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Abstract Like categories, small 2-categories have well-understood classifying
spaces. In this paper, we deal with homotopy types represented by 2-diagrams of 2-
categories. Our results extend lower categorical analogues that have been classically
used in algebraic topology and algebraic K-theory, such as the homotopy invariance
theorem (by Bousfield and Kan), the homotopy colimit theorem (Thomason), Theo-
rems A and B (Quillen), or the homotopy cofinality theorem (Hirschhorn).

Keywords 2-Category · 2-Functor · Classifying space · Grothendieck construction ·
Homotopy colimit

1 Introduction

If C is any small 2-category, by replacing its hom-categories C(x, y) by their clas-
sifying spaces |C(x, y)|, one obtains a topological category whose Segal classifying
space [30] is, by definition, the classifying space ||C || of the 2-category C . By this
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736 A. M. Cegarra, B. A. Heredia

assignment C �→ ||C ||, for example, 2-groupoids (or, equivalently, crossed modules
in the sense of Brown and Higgins) correspond to homotopy 2-types (i.e., to CW-
complexes whose nth homotopy groups at any base point vanish for n ≥ 3) [8,28],
and, up to group completion, monoidal categories (regarded as 2-categories with only
one object) correspond to delooping spaces of the classifying spaces of their underly-
ing categories [31]. A natural interpretation of the classifying space ||C ||, in terms of
charted C-bundles, is given in [3].

The category 2Cat of (small) 2-categories and 2-functors has a Thomason-style
model structure,1 such that the classifying space functor C �→ ||C || is an equivalence
of homotopy theories between 2-categories and topological spaces. This fact was first
announced in [35, Theorem 4.5.1], but fully proved in [1, Théorème 6.27].2 In
[14, Theorem 4.5 (ii)], an extension of the celebrated Thomason’s homotopy colimit
theorem [34, Theorem1.2] asserts that, for any categoryC and functorD : C → 2Cat,
the 2-category

∫
C D, obtained by applying the Grothendieck construction on D, is a

model for its homotopy colimit (with respect to the Thomason model structure in
2Cat). In other words, the induced functor between the homotopy categories

∫
C − :

Ho(2CatC ) → Ho(2Cat) is left adjoint to the functor assigning to any 2-category the
constant functor on C that it defines.

This paper focuses on the study of “homotopy colimits” of 2-functors D : C →
2Cat, from an indexing 2-category C into the 2-category 2Cat of 2-categories, 2-
functors, and 2-natural transformations, and our results extend lower categorical
analogues classically used in algebraic topology and algebraic K-theory. We shall
stress that the main difference with the case of diagrams D : C → 2Cat, where C
is a category, is that now there are 2-cells φ : p ⇒ p′ in C that produce 2-natural
transformations Dφ : Dp ⇒ Dp′, and therefore homotopies between the induced
maps on classifying spaces by the associated 2-functors Dp and Dp′, which must be
taken into account. However, a warning is needed since, for now, there is no known
model structure in the 2-category 2Cat having the Thomason model structure in the
underlying category 2Cat. So we are not actually correct to speak of (Cat-enriched)
homotopy colimits of such 2-functors D : C → 2Cat. However, as we shall prove in
the paper, the Grothendieck construction 2-functor

∫

C
− : 2CatC 2Cat

enjoys so many desirable homotopy properties, with respect to the Thomason model
structure on 2Cat, that it deserves to be thought of as the correct “homotopy colimit”
construction on 2-diagrams of 2-categories.

Interesting 2-diagrams of 2-categories naturally arise from basic problems in homo-
topy theory of 2-categories. For example, the analysis of the homotopy fibres of the
map ||F || : ||A|| → ||C || induced on classifying spaces by a 2-functor F : A → C

1 There is another model structure on 2Cat, known as the naive, or folk model structure [27], where weak
equivalences are the biequivalences.
2 The proof given in [35] was incorrect in two relevant points. See [1, Scholia (6.12) and (6.22)].

123



Homotopy colimits of 2-functors 737

leads to the study of the 2-functor F ↓ − : C → 2Cat, which associates to each
object c ∈ C the comma 2-category F ↓ c, whose objects are 1-cells in C of the
form p : Fa → c. A relevant result here is the extension of Quillen’s Theorem B
for 2-functors in [14, Theorem 3.2], which assures us that, under reasonable neces-
sary conditions, the sequences F ↓ c ↪→ A → B are homotopy-fibre sequences in
2Cat (with respect to the Thomason model structure). See also the relative Quillen’s
Theorem A for 2-functors in [18, Théorèm 2.34].

There is another interesting source for 2-diagrams of 2-categories: The study and
classification of opfibred 2-categories. The well-knownGrothendieck correspondence
between covariant pseudo-functors and opfibred categories [24] has been generalized
to bicategories in [4,9], where the authors prove, in particular, that the Grothendieck
construction on 2-functors D : C → 2Cat gives rise to 2-categories

∫
C D endowed

with a split 2-opfibration over C , and this correspondence D �→ ∫
C D is the function

on objects of an equivalence between the 3-category of 2-functorsD : C → 2Cat and
the 3-category of split 2-opfibred 2-categories over C .

The plan of the paper is as follows. After this introductory section, the paper is
organized into five sections. Section 2 is preliminary and comprises some notations
and a brief review of facts used later. This is itself subdivided into four sections with
summaries concerning geometric realizations of bisimplicial sets, classifying spaces
of 2-categories, the Grothendieck construction on 2-functors valued in 2Cat, and the
homotopy-fibre 2-functors respectively. Section 3 includes a main result of the paper,
which we call the Homotopy Colimit Theorem for 2-diagrams of 2-categories. With
Thomason’s homotopy colimit theorem as its natural precedent, the result therein
states that, for any 2-functor D : C → 2Cat, the geometric realization of 2-category∫
C D has the same homotopy type as the simplicial 2-category (i.e., simplicial object
in 2Cat)

BCD : �op → 2Cat

obtained by applying the bar (Borel or simplicial replacement) construction on D;
that is, the simplicial 2-category whose 2-category of p-simplices is

BCDp =
∐

c0,...,cp

Dc0 × C(c0, c1) × C(c1, c2) × · · · × C(cp−1, cp).

Hence, both constructionsBC− and
∫
C − can be interchanged for homotopy purposes.

The proof of this theorem is quite long and technical, but the result is crucial and
many further results are based on it. Section 3 also includes the Homotopy Invariance
Theorem, stating that ifD → E is a 2-transformation that is locally aweak equivalence,
then the induced

∫
C D → ∫

C E is also a weak equivalence. In Sect. 4, we deal with
questions such as: When does a 2-transformation � : D ⇒ E , between 2-functors
D, E : C → 2Cat, induce a homotopy left cofinal 2-functor

∫
C � : ∫

C D → ∫
C E?

Or when are the canonical squares (c ∈ ObC , y ∈ ObEc)
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738 A. M. Cegarra, B. A. Heredia

�c↓ y Ec↓ y

∫
C D

∫
C � ∫

C E

homotopy pullbacks? Our main results here are actually extensions of the well-known
Quillen’s Theorems A and B for functors between categories to morphisms between
2-diagrams of 2-categories. The final Sect. 5 is dedicated to analyzing the behavior
of the Grothendieck construction when a 2-functor D : C → 2Cat is composed with
a 2-functor F : A → C . There is a canonical 2-functor

∫
A F∗D → ∫

C D, and we
mainly study when this 2-functor is a weak equivalence or, more interestingly, when
the canonical pullback square in 2Cat

∫
A F∗D ∫

C D

A
F

C

is a homotopy pullback.

2 Preliminaries

This section aims to make this paper as self-contained as possible; hence, at the
same time as fixing notations and terminology, we review some needed construc-
tions and facts concerning geometric realizations of bisimplicial spaces (Sect. 2.1),
classifying spaces of (small) 2-categories (Sect. 2.2), the Grothendieck construction
on 2-functors valuated in the 2-category of 2-categories (Sect. 2.3), and the homotopy-
fibre 2-functors (Sect. 2.4). Although most of the material here is perfectly standard
by now, so the expert reader may skip it, some notational conventions may be a bit
idiosyncratic for some readers.

2.1 Geometric realizations of bisimplicial sets

For the general background on simplicial sets, refer to [7,22]. As usually,� denotes the
category of finite ordered sets [p] = {0, . . . , p} with non-decreasing maps between
them as morphisms. Recall that it is generated by the injections di : [n − 1] → [n]
(cofaces), 0≤ i ≤ n, which omit the i th element and the surjections si : [n+1] → [n]
(codegeneracies), 0≤ i ≤ n, which repeat the i th element, subject to the well-known
cosimplicial identities:d jdi = did j−1 if i< j , etc. Thus, in order to define a simplicial
object in a category E , say S : �op → E , it suffices to give the objects (of n-simplices)
Sn , n ≥ 0, together with morphisms

123



Homotopy colimits of 2-functors 739

di = Sdi : Sn → Sn−1, 0≤ i ≤ n (the face operators),
si = Ssi : Sn → Sn+1, 0≤ i ≤ n (the degeneracy operators),

satisfying the well-known basic simplicial identities: did j = d j−1di if i< j , etc.
In [30], Segal extended Milnor’s geometric realization process for simplicial sets

to simplicial (compactly generated Hausdorff topological) spaces. The realization |S|
of a simplicial space S : �op → Top, is as follows: for each n ≥ 0, let �n denote
the standard n-dimensional affine simplex and for each map α : [n] → [m] in � let
α∗ : �n → �m be the induced affinemap (i.e.,α∗(t0, . . . , tn) = (t ′0, . . . , t ′m)with t ′i =∑

α( j)=i t j ). Then the space |S| is defined from the topological sum
∐

n≥0 Sn ×�n by
identifying (Sα(x), t) ∈ Sn×�n with (x, α∗t) ∈ Sm×�m , for all x ∈ Sm , t ∈ �n , and
α : [n] → [m] in�. For instance, by regarding a set as a discrete space, the (Milnor’s)
geometric realization of a simplicial set S : �

op → Set is |S|. A weak homotopy
equivalence of simplicial sets is a simplicial map whose geometric realization is a
homotopy equivalence or, equivalently, induces isomorphisms in homotopy groups.

A bisimplicial set is a functor S : �op × �op → Set. This amounts to a family
of sets {Sp,q ; p, q ≥ 0} together with horizontal and vertical face and degeneracy
operators

Sp+1,q Sp,q
shi dhi Sp−1,q , Sp,q+1 Sp,q

svj dv
j

Sp,q−1,

with 0≤ i ≤ p and 0≤ j ≤ q respectively, such that, for all p and q, both Sp,• and
S•,q are simplicial sets and the horizontal operators commute with the vertical ones.
Note that, on the one hand, any bisimplicial set S provides two simplicial objects in
the category of simplicial sets: the horizontal one Sh : �op → SSet, [p] �→ Sp,•, and
the vertical one Sv : �op → SSet, [q] �→ S•,q . Then, by taking geometric realization,
S gives rise to two simplicial spaces [p] �→ |Sp,•| and [q] �→ |S•,q |. On the other
hand, the bisimplicial set S also provides another simplicial set DiagS : [p] �→ Sp,p,
whose face and degeneracy operators are given in terms of those of S by the formulas
di = dhi d

v
i and si = shi s

v
i , respectively. It is known (e.g. [29, Lemma in page 86]) that

there are natural homeomorphisms

|[p] �→ |Sp,•|| ∼= |DiagS| ∼= |[q] �→ |S•,q ||, (1)

and we usually take the geometric realization ||S|| of the bisimplicial set S to be

||S|| = |DiagS|. (2)

The following relevant fact is used several times along the paper (see [7, Chapter
XII, 4.2 and 4.3] or [22, IV, Proposition 1.7], for example):

Fact 2.1 If f : S → S′ is a bisimplicial map such that the maps | f p,•| : |Sp,•| →
|S′

p,•| are homotopy equivalences for all p, then so is the map |Diag f | : |DiagS| →
|DiagS′|.

We will use also the W -construction on a bisimplicial set by Artin and Mazur [2,
Sect. III], also called its “codiagonal” or “total complex”. Recall that, by viewing a
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740 A. M. Cegarra, B. A. Heredia

bisimplicial set S : �op × �op → Set as a horizontal simplicial object in the category
of vertical simplicial sets, S : �op → SSet, then the set of n-simplices of WS is

⎧
⎨

⎩
(tn,0, . . . , t0,n) ∈

∏

p+q=n

Sp,q

∣
∣
∣
∣ d

h
0 tp,q = dv

q+1tp−1,q+1 for n ≥ p ≥ 1

⎫
⎬

⎭

and, for 0 ≤ i ≤ n, the faces and degeneracies of an n-simplex are given by

di (tn,0, . . . , t0,n) = (dhi tn,0, . . . , d
h
1 tn−i+1,i−1, d

v
i tn−i−1,i+1, . . . , d

v
i t0,n),

si (tn,0, . . . , t0,n) = (shi tn,0, . . . , s
h
0 tn−i,i , s

v
i tn−i,i , . . . , s

v
i t0,n).

There is a natural Alexander-Whitney-type diagonal approximation Diag S → WS,

Sn,n � t �→ (
(dv

1 )nt, (dv
2 )n−1dh0 t, . . . , (d

v
p+1)

n−p(dh0 )pt, . . . , (dh0 )nt
)
,

inducing a homotopy equivalence on geometric realizations (see [16,32,36] for a
proof).

|Diag S|  |WS|. (3)

2.2 Classifying spaces of 2-categories

In Quillen’s development of K -theory [29], the higher K -groups are defined as the
homotopy groups of a classifying space |C | associated to a (small) category C . This
space is defined as

|C | = |NC |,
the geometric realization of the simplicial set termed its nerve

NC : �op → Set, [p] �→ NpC =
∐

c0,...,cp

C(c0, c1) ×C(c1, c2) × · · · ×C(cp−1, cp),

(4)
whose p-simplices are length p sequences of composable morphisms in C (N0C =
ObC).

The classifying space ||S|| of a simplicial category (that is, a simplicial object in
Cat) S : �op → Cat is defined as the geometric realization of the bisimplicial set
NS : �op ×�op → Set, ([p], [q]) �→ Nq Sp, obtained by composing S with the nerve
functor N : Cat → SSet from categories to simplicial sets. Thus, by (1), there is a
natural homeomorphism

||S|| = |DiagNS| ∼= |[p] �→ |Sp|| = |[p] �→ |[q] �→ Nq Sp|| (5)

The notion of classifying space of a simplicial category provides the usual definition
of the classifying space of a 2-category. Although for the general background on 2-
categories used in this paper we refer to [6,33], to fix some notation and terminology,
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Homotopy colimits of 2-functors 741

we shall recall that a 2-category C is just a category enriched in the category of
small categories. Then, C is a category in which the hom-set between any two objects
c, c′ ∈ C is the set of objects of a category C(c, c′), whose objects p : c → c′ are
called 1-cells and whose arrows are called 2-cells and are denoted by α : p ⇒ p′ and
depicted as

c

p

p′
⇓α c′.

Composition in each category C(c, c′), usually referred to as the vertical composition
of 2-cells, is denoted by α · β. Moreover, the horizontal composition is a functor

C(c, c′) × C(c′, c′′) ◦→ C(c, c′′) ((x, y) �→ y ◦ x)

that is associative and has identities 1c ∈ C(c, c).
For any 2-category C , the nerve construction (4) on it works by giving a simplicial

category NC : �op → Cat, whose classifying space is then the classifying space ||C ||
of the 2-category. Thus,

||C || = ||NC || = |DiagNNC | ∼= |[p] �→ |NpC || (6)

(the double bar notation || avoids confusion with the classifying space |C | of the under-
lying category), where the bisimplicial set NNC : �op × �op → Set, ([p], [q]) �→
NqNpC , is the double nerve of C .

The following fact will be used.

Fact 2.2 ([14, Lemma2.6]) If two 2-functors between 2-categories F,G : A → C are
related by a lax or oplax transformation, F ⇒ G, then there is an induced homotopy,
||F || ⇒ ||G||, between the induced maps on classifying spaces ||F ||, ||G|| : ||A|| → ||C ||.

The category 2Cat has a Thomason-type model structure, such that the classifying
space functor C �→ ||C || is an equivalence of homotopy theories between 2-categories
and topological spaces ([35, Theorem 4.5.1], [1, Théorème 6.27]). Hereafter, we will
always consider 2Cat with the Thomason model structure on it. Thus, for example,
a 2-functor F : A → C is a weak equivalence if and only if the induced map ||F || :
||A|| → ||C || is a homotopy equivalence, and a commutative square of 2-categories
and 2-functors

P B

A C
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742 A. M. Cegarra, B. A. Heredia

is a homotopy pullback if and only if the induced square on classifying spaces

||P|| ||B||

||A|| ||C ||

is a homotopy pullback of spaces. Later, we shall use basic properties of homotopy
pullbacks of spaces, such as the two out of three property, etc. (see [17, Sect. 5] for
instance). In particular, the homotopy-fibre characterization [17, Sect. 5(2)], which
easily leads us to assert that the square of 2-categories above is a homotopy pullback
whenever, for any object a ∈ A, there is a commutative diagram of 2-categories and
2-functors

P ′ P B

A′ F
A C

such that a ∈ ImF , both the left square and the composite square are homotopy
pullbacks, and A′ is weakly contractible3 in the sense that the functor from A′ to the
terminal (only one 2-cell) 2-category A′ → � is a weak equivalence, that is, if the
classifying space ||A′|| is contractible.

To conclude this preliminary section, we recall that the classifying space |||S||| of a
simplicial 2-category S : �op → 2Cat, is the geometric realization of the simplicial
space obtained by composing S with the classifying space functor || - || : 2Cat → Top.
Therefore,

|||S||| = |[p] �→ ||Sp||| = |[p] �→ |DiagNNSp|| ∼= |DiagNNS|, (7)

where DiagNNS is the simplicial set, [p] �→ NpNpSp, diagonal of the trisimplicial
set NNS.

2.3 The Grothendieck construction on 2-functors

The so-calledGrothendieck construction on diagrams of small categories underlies the
2-categorical construction we treat here for 2-diagrams of 2-categories. For a more
general version of the Grothendieck construction below, which works even on lax
bidiagrams of bicategories (in the sense of Benabou), we refer the reader to [4,9,11–
13].

We start by fixing some notations. Throughout the paper, the 2-category of (small)
2-categories, 2-functors, and 2-natural transformations is denoted by 2Cat (whereas
2Cat, recall, denotes its underlying category of 2-categories and 2-functors). We view

3 These are called ‘aspherical’ by Cisinski in [19] and Chiche in [18].
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Homotopy colimits of 2-functors 743

any category as a 2-category in which all its 2-cells are identities, and thusCat ⊆ 2Cat
is the 2-subcategory consisting of categories, functors, and natural transformations.

Further, if C is a 2-category, the effect on cells of any 2-functor D : C → 2Cat is
denoted by

c

f

g

⇓α c′ �→ Dc

f∗

g∗

⇓α∗ Dc′ . (8)

or, if D : Cop → 2Cat is contravariant, by

c

f

g

⇓α c′ �→ Dc′

f ∗

g∗
⇓α∗ Dc .

Let C be a 2-category, and let D : C → 2Cat be a 2-functor. The Grothendieck
construction on the 2-diagram D assembles the 2-diagram into a 2-category, denoted
by

∫

C
D ,

whose objects are pairs (a, x) with a ∈ ObC and x ∈ ObDa , the 1-cells are pairs
( f, u) : (a, x) → (b, y), where f : a → b is a 1-cell in C and u : f∗x → y is a 1-cell
in Db, and the 2-cells

(a, x) ⇓(α,φ)

( f,u)

(g,v)

(b, y),

are pairs consisting of a 2-cell a

f

g

⇓α b of C together with a 2-cell φ : u ⇒ v ◦ α∗x

in Db,

f∗x
u

α∗x

⇓φ y.
g∗x v

The vertical composition of 2-cells

(a, x) ⇓(β,ψ)

(h,w)

( f,u)

⇓(α,φ)
(b, y)
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744 A. M. Cegarra, B. A. Heredia

is the 2-cell

(β, ψ) · (α, φ) = (β · α, (ψ ◦ 1α∗x ) · φ) : ( f, u) ⇒ (h, w),

and the identity 2-cell of a 1-cell ( f, u) as above is 1( f,u) = (1 f , 1u).

The horizontal composition of two 1-cells (a, x)
( f,u)

(b, y)
( f ′,u′)

(c, z) is the
1-cell

( f ′, u′) ◦ ( f, u) = ( f ′ ◦ f, u′ ◦ f ′∗u) : (a, x) −→ (c, z),

the identity 1-cell of an object (a, x) is 1(a,x) = (1a, 1x ), and the horizontal compo-
sition of 2-cells

(a, x) ⇓(α,φ)

( f,u)

(g,v)

(b, y) ⇓(α′,φ′)

( f ′,u′)

(g′,v′)

(c, z)

is the 2-cell

(α′, φ′) ◦ (α, φ) = (α′ ◦ α, φ′ ◦ f ′∗φ) : ( f ′ ◦ f, u′ ◦ f ′∗u) ⇒ (g′ ◦ g, v′ ◦ g′∗v).

We denote by

π :
∫

C
D → C (9)

the canonical projection 2-functor given on cells by forgetting the second components

(a, x) ⇓(α,φ)

( f,u)

(g,v)

(b, y),
π a

f

g

⇓α b .

Note that a 2-transformation � : D ⇒ E between 2-functors D, E : C → 2Cat
induces the 2-functor

∫
C � : ∫

C D → ∫
C E such that

(a, x)

( f,u)

(g,v)

⇓(α,φ) (b, y) �→ (a, �ax)

( f,�bu)

(g,�bv)

⇓(α,�bφ) (b, �b y).

Also, for �′ : D ⇒ E any other 2-transformation, a modification m : � � �′ gives
rise to the 2-transformation

∫
C m : ∫

C � ⇒ ∫
C �′ given by

∫

C
m(a, x) = (1a,max) : (a, �ax) → (a, �′

ax).
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Homotopy colimits of 2-functors 745

Thus, the 2-categorical Grothendieck construction provides a 2-functor

∫

C
− : 2CatC 2Cat.

In a similar way, if D : Cop → 2Cat is a 2-functor, the Grothendieck construction

onD is the 2-category, denoted by
∫
C D , whose objects are pairs (a, x)with a ∈ ObC

and x ∈ ObDa ,whose1-cells ( f, u) : (a, x) → (b, y) are pairswhere f : a → b is a 1-
cell inC and u : x → f ∗y is a 1-cell inDa , andwhose 2-cells (α, φ) : (u, f ) ⇒ (v, g)
are pairs consisting of a 2-cell α : u ⇒ v of C together with a 2-cell φ : α∗y ◦ u ⇒ v

inDb. As for the covariant case, the assignmentD �→ ∫
C D is the function on objects

of a 2-functor

∫

C
− : 2CatC

op
2Cat.

2.4 The homotopy-fibre 2-functors

To finish this preliminary section, we review some needed results concerning the more
striking examples of 2-diagrams of 2-categories: the 2-diagrams of homotopy-fibre
2-categories of a 2-functor.

As usual, ifD : C → 2Cat (resp.D : Cop → 2Cat) and F : A → C are 2-functors,
we denote by

F∗D = D F : A → 2Cat

(resp. F∗D = D F : Aop → 2Cat) the 2-functor obtained by composing D with F .
Let F : A → C be any given 2-functor. Then, for any object c ∈ C , the homotopy-

fibre of F over c [14,23], denoted by F ↓ c, is the 2-category obtained by applying
the Grothendieck construction on the 2-functor F∗C(−, c) : Aop → Cat, where
C(−, c) : Cop → Cat is the hom 2-functor; that is,

F ↓c =
∫

A
F∗C(−, c).

Thus, F ↓c has objects the pairs (a, p), with a a 0-cell of A and p : Fa → c a 1-cell
of C . A 1-cell (u, φ) : (a, p) → (a′, p′) consists of a 1-cell u : a → a′ in A, together
with a 2-cell φ : p ⇒ p′ ◦ Fu in the 2-category C ,

Fa
Fu

p
φ⇒

Fa′

p′
c
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746 A. M. Cegarra, B. A. Heredia

and, for (u, φ), (u′, φ′) : (a, p) → (a′, p′), a 2-cell α : (u, φ) ⇒ (u′, φ′) is a 2-cell
α : u ⇒ u′ in A such that (1p′ ◦ Fα) · φ = φ′. Compositions and identities are given
canonically.

Any 1-cell h : c → c′ in C gives rise to a 2-functor

h∗ : F ↓c → F ↓c′,

which acts on cells by

(a, p)

(u,φ)

(u′,φ′)

⇓α (a′, p′) h∗
(a, h ◦ p)

(u,1h◦φ)

(u′,1h◦φ′)

⇓α (a′, h ◦ p′) ,

and, for h, h′ : c → c′, any 2-cell ψ : h ⇒ h′ in C produces a 2-transformation

ψ∗ : h∗ ⇒ h′∗,

whose component at any object (a, p) of F ↓c is the 1-cell of F ↓c′

ψ∗(a, p) = (1a, ψ ◦ 1p) : (a, h ◦ p) → (a, h′ ◦ p).

In this way, we have the homotopy-fibre 2-functor

F ↓− : C Y
CatC

op F∗
CatA

op

∫
A −

2Cat ,

c C(−, c) F∗C(−, c)

∫

A
F∗C(−, c) = F ↓c

where Y is the 2-categorical Yoneda embedding; and, quite similarly, we also have
the homotopy-fibre 2-functor

−↓F : Cop Y
CatC

F∗
CatA

∫
A −

2Cat ,

c C(c,−) F∗C(c,−)

∫

A
F∗C(c,−) = c↓F

which assigns to each object c ofC the homotopy-fibre 2-category of F under c, c↓F ,

whose objects are pairs (a, c
p→ Fa). The 1-cells (u, φ) : (a, p) → (a′, p′) are pairs

where u : a → a′ is a 1-cell of A and φ : Fu ◦ p ⇒ p′ is a 2-cell of C , and a 2-cell
α : (u, φ) ⇒ (u′, φ′) is a 2-cell α : u ⇒ u′ in A such that φ′ · (Fα ◦ 1p) = φ.

In the particular case where F = 1C is the identity 2-functor on C , we have the
comma 2-categories C ↓ c, of objects over an object c, and c↓C , of objects under c.
The following fact is proved in [10, Theorem 4.1]:
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Lemma 2.1 For any 2-category C and any object c ∈ C, the 2-categories c↓C and
C ↓c are weakly contractible.

Returning to an arbitrary 2-functor F : A → C , the 2-diagrams F ↓− and −↓ F
are relevant for homotopy interests, mainly because Quillen’s Theorem B in [29] has
also been generalized for 2-functors between 2-categories as in Theorem 2.3 below.
We shall first set some terminology. Following Dwyer, Kan, and Smith in [21, Sect. 6]
and Barwick and Kan in [5], we say that:

• F has the property Bl if, for any 1-cell h : c → c′ in C , the induced 2-functor
h∗ : F ↓c → F ↓c′ is a weak equivalence,4

• F has the property Br if, for any 1-cell h : c → c′ in C , the induced 2-functor
h∗ : c′ ↓F → c↓F is a weak equivalence.

Now, observe that, for any object c of C , there are two pullback squares in 2Cat

F ↓c F̄

π

C ↓c

π

A
F

C

c↓F F̄

π

c↓C

π

A
F

C

(10)

where the vertical 2-functors π are the canonical projections (9), and both 2-functors
F̄ act on cells by

(a, p)

(u,φ)

(u′,φ′)

⇓α (a′, p′) F̄
(Fa, p)

(Fu,φ)

(Fu′,φ′)

⇓Fα (Fa′, p′).

Then, the extension of Quillen’s Theorem B for 2-functors in [14, Theorem 3.2] tells
us that the following theorem holds.

Theorem 2.3 A 2-functor F : A → C has the property Bl (resp. Br ) if and only if
the left (resp. right) square in (10) is a homotopy pullback for every object c ∈ C.

As an interesting consequence, we have the 2-categorical version of Quillen’s The-
orem A in [29] in Theorem 2.4 below. First, let us borrow some terminology from
Hirschhorn in [26, 19.6.1]:

• a 2-functor F : A → C is called homotopy left cofinal if all the homotopy-fibre
2-categories F ↓c, c ∈ C , are weakly contractible,5

• a 2-functor F : A → C is called homotopy right cofinal if all the homotopy-fibre
2-categories c↓F , c ∈ C , are weakly contractible.

4 For F a functor between small categories, this condition is referred by Cisinski in [19, 6.4.1] by saying
that “the functor F is locally constant”.
5 For F a functor between small categories, this condition is referred by Cisinski in [19, 3.3.3] by saying
that “F is aspherical”.
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Since every homotopy left (resp. right) cofinal 2-functor has the property Bl (resp.
Br ), from Theorem 2.3, it follows the following extension of Quillen’s Theorem A,
which was originally proved in [10, Theorem 1.2].

Theorem 2.4 Every homotopy left or right cofinal 2-functor between 2-categories is
a weak equivalence.

3 The homotopy colimit and homotopy invariance theorems

As we said in the introduction, the goal of this paper is to state and prove the more
relevant homotopy properties of the Grothendieck construction on 2-diagrams of 2-
categories. Most of this section is dedicated to proving Theorem 3.1 below, which has
Thomason’s homotopy colimit theorem [34, Theorem 1.2] as its natural precedent and
also includes the results in [14, Theorem 4.5] as particular cases. The result therein,
on which many further results are based, states that, for any 2-functorD : C → 2Cat,
the classifying space of the 2-category

∫
C D can be realized, up to homotopy equiv-

alence, through the simplicial bar construction on D, also called Borel construction,
or simplicial replacement, denoted by BCD and defined as follows.6

Definition 3.1 LetC be a 2-category andD : C → 2Cat be a 2-functor. The simplicial
bar construction on D is the simplicial 2-category

BCD : �op → 2Cat, (11)

whose 2-category of p-simplices is

BCDp =
∐

c0,...,cp

Dc0 × C(c0, c1) × C(c1, c2) × · · · × C(cp−1, cp),

and whose face and degeneracy 2-functors are defined as follows: The face 2-functor
d0 is induced by the 2-functor

d0 : Dc0 × C(c0, c1) → Dc1,

which carries an object (x, c0
f→ c1) to the object f∗x . A 1-cell (u, α) : (x, f ) →

(y, g) is carried by d0 to the composite 1-cell g∗u ◦ α∗x : f∗x → g∗y,

f∗x
α∗x g∗x

g∗u g∗y ,

6 For a 2-functor D : C → Cat ⊆ 2Cat, the simplicial category BCD is called the homotopy colimit of
D, and denoted hocolimCD, by Hinich and Schechtman in [25, Definition (2.2.2)].
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and d0 acts on 2-cells by

(x, f )

(u,α)

(v,α)

⇓(φ,1α) (y, g) �→ f∗x
g∗u◦α∗x

g∗v◦α∗x

⇓ g∗φ◦1α∗x g∗y.

The other face and degeneracy 2-functors are induced by the operators di and si in
NC as 1Dc0

× di and 1Dc0
× si , respectively.

It is not hard to see that, if D, E : C → 2Cat are 2-functors, then any 2-
transformation � : D ⇒ E gives rise to a simplicial functor �∗ : BCD → BCE ; and
also that a modificationm : � � �′, where�′ : D ⇒ E is any other 2-transformation,
induces a simplicial transformation m∗ : �∗ ⇒ �′∗. Thus, the simplicial bar construc-
tion provides a 2-functor

BC− : 2CatC → 2Cat�
op

.

There is an analogous construction BCD for contravariant 2-functors D : Cop →
2Cat. This is as follows:7 We call the simplicial bar construction on D the simplicial
2-category

BCD : �op → 2Cat (12)

whose 2-category of p-simplices is

BCDp =
∐

c0,...,cp

C(c0, c1) × C(c1, c2) × · · · × C(cp−1, cp) × Dcp

and whose faces and degeneracies are induced by the corresponding ones in NC , as
di × 1Dcp

and si × 1Dcp
, for 0 ≤ i < p, whereas the face 2-functor dp is induced by

the 2-functor

dp : C(cp−1, cp) × Dcp → Dcp−1 ,

which acts on cells by

(x, f )

(u,α)

(v,α)

⇓(φ,1α) (y, g) �→ f ∗x
g∗u◦α∗x

g∗v◦α∗x

⇓ g∗φ◦1α∗x g∗y.

Thus, the construction D �→ BCD is the function on objects of a 2-functor

BC− : 2CatCop → 2Cat�
op

.

7 Warning: BCD �= BCopD.
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Theorem 3.1 (The homotopy colimit theorem) For any 2-functor D : C → 2Cat
(or D : Cop → 2Cat), where C is a 2-category, there exists a natural homotopy
equivalence

|||BCD|||  ||
∫

C
D||.

Proof We shall treat only the covariant case, as the other is proven similarly. The
strategy of the proof is as follows: For any given 2-functor D : C → 2Cat, we build
a trisimplicial set E = E(D), together with isomorphisms of simplicial sets

W ([p] �→ DiagEp,•,•) ∼= W ([p] �→ WNNBCDp), (13)

W ([p] �→ WEp,•,•) ∼= WNN
∫

C
D , (14)

so that, by Fact 2.1 and (3), we have a homotopy equivalence

|W ([p] �→ WNNBCDp)| 
∣
∣
∣
∣WNN

∫

C
D

∣
∣
∣
∣.

As || ∫C D|| = |DiagNN ∫
C D| (3) |WNN

∫
C D|, while

|||BCD||| (7)= |DiagNNBCD| = |Diag([p] �→ DiagNNBCDp
)|

(3),Fact 2.1 |Diag([p] �→ WNNBCDp
)| (3) |W ([p] �→ WNNBCDp)|,

the proof will be complete.
Before starting the construction of E , we shall describe, for any 2-category, C say,

the simplicial set WNNC . To do that, let us first represent a (p, q)-simplex of the
bisimplicial set NNC as a diagram (c, f, α)p,q in C of the form

(c, f, α)p,q : cq .
.
.

f 0q+1

⇓α1
q+1

f qq+1

⇓α
q
q+1

cq+1 .
.
.

f 0q+2

⇓α1
q+2

f qq+2

⇓α
q
q+2

cq+2 · · · cq+p−1 .
.
.

f 0q+p

⇓α1
q+p

f qq+p

⇓α
q
q+p

cq+p,

(15)
whose horizontal i-face is obtained by deleting the object cq+i and using, for 0 < i <

p, the composite cells f kq+i+1 ◦ f kq+i and αk
q+i+1 ◦αk

q+i to rebuild the new (p−1, q)-

simplex, and whose vertical j-face is obtained by deleting all the 1-cells f j
q+m and
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using the composite 2-cells α
j+1
q+m · α

j
q+m , for 0 < j < q, to complete the (p, q − 1)

simplex of NNB. Then, it is straightforward to obtain the following description of the
simplicial set WNNC : The vertices are the objects c0 of C , the 1-simplices are the
1-cells f 01 : c0 → c1 of C , and, for n ≥ 2, the n-simplices are diagrams (c, f, α)n in
C of the form

(c, f, α)n : c0
f 01 c1

f 02

f 12

⇓α1
2 c2 f 13

f 03

⇓α1
3

f 23

⇓α2
3

c3 · · · cn−1 ...

f 0n

⇓α1
n

f n−1
n

⇓αn−1
n

cn,

(16)
that is, they consist of objects cm of C , 0 ≤ m ≤ n, 1-cells f km : cm−1 → cm ,
0 ≤ k < m ≤ n, and 2-cells αk

m : f k−1
m ⇒ f km , 0 < k < m ≤ n. The simplicial

operators of WNNC act much as for the usual nerve of an ordinary category: The
i-face of an n-simplex as in (16) is obtained by deleting the object ci and the 1-cells
f im : cm−1 → cm , for i < m, and using the composite 1-cells f ki+1◦ f ki : ci−1 → ci+1,

k < i , the horizontally composite 2-cells αk
i+1 ◦ αk

i : f k−1
i+1 ◦ f k−1

i ⇒ f ki+1 ◦ f ki ,
0 < k < i , and the vertically composed 2-cells αi+1

m · αi
m : f i−1

m ⇒ f i+1
m , when

i < m − 1, to complete the new (n − 1)-simplex. The i-degeneracy of (c, f, α)n is
constructed by repeating the object ci at the i + 1-place and inserting i + 1 times
the identity 1-cell 1ci : ci → ci , i times the identity 2-cell 11ci : 1ci ⇒ 1ci and, for

each i < m, by replacing the 1-cell f im : cm−1 → cm by the identity 2-cell 1 f im
:

f im ⇒ f im .
Then, the simplicial set W ([p] �→ WNNBCDp) can be described as follows: Its

n-simplices are pairs
((c, f, α)n, (x, u, φ)n) (17)

where (c, f, α)n is an n-simplex ofWNNC as in (16), whereas (x, u, φ)n is a list with
a diagram in each 2-category Dc0 ,…,Dcn of the form

x0, f 01∗x0
u01 x1 , f 12∗x1

u02

u12

⇓φ1
2 x2 , f 23∗x2 u13

u03

⇓φ1
3

u23

⇓φ2
3

x3 , . . . , f n−1
n∗ xn−1

...

u0n

⇓φ1
n

un−1
n

⇓φn−1
n

xn .

(18)
That is, (x, u, φ)n consists of 0-cells xk ofDck , 0 ≤ k ≤ n, 1-cells ukm : f m−1

m∗ xm−1 →
xm , 0 ≤ k < m ≤ n, and 2-cells φk

m : uk−1
m ⇒ ukm , 0 < k < m ≤ n. Further,

the i-face of the simplex ((c, f, α)n, (x, u, φ)n) is obtained by taking the i-face of
(c, f, α)n in the simplicial set WNNC and, in a similar way, by deleting the object
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xi and the 1-cells uim : f m−1
m∗ xm−1 → xm , for i < m, and then using the composite

1-cells

f i−1
i+1∗ f

i−1
i∗ xi−1

αi
i+1∗ f i−1

i∗ xi−1
f ii+1∗ f

i−1
i∗ xi−1

f ii+1∗uki
f ii+1∗xi

uki+1 xi+1

for k < i , the horizontally composite 2-cells

f i−1
i+1∗ f

i−1
i∗ xi−1

αi
i+1∗ f i−1

i∗ xi−1

αi
i+1∗ f i−1

i∗ xi−1

⇓1 f ii+1∗ f
i−1
i∗ xi−1

f ii+1∗u
k−1
i

f ii+1∗uki

⇓ f ii+1∗φk
i f ii+1∗xi

uk−1
i+1

uki+1

⇓φk
i+1 xi+1

for 0 < k < i , and the vertically composed 2-cells φi+1
m · φi

m : ui−1
m ⇒ ui+1

m ,
i < m − 1, to complete the new (n − 1)-simplex. Similarly, the i-degeneracy of
((c, f, α)n, (x, u, φ)n) is given by first taking the i-degeneracy of (c, f, α)n in the
simplicial set WNNC and second by repeating the object xi , inserting i + 1 times the
identity 1-cell 1xi : xi → xi , i times the identity 2-cell 11xi : 1xi ⇒ 1xi and, for each

i < m, by replacing the 1-cell uim by the identity 2-cell 1uim : uim ⇒ uim .
Now we construct E = E(D) as the trisimplicial set whose (p, n, q)-simplices are

pairs
((c, f, α)p,q , (x, u, φ)p,n,q) (19)

with (c, f, α)p,q a (p, q)-simplex of NNC , as in (15), and (x, u, φ)p,n,q a system of
data consisting of a diagram in each 2-category Dcq+1 , …, Dcq+p of the form

(x, u, φ)p,n,q : f qq+1∗xq ...

u0q+1

⇓φ1
q+1

unq+1

⇓φn
q+1

xq+1, . . . , f qq+p ∗xq+p−1
...

u0q+p

⇓φ1
q+p

unq+p

⇓φn
q+p

xq+p.

That is, it consists of objects xq ∈ Dcq , . . ., xq+p ∈ Dcq+p , 1-cells ukq+m :
f qq+m∗xq+m−1 → xq+m , 0 ≤ k ≤ n, 0 < m ≤ p, and 2-cells φk

q+m : uk−1
q+m ⇒ ukq+m ,

0 < k ≤ n, 0 < m ≤ p.
The i-face in the p-direction map of E carries the (p, n, q)-simplex (20) to the

(p−1, n, q)-simplex obtained by taking the horizontal i-face of (c, f, α)p,q in NNC ,
deleting the object xq+i , and using the composite 1-cells
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f qq+i+1∗ f
q
q+i∗xq+i−1

f qq+i+1∗ukq+i
f qq+i+1∗xq+i

ukq+i+1 xq+i+1

and the horizontally composite 2-cells

f qq+i+1∗ f
q
q+i∗xq+i−1

f qq+i+1∗u
k−1
q+i

f qq+i+1∗ukq+i

⇓ f qq+i+1∗φk
q+i f qq+i+1∗xq+i

uk−1
q+i+1

ukq+i+1

⇓φk
q+i+1

xq+i+1

to complete the new (p − 1, n, q)-simplex.
The j-face in the n-direction of the (p, n, q)-simplex (20) is obtained by keeping

(c, f, α)p,q unaltered, deleting all the 1-cells u j
q+m , and using, when 0 < j < n, the

composite 2-cells φ
j+1
q+m · φ

j
q+m to complete the simplex.

For any k < q, the k-face in the q-direction of the (p, n, q)-simplex (20) is given
by replacing (c, f, α)p,q by its vertical k-face in NNC and keeping (x, u, φ)p,n,q

unchanged, while its q-face consists of the vertical q-face of (c, f, α)p,q in NNC
(which, recall, is obtained by deleting the 1-cells f qq+m) together with the list of
diagrams

f q−1
q+1∗xq ...

u0q+1◦α
q
q+1∗xq

⇓φ1
q+1◦1

unq+1◦α
q
q+1∗xq

⇓φn
q+1◦1

xq+1, . . . , f q−1
q+p ∗xq+p−1

...

u0q+p◦α
q
q+1∗xq

⇓φ1
q+p◦1

unq+p◦α
q
q+1∗xq

⇓φn
q+p◦1

xq+p.

With degeneracies given in a standard way, it is straightforward to see that E is a
trisimplicial set. Then, an easy verification shows that the isomorphisms in (13),

W ([p] �→ DiagEp,•,•) ∼= W ([p] �→ WNNBCDp),

holds.
Now, an analysis of the simplicial set WEp,•,• says that its q-simplices are pairs

((c, f, α)p,q , (x, u, φ)p,q) (20)
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with a (p, q)-simplex (c, f, α)p,q of NNC , as in (15), together with data (x, u, φ)p,q
consisting of a diagram in each 2-category Dcq+1 , …, Dcq+p of the form

f 0q+1∗xq
α1
q+1∗xq u0q+1

f 1q+1∗xq ⇓φ1
q+1

...
xq+1,

f q−1
q+1∗xq

α
q
q+1∗xq

⇓φ
q
q+1

f qq+1∗xq

uqq+1

. . . ,

f 0q+p∗xq+p−1

α1
q+p∗xq+p−1

u0q+p

f 1q+p∗xq+p−1⇓φ1
q+p

...
xq+p.

f q−1
q+p∗xq+p−1

α
q
q+p∗xq+p−1

⇓φ
q
q+p

f qq+p∗xq+p−1

uqq+p

More precisely, (x, u, φ)p,q consists of objects

xq ∈ Dcq , . . . , xq+p ∈ Dcq+p ,

1-cells

ukq+m : f kq+m∗xq+m−1 → xq+m, (0 ≤ k ≤ q, 0 < m ≤ p)

and 2-cells

φk
q+m : uk−1

q+m ⇒ ukq+m ◦ αk
q+m∗xq+m−1 (0 < k ≤ n, 0 < m ≤ p).

The j-face of such a q-simplex (20) is given by taking the vertical j-face of (c, f, α)p,q

in NNC , deleting the 1-cells u j
q+m , and inserting the pasted 2-cells below, for 0 <

j < q.

f j−1
q+m∗xq+m−1

(α
j+1
q+m ·α j

q+m )∗xq+m−1

u j−1
q+m

α
j
q+m∗xq+m−1 ⇓φ

j
q+m

= f j
q+m∗xq+m−1

⇓φ
j+1
q+mα

j+1
q+m∗xqm−1

xq+m

f j+1
q+m∗xq+m−1 u j+1

q+m
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Then, an easy and straightforward verification shows that an n-simplex of the sim-
plicial set W ([p] �→ WEp,•,•) is a pair

((c, f, α)n, (x, u, φ)n), (21)

where (c, f, α)n is an n-simplex of WNNC as in (16), while (x, u, φ)n is a list with
a diagram in each 2-category Dc0 ,…,Dcn of the form

f 0n∗xn−1

⇓φ1
n

α1
n∗xn−1 u0n

f 03∗x2

α1
3∗x2

u03
⇓φ1

3
f 02∗x1

α1
2∗x1

u02

⇓φ1
2

f 1n∗xn−1

.

.

.
x0, f 01∗x0

u01 x1, x2, f 13∗x2
u13

⇓φ2
3

α2
3∗x2

x3, . . . , xn,

f 12∗x1 u12 f n−2
n∗ xn−1

⇓φn−1
n

αn−1
n∗ xn−1f 23∗x2

u23

f n−1
n∗ xn−1

un−1
n

That is, (x, u, φ)n consists of 0-cells

x0 ∈ Dc0 , . . . , xn ∈ Dcn ,

1-cells

ukm : f km∗xm−1 → xm, (0 ≤ k < m ≤ n)

and 2-cells

φk
m : uk−1

m ⇒ ukm ◦ αk
m∗xm−1 (0 < k < m ≤ n).

Further, the i-face of the simplex ((c, f, α)n, (x, u, φ)n) is obtained by taking the
i-face of (c, f, α)n in the simplicial set WNNC and, in a similar way, by deleting the
object xi and all the 1-cells uim : f im∗xm−1 → xm , for i < m, and then using the
composite 1-cells

f ki+1∗ f
k
i∗xi−1

f ki+1∗uki
f ki+1∗xi

uki+1 xi+1
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for k < i , and the pasted 2-cells

f k−1
i+1∗ f

k−1
i∗ xi−1

(αk
i+1◦αk

i )∗xi−1

f k−1
i+1∗αk

i∗xi−1

f k−1
i+1∗u

k−1
i

⇓ f k−1
i+1∗φk

i

f k−1
i+1∗xi

uk−1
i+1

αk
i+1∗xi ⇓φk

i+1= f k−1
i+1∗ f

k
i∗xi−1

=
αk
i+1∗ f ki∗xi−1

f k−1
i+1∗uki

xi+1

f ki+1∗ f
k
i∗xi−1

f ki+1∗uki
f ki+1∗xi

uki+1

for 0 < k < i , and

f i−1
m∗ xm−1

(αi+1
m ·αi

m )∗xm−1

ui−1
m

αi
m∗xm−1 ⇓φi

m

= f im∗xm−1

⇓φi+1
mαi+1

m∗ xm−1

xm

f i+1
m∗ xm−1 ui+1

m

for 0 < i < m−1, to complete the i-face (n−1) simplex. Similarly, the i-degeneracy
of ((c, f, α)n, (x, u, φ)n) is given by first taking the i-degeneracy of (c, f, α)n in the
simplicial set WNNC and secondly by repeating the object xi , inserting i + 1 times
the identity 1-cell 1xi : xi → xi , i times the identity 2-cell 11xi : 1xi ⇒ 1xi and, for

each i < m, by repeating the 1-cell uim : f im∗xi−1 → xi and inserting the identity
2-cell 1uim : uim ⇒ uim .

Finally, observe that any n-simplex ((c, f, α)n, (x, u, φ)n) ofW ([p] �→ WEp,•,•),
such as (21), identifies with the n-simplex ((c, x), ( f, u), (α, φ))n ∈ WNN

∫
C D,

(c0, x0)
( f 10 ,u01)

(c1, x1)

( f 02 ,u02)

( f 12 ,u12)

⇓(α1
2 ,φ

1
2 ) (c2, x2)

( f 03 ,u03)

⇓(α1
3 ,φ1

3 )

( f 23 ,u23)

⇓(α2
3 ,φ2

3 )

(x3, c3) · · · (xn−1, cn−1)
.
.
.

( f 0n ,u0n )

⇓(α1
n ,φ

1
n )

( f n−1
n ,un−1

n )

⇓(αn−1
n ,φn−1

n )

(cn, xn),

given by the objects (cm, xm) of
∫
C D, 0 ≤ m ≤ n, the 1-cells

( f km, ukm) : (cm−1, xm−1) → (cm, xm), (0 ≤ k < m ≤ n),
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and 2-cells

(αk
m, φk

m) : ( f k−1
m , uk−1

m ) ⇒ ( f km, ukm) (0 < k < m ≤ n).

Thus, the claimed simplicial isomorphism in (14) holds. ��
The first basic property below quickly follows from Theorem 3.1.

Theorem 3.2 (Homotopy Invariance Theorem) Let D, E : C → 2Cat (or D, E :
Cop → 2Cat) be 2-functors, where C is any 2-category. If � : D ⇒ E is a 2-
transformation such that, for each object c of C, the 2-functor �c : Dc → Ec is a
weak equivalence of 2-categories, then the induced map on classifying spaces

�∗ : ||
∫

C
D|| → ||

∫

C
E ||

is a homotopy equivalence.

Proof By Theorem 3.1, we can argue withBC− instead of
∫
C −. Since� is objectwise

a weak equivalence, for any integer p ≥ 0 the induced 2-functor BCDp → BCEp,

∐

c0,...,cp

Dc0× C(c0, c1) × · · · × C(cp−1, cp)

−→
∐

c0,...,cp

Ec0 × C(c0, c1) × · · · × C(cp−1, cp),

is a weak equivalence. Then, by Fact 2.1, |||BCD||| = |[p] �→ ||BCDp|||  |[p] �→
||BCEp||| = |||BCE |||. ��

If CtD : C → 2Cat denote the constant 2-functor on a 2-category C given by a 2-
category D, then the Grothendieck construction on it just gives the product 2-category
of C and D, that is,

∫

C
CtD = C × D.

In particular, for D = � the terminal 2-category,
∫
C Ct� = C × � ∼= C . We use this

elemental observation in the proof of the following corollary.

Corollary 3.1 Let C be a 2-category and D : C → 2Cat (or D : Cop → 2Cat) a
2-functor such that, for any object c of C, the 2-category Dc is weakly contractible.
Then, the projection 2-functor (9), π : ∫

C D → C, is a weak equivalence.

Proof By Theorem 3.2, the induced 2-functor by the collapse 2-transformation D ⇒
Ct�,

∫
C D → ∫

C Ct� is a weak equivalence. As the projection 2-functor π is the
composite

∫
C D → ∫

C Ct� = C × � ∼= C , the result follows. ��
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4 Theorems A and B

In this section, we state and prove extensions of Theorems 2.3 and 2.4 for 2-
transformations between 2-diagrams of 2-categories.

For any 2-functor D : C → 2Cat (or D : Cop → 2Cat) and any object c ∈ C , let

c̄ : Dc −→
∫

C
D

denote the embedding 2-functor

x
u

u′
⇓φ x ′ (c, x)

(1c,u)

(1c,u′)

⇓(11c ,φ) (c, x ′).

If D, E : C → 2Cat are 2-functors and � : D ⇒ E is a 2-transformation, for any
objects c ∈ C and y ∈ Ec, there is a canonical commutative square of 2-categories

�c↓ y Ec↓ y

∫
C D

∫
C � ∫

C E,

(22)

which, keeping the notations in squares (10), is the composite of the squares

�c↓ y
�c

π

Ec↓ y

π

Dc
�c

c̄

Ec
c̄

∫
C D

∫
C � ∫

C E,

and we have the theorem below.

Theorem 4.1 (Theorem Bl for 2-transformations) Let � : D ⇒ E be a 2-
transformation, where D, E : C → 2Cat are 2-functors. The following properties
are equivalent:

(a) For any object c in C and any object y in Ec, the square (22) is a homotopy
pullback.

(b) The 2-functor
∫
C � : ∫

C D → ∫
C E has the property Bl .
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(c) The two conditions below hold.
B1l : For each object c of C, the 2-functor �c : Dc → Ec has the property Bl .
B2l : For each 1-cell h : c → c′ in C and any object y ∈ Ec, the induced
2-functor

h∗ : �c↓ y �c′ ↓h∗y

is a weak equivalence.
(d) The two conditions below hold.

B1l For each object c of C, the 2-functor �c : Dc → Ec has the property Bl .
B2′

l For each 1-cell h : c → c′ in C, the square

Dc
h∗

�c

Dc′

�c′

Ec h∗ Ec′

(23)

is a homotopy pullback.

Proof In order to prove the result, first we show that, for any object c in C and any
object y in Ec, there is a weak equivalence

R :
∫

C
�↓(c, y) → �c↓ y. (24)

Here, R is the 2-functor acting on cells of the 2-category
∫
C�↓(c, y) in the following

way:Onobjects ((a, x), (p, v)),wherea is an object ofC , x anobject ofDa , p : a → c
is a 1-cell in C , and v : p∗�ax = �c p∗x → y is a 1-cell in Ec,

R((a, x), (p, v)) = (p∗x, v).

On 1-cells
(( f, u), (α, ψ)) : ((a, x), (p, v)) → ((a′, x ′), (p′, v′)), (25)

where f : a → a′ is in C , u : f∗x → x ′ in Da , α : p ⇒ p′ ◦ f in C , and
ψ : v ⇒ v′ ◦ p′∗�a′u ◦ α∗�ax in Ec,

R(( f, u), (α, ψ)) = (p′∗u ◦ α∗x, ψ) : (p∗x, v) → (p′∗x ′, v′).

And, for a 2-cell (β, φ) : (( f, u), (α, ψ)) ⇒ (( f ′, u′), (α′, ψ ′)), where β : f ⇒ f ′
is in C and φ : u ⇒ u′ ◦ β∗x in Da , satisfying the corresponding conditions,

R(β, φ) = p′∗φ ◦ 1α∗x : (p′∗u ◦ α∗x, ψ) ⇒ (p′∗u′ ◦ α′∗x, ψ ′).
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This 2-functor R is actually a retraction, with a section given by the induced 2-
functor on homotopy-fibre 2-categories

c̄ : �c↓ y −→
∫

C
�↓(c, y) (26)

making the diagram below commutative:

�c↓ y π

c̄

Dc

c̄

�c Ec
c̄

∫
C�↓(c, y) π ∫

C D
∫
C � ∫

C E .

Explicitly, c̄ in (26) acts on objects (x, v), where x is an object ofDc and v : �cx → y
is a 1-cell of Ec, by

c̄(x, v) = ((c, x), (1c, v)),

on 1-cells (u, ψ) : (x, v) → (x ′, v′), where u : x → x ′ is inDc and ψ : v ⇒ v′ ◦�cu
in Ec, by

c̄(u, ψ) = ((1c, u), (11c , ψ)) : ((c, x), (1c, v)) → ((c, x ′), (1c, v′)),

and, on a 2-cell φ : (u, ψ) ⇒ (u′, ψ ′),

c̄(φ) = (11c , φ) : ((1c, u), (11c , ψ)) ⇒ ((1c, u
′), (11c , ψ ′)).

It is plain to see that R c̄ = 1. Furthermore, there is an oplax transformation 1 ⇒ c̄ R
given, on any object ((a, x), (p, v)) of

∫
C�↓(c, y), by the 1-cell

((p, 1p∗x ), (1p, 1v)) : ((a, x), (p, v)) → ((c, p∗x), (1c, v)),

and whose naturality component at any 1-cell as in (25) is

((a, x), (p, v))
(( f,u),(α,ψ))

((p,1p∗x ),(1p,1v))
(α,1)⇒

((a′, x ′), (p′, v′))

((p′,1p′∗x ′ ),(1p′ ,1v′ ))

((c, p∗x), (1c, v))
((1c,p′∗u◦α∗x),(11c ,ψ))

((c, p∗x ′), (1c, v′)).

Hence, for the maps induced by R and c̄ on classifying spaces, we have ||R|| ||c̄|| = 1
and, by Fact 2.2, 1  ||c̄|| ||R||. Thus, it follows that both 2-functors R and c̄ are weak
equivalences.
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Let us now observe that the square (22) is the composite of the squares

�c↓ y
�c

c̄

Ec↓ y

c̄

∫
C�↓(c, y)

(I )

∫
C �

π

∫
CE ↓(c, y)

π

∫
C D ∫

C �

∫
C E .

Therefore, as both vertical 2-functors c̄ are weak equivalences, the square (22) is a
homotopy pullback if and only if the square (I ) above is as well. Thus, by Theorem
2.3, it follows that (a) ⇔ (b).

To prove (b) ⇔ (c), let us observe that, for any 1-cell (h, w) : (c, y) → (c′, y′) in∫
C E , there is a commutative diagram of 2-functors

∫
C�↓(c, y)

(h,w)∗

R

∫
C�↓(c′, y′)

R

�c↓ y
h̄∗

�c′ ↓h∗y
w∗

�c′ ↓ y′,

where both vertical 2-functors R are weak equivalences. If the 2-transformation �

has the properties B1l and B2l , then both 2-functors h̄∗ and w∗ in the bottom of the
diagram above are weak equivalences, and therefore the 2-functor (h, w)∗ at the top
is also a weak equivalence. That is, the 2-functor

∫
C � has the property Bl .

Conversely, assume that
∫
C � has the property Bl . Then, for any object c of C

and any 1-cell w : y → y′ of Ec, the above commutative square for the case where
h = 1c proves that the 2-functor w∗ : �c↓ y → �c↓ y′ is a weak equivalence; that is,
�c : Dc → Ec has the property Bl . Similarly, the commutativity of the above square
for w = 1y implies that, for every 1-cell h : c → c′ on C and any object y ∈ Ec, the
2-functor h̄∗ : �c↓ y → �c′ ↓h∗y is a weak equivalence.

Finally, the equivalence (c) ⇔ (d) is consequence of the homotopy fibre charac-
terization of homotopy pullbacks of spaces (hence of 2-categories, see Sect. 2.2): For
any 1-cell h : c → c′ in C and any object y ∈ Ec, we have the equality of composite
squares (I ) + (I I ) = (I I I ) + (I V ), where

�c↓ y π

�̄c (I )

Dc

(I I )

h∗

�c

Dc′

�c′ =
�c↓ y

(I I I )

h̄∗

�̄c

�c′ ↓h∗y

(I V )

π

�̄c′

Dc′

�c′

Ec↓ y
π Ec h∗ Ec′ Ec↓ y

h̄∗ Ec′ ↓h∗y π Ec′ .
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Under the hypothesis B1l , the squares (I ) and (I V ) are both homotopy pullbacks
(where, recall, the comma 2-categories Ec ↓ y and Ec′ ↓ h∗y are weakly contractible).
Then, as the square (I I ) = (23) is a homotopy pullback if and only if, for any object
y ∈ Ey , the square (I ) + (I I ) = (I I I ) + (I V ) is a homotopy pullback, we conclude
that the square (23) is a homotopy pullback if and only if the square (I I I ) is as well,
which holds if and only if the 2-functor h̄∗ : �c↓ y → �c′ ↓h∗y is a weak equivalence.

��
Similarly, if D, E : Cop → 2Cat are 2-functors and � : D ⇒ E is a 2-

transformation, for any objects c ∈ C and y ∈ Ec, there is a commutative square

y↓�c y↓Ec

∫
C D

∫
C � ∫

C E,

(27)

defined as the composite of the squares

y↓�c
�c

π

y↓Ec
π

Dc
�c

c̄

Ec
c̄

∫
C D

∫
C � ∫

C E,

and we have the theorem below.

Theorem 4.2 (Theorem Br for 2-transformations) Let � : D ⇒ E be a 2-
transformation, where D, E : Cop → 2Cat are 2-functors. The following properties
are equivalent:

(a) For any object c in C and any object y in Ec, the square (27) is a homotopy
pullback.

(b) The 2-functor
∫
C � : ∫

C D → ∫
C E has the property Br .

(c) The two conditions below hold.
B1r : For each object c of C, the 2-functor �c : Dc → Ec has the property Br .
B2r : For each 1-cell h : c → c′ in C and any object y′ ∈ Ec′ , the induced
2-functor

h̄∗ : y′ ↓�c′ h∗y′ ↓�c

is a weak equivalence.
(d) The two conditions below hold.

B1r : For each object c of C, the 2-functor �c : Dc → Ec has the property Br .
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B2′
r : For each 1-cell h : c → c′ in C, the square

Dc′
h∗

�c′

Dc

�c

Ec′
h∗ Ec

is a homotopy pullback.

Proof This is parallel to the proof of Theorem 4.1 given above, and we leave it to the
reader. We simply note that, in this case, the weak equivalence

R : (c, y)↓
∫

C
� → y↓�c , (28)

for each objects c ∈ C and y ∈ Ec, is defined as below.
On objects ((x, a), (p, v)) ∈ (c, y)↓ ∫

C�, where a is an object of C , x an object
of Da , p : c → a is a 1-cell in C and v : y → p∗�ax = �c p∗x is a 1-cell in Ec,

R((a, x), (p, v)) = (p∗x, v).

On 1-cells (( f, u), (α, ψ)) : ((a, x), (p, v)) → ((a′, x ′), (p′, v′)) where f : a → a′
is in C, u : x → f ∗x ′ inDa , α : f ◦ p ⇒ ◦p′ in C , and ψ : α∗�a′x ′ ◦ p∗�au ◦ v ⇒ v′
in Ec,

R(( f, u), (α, ψ)) = (α∗x ′ ◦ p∗u, ψ) : (p∗x, v) → (p′∗x ′, v′),

and, for a 2-cell (β, φ) : (( f, u), (α, ψ)) ⇒ (( f ′, u′), (α′, ψ ′)), where β : f ⇒ f ′ is
in C and φ : β∗x ′ ◦ u ⇒ u′ in Da ,

R(β, φ) = 1α′∗x ′ ◦ p∗φ : (α∗x ′ ◦ p∗u, ψ) ⇒ (α′∗x ′ ◦ p∗u′, ψ ′).

��
Observe that, in the particular case whereC = � the terminal 2-category, Theorems

4.1 and 4.2 state exactly the same as Theorem 2.3.
Furthermore, in the specific case where E = � is the constant terminal 2-category,

for any 2-functor D : C → 2Cat or D : Cop → 2Cat, the projection 2-functors π

are actually isomorphisms �c ↓� ∼= Dc ∼= �↓�c, and Theorems 4.1 and 4.2 give as a
corollary the following 2-categorical version of the relevant Quillen’s detection prin-
ciple for homotopy pullback diagrams [29, Lemma in p. 14] (see [11, Theorem 4.3]
for a more general bicategorical result). Let us also stress that the weak equivalences
(24) and (28), in this case where E = �, establish weak equivalences

π ↓c ∼ Dc c↓π∼
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between the homotopy-fibre 2-categories of the projection 2-functor π : ∫
C D → C

over the objects of C and the 2-categories attached by the 2-diagram to these objects.

Corollary 4.1 (Detecting homotopy pullbacks) Let C be a 2-category. For any 2-
functor D : C → 2Cat (resp. D : Cop → 2Cat), the following statements are
equivalent:

(a) For any object c in C the square

Dc

c̄

�

c

∫
C D π

C

(29)

is a homotopy pullback.
(b) The projection 2-functor π : ∫

C D → C has the property Bl (resp. Br ).
(c) For each 1-cell h : c → c′ of C, the 2-functor h∗ : Dc → Dc′ (resp. h∗ : Dc′ →

Dc) is a weak equivalence.

The following consequence of Theorems 4.1 and 4.2 is closely related to Theorems
3.2 and 2.4.

Corollary 4.2 (Theorem A for 2-diagrams) Let � : D ⇒ E be a 2-transformation,
where D, E : C → 2Cat (resp. D, E : Cop → 2Cat) are 2-functors. The following
statements are equivalent:

(a) The 2-functor
∫
C � : ∫

C D → ∫
C E is homotopy left (resp. right) cofinal.

(b) For any object c ∈ C, the 2-functor �c : Dc → Ec is homotopy left (resp. right)
cofinal.

5 Changing the indexing 2-category

If F : A → C is a 2-functor between 2-categories, then any 2-functorD : C → 2Cat,
or D : Cop → 2Cat, gives rise to a pullback of 2-categories

∫
A F∗D F̄

π

∫
C D

π

A
F

C

(30)

where F̄ is given by

F̄ : (a, x) ⇓(α,φ)

( f,u)

(g,v)

(a′, x ′) �→ (Fa, x) ⇓(Fα,φ)

(F f,u)

(Fg,v)

(Fa′, x ′). (31)
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Our first result here completes Corollary 4.1:

Theorem 5.1 Let C be a 2-category and D : C → 2Cat (resp. D : Cop → 2Cat) a
2-functor. The following statements are equivalent:

(a) For any 2-functor F : A → C, the square (30) is a homotopy pullback.
(b) For any 1-cell h : c → c′ in C, the 2-functor h∗ : Dc → Dc′ (resp. h∗ : Dc′ → Dc)

is a weak equivalence.

Proof Suppose (a) holds. Let c : pt → C be the 2-functor given by any object c ∈ C .
As we have quite an obvious isomorphism

∫
�
c∗D ∼= Dc, the square

Dc
c̄ ∫

C D
π

�
c

C

(32)

is, by hypothesis, a homotopy pullback. Hence, the result follows from Corollary 4.1.
Conversely, assume (b) holds. Again by Corollary 4.1, for any object c ∈ C , the

square (32) above is a homotopy pullback. Since, for any given 2-functor F : A → C ,
the 2-functor F∗D : A → 2Cat (resp. F∗D : Aop → 2Cat) trivially is under the same
hypothesis (b) as D, it follows that, for any object a ∈ A, both the left side and the
composite square in the diagram

DFa
ā ∫

A F∗D
π

F̄ ∫
C D

π

�
a

A
F

C

are homotopy pullbacks. Then, from the homotopy fibre characterization of homo-
topy pullbacks, it follows that the right side square above is a homotopy pullback, as
required. ��
Next, we state the complementary counterpart to the theorem above. If F : A → C
and D : Cop → 2Cat are 2-functors, for any objects c ∈ C and z ∈ Dc, let

jz : F ↓c →
∫

A
F∗D

be the 2-functor defined on cells by

(a, p)

(u,φ)

(u′,φ′)

⇓α (a′, p′)
jz

(a, p∗z)

(u,φ∗z)

(u′,φ′∗z)

⇓(α,1φ′∗z) (a′, p′∗z). (33)
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Theorem 5.2 For a 2-functor F : A → C, the following statements are equivalent:

(a) F : A → C has the property Bl .
(b) For any 2-functor D : Cop → 2Cat, the 2-functor F̄ : ∫

A F∗D → ∫
C D has the

property Bl .
(c) For any 2-functor D : Cop → 2Cat, and any objects c ∈ C and z ∈ Dc, the

commutative square

F ↓c F̄

jz

C ↓c

jz

∫
A F∗D F̄ ∫

C D

(34)

is a homotopy pullback.
(d) For any 2-functor D : Cop → 2Cat, the square (30)

∫
A F∗D F̄

π

∫
C D

π

A
F

C

is a homotopy pullback.

Proof For any objects c ∈ C and z ∈ Dc, let

π̄ : F̄ ↓(c, z) −→ F ↓c (35)

be the induced 2-functor on homotopy-fibre 2-categories making the diagram below
commutative:

F̄ ↓(c, z)
π

π̄

∫
A F∗D
π

F̄ ∫
C D

π

F ↓c
π

A
F

C.

Explicitly, this π̄ acts on objects ((a, x), (p, v)), where a is an object of A, x an object
of DFa , p : Fa → c is a 1-cell in C and v : x → p∗z is a 1-cell in DFa , by

π̄((a, x), (p, v)) = (a, p).

On 1-cells
(( f, u), (φ, β)) : ((a, x), (p, v)) → ((a′, x ′), (p′, v′)), (36)

where f : a → a′ is a 1-cell of A, u : x → (F f )∗x ′ of DFa , φ : p ⇒ p′ ◦ F f a
2-cell of C , and β : φ∗z ◦ v ⇒ (F f )∗v′ ◦ u a 2-cell of DFa ,

π̄(( f, u), (φ, β)) = ( f, φ) : (a, p) → (a′, p′),
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and, on a 2-cell (α, ψ) : (( f, u), (φ, β)) ⇒ (( f ′, u′), (φ′, β ′)), where α : f ⇒ f ′ is
a 2-cell of A and ψ : (Fα)∗x ′ ◦ u ⇒ u′ a 2-cell in DFa , satisfying the corresponding
conditions,

π̄(α, ψ) = α : ( f, φ) ⇒ ( f ′, φ′).

The 2-functor π̄ is actually a retraction, with a section given by the 2-functor

iz : F ↓c → F̄ ↓(c, z),

which acts on objects by

iz(a, p) = ((a, p∗z), (p, 1p∗z)),

on a 1-cell ( f, φ) : (a, p) → (a′, p′) by

iz( f, φ) = (( f, φ∗z), (φ, 1φ∗z)) : ((a, p∗z), (p, 1p∗z)) → ((a′, p′∗z), (p′, 1p′∗z)),

and on a 2-cell α : ( f, φ) ⇒ ( f ′, φ′) by

iz(α) = (α, 1φ∗z) : (( f, φ∗z), (φ, 1φ∗z)) �⇒ (( f ′, φ′∗z), (φ′, 1φ′∗z)).

It is clear that π̄ iz = 1. Furthermore, there is an oplax transformation 1 ⇒ iz π̄

given, on any object ((a, x), (p, v)) of F̄ ↓(c, z), by the 1-cell

((1a, v), (1p, 1v)) : ((a, x), (p, v)) → ((a, p∗z), (p, 1p∗z)),

and whose naturality component at any 1-cell as in (36) is

((a, x), (p, v))
(( f,u),(φ,β))

((1a ,v),(1p,1v))
(1 f ,β)⇒

((a′, x ′), (p′, v′))

((1a′ ,v′),(1p′ ,1v′ ))

((a, p∗z), (p, 1p∗z))
(( f,φ∗z),(φ,1φ∗z))

((a′, p′∗z), (p′, 1p′∗z)).

Hence, for the maps induced by π̄ and iz on classifying spaces, ||π̄ || ||iz|| = 1 and,
by Fact 2.2, 1  ||iz|| ||π̄ ||. Therefore, both 2-functors π̄ and iz are weak equivalences.
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Let us now observe that the square (34) is the composite of the squares

F ↓c F̄

iz

C ↓c

iz

F̄ ↓(c, z)

(I )

¯̄F

π

∫
CD↓(c, z)

π

∫
A F∗D F̄ ∫

C D,

where both vertical 2-functors iz are weak equivalences. It follows that the square (34)
is a homotopy pullback if and only if the square (I ) above is as well. As, by Theorem
2.3, the squares (I ) are homotopy pullbacks, for all objects (c, z) of

∫
C D, if and only

if the 2-functor F̄ : ∫
A F∗D → ∫

C D has the property Bl , the equivalence (b) ⇔ (c)
is proven.

The equivalence (a) ⇔ (b) follows from the fact that, for any 1-cell (h, w) :
(c, z) → (c′, z′) in

∫
C D, the square of 2-functors

F̄ ↓(c, z)

π̄

(h,w)∗
F̄ ↓(c′, z′)

π̄

F ↓c
h̄∗

F ↓c′

commutes, where, recall, both vertical 2-functors π̄ are weak equivalences. So, the
2-functors (h, w)∗ at the top are weak equivalences if and only if the 2-functors h̄∗ at
the bottom are as well. This directly means that (a) ⇒ (b), and the converse follows
from taking any D such that Dc �= ∅ for all c ∈ C .

Next, we prove that (c) ⇒ (d): For any object (c, z) of
∫
C D, we have the squares

F ↓c
jz

F̄

∫
AF

∗D

F̄

π
A

F

C ↓c
jz ∫

C D π
C,

whose composite is the left square in (10), and where jz(1c) = (c, z). By hypothesis,
the left square is a homotopy pullback. Furthermore, as F has the property Bl , owing
to the already proven implication (c) ⇒ (a), Theorem 2.3 implies that the composite
square is also a homotopy pullback. Therefore, by the homotopy fibre characterization,
the right square above is a homotopy pullback as well.

123



Homotopy colimits of 2-functors 769

Finally, (d) ⇒ (a) is easy: For any object c ∈ C takeD = C(−, c) : Cop → Cat ⊆
2Cat. Then, by hypothesis, the square

∫
A F∗C(−, c)

∫
C C(−, c) F ↓c

=
C ↓c

A
F

C A
F

C

is a homotopy pullback, whence the result follows from Theorem 2.3. ��
Likewise, if F : A → C and D : C → 2Cat are 2-functors, for any objects c ∈ C

and z ∈ Dc, we have the 2-functor

jz : c↓F →
∫

A
F∗D

given by

(a, p)

(u,φ)

(u′,φ′)

⇓α (a′, p′)
jz

(a, p∗z)

(u,φ∗z)

(u′,φ′∗z)

⇓(α,1φ′∗z) (a′, p′∗z)

and the result below holds.

Theorem 5.3 For a 2-functor F : A → C, the following statements are equivalent:

(a) F : A → C has the property Br .
(b) For any 2-functor D : C → 2Cat, the 2-functor F̄ : ∫

A F∗D → ∫
C D has the

property Br .
(c) For any 2-functor D : C → 2Cat, and any objects c ∈ C and z ∈ Dc, the

commutative square

c↓F F̄

jz

c↓C

jz

∫
A F∗D F̄ ∫

C D

is a homotopy pullback.
(d) For any 2-functor D : C → 2Cat, the square (30)

∫
A F∗D F̄

π

∫
C D

π

A
F

C
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is a homotopy pullback.

A main consequence is the corollary below.

Corollary 5.1 (Homotopy Cofinality Theorem) Let F : A → C be a 2-functor
between 2-categories. The statements below are equivalent.

(a) F : A → C is homotopy left (resp. right) cofinal.
(b) For any 2-functorD : Cop → 2Cat (resp.D : C → 2Cat) the induced 2-functor

F̄ : ∫
A F∗D → ∫

C D is homotopy left (resp. right) cofinal.
(c) For any 2-functorD : Cop → 2Cat (resp.D : C → 2Cat) the induced 2-functor

F̄ : ∫
A F∗D → ∫

C D is a weak equivalence.

Proof The equivalence (a) ⇔ (b) follows fromTheorems5.2 and5.3. The implication
(b) ⇒ (c) follows from Theorem 2.4. To prove the remaining (c) ⇒ (a), take, for any
object c of C, the 2-functorD = C(−, c) : Cop → Cat ⊆ 2Cat. Then, by hypothesis,
the 2-functor

∫
A F∗C(−, c) F̄ ∫

C C(−, c)

F ↓c F̄ C ↓c

is a weak equivalence. Therefore, F ↓c is weakly contractible as C ↓c is, by Lemma
2.1. ��

Next, we show conditions on a 2-category C in order for the square (30) to always
be a homotopy pullback.

Corollary 5.2 Let C be a 2-category. Then, the following properties are equivalent:

(i) For any 1-cell h : c → c′ and any object x of C, the functor h∗ : C(x, c) →
C(x, c′) is a weak equivalence.

(i’) For any 1-cell h : c → c′ and any object x of C, the functor h∗ : C(c′, x) →
C(c, x) is a weak equivalence.

(ii) For any two objects c, c′ ∈ C, the canonical square

C(c, c′) in
C ↓ c′

π

�
c

C

is a homotopy pullback.8

8 This implies that, for any object c ∈ C , C(c, c) = �(C, c); that is, the category C(c, c) is a loop object
for the pointed 2-category (C, c).
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(ii’) For any two objects c, c′ ∈ C, the canonical square

C(c, c′) in
c↓ C

π

�
c′

C

is a homotopy pullback.
(iii) For any 2-functor D : C → 2Cat, the 2-functor h∗ : Dc → Dc′ induced for any

1-cell h : c → c′ of C is a weak equivalence.
(iii’) For any 2-functor D : Cop → 2Cat, the 2-functor h∗ : Dc′ → Dc induced for

any 1-cell h : c → c′ of C is a weak equivalence.
(iv) For any 2-functors F : A → C and D : C → 2Cat, the square

∫
A F∗D F̄

π

∫
C D

π

A
F

C

is a homotopy pullback.
(iv’) For any 2-functors F : A → C and D : Cop → 2Cat, the square

∫
A F∗D F̄

π

∫
C D

π

A
F

C

is a homotopy pullback.
(v) Any 2-functor F : A → C has the property Br .
(v’) Any 2-functor F : A → C has the property Bl .

Proof (i) ⇔ (ii):9 Let c : � → C be the 2-functor given for any object c ∈ C . Then,
for any object x ∈ C , there is quite an obvious natural isomorphism

c↓ x =
∫

�

c∗C(−, x) ∼= C(c, x)

between the homotopy-fibre 2-category (actually a category) of c : � → C over x
and the hom-category C(c, x). Then, any 1-cell h : x → y in C induces a weak
equivalence h∗ : c↓ x → c↓ y if and only if the induced h∗ : C(c, x) → C(c, y) is a
weak equivalence. It follows that the 2-functor c : � → C has the property Bl if and

9 The implication (i) ⇒ (ii) was proven by Del Hoyo in [20, Theorem 8.5].
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only if the hypothesis in (i) holds. On the other hand, by Theorem 2.3, the 2-functor
c : � → C has the property Bl if and only if, for any object c′ ∈ C , the square

c↓c′ C ↓c′ C(c, c′)
∼=

C ↓c′

�
c

C �
c

C

is a homotopy pullback, that is, if and only if (ii) holds.
(iii) ⇒ (i): For any object x ∈ C , the result follows by applying the hypothesis in

(iii) to the 2-functor D = C(x,−) : C → Cat.
(i) ⇒ (v) By Theorem 5.1, for any 2-functor F : A → C and any object c ∈ C ,

the square

∫
A F∗C(c,−)

∫
C C(c,−) c↓F

=
c↓C

A
F

C A
F

C

is a homotopy pullback. Then, F has the property Br by Theorem 2.3.
(v) ⇒ (iv) This follows from Theorem 5.3.
(iv) ⇒ (iii) This follows from Theorem 5.1.
Thus, we have (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) and, similarly, we also have the

equivalences (i′) ⇔ (ii′) ⇔ (iii′) ⇔ (iv′) ⇔ (v′).
Furthermore, for any given 2-functor F : A → C , the application of the hypothesis

in (iii) to the homotopy-fibre 2-functor F ↓ − : C → 2Cat just says that F has
the property Bl . Hence, (iii) ⇒ (v′). Likewise, for any 2-functor F : A → C , the
hypothesis on − ↓ F : Cop → 2Cat implies that F has the property Br , whence
(iii′) ⇒ (v), and the proof is complete. ��

Remark 1 If φ : A → C and φ′ : A′ → C are continuous maps between spaces, its
homotopy-fibre product A ×h

C A′ is the subspace of the product A × BI × A′, where
I = [0, 1] and C I is taken with the compact-open topology, whose points are triples
(a, γ, a′) with a ∈ A, a′ ∈ A′, and γ : φa → φ′a′ a path in C joining φa and φ′a′,
that is, γ : I → C is a path with γ 0 = φa and γ 1 = φ′a′.

There is a subtle 2-categorical emulation of the homotopy-fibre product of spaces:
Any pair of 2-functors F : A → C and F ′ : A′ → C , where A, C , and A′ are
2-categories, has associated a comma 2-category F ↓ F ′, whose 0-cells are triples
(a, f, a′) with f : Fa → F ′a′ a 1-cell in C , whose 1-cells (u, β, u′) : (a0, f0, a′

0) ⇒
(a1, f1, a′

1) are triples consisting of 1-cells u : a0 → a1 in A and u′ : a′
0 → a′

1 in A′,
together with a 2-cell β : F ′u′ ◦ f0 ⇒ f1 ◦ Fu in C , and 2-cells (α, α′) : (u, β, u′) ⇒
(v, γ, v′) pairs given by 2-cells α : u ⇒ v in A and α′ : u′ ⇒ v′ in A′ such that
(1 f1 ◦ Fα) ·β = γ · (F ′α′ ◦ 1 f0). This 2-category F ↓F ′ comes with a canonical map
from its classifying space to the homotopy-fibre product space of the induced maps
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||F || : ||A|| → ||C || and ||F ′|| : ||A′|| → ||C ||,

||F ↓F ′|| → ||A|| ×h||C|| ||A||,

which, by [15, Theorem 3.8], is a homotopy equivalence whenever the equivalent
conditions of Corollary 5.2 on the 2-category C hold.

To finish, let us remark that the class of 2-categories satisfying the conditions in
Corollary 5.2 above includes those 2-categories C where, for each 1-cell f : c → c′,
there exists a 1-cell f ′ : c′ → c such that [ f ′ ◦ f ] = [1c] ∈ π0C(c, c) and [ f ◦ f ′] =
[1c′ ] ∈ π0C(c′, c′). In particular, the result applies to 2-groupoids, whose 1-cells
are all invertible, which, recall, are equivalent to crossed modules over groupoids by
Brown and Higgins [8].
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