Un(s)) W U (@)

(An intuitive description is illustrated by example in Fig. 3). This is an equivalence
relation, since the object-indexed isomorphisms <1 and > specify a wide posetal
subcategory of Fs. We denote the corresponding equivalence classes by [_]«.

Lemma 6 Given ¥ ~ > U over Fg, then ¥ commutes iff 4 commutes.

Proof This is immediate from the definition, and a slight generalisation of the reason-
ing in the proof of Theorem 8. O

We may now demonstrate commutativity for a class of diagrams in the free setting:

@ Springer



Coherence and strictification for self-similarity 865

Theorem 15 Let (S, <) be a self-similar structure of a semi-monoidal category
(C, ®), and let ® be a diagram over (Fs, 1) canonical for {0, ¢t , <1, *, ¢, ( )_1}.
The following two conditions are equivalent, and characterise a class of diagrams
guaranteed to commute:

1. [®]«q> contains a diagram canonical for {{J, ¢t ( )_1}.
2. ®(D), whichis canonical for {x, a, ()™}, is guaranteed to commute by MacLane’s
coherence theorem for associativity.

Proof Somewhat redundantly, we give separate proofs that both these conditions char-
acterise a class of commuting diagrams:

1. From the basic theory of coherence for associativity (see Lemma4), in (Fgs, ), all
diagrams canonical for {{],7 ___, ()~} are guaranteed to commute by MacLane’s
theorem; our result then follows from Lemma 6.

2. By construction, ®(< ) = 1, and ®(f0g) = ®(f) » P(g) for all arrows f, g.
Thus ®(®) is indeed canonical for {, &, ( )~'}. From Corollary 8, ®(®) com-
mutes iff © commutes. Thus when MacLane’s theorem predicts & (®) to commute,
® also commutes.

We now show that they characterise the same class of commuting diagrams:

(1. = 2) Let R € [D]> be canonical for {_[1_, 7, ( )~'}. As the functor
K : (Fs,0,t ) = (F, 0, t” ’ ) of Proposition 4 is semi-monoidal, K (R) is
canonical for {Q, t’) s ( )_1} and thus Inst (K (R)) = ®(R) is predicted to com-
mute by MacLane’s theorem. However, up to isomorphism of the underlying graph,
@ (PR) is identical to ¢ (D).

2. = 1.) As ®(D) is predicted to commute by MacLane’s theorem, there exists
some diagram P over (F, O,¢’ ) that is canonical for {0, ¢, ( )~ !} satisfying

Inst(P) = P(D). As the isomorphism K : (Fs,0, ¢t ) — (Fy, O, ti__) of

Proposition 4 is semi-monoidal, K ~!() is canonical for {{J,7 _ , ()~!} and by
construction K ~! () ~ D. Thus our result follows. O

The above theorem answers the question posed at the start of this section in the
‘formal’ setting (Fs, [J). To map this free setting to the concrete setting, we apply the
Inst : (Fs, ) — (Cs, ®) functor, giving the following corollary:

Corollary 16 Given a diagram € over Cs canonical for {Q,t __, <, *, o, ( )_1},
then € is guaranteed to commute when there exists a diagram ® over Fg that is
canonical for {(0,t ., <1, %, a, ()~} satisfying

1. © is guaranteed to commute by Theorem 15 above.
2. Inst(®) = €.

The identification of generalised convolution as the instantiation functor of a semi-
monoidally isomorphic category (Proposition 4) then translates the above into the
following intuitive characterisation of such diagrams:

Corollary 17 Let € be a diagram over Cs canonical for {®,t ., <, %, a, ()7},
Let us form a new diagram & over C (S, S) by the following procedure:
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— Replace every object in € by S.
— Replace every occurrence of @ by *.
— Replace every occurrence of t___ by o.

5

— Replace every occurrence of <1 by 1g.

Then &, which is canonical for {_x _,a,( )_1}, is guaranteed to commute by
MacLane’s coherence theorem for associativity iff € is guaranteed to commute by
Corollary 16.
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