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Abstract Let E and S be toposes. A geometric morphism p : E → S is called pre-
cohesive if it is local, essential, hyperconnected and the leftmost adjoint preserves
finite products. More explicitly, it is a string of adjoints p! � p∗ � p∗ � p! such that
p∗ : S → E is fully faithful, its image is closed under subobjects, and p! : E → S
preserves finite products.Wemay also say thatE is pre-cohesive (overS). For example,
the canonical geometric morphism ̂� → Set from the topos of simplicial sets is pre-
cohesive. In general, a pre-cohesive geometric morphism p : E → S allows us to
effectively use the intuition that the objects of E are ‘spaces’ and those of S are ‘sets’,
that p∗A is the discrete space with A as underlying set of points and that p!X is the set
of pieces of the space X . For instance, such a p determines an associated S-enriched
‘homotopy’ category HE whose objects are those of E and, for each X , Y in HE ,
(HE)(X,Y ) = p!(Y X ). In other words, every pre-cohesive topos has an associated
‘homotopy theory’. The purpose of the present paper is to study certain aspects of
this homotopy theory. We introduce weakly Kan objects in a pre-cohesive topos. Also,
given a geometric morphism g : F → E between pre-cohesive toposesF and E (over
the same base), we define what it means for g to preserve pieces. We prove that if
g preserves pieces then it induces an adjunction between the homotopy categories
determined by F and E , and that the direct image g∗ : F → E preserves weakly Kan
objects. These and other results support the intuition that the inverse image of g is
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‘geometric realization’. Also, the result relating g andweaklyKan objects is analogous
to the fact that the singular complex of a space is a Kan complex.

Keywords Axiomatic Cohesion · Topos theory · Geometric morphisms · Geometric
realization
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1 Introduction

Johnstone explains in his 1979 paper [4] that one of its aims is to show that there are
‘convenient categories of spaces’ that are toposes. To achieve this aim he constructs
the topological topos (denoted here by J ) and proves that the category of sequential
spaces embeds into J . Moreover, he presents the geometric realization functor as the
inverse image of a geometric morphism J → ̂� to the topos of simplicial sets.

According to [4], the idea that the realization/singular adjunction resembles a geo-
metric morphism was given a precise form by Joyal who observed that, if we consider
the interval [0, 1] in Set as a model of the theory classified by ̂�, then we obtain a geo-
metric morphism Set → ̂� whose inverse image produces the underlying set of the
usual geometric realization. The desire to ‘topologize’ this observation is mentioned
loc. cit. as part of the interest in the topos J .

As a related examplewe canmentionProposition 10.6 in [17]. There, the ingredients
are a cohesive topos f : F → Set such that F embeds the monoid of piecewise-
linear endos on the interval [0, 1], and a geometric morphism g : F → ̂� whose
inverse image g∗ : ̂� → F sends the total order with two elements [1] ∈ � to the
interval [0, 1] in F . It follows that the composite product-preserving left adjoint
f∗g∗ : ̂� → Set sends [1] ∈ � to [0, 1] in Set. In other words, the set of points of
g∗X coincides with the underlying set of the classical geometric realization of the
simplicial set X .

From a more general perspective [10,11], the geometric morphisms J → ̂� and
F → ̂� are just two examples of transformations between toposes of spaces. Indeed,
transformations from a topos of ‘topological’ or ‘piecewise linear’ spaces to one of
‘combinatorial’ spaces.
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The appearance of the topos ̂� in both examples is circumstantial. (In fact, the
piecewise linear example was devised so as to be directly related to Johnstone’s.) In
general, we may expect other toposes and, in fact, Lawvere has proposed in [13] a
concrete guide to organize geometric morphisms whose inverse images are ‘geometric
realizations’. The idea is to organize them in terms of their codomains, which are
toposes, and so “some light is shed on their particularity by determining what kind of
structure they classify […]. Concretely, there are many different theories of algebraic
structure for which the unit interval is a model, and having chosen one, this structure
should be preserved by geometric realization”.

The purpose of the present paper is to axiomatize the concept of a realiza-
tion/singular adjunction in the context of Axiomatic Cohesion as formulated in [11]
and pursued in [6,14,17,18]. This will lead us to the definition of a pieces-preserving
geometric morphism. In order to argue that the definition is sensible we revisit the
classical material as exposed in [3] and examine it from the perspective suggested by
Section III in [11] and the unpublished [12,13]. Indeed, let us quote from [12] (with
some very minor edition):

According to the paradigm set by Milnor, the relation between continuous and
combinatorial is a pair of adjoint functors called traditionally singular and real-
ization. (“Singular”, as emphasized by Eilenberg, means that the figures on
which the combinatorial structure of a space lives should not be required to be
monomorphisms, in order that structure should be functorial wrt all continuous
changes of space; “realization” refers to a process analogous to the passage from
blueprints to actual buildings of beton and steel). As emphasized by Gabriel and
Zisman, the exactness of realization forces us to refine the default notion of space
itself, in the direction proposed by Hurewicz in the late 40s and well-described
by J. L. Kelley in 1955. Further refinements suggest that the notion of continu-
ous could well be taken as a topos, of a cohesive (or gros) kind. The exactness
of realization is an example of the striving to make the surrogate combinatorial
topos (=having a site with finite homs ???) describe the continuous category
as closely as possible. For example the finite products of combinatorial inter-
vals might be required to admit the diagonal maps that their realizations have.
There is one point however where perfect agreement cannot be achieved (Is this
a theorem?): the contrast between continuous and combinatorial forced White-
head to introduce a specific notion he called weak equivalence, as explained by
Gabriel-Zisman, in order to extract the correct homotopy category. The contrast
can readily be read off of my list of axioms for Cohesion (TAC): the reasonable
combinatorial toposes satisfy all but one of the axioms, but only the continuous
examples satisfy it. That Continuity axiom (preservation of infinite products by
pizero) was introduced in order to obtain homotopy types that are “qualities” in
an intuitive sense (as they should be automatically in the continuous case).

Let us emphasize some of the key guiding ideas:

1. Axiomatic Cohesion as a general theory of ‘categories of spaces’ emphasizing
the ubiquity of toposes of spaces, capable of distinguishing ‘combinatorial’ and
continuous examples, and containing an intrinsic homotopy theory.
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2. Realization/singular as a geometric morphism from a continuous topos of spaces
to a combinatorial one.

3. Realization as striving to make the surrogate combinatorial topos describe the
continuous one as closely as possible.

4. Agreement may not be perfect, as manifested in the classical case of simplicial
sets by the need to consider weak equivalences. It is relevant to mention here also
the role of Kan complexes.

5. The contrast between continuous and combinatorial can be read off the definition
of cohesive topos via theContinuity axiom. If Continuity holds then the associated
homotopy types are “qualities”.

We have said a few words already about geometric realization as the inverse image
of a geometric morphism; so let us concentrate on the last two items. Every pre-
cohesive topos E over another topos S has an associated ‘homotopy’ or Hurewicz
(S-enriched) category HE . The details will be given later. For the moment it suffices
to say that failure of Continuity affects the relation between HE and S. Moreover,
in the particular case of ̂�, the failure of Continuity explains, to certain extent, the
relevance of Kan complexes.

In Sect. 4 we introduce the notion of weakly Kan object (in a pre-cohesive topos
E). It follows easily from the definition that Continuity holds for E if and only if every
object in E is weakly Kan. So, in a rough sense, the ‘size’ of the subcategory of weakly
Kan objects is a measure of the validity of Continuity in E .

In Sect. 5 we give a characterization of weakly Kan objects. It follows from this
characterization that Kan complexes are weakly Kan objects in the topos of simplicial
sets. It is for this reason that we said above that the failure of Continuity explains, to
some extent, the relevance of Kan complexes.

In Sect. 6 we define what it means for a pre-cohesive geometric morphism to
preserve pieces. In Sect. 7 we discuss some examples. In particular, we show that
some of the typical examples are surjective, as in the case of the geometric morphism
J → ̂� from the topological topos; but notice that we give a very different proof than
that in [3]. Our proof uses a new simple sufficient condition, established in Sect. 3, for
filtering functors to induce surjections.

In Sect. 8 we show that if g : F → E (over the same base) preserves pieces then
the direct image g∗ : F → E preserves weakly Kan objects. This is analogous to the
fact that the singular complex of a space is a Kan complex.

In Sect. 9 we discuss in more detail the passage to homotopy. We explain in some
detail the construction of the Hurewicz category associated to a pre-cohesive topos
and prove that every pieces-preserving g : F → E (over S) induces an S-enriched
adjunction between the Hurewicz categories HF and HE .

So, in a sense, this is a paper about the foundations of Homotopy Theory. In this
sense then, some readers may find surprising the lack of references to Quillen’s work
[19] or other related approaches such as [2]. The reason is that the homotopy category
associated to a pre-cohesive topos is not constructed by inverting some class of arrows.
Needless to say, it is expected that at some point a comparison between the approaches
will be done.
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We will recall some of the main definitions and examples in Sect. 2 but the reader
will be assumed to be familiar with [11,17]. Further details and examples may be
found in [6,18].

2 Pre-cohesive toposes

Let E andS be toposes. A geometricmorphism p : E → S is called pre-cohesive if the
adjunction p∗ � p∗ extends to a string of adjoint functors p! � p∗ � p∗ � p! such that
p∗, p! : S → E are fully faithful, the canonical natural transformation θ : p∗ → p! is
epi (Nullstellensatz) and the leftmost adjoint p! : E → S preserves finite products.

The conditions defining pre-cohesive morphisms allow to effectively use the intu-
ition that the objects of E are ‘spaces’, those of S are ‘sets’, that p∗X is the set of
‘points’ of the space X , and that p!X is the set of ‘pieces’ or ‘connected components’.
So, for example, a space X in E is said to be connected if p!X = 1.

Intuition should be taken seriously. In particular, notice that any equivalence
p : E → S is pre-cohesive. Roughly speaking, the definition of pre-cohesive geo-
metric morphism allows examples where the concepts of ‘point’ and ‘piece’ coincide.
More precisely, a pre-cohesive p : E → S is called a quality type if the canonical
θ : p∗ → p! is an iso.On the other hand, a pre-cohesive p : E → S is called sufficiently
cohesive if p!� = 1 (that is, the subobject classifier of E is connected). Intuitively, suf-
ficiently cohesive examples are those where points and pieces are different concepts.
This can be made precise as in Proposition 3 of [11]: if the pre-cohesive p : E → S
is both sufficiently cohesive and a quality type then S is inconsistent. In the case of
presheaf toposes, this contrast may be strengthened to a dichotomy. We explain this
in more detail in the next paragraph.

Let C be a small category whose idempotents split and let p : ̂C → Set be the
associated presheaf topos over Set. With different terminology, it is proved in [6] that
p is pre-cohesive if and only if C has terminal object and every object of C has a point
(i.e. a map from the terminal to that object). Corollary 2.11 in [18] shows that in this
case, p is sufficiently cohesive if and only if some object of C has two distinct points.
Proposition 4.5 in [17] shows that the pre-cohesive p is a quality type if and only if
the terminal object of C is also initial. Summarizing, a pre-cohesive presheaf topos is
either sufficiently cohesive or a quality type. We now recall some examples.

The simplest example of a small category with terminal object and two distinct
points is �1. It follows that the pre-cohesive topos ̂�1 of reflexive graphs is suffi-
ciently cohesive [10]. Similarly for simplicial sets: the pre-cohesive ̂� → Set is also
sufficiently cohesive.

Example 2.1 (The classifier of strictly bipointed objects) The theorymay be presented
by two constants 0, 1 and the sequent 0 = 1 � ⊥. The corresponding classifier may be
described as SetA whereA is the category of strictly bipointed finite sets and functions
between them that preserve the distinguished points. Notice that A is the category of
free ‘bipointed sets’ generated by a finite set. Let I in A be the free bipointed set on
one generator. The standard theory of classifying toposes implies that A(I,−) is the
generic strictly bipointed set. (One can prove this directly or use Proposition D3.1.10
in [5].) The characterization above implies that SetA =̂Aop → Set is pre-cohesive
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and sufficiently cohesive. Notice that Aop has finite products and every object is a
finite power of I .

For illustration we will mainly use ̂� and SetA but we stress that, as already
suggested by the quotation in the introduction, any other topos classifying a theory for
which the unit interval is a model may be used for similar purposes. Further examples
may found in [6,11,18] and, in particular, Examples 4.2 and 4.3 in [17].

We will frequently use the following comparison transformation induced by a finite
product preserving functor F : V → W , between cartesian closed categories V and
W . For every U and V in V , the exponential transpose of

F(VU ) × FU
∼=

F(VU ×U )
F ev

FV

will be denoted by κU,V =: F(VU ) → (FV )(FU ) or by κF if wewant tomake explicit
the functor to which it is applied. Observe that for another finite-product preserving
functor G : W → X , the diagram

G(F(VU ))

κGF
U,V

G(κF
U,V )

G((FV )(FU ))

κG
FU,FV

(G(FV ))(G(FU ))

commutes.
Let p : E → S be a pre-cohesive geometric morphism. Denote the unit and counit

of p! � p∗ by σ and τ respectively. Intuitively, the unit σX : X → p∗(p!X) sends each
figure of X to the piece where it lies. On the other hand, τX : p!(p∗A) → A is an iso;
another expression of the requirement that p∗ embeds S into E as discrete spaces.

Since p! : E → S preserves finite products we obtain a natural κX,Y : p!(Y X ) →
(p!Y )p!X . The following simple fact will play a relevant role.

Lemma 2.2 For any X in E and A in S the following composite

p!(X p∗A)
κ

(p!X)p!(p∗A)
(p!X)τ

−1

(p!X)A

is an iso if and only if κ = κ
p!
p∗A,X : p!(X p∗A) → (p!X)p!(p∗A) is an iso.

The pre-cohesive p is said to satisfy theContinuity condition if for every X in E and
A in S, the equivalent conditions of Lemma 2.2 hold. A geometric morphism E → S
is called cohesive if it is pre-cohesive and satisfies the Continuity condition.

Thefirst example of a cohesive and sufficiently cohesive toposwas described in [11].
In this case, the base S is the topos of finite sets so Continuity reduces to preservation
of finite products. The examples of cohesive (and sufficiently cohesive) Grothendieck
topos that we are aware of are those described in [17]. For definiteness take the site
(Lp, K ). Recall that the category Lp has as objects the closed intervals [a, b] with
a ≤ b, a, b ∈ R, and as morphisms piecewise linear (continuous) maps: a continuous

123



On the relation between continuous and combinatorial 385

map f : [a, b] → [c, d] is piecewise linear if a = b or a < b and there is a partition
a = r0 < r1 < · · · < rm+1 = b of [a, b] such that for every i = 0, . . . ,m, the
restriction f |[ri ,ri+1] : [ri , ri+1] → [c, d] is a linear function. Recall as well that the
Grothendieck topology on Lp is given by means of a basis K : K [a, a] consists only
of the identity morphism for any a ∈ R, whereas for a < b, K [a, b] consists of those
families of the form

{[ri , ri+1] [a, b] | i = 0, . . . ,m}

where a = r0 < r1 < · · · < rm+1 = b is a partition of [a, b]. It is proved in Section 10
of [17] that the canonical Sh(Lp, K ) → Set is cohesive and sufficiently cohesive. It
is also shown loc. cit. (Lemma 10.5) that the site (Lp, K ) is subcanonical.

The following concept is perhaps somewhat ad-hoc but it provides a more concrete
grasp of the functor p! and proved to be quite useful in [17].

A connector for p : E → S is a bipointed object 0, 1 : 1 → I in E such that the
following diagram

p∗(X I ) p∗X p!X
p∗ ev0

p∗ ev1

θX

is a coequalizer in S for each X in E . (See Definition 8.1 in [17].)
For example, consider the topos of simplicial sets ̂�. The representable I =

�(−, [1]) has exactly two points, and Example 8.10 in [17] shows that they form
a connector for p :̂� → Set. Example 8.12 loc. cit. shows that the classifier of strictly
bipointed objects has a connector, and Lemma 8.13 implies that Sh(Lp, K ) → Set
does.

Intuitively, one pictures a connector as a connected object and, in fact, the connectors
in our examples are all connected (i.e. p! I = 1); but we stress that we have no use for
this condition in our proofs, except for that of Proposition 7.1.

3 Filtering functors inducing surjections

Gabriel and Zisman prove in Section III.3.6 of [3] that geometric realization ̂� → Kel
reflects isos, where Kel is the category of Kelley spaces. In [4], Johnstone cites this
result as a proof that the geometric morphism J → ̂� from the topological topos
J to simplicial sets, whose inverse image sends [1] ∈ � to the unit interval in J , is
surjective. (Recall that a geometric morphism g : F → E is surjective if and only if
g∗ : E → F reflects isos.)

So, for pre-cohesive geometric morphisms f : F → S and p : E → S over the
same base, we are led to entertain the idea of a surjective geometric morphismF → E
over S satisfying some condition(s) typical of a realization/singular adjunction. More-
over, the examples suggest that f may be cohesive and that p may be ‘combinatorial’
in some sense. We will exhibit examples in Sect. 7, but in this section we concentrate
on the issue of surjectivity/reflection-of-isos. We found the proof in [3] somewhat
difficult to follow so we decided to give an alternative one that is more in tune with
our topos theoretic context.
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Let C be a small category and let A : C → Set be a filtering functor (Defin-
ition VII.6.2 in [16]). Denote the induced geometric morphism by f : Set → ̂C.
Recall that for any P in ̂C, f ∗P in Set may be described as the quotient of
∑

C∈C(PC) × (AC) by the equivalence relation that relates the pairs (x, a) ∈
(PC) × (AC) and (x ′, a′) ∈ (PC ′) × (AC ′) if and only if there exists a span

C E
u u′

C ′

in C and c ∈ AE such that u · c = a, u′ · c = a′ and x · u = x ′ · u′. See discussion
following Theorem VII.6.3 in [16].

Definition 3.1 For any C in C, the interior of AC is the subset int(AC) → AC given
by those x ∈ AC such that: for every u : C ′ → C in C, if (Au)y = u · y = x for some
y ∈ AC ′ then u is split epi.

We can now prove a sufficient condition for a filtering functor to induce a surjective
geometric morphism.

Theorem 3.2 Let A : C → Set be a filtering functor. If int(AC) �= ∅ for every C in
C, then the geometric morphism Set → ̂C induced by A is surjective.

Proof Let f : Set → ̂C be the geometric morphism induced by A. It is enough to
prove that for every mono ϕ : Q → P in ̂C, if f ∗ϕ : f ∗Q → f ∗P is iso then so is ϕ.
In turn, it is enough to prove that f ∗ reflects epis. So assume that f ∗ϕ : f ∗Q → f ∗P
is epi. We need to check that ϕ = ϕC : QC → PC is surjective for each C in C. To
do this let x ∈ PC . By hypothesis, int(AC) �= ∅, so let a ∈ int(AC) and consider
x ⊗ a ∈ f ∗P . Since f ∗ϕ is epi,

x ⊗ a = ( f ∗ϕ)(y ⊗ b) = (ϕy) ⊗ b

for some y ∈ QD and b ∈ AD. So there exists a span

C E
u v

D

and c ∈ AE such that u · c = a, v · c = b and x · u = (ϕy) · v. Since a ∈ int(AC), u
has a section s : C → E . Then

x = x · (us) = (x · u) · s = ((ϕy) · v) · s = ϕ(y · (vs))

showing that x is in the image of ϕC : QC → PC . ��
The intuition is that A : C → Set sends each C in C to the underlying set of a solid

object. Now, for an arrow f :C ′ → C in C, the image of A( f ) intersects the interior
of A(C) only if the domain is at least of the same “dimension” than the codomain.
The non-empty interior condition captures the idea that all the lower dimensional
figures fail to cover AC . This intuition might be more easily grasped if we add a small
condition on C.
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Lemma 3.3 For A : C → Set as above. If every map in C factors as a split-epi fol-
lowed by a mono then, for every C in C, int(AC) → AC consists of those x ∈ AC
such that: for every mono m : C ′ → C in C, if (Au)y = u · y = x for some y ∈ AC ′
then m is an iso.

Proof Easy. ��
In this case the intuition is more direct, A : C → Set sends each non-iso mono

C ′ → C to the inclusion of a ‘lower dimensional’ figure. The non-empty interior
condition captures the idea that all these lower dimensional subfigures fail to cover
AC .

For instance, consider the usual functor A : � → Set that sends [n] ∈ � to the
simplex �n . Fix some n ≥ 1 and consider A[n] = �n . Any non-iso mono [m] → [n]
in � factors through some mono [n − 1] → [n] and it is well-known that the induced
A[n − 1] → A[n] lies in a face of A[n] (see, for example, Section VII.5 in [15]), so
the interior of A[n] is nonempty.

More precisely, recall that one description (see [16], VIII.7 for instance) has that
�0 is a point, and for n ≥ 1, �n = {(t1, . . . , tn) ∈ [0, 1]n|0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.
Observe that�∂ ik (t1, . . . , tk) = (t1, . . . , tk−1, tk, tk, tk+1, . . . , tn) (�∂0k adds a leftmost

zero, and �∂k+1
k adds a rightmost 1). From this it is not hard to see that the interior of

�[n] is {(t1, . . . , tn)|0 < t1 < · · · < tn < 1}, as it is to be expected. (Of course, the
interior of �0 is �0 itself.) We can now apply Theorem 3.2.

Corollary 3.4 The geometricmorphismSet → ̂�whose inverse image sends [1] ∈ �

to [0, 1] in Set is surjective.
As a further corollary we obtain an alternative proof of the ‘topologized’ version.

Corollary 3.5 (Gabriel–Zisman/Johnstone) The geometric morphismJ → ̂�whose
inverse image sends [1] ∈ � to [0, 1] in J is surjective.

Proof Let us denote the canonical geometric morphism from the topological topos by
f : J → Set and the realization/singular morphism by r : J → ̂�. The morphism
f is local (in the sense that it has a fully faithful right adjoint), so the ‘points’ func-
tor f∗ : J → Set is the inverse image of a geometric morphism c : Set → J . The
composite

Set
c J r

̂�

is such that its inverse image sends �(_, [1]) ∈ ̂� to [0, 1] in Set so it must
coincide with the geometric morphism of Corollary 3.4. Hence, the composite
c∗r∗ = f∗r∗ : ̂� → Set is faithful. Then r∗ : ̂� → J is faithful, which means that r
is surjective as a geometric morphism. ��

It seems relevant to compare the proof of Corollary 3.5 with Gabriel and Zisman’s
proof of conservativity of geometric realization | _ |: ̂� → Kel in III.3.6 of [3]. The
relevant part is at the end of page 53 loc. cit., where it is proved that if f : X → Y
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is a non invertible mono in ̂� then its geometric realization | f | is not invertible
either. The key auxiliary fact is that the group of automorphisms of | _ | acts on Y and
that the orbits of this action are indexed by the non-degenerate simplices of Y (see
Proposition III.1.6 loc. cit.). In turn, the proof of this fact rests on the identification of
the group of automorphisms of | _ |: ̂� → Kelwith the group of increasing continuous
maps s : [0, 1] → [0, 1] such that s0 = 0 and s1 = 1 (II.1.3). From a topos theoretic
perspective, the last fact is a corollary of the classifying role of ̂�; while the former
is an instance of the more general observation that ‘algebraic structure is adjoint to
semantics’ (Theorem III.1.2 in [9]). As a final remark on this example we stress that
the group of automorphisms of the realization functor plays no role in our proof.

For another application of Theorem 3.2 consider the classifying topos for strictly
bipointed objects from Example 2.1. LetA be the category of finite, strictly bipointed
sets. It is easy to see that monos and epis in A are split and that every map factors
as an epi followed by a mono. Thus Aop satisfies the condition in Lemma 3.3. To
consider the corresponding filtering functorAop → Set and the condition on interiors
we switch to the following “geometric” version C ofAop. The objects of C are cubes,
that is, they are of the form [0, 1]S with S a finite set; a morphism f : [0, 1]S → [0, 1]T
in C is built up from projections and the constants 0 and 1 only, that is to say, f is
of the form f = 〈 ft 〉t∈T where for every t ∈ T , ft : [0, 1]S → [0, 1] is a projection
πs : [0, 1]S → [0, 1], with s ∈ S, or the constant zero �0� : [0, 1]S → [0, 1], or the
constant one �1� : [0, 1]S → [0, 1]. Then C and Aop are isomorphic. The filtering
functor in question is the inclusionC → Set. Now, intuition indicates that the interior
of [0, 1]S are those points that avoid the border of the cube (no coordinate equals zero
and no coordinate equals one) an also avoid the “diagonals” (no two coordinates are
equal). Indeed, observe that f = 〈 ft 〉t∈T : [0, 1]S → [0, 1]T is mono inC iff for every
s ∈ S exists t such that ft = πs . Now, if f is not an iso, then there is an s with two
such t’s, or there is a t ∈ T such that ft is constant zero or constant 1. It is clear then
that any point in the image of A( f ) has a zero coordinate or has a coordinate that is
one, or has two equal coordinates. Thus any point (x1, . . . , xn) ∈ A([0, 1]S) = [0, 1]S
such that for all i , xi �= 0, 1 and for every i �= j , xi �= x j , is in the interior. We may
conclude the following.

Corollary 3.6 LetA be the category of finite, strictly bipointed sets, and let I the free
bipointed object in one generator inA. The geometric morphism Set → SetA whose
inverse image sends A(I,−) to [0, 1] in Set is surjective.

4 Weakly Kan objects

Let p : E → S be a pre-cohesive geometric morphism.

Definition 4.1 An object X in E will be called weakly Kan if, for every A in S, the
equivalent conditions of Lemma 2.2 hold. That is, the following composite

p!(X p∗A)
κ

(p!X)p!(p∗A)
(p!X)τ

−1

(p!X)A

is an iso or, equivalently, κ = κ
p!
p∗A,X : p!(X p∗A) → (p!X)p!(p∗A) is an iso.
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Roughly speaking, X is weakly Kan if p! preserves arbitrary powers of X . Notice
that p satisfies the Continuity condition if and only if every object in E is weakly Kan.

Kan complexes in the category ̂� of simplicial sets play an important role in Homo-
topy Theory as understood by Gabriel and Zisman [3]. From the beginning we wanted
an analogous notion in the context of an arbitrary pre-cohesive topos. We believe that
weakly Kan objects are a reasonable proposal. This is supported by several facts. First,
as we will prove below, Kan complexes are weakly Kan when considered as objects
in the pre-cohesive ̂� → Set. Second, we also show below that some fundamental
facts concerning the relation between Kan complexes and geometric realization have
analogues involving weakly Kan objects and certain geometric morphisms between
pre-cohesive toposes.

Naturally, one may raise the question of whether there is a notion of ‘Kan object’.
The straight answer is that we do not know, but we believe that a notion deserving
that name should coincide, in the case of simplicial sets, with the usual notion of
Kan complex. (It will become clear that not every weakly Kan simplicial set is a Kan
complex.)

Altogether, we invite the reader to think of the notion of weakly Kan object as a
variant of the notion of Kan complex that works in the far more general context of
pre-cohesive toposes.

Let kE → E be the full subcategory determined by the weakly Kan objects.

Lemma 4.2 For every object B in S, p∗B in E is weakly Kan.

Proof It is not hard to see that

(p!(p∗B))p!(p∗A)
(τB )

τ
−1
A

BA τ−1

p!(p∗(BA))
p!κ

p!((p∗B)p
∗A)

is the inverse of κ : p!((p∗B)p
∗A) → (p!(p∗B))p!(p∗A). Indeed, we know that the

morphism κ : p∗(BA) → (p∗B)p
∗A is an iso (Corollary A1.5.9 in [5]), so it suffices

to show that one of the composites is the identity. ��
In other words, discrete objects are weakly Kan. In particular, the category kE has

initial and terminal object and the inclusion kE → E preserves them.

Lemma 4.3 The subcategory kE → E is closed under finite products.

Proof We know that the terminal object is weakly Kan. For objects X,Y ∈ kE and
A in S it is not hard to see that the canonical morphism κ : p!((X × Y )p

∗A) →
p!(X × Y )p!(p∗A) is the composite

p!(X p∗A × Y p∗A)
∼=

p!(X p∗A) × p!(Y p∗A)
κ×κ

(p!X)p!(p∗A) × (p!Y )p!(p∗A)

∼=

p!((X × Y )p
∗A)

∼=

κ (p!(X × Y ))p!(p∗A) (p!X × p!Y )p!(p∗A)∼=
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where the isomorphisms come from p!, (_)p
∗A and (_)p!(p∗A) preserving finite prod-

ucts. ��
The subcategory kE → E is also closed under arbitrary powers in the following

sense.

Lemma 4.4 For every X in kE and A in S, X p∗A is also in kE .
Proof For every B ∈ S

(X p∗A)p
∗B ∼= X (p∗A)×(p∗B) ∼= X p∗(A×B)

so κ : p!((X p∗A)p
∗B) → (p!(X p∗A))p!(p∗B) is as iso as κ : p!(X p∗(A×B)) →

(p!X)p!(p∗(A×B)). ��
At this point one may wonder if weakly Kan is equivalent to discrete. We will show

that in the more interesting cases, the subcategory kE → E is much bigger. In fact,
we will show that if E is covered by a cohesive topos F then kE → E contains all the
‘singular complexes’ of the objects in F .

5 Weakly Kan objects in the presence of a connector

In this sectionwe give a characterization ofweaklyKan objects in pre-cohesive toposes
over Set equipped with a connector. In order to do this we first need to study the
following concept.

Definition 5.1 In a cartesian closed category, a fork as on the left below

E
e0

e1
D

q
Q E A

eA0

eA1
DA

qA

QA

is powerful if for every object A, the fork on the right above is a coequalizer.

Notice that a powerful fork as above is always a coequalizer. Indeed, this follows
from the case A = 1.

Assume now that p : E → S is a pre-cohesive geometric morphism equipped with
a connector 0, 1 : 1 → I .

Lemma 5.2 An object X in E is weakly Kan if and only if the fork below

p∗(X I )
p∗ ev0

p∗ ev1
p∗X θ p!X

is a powerful coequalizer in S.
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Proof Let X in E and A in S. Since I is a connector, the two forks below

p∗(X I )

p∗ ev0

p∗ ev1
p∗X

θ
p!X p∗((X p∗ A)I )

p∗ ev0

p∗ ev1
p∗(X p∗ A)

θ
p!(X p∗ A)

are coequalizers. The diagram below

p∗((X p∗A)I )

∼=

p∗ ev0

p∗ ev1
p∗(X p∗A)

∼=

θ
p!(X p∗A)

p∗((X I )p
∗A)

∼=

(p∗(X I ))A
(p∗ ev0)A

(p∗ ev1)A
(p∗X)A

θ A

(p!X)A

commutes in the evident sense and the left andmiddle vertical maps are iso. Therefore,
the bottom fork is a coequalizer if and only if the right vertical map is an iso. ��

Wenow concentrate on powerful coequalizers in the topos Set of sets and functions.
Fix a coequalizer qe0 = qe1 as above. Let us write � for the relation on D given by
the image of 〈e0, e1〉 : E → D × D. Write ∼ for the reflexive and symmetric closure
of �.

LetN∞ be the usual poset of natural numbers extendedwith terminal object denoted
by ∞. The distance from x to y in p∗X is the least n ∈ N∞ such that there are
x1, . . . , xn such that x = x0 ∼ x1 ∼ x2 ∼ · · · ∼ xn−1 ∼ xn = y. The distance from x
to y will be denoted by d(x, y). For example, d(x, x) = 0. Also, qx = qy if and only
if d(x, y) < ∞.

Lemma 5.3 For any coequalizer in Set as above the following are equivalent:

1. The coequalizer is powerful.
2. The fork

EN

eN0

eN1
DN

qN

QN

is a coequalizer.
3. (Finite distances are bounded.)There exists an n ∈ N such that for every x, y ∈ D,

qx = qy implies d(x, y) ≤ n.

Proof The first item trivially implies the second. To prove that the second implies
the third assume, for the sake of contradiction, that distances are not bounded. Then,
for every m ∈ N there are xm, ym ∈ D such that d(xm, ym) ≥ m. Then the indexed
families �x = (xm | m ∈ N) and �y = (ym | m ∈ N) in DN are such that qN �x = qN �y.
As the fork in the second item is a coequalizer, d(�x, �y) < ∞. Then, for every m ∈ N,
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d(xm, ym) ≤ d(�x, �y). Absurd. Finally, assume that the third item holds. We need to
show that the following fork

E A
eA0

eA1
DA

qA

QA

is a coequalizer, where A is some set. Let �x, �y in DA be such that q A �x = q A �y in QA.
Then q(�xa) = q(�ya) in Q for every a ∈ A. By hypothesis, there is an n ∈ N such
that d(�xa, �ya) ≤ n for every a ∈ A. Hence, there are ra,1, . . . , ra,n in D such that
�xa ∼ ra,1 ∼ · · · ra,n = �ya. For any 1 ≤ j ≤ n, we can consider the family �r j such
that �r j a = r j,a and it is easy to see that �x ∼ �r1 · · · ∼ �y. ��

Lemmas 5.2 and 5.3 give a fairly concrete characterization of the weakly Kan
objects in a pre-cohesive topos p : E → Set equipped with a connector. For instance,
in the category ̂�1 of reflexive graphs, a graph G is weakly Kan if and only if there
exists an n ∈ N with the property that, if any two nodes x and y belong to the same
connected component of G, then there is a path (of back and forth arrows) of length
at most n that connects x and y. In the category ̂� of simplicial sets, an object is
weakly Kan if and only if its underlying reflexive graph (its 1-skeleton) is weakly Kan
in ̂�1. This characterization of weakly Kan objects in simplicial sets benefited from
discussions with Luis Turcio.

Lemma 5.2 also suggests the following interesting sufficient condition in a more
general context. Recall that a fork as below (in a category with pullbacks)

A B C
e0

e1

e

is exact if it is a coequalizer and a pullback. The same fork will be called quasi-exact if
it is a coequalizer and the induced morphism A → ker e is regular epi, where ker e is
the kernel pair of e. Any regular functor (between regular categories) preserves exact
forks. See, for example, Section A1.3 in [5]. It is easy to check that regular functors
also preserve quasi-exact forks.

Let p : E → Set be a pre-cohesive topos equipped with a connector 0, 1 : 1 → I .
An object X in E will be called navigable if the fork

p∗(X I )
p∗ ev0

p∗ ev1
p∗X θ p!X

is quasi-exact. Intuitively, X is navigable if, assuming that you can move from a to b
in X and also from b to c, then there is also a way to move from a to c.

An object A in a topos S is internally projective if the right adjoint�A : S/A → S
is a regular functor or, equivalently, (_)A : E → E preserves epis. The toposS satisfies
the internal axiom of choice (IAC) if every object A is internally projective.

Proposition 5.4 If S satisfies IAC and X in E is navigable then X is weakly Kan.
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Proof Follows from Lemma 5.2 because since S satisfies IAC the coequalizer in
question is powerful. ��

Consider for example the pre-cohesive topos of simplicial sets equipped the con-
nector described in Sect. 2.

Corollary 5.5 Every Kan complex is weakly Kan for p : ̂� → Set.

Proof Follows from Proposition 5.4 and [7]. Briefly, every Kan complex is navigable.
In more detail, for every simplicial set X , p∗(X I ) = ̂�(1, X I ) = ̂�(I, X) = X [1]. In
the notation of [7], p∗(X I ) = X1. Similarly, p∗X = X0. So the fact that 0, 1 : 1 → I
is a connector for p : ̂� → Set coincides with the fact stressed at the beginning of
Section 3.2 loc. cit., namely, that the following diagram

X1
d0

d1
X0 p!X

is a coequalizer for every X in ̂�. Joyal and Tierney denote the induced relation on
X0 by ∼ and show that if X is a Kan complex then ∼ is an equivalence relation. But
this simply means that the fork above is quasi-exact. That is, X is navigable. ��

6 Geometric morphisms that preserve pieces

As suggested in the introduction, Milnor’s geometric realization interpreted by Joyal,
Johnstone and Lawvere using toposes leads to the idea of a geometric morphism
g : F → E over a base S as in the diagram on the left below

F

f

g E
p

F

f

g
̂�

p

S Set

where f is cohesive and E is a ‘combinatorial’ pre-cohesive topos. Proposition 10.6 in
[17] shows a concrete example by making explicit a cohesive topos f : F → Set of
‘piecewise linear spaces’ and a geometric morphism g : F → ̂� such that the com-
posite of the subtopos f∗ � f ! : Set → F followed by g : F → ̂� is the geometric
morphismSet → ̂�whose inverse image sends each simplicial set X to the underlying
set of Milnor’s geometric realization of X . The result cited above highlights a natural
iso λ : p!g∗ → f! formalizing the idea that g∗ : F → ̂� preserves pieces. We will
show that this example is an instance of a more general notion of a pieces-preserving
geometric morphism g : E → F .

As mentioned above, our main interest is in geometric morphisms, but for many
of the calculations only the most basic facts about adjunctions and finite products are
needed, so we start with a very basic setting and add hypotheses as they are needed.
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6.1 The preservation of indexed coproducts

Let E and S be categories and let p∗ � p∗ : E → S be an adjunction. Let
g∗ � g∗ : F → E be another adjunction (denoted also by g : F → E) and let
f : F → S be the composite adjunction, so that f∗ = p∗g∗ : F → S and f ∗ =
g∗ p∗ : S → E . We picture the situation as follows

F

f

g E
p

S

with f ‘over’ p, and we devise a notation that explicitly relates the unit and counit of
p with that of f .

The unit and counit of p will be denoted by α : 1S → p∗ p∗ and β : p∗ p∗ → 1E .
‘Over’ it we denote the unit and counit of f by α : 1S → f∗ f ∗ and β : f ∗ f∗ → 1E
respectively. In order to relate these natural transformations we introduce a different
name for the unit and counit of g.

We denote the unit and counit of g by ν : 1E → g∗g∗ and ξ : g∗g∗ → 1F respec-
tively. It is well known that the unit and counit for f ∗ � f∗ may be defined as the
following composites

1S
α

p∗ p∗ p∗νp∗
p∗g∗g∗ p∗ = f∗ f ∗ f ∗ f∗ = g∗ p∗ p∗g∗

g∗βg∗
g∗g∗

ξ
1F

so α = (p∗νp∗)α : 1S → f∗ f ∗ and β = ξ(g∗βg∗) : f ∗ f∗ → 1F .
(Notice that if f ∗ and p∗ are fully faithful then p∗νp∗ is forced to be an iso.)
The next concept is well known and plays a relevant role here.

Definition 6.1 We say that g∗ : F → E preserves S-indexed coproducts if the natural
transformation νp∗ : p∗ → g∗g∗ p∗ = g∗ f ∗ is an iso.

When f ∗ : S → F and p∗ : S → E are the discrete inclusions of the base S into
the respective (pre-)cohesive toposes, then preservation of S-indexed coproducts for-
malizes the idea that g∗ : F → E preserves discrete spaces.

Let us say that an object is indecomposable if it has exactly two complemented
subobjects. In a Grothendieck topos F , an object Z is indecomposable if and only if
F(Z , _) : F → Set preserves coproducts. If the canonical f : F → Set is essential
then, Z is indecomposable if and only if f!Z = 1. In particular, if f is pre-cohesive
then Z is indecomposable if and only if Z is connected.

Lemma 6.2 Let C be a small category and let p : ̂C → Set be the associated presheaf
topos. Let g : F → ̂C be a geometric morphism. If for every C in C, g∗(C(_,C)) is
indecomposable then g∗ : F → ̂C preserves Set-indexed coproducts.

Proof By Yoneda and the adjunction g∗ � g∗ we have that, for every X inF and C in
C, (g∗X)C � F(g∗(C(−,C)), X). In particular, for every indexed family (Xi | i ∈ I )
of objects in F , (g∗(

∑

i∈I Xi ))C = F(g∗(C(−,C)),
∑

i∈I Xi ). So, by hypothesis,
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(

g∗
(

∑

i∈I
Xi

))

C �
∑

i∈I
F(g∗(C(−,C)), Xi ) �

∑

i∈I
(g∗Xi )C =

(

∑

i∈I
g∗Xi

)

C

which implies that g∗ preserves Set-indexed coproducts. ��
As the referee has observed, the converse of Lemma 6.2 holds in more generality:

if g∗ preserves coproducts then g∗ preserves indecomposables.

6.2 Assuming the existence of ‘pieces’ functors

Assume fromnowon that both f ∗ : S → F and p∗ : S → E have left adjoints denoted
by f! : F → S and p! : E → S respectively. Denote the unit and counit of p! � p∗ by
σ : 1E → p∗ p! and τ : p! p∗ → 1S . Naturally, tomaintain the consistency of our nota-
tion, we denote the unit and counit of f! � f ∗ by σ : 1F → f ∗ f! and τ : f! f ∗ → 1S .

Before introducing the next piece of notation we stress that we are not assuming
that g∗ : F → E preserves S-indexed coproducts.

Definition 6.3 (The canonical � : f!g∗ → p!) The transformation νp∗ : p∗ →
g∗g∗ p∗ = g∗ f ∗ has a mate � : f!g∗ → p! which is defined by the pasting

E

id

p! S
p∗

id S
g∗ f ∗

id

⇒

E
⇒

id
E

⇒

f!g∗ S

In other words, � : f!g∗ → p! is the composite

f!g∗ f!g∗σ

f!g∗ p∗ p!

id

f!g∗(νp∗ p! )
f!g∗g∗g∗ p∗ p!

=
f!g∗g∗ f ∗ p!

f!(ξ f ∗ p! )
f! f ∗ p!

τ p!
p!

or, more efficiently, f!g∗ f!g∗σ
f!g∗ p∗ p! = f! f ∗ p!

τ p! p! .

The relation of the arrow � : f!g∗ → p! with preservation of S-indexed coproducts
may be expressed as follows.

Lemma 6.4 The following are equivalent:
1. The functor g∗ : F → E preserves S-indexed coproducts.
2. The transformation � : f!g∗ → p! is an isomorphism.
3. there exists a natural transformation ρ : p! → f!g∗ such that the following dia-

grams

g∗

σ g∗

g∗σ
g∗ p∗ p!

id
f ∗ p!

f ∗ρ

p! p∗

τ

ρp∗
f!g∗ p∗ id

f! f ∗

τ

f ∗ f!g∗ 1S

commute.
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Moreover, in this case, ρ is inverse to �.

Proof The first two items are equivalent because conjugation preserves isos. If the
second item holds then it is easy to check that �−1 : p! → f!g∗ satisfies the conditions
required by the third item. To complete the proof it is enough to show that any ρ as in
the third item is actually inverse to �. The following diagram

f!g∗

f!σ g∗

f!g∗σ
f!g∗ p∗ p!

id
f! f ∗ p!

f! f ∗ρ

τ p!
ρ

f! f ∗ f!g∗
τ f!g∗

f!g∗

shows that � is a section of ρ. On the other hand, the next one

p!
p!σ

ρ
f!g∗ f!g∗σ

f!g∗ p∗ p!
id

f! f ∗ p!
τ p!

p! p∗ p!
ρp∗ p!

τp!
p!

shows that ρ is a section of �. ��
Thus, in this restricted context, the concept of g∗ : F → E preserving S-indexed

coproducts can be reformulated by the idea, with ‘pieces’ functors, that g∗ ‘preserves
pieces’.

Definition 6.5 We say that p! inverts the unit of g if the natural p!ν : p! → p!g∗g∗ is
an iso. Similarly, we say that f! inverts the counit of g if the natural f!ξ : f!g∗g∗ → f!
is an iso.

We will need the following lemma regarding these concepts.

Lemma 6.6 If g∗ : F → E preserves S-indexed coproducts, then p! : E → S inverts
the unit of g if and only if f!ξg∗ : f!g∗g∗g∗ → f!g∗ is an iso. Therefore, if g∗ : F → E
preserves S-indexed coproducts and f! inverts the counit of g then p! inverts the unit
of g.

Proof The following diagram

f!g∗

f!g∗ν

�
p!
p!ν

f!g∗g∗g∗
�

p!g∗g∗

commutes by naturality. So, if � is invertible then, one of the vertical maps is iso if
and only if the other one is. Finally, notice that the left vertical map is an iso if and
only if f!ξg∗ : f!g∗g∗g∗ → f!g∗ is an iso. ��
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The following is one of the main definitions in the paper.

Definition 6.7 We will say that the adjunction g : F → E preserves pieces if
g∗ : F → E preserves S-indexed coproducts and the composite

p!g∗
ρg∗

f!g∗g∗
f!ξ

f!

is an iso.

Let us summarize the above as follows.

Proposition 6.8 If g∗ : F → E preserves S-indexed coproducts then the following
are equivalent:
1. The adjunction g : F → E preserves pieces.
2. The functor f! : F → S inverts the counit of g.
3. There exists a natural iso λ : p!g∗ → f! such that the following triangle

f!g∗g∗

f!ξ

�g∗ p!g∗

λ

f!

commutes.

Moreover, in this case, λ = ( f!ξ)(ρg∗), and p! : E → S inverts the unit of g.

Proof The first item implies the second because (by Lemma 6.4) ρ is an iso. The
second implies the third using the explicit definition of λ. The third implies the first
because ρ is inverse to �. Finally, p! inverts the unit of g by Lemma 6.6. ��

We will give a sufficient condition for g : F → E to preserve pieces. For that, we
need to understand the natural transformations p!g∗ → f! in more detail.

Lemma 6.9 For any natural transformation λ : p!g∗ → f! the triangle below com-
mutes

f!g∗g∗

f!ξ

�g∗ p!g∗

λ

f!

if and only if any of the two mate rectangles below

g∗g∗

ξ

g∗σg∗
g∗ p∗ p!g∗

id
f ∗ p!g∗

f ∗λ

g∗

g∗σ

σg∗
p∗ p!g∗

p∗λ
p∗ f!

νp∗ f!

1F
σ

f ∗ f! g∗ f ∗ f! = g∗g∗ p∗ f!

commutes.

123



398 F. Marmolejo, M. Menni

Proof We leave it the reader to check that

1. Themap g∗σg∗ : g∗g∗ → g∗ p∗ p!g∗ = f ∗ p!g∗ is the transpose of �g∗ : f!g∗g∗ →
p!g∗.

2. The composite

g∗g∗
ξ

1F
σ

f ∗ f!

is the transpose of f!ξ : f!g∗g∗ → f!.

Then simply observe that the transpositions of the two maps f!g∗g∗ → f! in the
triangle in the statement coincide with the corresponding maps in the left rectangle in
the statement. ��

6.3 Further assuming discrete inclusions

In this section we assume further that p∗ : S → E and f ∗ : S → F are full and
faithful. In other words, we assume that α : 1S → p∗ p∗ and α : 1S → f∗ f ∗ are
isos. Recall that under the standing assumptions α = (p∗νp∗)α : 1S → f∗ f ∗ so,
p∗νp∗ : p∗ p∗ → p∗g∗g∗ p∗ = f∗ f ∗ is forced to be an iso.

In this context we have natural transformations θ : p∗ → p! and θ : f∗ → f!
defined as the following composites

p∗
p∗σ

p∗ p∗ p!
α−1
p! p! f∗

f∗σ
f∗ f ∗ f!

α−1
f! f!

so, in more detail, the natural transformation θ : f∗ → f! is the following composite

f∗
f∗σ

f∗ f ∗ f!
=

p∗g∗g∗ p∗ f!
(p∗νp∗ f! )

−1

p∗ p∗ f!
α−1
f! f!

using the description of α in terms of α and ν.

Lemma 6.10 Let λ : p!g∗ → f! be a natural transformation. Then the square on the
left below commutes

p∗g∗

=

θg∗ p!g∗

λ

p∗g∗

p∗g∗σ

p∗σg∗
p∗ p∗ p!g∗

p∗ p∗λ
p∗ p∗ f!

p∗νp∗ f!

f∗
θ

f! p∗g∗ f ∗ f! = p∗g∗g∗ p∗ f!

if and only if the rectangle on the right above commutes.
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Proof Expanding the definitions of θ and θ we obtain that commutativity of the left
square in the statement is equivalent to commutativity of the outer rectangle below

p∗g∗

=

p∗σg∗
p∗ p∗ p!g∗

p∗ p∗λ

α−1
p!g∗ p!g∗

λ

f∗
f∗σ

f∗ f ∗ f! = p∗g∗g∗ p∗ f!
(p∗νp∗ f! )

−1
p∗ p∗ f!

α−1
f!

f!

but since α is iso, the outer rectangle commutes if and only if the inner rectangle
commutes. In turn, commutativity of the inner rectangle is equivalent to commutativity
of the rectangle in the statement. ��

Notice that if θ : p∗ → p! is epi then there is at most one λ : p!g∗ → f! as in
Lemma 6.10. On the other hand, if θ : f∗ → f! is epi then any λ : p!g∗ → f! as in
Lemma 6.10 is epi.

Lemma 6.11 If g∗ : F → E preserves S-indexed coproducts then the canonical
transformation λ = (p!ξ)(ρg∗) : p!g∗ → f! makes the following diagram

p∗g∗
=

θ p!g∗

λ

f∗
θ

f!

commute.

Proof The rectangle on the right of the statement of Lemma 6.10 coincides with the
result of applying p∗ : E → S to one of the rectangles of Lemma 6.9. ��

We can now prove our sufficient condition for the adjunction g to preserve pieces.

Proposition 6.12 If the Nullstellensatz holds for p : E → S and g∗ : F → E pre-
serves S-indexed coproducts then, the adjunction g : F → E preserves pieces if and
only if and there exists a natural iso λ : p!g∗ → f! such that the following diagram

p∗g∗
=

θ p!g∗

λ

f∗
θ

f!

commutes. Moreover, in this case, λ = (p!ξ)(ρg∗) : p!g∗ → f!.
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Proof First notice that if the Nullstellensatz holds for p then there exists at most
one λ as in the statement. Hence, if g∗ : F → E preserves S-indexed coproducts,
Lemma 6.11 implies that such λ must be the canonical one. Finally, by definition, this
λ is an iso if and only the adjunction g preserves pieces. ��

Notice that if we also assume that the Nullstellensatz holds for f : F → S , and S
is balanced, then it is enough to require that λ be mono.

In the presence of connectors we have the following.

Lemma 6.13 Assume that g∗ :F → E preserves S-indexed coproducts and that
0, 1 :1 → I is a connector for p :E → S. If g∗0, g∗1 :1 → g∗ I is a connector
for f :F → S, then g :F → E preserves pieces.

Proof Our hypothesis imply that the two horizontal forks below are coequalizers

p∗((g∗F)I ) p∗(g∗F) p!(g∗F)

f∗(Fg∗ I ) f∗F f!F

p∗ ev0

p∗ ev1
θ

f∗ evg∗0

f∗ evg∗1

θ

� = λF

where the left arrow is the canonical iso. It is straightforward to check that the left part
of the diagram commutes sequentially, and thus induces a unique isomorphism λF as
shown above. Thus the result follows from Proposition 6.12. ��

7 Some geometric morphisms that preserve pieces

Let C be a small category with terminal object and such that every object has a point
so that p : ̂C → Set is pre-cohesive. Let g : F → ̂C be a geometric morphism such
that the composite f = pg : F → Set is pre-cohesive.We can combine Lemmas 6.13
and 6.2 as follows.

Proposition 7.1 Let 0, 1 :1 → I be a connector for the pre-cohesive p :̂C → Set
such that g∗0, g∗1 :1 → g∗ I is a connector for f :F → Set. If g∗ I is connected and
for every C in C there exists a finite set S such that C(−,C) is a retract of I p

∗S in ̂C,

then g :F → ̂C preserves pieces.

Proof By Lemma 6.13 it suffices to show that g∗ preserves Set-indexed coproducts. In
turn, by Lemma 6.2, it suffices to show that g∗(C(−,C)) is connected for everyC ∈ C.
Since retracts of connected objects are connected, it suffices to show that g∗(I p∗S)
is connected for any finite set S. Since g∗ preserves finite products, g∗(I p∗S) �
(g∗ I )g∗(p∗S) = (g∗ I ) f ∗S . As f! preserves finite products, (g∗ I ) f ∗S is connected if
g∗ I is. ��

In fact, one could weaken the hypothesis by requiring only that g∗(C(−,C)) is a
retract of (g∗ I ) f ∗S , but the above is enough for our purposes.
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Corollary 7.2 Let C have finite products and let 0, 1 :1 → I be a bipointed object
in C such that every object of C is a retract of a finite power of I . If 0, 1 :1 → I
(as a bipointed object in ̂C) is a connector for p :̂C → Set, g∗0, g∗1 :1 → g∗ I is a
connector for f :F → Set and g∗ I is connected, then g :F → ̂C preserves pieces.

For a concrete example let us consider the cohesive topos f : Sh(Lp, K ) = F →
Set of piecewise linear maps from [17] that we mentioned above. It is shown loc. cit.
that the representable I ′ = Lp(−, [0, 1]) is a connector for f and may be equipped
with a total order with distinct endpoints. Hence I ′ is, in particular, a model for the
theory of strictly bipointed objects.

Proposition 7.3 The geometric morphism g :F → SetA such that g∗(A(I,−)) = I ′
is surjective and preserves pieces.

Proof The categoryAop is a Lawvere theory and, in particular, every object is a power
of I . So, in order to apply Corollary 7.2 we need only prove that I in Aop induces a
connector in SetA. We leave the details to the reader. (One possible argument is to use
Lemma 8.9 in [17].)

To prove that g is surjective let c : Set → F be the geometric morphism such that
c∗ = f ! : Set → F . Then, as in Corollary 3.5, it is enough to prove that the composite
geometric morphism gc : Set → SetA is surjective. Now, the inverse image of gc
sends I in SetA to c∗(g∗ I ) = f∗(g∗ I ) = [0, 1]. So gc is surjective by Corollary 3.6.

��
Proposition 10.6 in [17] shows the existence of a geometric morphism g :F → ̂�

such that g∗ I is a connector.

Proposition 7.4 The geometric morphism g : Sh(Lp, K ) → ̂� is surjective and pre-
serves pieces.

Proof (Notice that we can not apply Corollary 7.2 in this case since � does not have
finite products.) In order to apply Proposition 7.1 it only remains to show that every
representable object in ̂� is a retract of a finite power of �(−, [1]). This is surely
well-known but we have been unable to find an appropriate reference so we sketch a
proof.

The inclusion � → Cat induces a functor Cat → ̂� with a left adjoint, and it
is shown in Corollary 4.3 in [3] that this functor is full and faithful. Now, for each
n ∈ N the product [1]n in Cat may be identified with the Boolean algebra of parts of
a set with n elements. It is then clear that the “cardinality” map [1]n → [n] in Cat is
a retraction for any maximal chain [n] → [1]n . The embedding Cat → ̂� preserves
this retract showing that �(−, [n]) is a retract of �(−, [1])n .

Another possibility is to construct explicitly such a retraction. Indeed, notice that
for every j ∈ {1, . . . , n}, we have the map a j : [n] → [1] in � such that a j (i) = 0
for all i < j and a j (i) = 1 for all i ≥ j . The resulting family 〈�(−, a j )〉nj=1 of

maps of ̂� determines a unique map a :�(−, [n]) → �(−, [1])n to the product. In
the opposite direction we define a map b :�(−, [1])n → �(−, [n]) in ̂� such that for
every [m] ∈ �, each family 〈h j : [m] → [1]〉nj=1 in �([m], [1])n and each i ∈ [m],

123



402 F. Marmolejo, M. Menni

b[m](〈h j : [m] → [1]〉nj=1)(i) =
n

∑

j=1

h j (i).

We leave the details to the reader.
Surjectivity is proved as in Proposition 7.3, but using Corollary 3.4 instead of 3.6.

��
An analogue of Propositions 7.3 and 7.4 holds for the classifier of connected distrib-

utive lattices (Example 8.11 in [17]) and surely for many other classifiers for theories
for which the unit interval is a model.

It is relevant to mention that the condition p!g∗ = f! appears in Lemma 2.2.16 in
[1] for the case when g : F → E is a subtopos. Indeed, while our motivation comes
form surjective examples, preservation of pieces is independent of surjectivity and
there are natural examples of inclusions that preserve pieces. In this case, the intuition
that the left adjoint is a ‘geometric realization’ might need some adjustment.

For instance, let n ≥ 1 be an integer, and consider the inclusion i : �n → � of the
full subcategory of � that consists of all those [m] = {0, . . . ,m} with m ≤ n. This
inclusion induces the geometric morphism g : ̂�n → ̂�whose direct image functor is
the coskeleton functor g∗ = Coskn : ̂�n → ̂�, whereas the inverse image is restriction
of a simplicial set to �n , g∗ = Trn : ̂� → ̂�n . It is well known that this geometric
morphism is essential (the extra left adjoint is the skeleton functor Skn : ̂�n → ̂�) and
an embedding. Now, both canonical f : ̂�n → Set and p : ̂� → Set are pre-cohesive
and we may assume that pg = f .

Corollary 7.5 For any n ≥ 1, g : ̂�n → ̂� preserves pieces.

Proof Follows from Proposition 7.1. Indeed, the calculations in Proposition 7.4 show
that every representable in ̂� is a retract of a power of the connector �(_, [1]) = I in
̂�. It remains to show that g∗ I = �n(_, [1]) is a connector in ̂�n , but this holds just
as in the case of ̂�; see Example 8.10 in [17]. Incidentally, using essentially the same
idea, one may prove that �n → � is cofinal in the sense of IX.3 in [15], so f!g∗ ∼= p!
because g∗ is restriction along �n → � and f!, p! take colimits. ��

Regardless of connectors, when g∗ is full and faithful the second condition of
Proposition 6.8 is trivially satisfied, so we may conclude the following.

Corollary 7.6 Let p : E → S be pre-cohesive and let g : F → E be a subtopos
such that f = pg : F → S is pre-cohesive. Then g preserves pieces if and only if
g∗ : F → E preserves S-indexed coproducts.

In the examples of Corollary 7.5 both the domain and codomain of the relevant geo-
metric morphism are presheaf toposes. In contrast, consider the next result involving
locally connected coverages (Section C3.3 in [5]).

Lemma 7.7 Let C be a small category with terminal object and such that every object
has a point, so that p :̂C → Set is precohesive. Let (C, J ) be a site and denote the
inclusion by g : Sh(C, J ) → ̂C and the composite pg : Sh(C, J ) → Set by f . If the
coverage J is locally connected, then g preserves pieces.
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Proof The geometric morphism f : Sh(C, J ) → Set is pre-cohesive by results in
[6]. By Corollary 7.6 all we have to do is show that g∗ : Sh(C, J ) → ̂C preserves
Set-indexed coproducts, but notice that this fact is perhaps more familiar than over an
arbitrary base: “local connectedness of the site implies that constant presheaves on C
are J -sheaves”; Proposition 1.3 loc. cit. ��

For instance, the inclusion Sh(Lp, K ) → ̂Lp preserves pieces (over Set). Some-
thing analogous happens to the other examples of cohesive toposes in [17].

8 The preservation of weakly Kan objects

The comparison between Serre fibrations and Kan fibrations allows Gabriel and Zis-
man to conclude that the singular complex of any topological space is a Kan complex.
(See VII.1.6 in [3].) We prove an analogous result in this section.

Let f : F → S and p : E → S be pre-cohesive toposes. Let g : F → E be such
that pg = f : F → S. We will show that if g preserves pieces and K is a weakly Kan
object in F then g∗K is weakly Kan in E . Disregarding coherence for a moment, the
argument is easy to sketch. Indeed, if we let A ∈ S , we have that

p!((g∗X)p
∗A) = p!(g∗(Xg∗(p∗A))) = f!(X f ∗A) = ( f!X)A = (p!(g∗X))A

suggesting that g∗ : F → E preserves weakly Kan objects. Now, concerning an actual
proof, the main coherence fact is proved in Lemma 8.5 below. Before that, we state
some auxiliary facts.

Lemma 8.1 If g∗ : E → F preserves pieces then the following diagram

p!X × p!Y
ρ×ρ

f!(g∗X) × f!(g∗Y )

p!(X × Y )

〈p!π0,p!π1〉

ρ
f!(g∗(X × Y ))

f!〈g∗π0,g∗π1〉 f!((g∗X) × (g∗Y ))

〈 f!π0, f!π1〉

commutes for every X and Y in E .
Proof This simple fact is left for the reader. ��

Recall that we denoted by κ = κ
p!
X,Y : p!(Y X ) → (p!Y )p!X the canonical natural

transformation determined by the product preserving p! : E → S.
Lemma 8.2 The following diagram

(p!Y )(p!X) × p!X
ev p!Y

p!(Y X ) × p!X

κX,Y×id

p!(Y X × X)
∼=

〈p!π0,p!π1〉

p!ev

commutes.
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Similarly, since f! : F → S preserves finite products then there exists, for every X
and Y in F , a unique κ = κ

f!
X,Y : f!(Y X ) → ( f!Y )( f!X) making an analogous diagram

commute.
The next result implies the well known fact that geometric morphisms are canoni-

cally enriched in their codomains.

Lemma 8.3 There exists a unique natural γ : g∗((g∗F)E ) → Fg∗E such that the
following diagram

g∗((g∗F)E ) × g∗E
γ×id

Fg∗E × g∗E ev
F

g∗((g∗F)E × E)

∼=〈g∗π0,g∗π1〉

g∗ev
g∗(g∗F)

ξ

commutes. Moreover, the composite

(g∗F)E
ν

g∗(g∗((g∗F)E ))
g∗γ

g∗(Fg∗E )

is an iso.

Proof Preservation of binary products allows the following calculation with natural
isos

E(X, (g∗F)E ) ∼= E(X × E, g∗F) ∼= F(g∗(X × E), F)

∼= F(g∗X × g∗E, F) ∼= F(g∗X, Fg∗E ) ∼= E(X, g∗(Fg∗E ))

so, if we take X = (g∗F)E , take the identity on it, and follow the instructions given
by the above calculation then we get an iso (g∗F)E → g∗(Fg∗E ). In more detail, the
natural iso E(X, (g∗F)E ) ∼= F(g∗X, Fg∗E ) sends the identity on X = (g∗F)E to the
unique map γ : g∗((g∗F)E ) → Fg∗E such that the diagram in the statement com-
mutes. The natural isoF(g∗X, Fg∗E ) ∼= E(X, g∗(Fg∗E )) sends γ to the composite in
the last part of the statement. As we have already mentioned, this composite must be
an iso. ��

We emphasize the following.

Lemma 8.4 If g : F → E preserves pieces then the following composite

p!((g∗F)E )
ρ

f!(g∗((g∗F)E ))
f!γ

f!(Fg∗E )

is an iso.
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Proof Just notice that the following diagram

p!((g∗F)E )

ρ

p!ν
p!(g∗(g∗((g∗F)E )))

λ

p!(g∗γ )
p!(g∗(Fg∗E ))

λ

f!(g∗((g∗F)E ))
f!γ

f!(Fg∗E )

commutes. ��
The above simple facts were stated to efficiently prove the next result.

Lemma 8.5 If g : F → E preserves pieces then the following diagram

p!((g∗F)E )

κ

ρ
f!(g∗((g∗F)E ))

f!γ
f!(Fg∗E )

κ

(p!(g∗F))p!E
λ� ( f!F) f!(g

∗E)

commutes, for every E in E and F in F . (Notice that the horizontal maps are isos.)

Proof We can consider the transpositions (p!(g∗F))p!E × f!(g∗E) → f!F and we
will find it useful to pre-compose with the composite

p!((g∗F)E ) × E)
〈p!π0,p!π1〉

p!((g∗F)E ) × p!E
id×ρ

(p!(g∗F))p!E × f!(g∗E)

which is obviously an iso. If we do this to the left-bottom composite of the rectangle
in the statement then we get the following diagram

p!((g∗F)E ) × p!E

κ×id

κ×ρ

(p!(g∗F))p!E × f!(g∗E)

id×�

λ�×id
( f!F) f!(g

∗E) × f!(g∗E)

ev

p!((g∗F)E ) × E)

p!ev

〈p!π0,p!π1〉

p!((g∗F)E ) × p!E
ev

p!(g∗F)
λ

f!F

using Lemma 8.2. On the other hand, we first observe that the following diagram

f!(g∗((g∗F)E )) × f!(g∗E)
f!γ×id

f!(Fg∗E ) × f!(g∗E)
κ×id

( f!F) f!(g
∗E) × f!(g∗E)

ev

f!(g∗((g∗F)E ) × g∗E)

〈 f!π0, f!π1〉

f!(γ×id)
f!(Fg∗E × g∗E)

〈 f!π0, f!π1〉

f!ev
f!F
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commutes by the analogue of Lemma 8.2 for κ . So, taking X = (g∗F)E and Y = E
in Lemma 8.1, and pasting with the previous diagram, it is clear that it only remains
to observe that the following diagram

p!((g∗F)E × E)

p!ev

ρ
f!(g∗((g∗F)E × E))

f!〈g∗π0,g∗π1〉

f!(g∗ev)

f!(g∗((g∗F)E ) × g∗E)

f!(γ×id)

f!(Fg∗E × g∗E)

f!ev

p!(g∗F)

λ

ρ
f!(g∗(g∗F))

f!ξ
f!F

commutes, using Lemma 8.3. ��
We can now prove the promised result.

Proposition 8.6 If g : F → E preserves pieces then g∗ : F → E preserves weakly
Kan objects.

Proof Let F be a weakly Kan object inF . To prove that g∗F is weakly Kan in E let A
in S and take E = p∗A in Lemma 8.5 to obtain the following commutative diagram

p!((g∗F)p
∗S)

κ

ρ
f!(g∗((g∗F)p

∗S))
f!γ

f!(Fg∗ p∗S)

κ

=
f!(F f ∗S)

κ

(p!(g∗F))p! p∗S
λ� ( f!F) f!(g

∗ p∗S) =
( f!F) f!( f

∗S)

with iso horizontal maps. Since the right vertical map is an iso then so is the left
vertical map, and this means that g∗F is weakly Kan. ��

We do not know a simple sufficient condition for g∗ : E → F to preserve weakly
Kan objects; but notice that, in our examples, this is typically the case for the trivial
reason that every object inF is weakly Kan. In this case, we have a composite functor

E g∗
F g∗

kE

that preserves finite products.

9 The passage to homotopy

In Chapter IV of [3], Grabriel and Zisman introduce the category of simplicial sets
“modulo homotopy” (denoted by �◦E) equipped with a calculus of fractions given by

123



On the relation between continuous and combinatorial 407

the anodyne extensions. The associated category of fractions is called the homotopy
category and it is denoted by H. It is then proved that the canonical �◦E → H has
a right adjointH → �◦E which induces an equivalence betweenH and the category
of Kan complexes modulo homotopy (see IV.3.2.1 loc. cit.).

In this section we show that, except for the calculus of fractions, a similar picture
appears in the context given by a pieces-preserving geometric morphism from a cohe-
sive topos to a pre-cohesive one. It will be convenient for the reader to be acquainted
with the rudiments of enriched category theory [8]. We recall here some of the basic
facts that we need in beginning.

As explained after B2.1.7 in [5], a product preserving functor F : V → W induces
a 2-functor F• : V-Cat → W-Cat, where V-Cat and W-Cat are the 2-categories of
V-enriched and W-enriched categories respectively. For any V-enriched category C,
F•C has the same objects as C but, forC0 andC1 in C, (F•C)(C0,C1) = F(C(C0,C1)),
and composition and identities are obtained by applying F to those of C. It is relevant
to stress that C and F•C do not in general have the same underlying (ordinary) category.

The comparison maps κU,V : F(VU ) → (FV )(FU ) give rise to a W-functor
F̆ : F•V → W .

Lemma 9.1 If F : V → W has a full and faithful right adjoint then F̆ : F•V → W
has a fully faithful W-enriched right adjoint.

Proof Let R : W → V be the right adjoint to F (with unit σ and counit τ ). The right
adjoint to F̆ will be denoted by R̆ : W → F•V . On objects it is simply R, whereas for
W, X in W , R̆W,X : W(W, X) → (F•V)(R̆W, R̆X) = F(V(RW, RX)) is the map
XW → F((RX)(RW )) given by the composite

XW τ−1

F(R(XW ))
F(κR

W,X )

F((RX)(RW ))

in W . By Corollary A1.5.9 in [5], κ R
W,X : R(XW ) → (RX)(RW ) is an iso so

R̆ : W → F•V is fully faithful as a W-functor. The W-natural iso W(F̆V,W ) ∼=
(F•V)(V, R̆W ) is determined by the iso

WFV τ−1

F(R(WFV ))
F(κR

FV,W )

F((RW )R(FV ))
F((RW )σ )

F((RW )V )

with inverse

F((RW )V )
κ

(F(RW ))FV
τ FV

W FV

inW . ��

9.1 The Hurewicz category of a (pre-)cohesive topos

Paraphrasing the text following Axiom 1 in [10], the requirement that p! : E → S pre-
serves finite products is necessary for the naive construction of the homotopic passage
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from quantity to quality; namely, it insures that (not only p∗ but also) p! : E → S is a
closed functor, thus inducing a second way of associating an S-enriched category to
each E-enriched category

E-Cat
(p!)•

(p∗)•
S-Cat

that we will denote by H = (p!)• : E-Cat → S-Cat. So, for example, E itself as an
E-enriched category gives rise to the Hurewicz category HE = (p!)•E . Its objects are
those of E , and for each X , Y in HE , (HE)(X,Y ) = p!(Y X ).

As suggested by intuition, in the cases of main interest E and HE will not have the
same underlying (ordinary) category. The functor p̆! : HE → S sends a ‘homotopy
type’ to the associated ‘set’ of pieces. Moreover, the adjunction p! � p∗ : S → E
satisfies the hypotheses of Lemma 9.1 so it induces a S-enriched adjunction p̆! � p̆∗
with fully faithful p̆∗ : S → HE . In other words, as expected, the homotopy type of
a discrete space is discrete.

On the other hand, (p∗)•E is just the canonical S-enrichment of E given by the
geometric morphism p, so we may denote it by E . The composite

((p∗)•E)(X,Y ) = p∗(Y X )
θ

p!(Y X )
κ

(p!Y )(p!X)

underlies an S-enriched functor p! : (p∗)•E → S , with S considered as enriched in
itself.

Now, the natural transformation θ : p∗ → p! induces an S-functor E → HE . Intu-
itively, it assigns to each space X in E the associated ‘homotopy type’. Moreover, the
diagram on the left below commutes

(p∗)•E

p!

(p!)•E
p̆!

E

p!

HE
p̆!

S S

in S-Cat or, in a friendlier notation, the diagram on the right above commutes.

Lemma 9.2 The S-adjunction p̆! � p̆∗ : S → HE restricts to one p̆! � p̆∗ : S →
H(kE) and, moreover, this restriction is ‘quintessential’ in the sense that the fully
faithful p̆∗ : S → H(kE) is also left adjoint to p̆! : H(kE) → S.

Proof The fact that p̆∗ : S → H(kE) is also left adjoint to p̆! : H(kE) → S follows
because the canonical

(H(kE))(p∗A, X) = p!(X p∗A) → (p!X)A = S(A, p!X)

is an iso for every weakly Kan object X and A in S. ��
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In particular, if p : E → S is cohesive (i.e. satisfies Continuity) then the S-
adjunction p̆! � p̆∗ : S → HE is ‘quintessential’ in the enriched sense suggested by
Lemma 9.2. This is the case considered in Theorem 1 of [11], where the canonical
E → HE is called an extensive quality. Let us briefly discuss the terminology.

Johnstone defines a quintessential localization as a string of adjoints I � Q � I :
X → Y with fully faithful I : X → Y . For convenience, we will say that Q : Y → X
is a quintessential localization. Notice that if p : E → S is a quality type (Sect. 2) then
p∗ : E → S is quintessential.

Lawvere defines ‘qualities’ as certain functors which have, as domain, a cohesive
category over a base X and, as codomain, a quality type over the same base. In fact,
Lawvere emphasizes two kinds of qualities that we recall below.

An intensive quality on the pre-cohesive p : E → S is a functor s : E → L where
q : L → S is a quality type, and satisfying that s : E → L preserves finite products
and finite coproducts and the following diagram

E
p∗

s L
q

S

commutes. See Definition 4 in [11] and also Theorem 2 loc. cit.
An extensive quality on the pre-cohesive p : E → S is a finite-coproduct preserving

functor h : E → L where q : L → S is a quality type and such that the following
diagram

E
p!

s L
q

S

commutes.
One may interpret the definition of extensive quality in the context of S-enriched

categories and it is in this sense that Lemma 9.2 says that E → H(kE) is an extensive
quality. We insist that this is a refinement of Theorem 1 in [11] to a context a pre-
cohesive p : E → S where Continuity need not hold.

To summarize let us assume that E is a topos equipped with a sufficiently cohesive
pre-cohesive geometric morphism p : E → S to another topos S. If the Continuity
condition holds then we have a canonical ‘extensive quality’ E → HE (enriched over
S) which assigns to each object in E the associated ‘homotopy type’ in the Hurewicz
category ofE . If Continuity does not hold then the situation ismore subtle.We certainly
have the S-functor E → HE and the adjunction p̆! � p̆∗ : S → HE but p̆! : HE → S
is not in general a quality type. On the other hand, we have a quality typeH(kE) → S
but, as far as we can see, there is not an S-functor E → H(kE) in general. In practice,
though, there is evidence that the inclusion H(kE) → HE has a right adjoint. See
Chapter IV.3 in [3].
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9.2 Preservation of pieces and Hurewicz categories

The purpose of this section is to prove that a geometric morphism that preserves pieces
induces an enriched adjunction at the level of Hurewicz categories. Again, the idea
of the proof may be sketched easily. For assume that we have a geometric morphism
g : F → E over a base topos S, from a pre-cohesive f : F → S to a pre-cohesive
p : E → S. If g preserves pieces then the informal calculation

(HF)(g∗E, X) = f!(Xg∗E ) = p!(g∗(Xg∗E )) = p!((g∗X)E ) = (HE)(E, g∗X)

suggests that g : F → E may indeed induce an S-enriched adjunction HF → HE
between the associated Hurewicz categories.

In order to give an actual proof it is better to start, as before, with a little bit
of enriched category theory. Let V and W be cartesian closed categories and let
F : V → W be a functor that preserves finite products.

Lemma 9.3 If F : V → W has a finite-product preserving left adjoint then F̆ :
F•V → W has aW-enriched left adjoint.

Proof Let L : W → V be the left adjoint to F (with unit ν and counit ξ ). The left
adjoint to F̆ will be denoted by L̆ : W → F•V . On objects it is simply L , whereas
forW , X inW , L̆W,X : W(W, X) → (F•V)(L̆W, L̆ X) = F(V(LW, LX)) is themap
XW → F((LX)(LW )) given by the composite

XW ν
F(L(XW ))

F(κL
W,X )

F((LX)(LW ))

in W . The unit of L̆ � F̆ is given by the family of maps �νW� : 1 → (F(LW ))W

indexed byW ∈ W , where �νW� is the exponential transpose of νW : W → F(LW ).
The counit is the family of maps

1
∼=

F1
F�ξU�

F(UL(FU ))

where �ξU� : 1 → UL(FU ) is the exponential transpose of ξU .
It is well known (see 1.11 in [8] for instance) that an adjunction as in the statement

is equivalent to having an E-natural isomorphism F(U (LW )) → (FU )W , and it is not
difficult to see that the above isomorphism, in this case, is the composite

F(U (LW ))
κF
LW,U

(FU )F(LW )
(FU )ν

(FU )W

with inverse

(FU )W
ν

F(L((FU )W ))
F(κL

W,FU )

F((L(FU ))(LW ))
F(ξ (LW ))

F(U (LW ))

inW . ��
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Assume now that S, F and E are toposes, and that f : F → S, p : E → S and
g : F → E are geometric morphisms such that pg = f : F → S. Assume further
that f and p are pre-cohesive.

Proposition 9.4 If g : F → E preserves pieces then it induces an S-enriched adjunc-
tion

HF HE
ğ∗
⊥
ğ∗

between the Hurewicz categories determined by f :F → S and p :E → S. If,
moreover, f : F → S is cohesive then this adjunction restricts to one

HF H(kE)

ğ∗
⊥
ğ∗

in S-Cat.
Proof By Lemma 9.3 we obtain an E-enriched adjunction

(g∗)•(F) E
ğ∗
⊥
ğ∗

so if we now apply (p!)• :E-Cat → S-Cat and use the iso λ : p!g∗ → f!, we obtain
the S-enriched adjunction

( f!)•F � (p!g∗)•(F) = (p!)•((g∗)•F) (p!)•E
ğ∗
⊥
ğ∗

in the statement. If f : F → S is cohesive then g restricts to an adjunction
g∗ � g∗ : F → kE by Proposition 8.6. ��

It is worth mentioning that we have not used the fact that g∗ : E → F preserves
equalizers. Sowemay consider pieces-preserving adjunctions whose left adjoints only
preserves finite products. For example, if we let q be the adjunction p! � p∗ : S → E
then q preserves pieces when considered as below

S

1

q E
p

S

and we have the following corollary.
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Corollary 9.5 Assume that p :E → S satisfies the Nullstellensatz. There is an S-
enriched adjunction

S H(E)
̂p∗
⊥
p̂!

(which coincides with that at the beginning of Sect. 9.1).
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