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Abstract We define a strong homotopy derivation of (cohomological) degree k of
a strong homotopy algebra over an operad P . This involves resolving the operad
obtained from P by adding a generator with “derivation relations”. For a wide class
of Koszul operads P , in particular Ass and Lie, we describe the strong homotopy
derivations by coderivations and show that they are closed under the Lie bracket. We
show that symmetrization of a strong homotopy derivation of an A∞ algebra yields
a strong homotopy derivation of the symmetrized L∞ algebra. We give examples of
strong homotopy derivations generalizing inner derivations.
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1 Introduction

An early account of degree k derivations for graded associative and gradedLie algebras
byGerstenhabermay be found in [4].Kajiura andStasheff [5] defined strong homotopy
derivations of degree+1 for A∞ algebras andTolley [19] did the same for L∞ algebras.
In this note, we study degree k strong homotopy derivations of A∞ and L∞ algebras.
This will take place in the more general context of strong homotopy derivations of
strong homotopy P algebras (a.k.a. P∞ algebras) where P is an arbitrary operad.

The notion of strong homotopy derivation can be easily defined in terms of resolu-
tions of operads. Surprisingly, if the defining relations of the P∞ algebra are known
explicitly, the defining relations of the strong homotopy derivation can be made com-
pletely explicit too. We emphasize that Koszulness of P doesn’t play any role here.
The resolution has been constructed in [14] and later developed in [2], although for a
different purpose than to make strong homotopy derivations explicit. We need to do
small technical adaptations of this construction. This is contained in Sect. 2, and there
the reader is assumed to be familiar with basic notions of operad theory as in [16] and
[11].

In Sect. 3, we make these derivations explicit for A∞ algebras by choosing the
operad P to be Ass, the operad for associative algebras. We then define and construct
inner such derivations for A∞ algebras.

We then specialize the operad P to Lie, the operad for Lie algebra, in Sect. 4. We
then arrive at our definition of strong homotopy derivations of L∞ algebras. Inner
derivations of these algebras are then constructed.

Section 5 shows that the usual symmetrization of A∞ data yields L∞ data. Specif-
ically, we show that the symmetrization of a strong homotopy derivation of an A∞
algebra gives us a strong homotopy derivation of the L∞ algebra obtained by sym-
metrization of the A∞ algebra structure. We also define the composition of these
derivations by translating the data to the coalgebra level.

In Appendix, we discuss the case P being Koszul. Under some finiteness assump-
tions, we generalize the coderivation description from the A∞ and L∞ cases. On the
way, we reprove some earlier results of the paper by a direct application of the Koszul
theory.

We thank Jim Stasheff and Martin Markl for helpful comments on earlier versions
of the paper.

2 General theory

The plan of the section is as follows: given an operadP , we define an operadDkP such
that DkP algebras are P algebras together with a degree k derivation of the algebra
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Homotopy derivations 601

structure. Given a resolution R of P , we explicitly construct a resolution DkR of
DkP . We then define strong homotopy derivation of degree k to be a DkR algebra, or
rather a certain infinite set of operations in the DkR algebra.

We recall the construction of [14] and [2] and briefly indicate changes needed for
our purposes. We closely follow [2], where we wish to

1. Specialize from many to single color,
2. Generalize from 0 to arbitrary degree of the derivation,
3. Generalize from non-� (a.k.a. non-symmetric) to � (symmetric) operads.

We also switch from homological to cohomological grading. The results are stated in
a self-contained way.

All dg vector spaces live over a fixed field k of characteristics 0; the differential has
degree +1. By � module we mean a � module in the category of dg vector spaces
with degree 0 dg maps. Operad means a � operad in the category of dg vector spaces.
Let ◦i : P(m) ⊗ P(n) → P(m + n − 1) be the structure operation of an operad
P . In particular, for a dg vector space A, the endomorphism operad P = End A and
f : A⊗m → A, g : A⊗n → A, we define

f ◦i g := f (1⊗i−1 ⊗ g ⊗ 1⊗m−i ).

Definition 2.1 Let P be an operad and A a dg vector space with differential d. A P
algebra A is given by an operad morphism α : P → End A. Let k ∈ Z. A degree k
derivation of A is a degree k linear map θ : A → A such that

d ◦1 θ = (−1)kθ ◦1 d,

θ ◦1 α(p) = (−1)k|p|
n∑

i=1
α(p) ◦i θ

for arbitrary p ∈ P(n). Evaluated on elements a1, . . . , an ∈ A, the second equation
reads

θ(α(p)(a1, . . . , an))

= (−1)k|p|
n∑

i=1

(−1)k(|a1|+···+|ai−1|)α(p) (a1, . . . , ai−1, θ(ai ), ai+1, . . . , an).

Denote F(X) the free operad generated by a � module X . Denote ∗ the coproduct
in the category of operads, a.k.a. free product of operads. Let P and Q be operads.
Recall that an operadic derivation D : P → Q is a morphism of the underlying �

modules satisfying D◦i = ◦i (D⊗1+1⊗D) for any i . Derivations F(X) → Q are in
bijection with� module morphisms X → Q via the restriction. Similarly, derivations
P ′ ∗ P ′′ → Q are in bijections with pairs of derivations P ′ → Q and P ′′ → Q.

Definition 2.2 Let P be an operad with a differential ∂P . Consider a � module � :=
k{φ}, the k linear span of the set {φ}, such that φ is of arity 1 and degree k. Let D be
the ideal in P ∗F(�) generated by all elements
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602 M. Doubek, T. Lada

φ ◦1 p − (−1)k|p|
n∑

i=1

p ◦i φ

for p ∈ P(n). Denote

DkP :=
(P ∗F(�)

D
, ∂DkP

)

,

where ∂DkP is the degree 1 operadic derivation given by the formulas

∂DkP (p) := ∂P (p), ∂DkP (φ) := 0

for p ∈ P .

Proposition 2.3 A DkP algebra on a dg vector space A is a pair (A, θ), where A is
an P algebra and θ is a derivation of the P algebra A.

Proof θ is the image of φ under DkP → End A. 	

For m ∈ Z, let ↑m be the m-fold suspension functor of dg vector spaces or �

modules: (↑m X)n := Xn−m and ↑m also denotes the degree m map X →↑m X .
Recall that an operad of the form (F(X), ∂), where the differential ∂ needn’t come
from the free operad construction, is called quasi-free.

Definition 2.4 Let

R := (F(X), ∂R)
ρR−−→ (P, ∂P ),

be a quasi-free resolution, where X is a � module. Consider the free operad

DkR := F(X ⊕ � ⊕ X),

where

X :=↑k−1 X.

We denote by x the element ↑k−1 x ∈ X corresponding to x ∈ X . To describe the
differential, let s : F(X) → DkR be a degree k − 1 operadic derivation determined
by

s(x) := x ∈ X for x ∈ X.

Then define a degree 1 derivation ∂DkR : DkR → DkR by

∂DkR(x) := ∂R(x),

∂DkR(φ) := 0, (1)

∂DkR(x) := φ ◦1 x − (−1)k|x |
n∑

i=1

x ◦i φ − (−1)ks(∂R(x)).
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Homotopy derivations 603

Let’s clarify the last formula by an example: assume ∂R(x) = (x1◦1 x2)◦4 x3+· · · .
In the standard pictorial notation, this is

∂R x =

x1

x2

x3

+ · · · .

Then

∂R x =
φ

x

− (−1)k|x|
(

φ

x

+
φ

x

+
φ

x

+
φ

x

+
φ

x )
+

−(−1)k
(

x1

x2

x3

+ (−1)(k−1)|x1|

x1

x2

x3

+ (−1)(k−1)(|x1|+|x2|)

x1

x2

x3

+ · · ·
)

.

Theorem 2.5 If X is nonpositively graded,1 then the map ρDkR : DkR → DkP ,
defined by

ρDkR(x) := ρR(x),

ρDkR(φ) := φ,

ρDkR(x) := 0.

is a quism (a.k.a. quasi-isomorphism), hence a quasi-free resolution of the operad
DkP .

Proof ∂2DkR = 0 follows as in Lemma 3.4 of [2], except the sign check is slightly
more difficult with degrees of φ and x shifted.

To verify that ρDkR is a quism, we slightly modify the proof of Theorem 3.5 of [2].
For reader’s convenience, we present full details here. Additional explanations can be
found in loc. cit.

We introduce an additional “gr1” grading

gr1(x) := −|x |, gr1(φ) := 1, gr1(x) := −∣
∣x

∣
∣ + 1

on the generators from DkR and extend it by requiring the operadic composition to
be of gr1 degree 0. An exhaustive filtration 0 = F−1 ⊂ F0 ⊂ · · · of DkR is defined
by

Fn := {
z ∈ DkR| gr1(z) ≤ n

}
.

1 Recall we use the cohomological grading.
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604 M. Doubek, T. Lada

DkP is equipped with a trivial filtration 0 ⊂ DkP ⊂ · · · . Consider the spectral
sequences E∗ and E ′∗ associated to these filtrations. We will show that ρDkR induces

quism (E1, ∂1)
∼−→ (E ′1, ∂ ′1) and then we use a standard comparison theorem for

spectral sequences to conclude the proof.
The differential ∂0 on E0 is given by

∂0(x) = 0 = ∂0(φ), ∂0(x) = φ ◦1 x − (−1)k|x |
n∑

i=1

x ◦i φ

for any x ∈ X (n). For the moment, assume

H∗(E0, ∂0) ∼= F(X ⊕ �)

(φ ◦1 x − (−1)k|x |
∑

i x ◦i φ)
(2)

as operads. This is E1 and the corresponding differential is ∂1(x) = ∂R(x), ∂1(φ) =
0. Next, observe that E ′1 is DkP ∼= P ◦ F(�) as graded � modules, and we trans-
fer the differential and the operadic composition to P ◦ F(�). Similarly, E1 ∼=
F(X ⊕ �)/(φ ◦1 x ±∑

i x ◦i φ) ∼= F(X)◦F(�). Under these isos, ρ1
DkR : E1 → E ′1

becomes ρR◦1 : F(X)◦F(�) → P ◦F(�), which is a quism by the Künneth formula
for the ◦ product of � modules (e.g. Proposition 6.2.5 of [11]).

It remains to prove (2). Let g1, . . . , gm ∈ X 
 � 
 X be composed along a tree
in F(X 
 � 
 X). Denote vi the vertex decorated by gi . We say that gi is in depth
d in the composition iff the shortest path from vi to the root vertex passes through
exactly d vertices (including vi and the root vertex) decorated by elements of X 
 X .
Let DkRn be the � module spanned by all tree compositions in DkR whose every
generator from X is in depth at most n. Obviously

F(X ⊕ �) = DkR0 ⊂ DkR1 ⊂ · · · → colim
n

DkRn ∼= DkR,

where the colimit is taken in the category of � modules. For n ≥ 1, let Qn be the
� module which is a quotient of F(X ⊕ �) by the sub � module spanned by tree
compositions of g1, . . . , gn , where each gi is from X 
 � except for at least one g j

which is in depth at most n and is of the form φ ◦1 x − (−1)k|x |
∑

i x ◦i φ for some
x ∈ X . There are obvious projections

F(X ⊕ �) = Q0 � Q1 � · · · → colim
n

Qn ∼= F(X ⊕ �)

(φ ◦1 x − (−1)k|x |
∑

i x ◦i φ)
.

Observe that

Qn+1 ∼= X ◦ Qn (3)

as � modules. For the moment, assume

H∗(DkRn) ∼= Qn (4)

123



Homotopy derivations 605

as � modules. Then

H∗(DkR, ∂0) ∼= H∗(colim
n

DkRn) ∼= colim
n

H∗(DkRn)

∼= colim
n

Qn ∼= F(X ⊕ �)

(φ ◦1 x ± ∑
i x ◦i φ)

and the resulting iso H∗(DkR, ∂0) ∼= F(X ⊕ �)/(φ ◦1 x ± ∑
i x ◦i φ) is easily seen

to be an iso of operads.
So it remains to check (4). We proceed by induction: assume it holds for n and we

want to prove it for n+1. Denote φl := φ ◦1 · · · ◦1 φ, the l-fold operadic composition.
For x ∈ X(m) and x1, . . . , xm ∈ DkRn , we have, in DkRn+1, the following formula:

(−1)kl∂0
(
φl ◦1 x ◦ (x1, . . . , xm)

)

= φl+1 ◦1 x ◦ (x1, . . . , xm) − (−1)k|x |
m∑

i=1

φm ◦1 x ◦i φ ◦ (x1, . . . , xl)

+(−1)|x |+k−1
l∑

i=1

(−1)
∑i−1

j=1 |x j |φl ◦1 x ◦ (x1, . . . , ∂
0(xi ), . . . , xm)

We introduce an additional “gr2” grading

gr2(x) := 0 =: gr2(φ), gr2(x) := 1

on the generators from DkR and extend it by requiring the operadic composition to
be of gr2 degree 0. This induces a grading on DkRn . Let Gp ⊂ DkRn+1 be spanned
by φl ◦1 g ◦ (x1, . . . , xm) satisfying g ∈ (X 
 X)(m), xi ∈ DkRn for 1 ≤ i ≤ m
and

∑m
i=1 gr2(xi ) ≤ p. Obviously 0 = G−1 ⊂ G0 ⊂ · · · is an exhaustive filtration

of DkRn+1. Qn+1 is equipped with a trivial filtration 0 ⊂ Qn+1 ⊂ · · · . Consider the
spectral sequences E0∗ and E ′0∗ associated to these filtrations. We will prove that the
projection pr : DkRn+1 � Qn+1 induces a quism pr1 : (E01, ∂01) → (E ′01, ∂ ′01)
and then we use the comparison theorem to conclude the proof.

The differential ∂00 on E00 is

(−1)kl∂00(φl ◦1 x ◦ (x1, . . . , xm))

= φl+1 ◦1 x ◦ (x1, . . . , xm) − (−1)k|x |
ar(x)∑

i=1

φl ◦1 x ◦i φ ◦ (x1, . . . , xm).

Observe that Ker ∂00 = F(�) ◦ X ◦ DkRn and hence H∗(E00, ∂00) ∼= X ◦ DkRn as
graded� modules andwe transport the differential and operadic composition as usual.
Hence E01 is X ◦DkRn and ∂01 is a restriction of ∂0. Thus we get H∗(E01, ∂01) ∼= X ◦
H∗(DkRn, ∂0) ∼= X ◦ Qn ∼= Qn+1 using the Künneth formula, induction hypothesis
and (3). Thus pr1 is a quism. 	
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606 M. Doubek, T. Lada

Remark 2.6 The assumption that X is nonpositively graded in Theorem 2.5 can be
modified. We used it to get F−1 = 0 in the above proof. Boundedness of the filtration
F∗ then guarantees convergence of the spectral sequence E∗.

For example, if X (0) = 0 = X (1) and X consists of unbounded chain complexes,
the filtration F∗ is not bounded below. However, an easy tree combinatorics shows
that for every arity n ≥ 0 the filtration F∗(n) is bounded below. This is sufficient for
the proof to work as before.

Remark 2.7 The operad DkP can be described using a distributive law F(�) ◦ P 	−→
P ◦ F(�) given by

φ ◦1 p �→ (−1)k|p|
n∑

i=1

p ◦i φ

for p ∈ P(n). We leave it to the reader to generalize the formula for the case of φ

replaced by φ ◦ · · · ◦ φ on the LHS. It is easy to verify

DkP = P ∗F(�)

(φ ◦1 p − 	(φ ◦1 p))
∼= P ◦ F(�)

as graded � modules.
In case the operad P is Koszul, the methods of Section 8.6 of [11] immediately

imply that DkP is also Koszul. This gives an alternative way to construct a resolution
of DkP in this special case, which we will discuss in Appendix. Also, this has already
been done in the non-� setting and with homological grading for P = Ass in [10].
The resulting resolution coincides with that of Theorem 2.5 only up to a sign - there
is a mistake in the formula for ∂ above Proposition 7.6 in [10] as one checks that
∂2Dm3 �= 0 in the notation of loc. cit.

Proposition 2.8 If R is a quasi-free cofibrant dg operad, then so is DkR, for any
k ∈ Z.

Proof Recall from [12] that for the quasi free dg operad R = (F(X), ∂R), cofibrancy
means that there is a grading X = ⊕

i≥0 X[i] such that ∂RX[n] ⊂ F(
⊕

i<n X[i]).
Extend this grading to X ⊕ � ⊕ X , the space of generators of DkR, by requiring
φ to have degree 0 and X [n] :=↑k−1 (X[n−1]), where the suspension acts on the
cohomological grading. With this extended grading we have cofibrancy of DkR. 	


It is reasonable to define a P ′∞ algebra on a dg vector space A as an R′ algebra on
A, where R′ is a quasi-free cofibrant resolution of P ′. The cofibrancy guarantees nice
homotopy properties [1,12]. The quasi-freeness makes computation easier. Impor-
tantly, quasi-free cofibrant resolutions always exist, e.g. the bar-cobar resolution of
Theorem 6.6.5 of [11]. Similar definitions of strong homotopy algebra appear in e.g.
[11,13].

Stated this way, the notion ofP ′∞ algebra is ambiguous, since the quasi-free resolu-
tion is not unique. Thus when invoking a P ′∞ algebra, we always assume a particular
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Homotopy derivations 607

choice of the quasi-free resolution R′ has been made. This is the case in practice: e.g.
A∞ algebras refer to the Koszul resolution of the operad Ass.

As an aside, recall that this ambiguity can be essentially removed (in many cases)
by requiring the resolution to be minimal, since then it is unique up to an isomorphism
by Proposition 3.7 of [3]. The Koszul resolutions are examples of minimal models.

Now we apply the above for P ′ := DkP and R′ := DkR. Denote by N0 the set of
all natural numbers and 0.

Definition 2.9 Let β : DkR → End A be a DkR algebra. There is an injection
R = F(X) ↪→ F(X) ∗F(� ⊕ X) ∼= F(X ⊕ � ⊕ X) = DkR. Using it, β|R can be
seen as a P∞ algebra, which is determined by the collection

{
β(x) : A⊗n → A | n ∈ N0, x ∈ X ′(n)

}

of operations, where X ′(n) is any subset of X (n) generating X (n) as a k�n-module.
Then the collection

{β(φ)} ∪ {
β(x) : A⊗n → A | n ∈ N0, x ∈ X ′(n)

}

is called a degree k strong homotopy derivation of the P∞ algebra.

Recall that F(X) carries the weight grading

F(X) =
⊕

n≥0

F
n(X),

whereFn(X) consists of (linear combinations of) elements corresponding to trees with
exactly n vertices.

Proposition 2.10 If the differential ∂R of the quasi-free resolutionRofP is quadratic,
i.e. ∂R(X) ⊂ F

2(X), then any P∞ algebra β : R → End A has a degree 1 strong
homotopy derivation β : DkR → End A defined by

β(φ) := −d, β(x) := β(x), x ∈ X.

In other words, the differential d on A and the structure operations of the P∞ algebra
constitute a strong homotopy derivation of the P∞ algebra.

Proof It suffices to verify that β commutes with differentials.

β∂DkR(x) = −d ◦1 β(x) + (−1)|x |
n∑

i=0

β(x) ◦i d + βs(∂Rx).

The quadraticity assumption implies that

∂R(x) =
∑

j

σ j (x
′
j ◦i j x ′′

j )
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608 M. Doubek, T. Lada

for some x ′
j , x

′′
j ∈ X and i j ∈ N and some permutations σ j . Thus

βs∂R(x) = β

( ∑

j

σ j (x
′
j ◦i j x ′′

j ) +
∑

j

σ j (x
′
j ◦i j x ′′

j )

)

=2β∂R(x)=2∂End Aβ(x)

= 2(d ◦1 β(x) − (−1)|β(x)|
n∑

i=0

β(x) ◦i d)

since |s| = 0. β∂DkR(x) = ∂End Aβ(x) follows. 	

Example 2.11 The quadraticity assumption of Proposition 2.10 on R is satisfied by
the Koszul resolution of any Koszul operad P . In particular, we get an example of
degree 1 strong homotopy derivation of an arbitrary A∞ or L∞ algebra.

Example 2.12 Let R → P be a quadratic quasi-free resolution which is a fibration,
i.e. aritywise surjection. Let R′ → P be an arbitrary quasi-free cofibrant resolution.
Then Proposition 2.8 and the lifting property of cofibrations imply that there exists an
operad morphismDkR′ → DkR. Thus the degree 1 strong homotopy derivation of an
R algebra on A constructed in Proposition 2.10 induces a degree 1 strong homotopy
derivation of an R′ algebra on A.

In particular, for P Koszul, taking R to be its Koszul resolution, this gives an
example of degree 1 strong homotopy derivation of an algebra over the bar-cobar
construction of P .

Remark 2.13 If P of Proposition 2.10 is concentrated in degree 0, then it is already
Koszul by Theorem 39 of [17].

Remark 2.14 Obviously, DkR is minimal iff R is minimal. Let P be a Koszul operad
and letR be its Koszul resolution. Since Koszul resolutions are always minimal,DkR
is minimal. In Remark 2.7, we have observed that in this case DkP is Koszul. The
Koszul resolution of DkP is minimal and, by the uniqueness of minimal resolutions,
it must be isomorphic to DkR.

3 Strong homotopy derivations of A-infinity algebras

3.1 Application of the theory

We make degree k strong homotopy derivations of strong homotopy associative alge-
bras explicit. The calculation is mostly taken from [2]:

Let P be the operad for associative algebras, that is

P := Ass = F(k�2{μ})/(μ ◦1 μ − μ ◦2 μ).

Itsminimal resolution is (see e.g. [13]with a (−1)n+1 sign shift)R := (F(X), ∂R)
ρR−−→

(Ass, 0), where X is the � module whose arity n component is the n!-dimensional
space k�n{xn}, where |xn| = 2 − n and ∂R is a derivation differential given by
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Homotopy derivations 609

∂R(xn) :=
∑

i+ j=n+1

i∑

l=1

(−1)i+(l+1)( j+1)xi ◦l x j

and the quism ρR : R → P is given by

ρR(x2) := μ, ρR(xn) := 0 for n ≥ 3.

Recall that R algebras on a dg vector space are A∞ algebras. The associated operad
with derivation is

DkP := Ass ∗F(�)

(φ ◦ μ − μ ◦1 φ − μ ◦2 φ)
,

where � := k{φ} with φ a degree k element of arity 1. Its quasi-free cofibrant reso-
lution is

DkR = (F(X ⊕ � ⊕ X), ∂DkR)
ρDkR−−−→ (DkP, 0),

where the differential ∂DkR is given by

∂DkR(xn) :=
∑

i+ j=n+1

i∑

l=1

(−1)i+(l+1)( j+1)xi ◦l x j ,

∂DkR(φ) := 0,

∂DkR(xn) := φ ◦1 xn − (−1)nk
n∑

l=1

xn ◦l φ +

−
∑

i+ j=n+1

i∑

l=1

(−1)k+i+(l+1)( j+1)(xi ◦l x j + (−1)(k+1)i x i ◦l x j )

and the quism ρDkR by

ρDkR(xn) := ρR(xn), ρDkR(φ) := φ, ρDkR(xn) = 0.

Thus a DkR algebra β : DkR → End A on a dg vector space (A, d) consists of
two collections {mn | n ≥ 2} and {θn | n ≥ 1} of operations

mn : A⊗n → A, |mn| = 2 − n,

θn : A⊗n → A, |θn| = k − n + 1
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given by mn := β(xn), θ1 := (−1)kβ(φ) and θn := β(xn) for n ≥ 2, satisfying

d ◦1 mn − (−1)n
n∑

l=1

mn ◦l d

=
∑

i+ j=n+1

i∑

l=1

(−1)i+(l+1)( j+1)mi ◦l m j , n ≥ 2,

d ◦1 θn − (−1)k−n+1
n∑

l=1

θn ◦l d

=
∑

i+ j=n+1

i∑

l=1

(−1)k+1+i+(l+1)( j+1)(θi ◦l m j + (−1)(k+1)imi ◦l θ j ), n ≥ 1.

(5)

The indices i, j, l are restricted to values where both sides have sense.
The above properties of mn’s and θn’s are expressed by “{θn} is a strong homotopy

derivation of the A∞ algebra (A, {mn})”. Under the notation
n := mn, n := θn,

the usual mnemonic for such formulas is

∂EndA
n =

∑
i+j=n+1

i∑
l=1

(−1)i+(l+1)(j+1)
i

j
l

,

∂EndA
n =

∑
i+j=n+1

i∑
l=1

(−1)k+1+i+(l+1)(j+1)

⎛
⎜⎜⎝

i

j
l

+ (−1)(k+1)i
i

j
l

⎞
⎟⎟⎠ .

3.2 Suspension

The above formulas can be simplified by defining V :=↓A. A map f : A⊗n → A of
degree d is equivalent to a map f ′ : V⊗n → V of degree d + n − 1 by the formula

f ′ = ↓ f ↑⊗n .

The passage to the suspension V alters signs; for example, we have the following
useful formula:

( fi ◦l g j )
′ =↓ ( fi ◦l g j ) ↑⊗i+ j−1= (−1)|g j |(i+1)+i j+ jl+i+l f ′

i ◦l g′
j , (6)
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where fi : A⊗i → A and g j : A⊗ j → A. In the sequel, we will omit the prime and
thus we write f for both f and f ′.
Proposition 3.1 An A∞ algebra structure is equivalently given by a collection of
degree one linear maps mn : V⊗n → V, n ≥ 1 that satisfy the relations

∑

k+l=n+1

k∑

i=1

(−1)αmk(v1, . . . , vi−1,ml(vi , . . . , vi+l−1), vi+l , . . . , vn) = 0

for n ≥ 1 and α is the sum of the degrees of the elements v1, . . . , vi−1.
A strong homotopy derivation of degree k of an A∞ algebra (V, {mn}) is equiv-

alently given by a collection of degree k linear maps θq : V⊗q → V, q ≥ 1, that
satisfy the relations

0 =
∑

r+s=q+1

r−1∑

i=0

(−1)βθr (v1, . . . , vi ,ms(vi+1, . . . , vi+s), . . . , vq) +

−(−1)k(−1)γmr (v1, . . . , vi , θs(vi+1, . . . , vi+s), . . . , vq)

for q ≥ 1. The exponent β results from moving the degree one maps ms past
(v1, . . . , vi ) and γ from moving the degree k maps θs past (v1, . . . , vi ).

The above description of A∞ algebras is often used as a definition, e.g. [5] (set
m0 = 0 in their definition). It is equivalent to the usual definition, e.g. [18], where the
operations have degree 2−n. Also, the same notion of homotopy derivation appeared,
for k = 1, in [5]. The unsuspended version appeared, for k = 0, in [10].

Proof We first define m1 := d. Then we precompose (5) with ↑⊗n , compose with ↓
and use (6):

m1 ◦1 mn +
n∑

l=1

mn ◦l m1 = −
∑

i+ j=n+1

i∑

l=1

mi ◦l m j , n ≥ 2,

m1 ◦1 θn − (−1)k
n∑

l=1

θn ◦l m1 =
∑

i+ j=n+1

i∑

l=1

((−1)kθi ◦l m j − mi ◦l θ j ), n ≥ 1.

An evaluation on v1, . . . , vn ∈ V yields the required relations. 	

It is well known [18] that the structure maps mn’s may be extended to a degree

+1 coderivation m on the tensor coalgebra T c(V ) of V , and that the relations are
equivalent to the equation m2 = 0. Similarly:

Proposition 3.2 A degree k strong homotopy derivation {θq} of an A∞ algebra
(V, {mn}) is equivalently described by a degree k coderivation θ : T c(V ) → T c(V )

satisfying

[m, θ ] = 0.
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612 M. Doubek, T. Lada

Proof θ is defined by the projections π1θ |V⊗q = θq , where π1 : T c(V ) → V is
the obvious projection. 0 = [m, θ ] = m ◦ θ − (−1)kθ ◦ m is then easily seen to be
equivalent to (3.1). 	

Example 3.3 Let (V,m) be an A∞ algebra, i.e. [m,m] = 0. Let θ be an arbitrary
coderivation on T c(V ). The Jacobi identity then implies that

[m, [m, θ ]] = −(−1)1+|θ |[m, [θ ,m]] − [θ, [m,m]] = −[m, [m, θ ]].

Thus [m, [m, θ ]] = 0. In other words, [m, θ ] determines a strong homotopy derivation
of (V,m). This gives a reservoir of examples.

3.3 Strong homotopy inner derivation

As an example of a strong homotopy derivation, we can define a strong homotopy
inner derivation of an A∞ algebra.

First observe that in the case P = Ass, Definition 2.1 of degree k derivation θ

of an P algebra (A,m) boils down to the relations d(θ(x)) = (−1)kθ(d(x)) and
θ(xy) = θ(x)y+ (−1)k|x |xθ(y). After passing to V , the former relation stays and the
latter becomes

θ(xy) = (−1)k(θ(x)y) + (−1)k(−1)k|x |(xθ(y)).

Notice that on V , the multiplication has degree +1 and satisfies

(xy)z + (−1)|x |x(yz) = 0.

Such a (V,m) is sometimes called a dg anti-associative degree +1 algebra [15].

Proposition 3.4 Let a ∈ V have degree k and satisfy d(a) = 0. Then the map

θ(x) = ax + (−1)k|x |xa

is a derivation of V of degree k + 1. We call such a derivation inner.

Proof First we show that

d(θ(x)) = (−1)kθ(d(x)).

The LHS is

d(ax + (−1)k|x |xa) = d(a)x + (−1)kad(x) + (−1)k|x |d(x)a

+ (−1)k|x |(−1)|x |xd(a)

= (−1)kad(x) + (−1)k|x |d(x)a,
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while the RHS is

(−1)kad(x) + (−1)k(−1)k(1+|x |)d(x)a.

Next, we show that

θ(xy) = (−1)αθ(x)y + (−1)α(−1)α|x |xθ(y) (7)

where α = k + 1.
We have that

θ(xy) = a(xy) + (−1)k(|x |+|y|+1)(xy)a (8)

from the definition of θ . The terms on the right hand side of (7) yield

(−1)αθ(x)y = (−1)α(ax)y + (−1)α(−1)k|x |(xa)y

and

(−1)α(−1)α|x |xθ(y) = (−1)α(−1)α|x |x(ay) + (−1)α(−1)α|x |(−1)k|y|x(ya).

We see that after re-associating,

(−1)α(ax)y = −(−1)α(−1)ka(xy) = (ax)y,

the first term of (8), and

(−1)α)(−1)α|x |(−1)k|y|x(ya) = −(−1)α(−1)α|x |(−1)k|y|(−1)|x |(xy)a,

the second term of (8). For the two remaining terms, we have

(−1)α(−1)k|x |(xa)y = −(−1)α(−1)k|x |(−1)|x |x(ay)

which cancels out the remaining term

(−1)α(−1)α|x |x(ay).

	

Finally, the following generalization of inner derivation is now natural:

Proposition 3.5 Let (V, {mn}) be an A∞ algebra and let a ∈ V have the property
that the degree of a is k and m1(a) = 0. Then the maps

θn(v1, . . . , vn) =
n∑

p=0

(−1)k
∑p

j=1 |v j |mn+1(v1, . . . , vp, a, vp+1, . . . , vn) (9)

yield a strong homotopy derivation of degree k + 1.
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Proof To see that

0 =
∑

r+s=q+1

r−1∑

i=0

(−1)βθr (v1, . . . , vi ,ms(vi+1, . . . , vi+s), . . . , vq) +

−(−1)k+1(−1)γmr (v1, . . . , vi , θs(vi+1, . . . , vi+s), . . . , vq),

we first replace the θr by mr+1 and θs by ms+1 and −(−1)k+1 by +(−1)k to obtain

∑

r+s=q+1

r−1∑

i=0

(−1)β

⎧
⎨

⎩

i∑

p=0

(−1)k
∑p

j=1 |v j |mr+1(v1, . . . , vp, a, . . . , vi ,ms(vi+1, . . . , vi+s), . . . , vq )

+
q∑

p=i+s

(−1)k(1+
∑p

j=1 |v j |)mr+1(v1, . . . , vi ,ms(vi+1, . . . , vi+s), . . . , vp, a, . . . , vq )

⎫
⎬

⎭

+(−1)k(−1)γmr (v1, . . . , vi ,

i+s+1∑

p=i

(−1)k
∑p

j=i+1 |v j |ms+1(vi+1, . . . , vp, a, . . . , vi+s+1), . . . , vq )

where β = ∑i
j=1 |v j | and γ = (k + 1)

∑i
j=1 |v j |.

We claim that for each fixed position t of the element a, we obtain the A∞ algebra
relation which is equal to 0. To see this, fix 1 ≤ t ≤ q+1 and let xi = vi for i ≤ t−1,
xt = a and xi+1 = vi for i > t. For each t we have

∑

r+s=q+1

⎧
⎨

⎩

q+1−s∑

i=t

(−1)β (−1)k
∑t−1

j=1 |v j |mr+1(x1, . . . , xt−1, a, . . . , xi ,ms(xi+1, . . . , xi+s), . . . , xq+1)

+
t−s−1∑

i=0

(−1)β (−1)k(1+
∑t−1

j=1 |x j |)mr+1(x1, . . . , xi ,ms(xi+1, . . . , xi+s), . . . , xt−1, a, . . . , xq+1)

+
t−1∑

i=t−s

(−1)k(−1)γ (−1)k
∑t−1

j=i+1 |v j |mr (x1, . . . , xi ,ms+1(xi+1, . . . , xt−1, a, . . . , xi+s+1), . . . , xq+1)

}

which, after multiplying the first line by 1 written as (−1)k(−1)k and adding in 0
written as (recall that m1(a) = 0 )

(−1)k(−1)k
∑t−1

j=1 |x j |(−1)
∑t−1

j=1 |x j |mq+1(x1, . . . , xt−1,m1(a), xt+1, . . . , xq+1),

can be seen to equal (−1)k(−1)k
∑t−1

j=1 |x j | times the A∞ algebra relation for q + 1
inputs (v1, . . . , vt−1, a, vt+1, . . . , vq). 	


As an extension of Example 3.3 we get another proof of Proposition 3.5 on the
coalgebra level.

Proof of Proposition 3.5 First, we need to replace T c(V ) by its unital version,

T c
u (V ) := k ⊕ V ⊕ V⊗2 ⊕ · · · .
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Recall that any coderivation θ on T c
u (V ) is still uniquely determined by its projections

θn : V⊗n ⊂ T c
u (V )

θ−→ T c
u (V ) → V , but this time it includes the 0-th projection

θ0 : k → V . The formula expressing θ in terms of θn’s is altered only by allowing
the 0-th projections. Any coderivation on T c(V ) induces a coderivation on T c

u (V ) by
setting its 0-th projection to 0.

Now let a ∈ V and define a coderivation θ by

θ0(1) := a, θn := 0, n ≥ 1.

Then [m, θ ] is a coderivation2 on T c
u (V ). As in Example 3.3, [m, [m, θ ]] = 0. We

wish [m, θ ] restricted to T c(V ) (consequently, it will determine a strong homotopy
derivation of (V,m)). This is equivalent to

0 = [m, θ ]0 = m1θ0 = m1(a).

We recognize the assumptions of Proposition 3.5. The projections of the coderivation
[m, θ ] are

[m, θ ]n =
n∑

i=1

mn+1 ◦i θ0

and this is exactly (9). 	


4 Strong homotopy derivations of L-infinity algebras

We make degree k strong homotopy derivations of L∞ algebras explicit.
Let P be the operad for Lie algebras, that is

P := Lie = F(k{ν})/((1 + κ + κ2) · (ν ◦1 ν)),

where k{ν} is the 1-dimensional sign representation of �2 and κ ∈ �3 is a cycle of

length 3. Its minimal resolution is (see e.g. [13]) R := (F(X), ∂R)
ρR−−→ (Lie, 0),

where X is the � module whose arity n component is the 1-dimensional sign repre-
sentation k{xn} of �n , where |xn| = 2 − n, and ∂R is a derivation differential given
by

∂R(xn) :=
∑

i+ j=n+1

(−1) j (i−1)
∑

σ∈USh( j,i−1)

sgn (σ ) σ · (xi ◦1 x j ),

where USh(a, b) = {σ ∈ �a+b | σ(1) < · · · < σ(a), σ (a + 1) < · · · < σ(a + b)}
is the set of (a, b)-unshuffles. The quism ρR : R → P is given by

2 Again, the formula expressing composition of coderivations in terms of their projections is altered,
compared to the non-unital case, only by allowing the 0-th projections.
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ρR(x2) := ν, ρR(xn) := 0 for n ≥ 3.

Then the associated operad with derivation is

DkP := Lie ∗F(�)

(φ ◦ ν − ν ◦1 φ − ν ◦2 φ)
,

where � := k{φ} with φ a degree k element of arity 1. Its quasi-free cofibrant reso-
lution is

DkR = (F(X ⊕ � ⊕ X), ∂DkR)
ρDkR−−−→ (DkP, 0),

where the differential ∂DkR is given by

∂DkR(xn) :=
∑

i+ j=n+1

(−1) j (i−1)
∑

σ∈USh( j,i−1)

sgn (σ ) σ · (xi ◦1 x j ),

∂DkR(φ) := 0,

∂DkR(xn) := φ ◦1 xn − (−1)nk
n∑

l=1

xn ◦l φ +

−
∑

i+ j=n+1

(−1)k+ j (i−1)
∑

σ∈USh( j,i−1)

sgn (σ ) σ ·
(
xi ◦1 x j + (−1)(k+1)i x i ◦1 x j

)

and the quism ρDkR by

ρDkR(xn) := ρR(xn), ρDkR(φ) := φ, ρDkR(xn) = 0.

Thus a DkR algebra β : DkR → End A on a dg vector space (A, d) consists of
two collections {ln | n ≥ 2} and {θn | n ≥ 1} of skew symmetric operations

ln : A⊗n → A, |ln| = 2 − n,

θn : A⊗n → A, |θn| = k − n + 1

given by ln := β(xn), θ1 := (−1)k+1β(φ) and θn := β(xn) for n ≥ 2, satisfying

d ◦1 ln − (−1)n
n∑

m=1

ln ◦m d

=
∑

i+ j=n+1

(−1) j (i−1)
∑

σ∈USh( j,i−1)

sgn (σ ) (li ◦1 l j ) ◦ σ−1, n ≥ 2,
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d ◦1 θn − (−1)k−n+1
n∑

m=1

θn ◦m d

= −
∑

i+ j=n+1

(−1)k+ j (i−1)
∑

σ∈USh( j,i−1)

sgn (σ )
(
θi ◦1 l j +(−1)(k+1)i li ◦1 θ j

)
◦ σ−1, n≥1.

(10)

The indices i, j, l are bound to values where both sides have sense. Recall that for
f : A⊗n → A, we define

(σ · f )(a1 ⊗ · · · ⊗ an) = ( f ◦ σ−1)(a1 ⊗ · · · ⊗ an) = ± f (aσ(1) ⊗ · · · ⊗ aσ(n)),

where ± is the Koszul sign.
The above properties of ln’s and θn’s are expressed by “{θn} is a strong homotopy

derivation of the L∞ algebra (A, {ln})”.
The sign in the formula defining θ1 is chosen so that the relation for homotopy

derivation is shorter - the terms containing θi for i ≥ 2 and terms containing θ1 can
then be treated equally since σ · (ln ◦1 θ1) = (σ · ln) ◦σ(1) θ1 = sgn (σ ) ln ◦σ(1) θ1. An
even more succinct description can be obtained by passing to the suspension V =↓ A,
as in Sect. 3.2 for A∞ algebras:

Proposition 4.1 An L∞ algebra structure is equivalently given by a collection of
degree one graded symmetric linear maps ln : V⊗n → V, n ≥ 1, that satisfy the
relations (higher order Jacobi relations)

n∑

j=1

∑

σ

(−1)e(σ )ln− j+1
(
l j (vσ(1), . . . , vσ( j)), vσ( j+1), . . . , vσ(n)

) = 0

where σ runs over all ( j, n− j) unshuffle permutations. The exponent e(σ ) is the sum
of the products of the degrees of the elements that are permuted.

A strong homotopy derivation of degree k of an L∞ algebra (V, {ln}) is a collection
of degree k graded symmetric linear maps θq : V⊗q → V, q ≥ 1, that satisfy the
relations

n∑

j=1

∑

σ

(−1)e(σ )θn− j+1
(
l j (vσ(1), . . . , vσ( j)), vσ( j+1), . . . , vσ(n)

) +

−(−1)k(−1)e(σ )ln− j+1
(
θ j (vσ(1), . . . , vσ( j)), vσ( j+1), . . . , vσ(n)

) = 0

where σ runs over all ( j, n − j) unshuffle permutations.

Proof Define

L1 := −d, Ln := (−1)(
n
2)ln, �1 := θ1, �n := (−1)(

n
2)θn for n ≥ 2,

and then suspend (10) as in the proof of the analogous Proposition 3.1 for A∞ alge-
bras. You get the desired equation up to renaming of the maps. Also notice that skew
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symmetric map ln : A⊗n → A becomes symmetric as a map V⊗n → V ; similarly
for θn . 	


Again, we remark that this description of L∞ algebras differs from but is equivalent
to the original definition [8] inwhich themaps ln have degree 2−n and are graded skew
symmetric with the signs adjusted. The same notion of strong homotopy derivation of
L∞ algebra appeared, for k = 0, in [9,19].

It is well known [7,8] that the structure maps ln’s may be extended to a degree
+1 coderivation l on the symmetric coalgebra Sc(V ) on V , and the L∞ relations are
equivalent to l2 = 0. Similarly:

Proposition 4.2 Adegree k stronghomotopy derivation {θq }of a L∞ algebra (V, {ln})
is equivalently described by a degree k coderivation θ : Sc(V ) → Sc(V ) satisfying
[l, θ ] = 0. 	

See [19] for details.

An obvious analogue of Example 3.3 provides examples of strong homotopy deriva-
tions of L∞ algebras.

Following Sect. 3.3, we define strong homotopy inner derivations of L∞ algebras.
A Lie algebra on A becomes, on V , an algebra with a symmetric degree +1 bracket
and the Jacobi identity has the form

[[x, y], z] + (−1)|y||z|[[x, z], y] + (−1)|x |(|y|+|z|)[[y, z], x] = 0.

A degree k derivation θ of this algebra is defined by d(θ(x)) = (−1)kθ(d(x)) and

θ [x, y] = (−1)k[θ(x), y] + (−1)k(−1)k|x |[x, θ(y)].

A straightforward calculation yields:

Proposition 4.3 Let a ∈ V have degree k and satisfy d(a) = 0. Then the map

θ(x) = [a, x]

is a derivation of V of degree k + 1, called an inner derivation. 	

The inner derivation generalizes to strong homotopy inner derivation as follows:

Proposition 4.4 Let (V, {ln}) be an L∞ algebra and let a ∈ V have the property that
l1(a) = 0 and the degree of a is k. Then the maps

θn(v1, . . . , vn) = ln+1(a, v1, . . . , vn)

define a strong homotopy derivation of degree k + 1 of V . 	

This is proved either by a direct calculation or on the coalgebra level as in Propo-

sition 3.5 with obvious modifications to the L∞ case.
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5 Symmetrization and Composition

We recall that there is a well known injective coalgebra map χ : Sc(V ) −→ T c(V )

given by

χ(v1, . . . , vn) =
∑

σ∈�n

(−1)e(σ )vσ(1) ⊗ · · · ⊗ vσ(n)

where (−1)e(σ ) is the Koszul sign.
Suppose that f : T c(V ) −→ V is a linear map which extends to a coderivation

f : T c(V ) −→ T c(V ) such that π1 ◦ f = f , where π1 : T c(V ) −→ V is projection.
Then the linear map f ◦ χ : Sc(V ) −→ V extends to the coderivation f ◦ χ :
Sc(V ) −→ Sc(V ) and the following diagram commutes (Prop. 5, [6])

Sc(V ) T c(V )

Sc(V ) T c(V ) V

χ

f ◦ χ f
π1

χ f

The symmetrization of an A∞ algebra structure may be described by the commu-
tative diagram

Sc(V ) T c(V )

Sc(V ) T c(V ) V

χ

l m
π1

χ m

(11)

where m = ∑
mn : T c(V ) −→ V is the collection of the A∞ algebra structure

maps, m is the lift of m to a coderivation on T c(V ) with m2 = 0, and the L∞ algebra
structure l is the lift of the map m ◦ χ : Sc(V ) −→ V to a coderivation on Sc(V ).

We now address the issue of symmetrization of strong homotopy derivations of A∞
algebras.

Proposition 5.1 Let θ = {θn} denote the the collection of maps giving a strong
homotopy derivation of degree +k on the A∞ algebra (V,m). Regard θ as a map
T c(V ) −→ V and lift it to the coderivation θ on T c(V ). Then the extension of the
map θ ◦ χ : Sc(V ) −→ V to the coderivation θ ′ on Sc(V ) is a strong homotopy
derivation of degree +k on the L∞ algebra V with algebra structure given by m ◦ χ .

Proof We claim that [l, θ ′] = 0. We have the commutative diagram
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620 M. Doubek, T. Lada

Sc(V ) T c(V )

Sc(V ) T c(V ) V

χ

θ′ θ
π1

χ θ

and we calculate

χ [l, θ ′] = χ(lθ ′ − (−1)kθ ′l)
= (χ l)θ ′ − (−1)k(χθ ′)l
= m(χθ ′) − (−1)kθ(χ l)

= mθχ − (−1)kθmχ

= [m, θ ]χ = 0

because χ ◦ l = m ◦ χ from the commutative diagram (11) and [m, θ ] = 0 because θ

is a strong homotopy derivation of an A∞ algebra. Because χ is injective, it follows
that [l, θ ′] = 0. 	


The next proposition provides us with a definition for the composition of strong
homotopy derivations of A∞ algebras. The proof follows immediately from the Jacobi
identity.

Proposition 5.2 Let θ1 and θ2 be coderivations on T c(V ) of degree p and q respec-
tively. Suppose that

[m, θ1] = [m, θ2] = 0,

i.e. θ1 and θ2 correspond to strong homotopy derivations of (V,m). Then [θ1, θ2] :=
θ1 ◦ θ2 − (−1)pqθ2 ◦ θ1 is a coderivation of degree p + q with the property

[m, [θ1, θ2]] = 0,

so [θ1, θ2] corresponds to a strong homotopy derivation of (V,m). 	

There is an obvious analogous proposition for strong homotopy derivations of L∞

algebras. A further generalization toP∞ algebras forP Koszul (and satisfying certain
technical assumptions) follows from Proposition 6.9 in Appendix below.

6 Appendix: Direct application of the Koszul theory

6.1 The Koszul resolution

In the first part of Appendix, we prove:
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Proposition 6.1 Let G be a � module such that F(↓ G⊕ ↓ �) is of finite type.3

Let P = F
2(G)/(S) be a Koszul operad, where S ⊂ F

2(G) are the generating
relations. Then the operadDkR ofDefinition 2.4 is isomorphic to theKoszul resolution
�((DkP)i ) of the operad DkP .

Of course, a much more general result has been already obtained in Remark 2.14.
However, here we directly construct the Koszul resolution ofDkP . We hope that some
readers find that exercise on Koszul duality interesting.

As usual, instead of computing the Koszul dual cooperad (DkP)i directly, we
dualize it to obtain an easier to understand operad. However, we need to work with
operads including arity 1 operations. This brings some technical issues with dualizing
quadratic data and forces us to assume the finiteness properties. These assumptions
can be avoided by computing (DkP)i directly, but we don’t know how to do that.

Remark 6.2 Recall that k is the degree of φ ∈ �. The assumption in Proposition 6.1
that F(↓ G⊕ ↓ �) is of finite type is satisfied if G is of finite type and one of the
conditions below is met:

1. G(0) = 0, G(1) is concentrated in degree ≥ 2 (resp. ≤ 0) and k ≥ 2 (resp. k ≤ 0).
2. G(0),G(1) are concentrated in degree ≥ 2 (resp. ≤ 0) and G(≥ 2) is concentrated

in degree ≥ 1 (resp. ≤ 1) and k ≥ 2 (resp. k ≤ 0).
3. G(0) is concentrated in degree ≥ 1 (resp.≤ 1), G(1) is concentrated in degree ≥ 2

(resp. ≤ 0) and G(≥ 2) is concentrated in degree ≥ 2 (resp. ≤ 0) and k ≥ 2 (resp.
k ≤ 0).

4. G(0) = k{a}, |a| = 0, G(2) = k�2{b}, |b| = 3, G(n) = 0 for n �= 0, 2 and k ≥ 2.

These claims followbyan easy tree combinatorics. The list is, of course, not exhaustive.
We don’t know any assumptions which would admit k = 1. Curiously, this is the case
considered in [5].

In this section, all � modules and operads have zero differential unless explicitly
stated otherwise. As usual, we consider only conilpotent cooperads, thus the adjective
will be omitted in the sequel. Recall that this assumption implies that the underlying
� module of a cofree cooperad coincides with that of free operad.

We use freely the notation and results of [11,16].
We start by discussing linear duals of (co)operads in some detail.

Definition 6.3 Recall that a � module E is said to be of finite type iff for each n ≥ 0
E(n) is a dg vector space of finite type, i.e. every degree component E(n)d , d ∈ Z, is
a finite dimensional vector space.

Let � denote the category of � modules and let �f.t. denote the full subcategory of
all � modules of finite type. There is a subcategoryOpf.t. ofOp of all operads having
their underlying� module in�f.t.. Similarly for cooperads, there is a full subcategory
CoOpf.t. of CoOp.

3 For �, recall Definition 2.2; for “finite type”, see Definition 6.3 below.
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622 M. Doubek, T. Lada

Definition 6.4 Let E be a � module and let R ⊂ F
2(E) be a sub � module. Denote

this inclusion i and denote ι : F(E) → F
2(E)/R the obvious projection.

DenoteOp(E, R) the operad and p : F(E) → Op(E, R) the morphism of operads
satisfying pi = 0 and having the following universal property: in the diagram below,
for every morphism f of operads such that f i = 0, there exists unique morphism g
of operads such that gp = f .

DenoteOpf.t.(E, R) the operad inOpf.t. with the sameuniversal property asOp(E, R),
except we consider only all morphisms f with target P ∈ Opf.t..

Denote CoOp(E, R) the cooperad and π : CoOp(E, R) → F(E) the morphism
of cooperads satisfying ιπ = 0 and having the following universal property: in the
diagram below, for every morphism φ of cooperads such that ιφ = 0, there exists
unique morphism γ of cooperads such that πγ = φ.

(12)

Denote CoOpf.t.(E, R) the cooperad in CoOpf.t. with the same universal property as
CoOp(E, R), except we consider only all morphisms f with source C ∈ CoOpf.t..

Remark 6.5 Recall that Op(E, R) is the usual quotient operad F(E)/(R) of F(E)

modulo the ideal (R) generated by R. Observe that if Op(E, R) ∈ Opf.t., then
Opf.t.(E, R) ∼= Op(E, R) by fullness ofOpf.t. inOp. For cooperads, CoOp(E, R) ∈
CoOpf.t. implies CoOpf.t.(E, R) ∼= CoOp(E, R) similarly.

Remark 6.6 Here are some well known or easy to prove facts about the linear dual:

1. The natural map A# ⊗ B# → (A ⊗ B)# is an iso if A, B are of finite type.
2. If C ∈ CoOp with cocompositions �i , then C# ∈ Op (without any finiteness

assumptions) via ◦i : C(m)# ⊗ C(n)# → (C(m) ⊗ C(n))#
�#

i−→ C(m + n − 1)#.
3. If P ∈ CoOpf.t., then P# ∈ CoOpf.t..
4. If the free operad (resp. cooperad) F(E) is in �f.t., then E ∈ �f.t. and F(E)# ∼=

F(E#) as cooperads (resp. operads).
5. If F(E) ∈ �f.t., then Op(E, R) ∈ Opf.t. and CoOp(E, R) ∈ CoOpf.t..
6. If P ∈ Opf.t. (resp.CoOpf.t.), then there is a natural iso P## ∼= P of operads (resp.

cooperads).
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The following lemma is a consequence of an explicit description of F(E):

Lemma 6.7 For every σ(x ◦i y) ∈ F
2(E)(n)with x ∈ E(a), y ∈ E(b), σ ∈ �a+b−1,

there are unique σ ′ ∈ USh(b, a − 1), α ∈ �a and β ∈ �b such that σ(x ◦i y) =
σ ′(αx ◦1 βy). 	

Lemma 6.8 If E is a � module such that F(E) ∈ �f.t. and if R ⊂ F

2(E) is a sub �

module, then

Op(E, R)# ∼= CoOp(E#, R⊥) and CoOp(E, R)# ∼= Op(E#, R⊥)

as (co)operads. The notation R⊥ is explained in the proof below.

Proof We prove the second statement, the first one is analogous.
Dualize the first row of the diagram (12):

(13)

We identifyF(E)# ∼= F(E#) byRemark 6.6. In particular,F2(E)# ∼= F
2E#. Under this

iso, the usual pairing F2(E)# ⊗F
2E → k becomes a pairing� : F2E# ⊗F

2(E) → k

described as follows: fror α ∈ E(a)#, α′ ∈ E(b)#, e ∈ E(c), e′ ∈ E(d) and σ ∈
USh(b, a − 1), τ ∈ USh(d, c − 1),

�
(
σ(α ◦1 α′) ⊗ τ(e ◦1 e′)

) :=
{

(−1)|α′||e|α(e) · α′(e′) if a = c, b = d, σ = τ

0 else

(14)

By Lemma 6.7, this determines � uniquely. We define R⊥ := {x ∈ F
2E# | ∀r ∈

R �(x ⊗r) = 0} as usual and then there is the obvious iso (F2(E)/R)# ∼= R⊥. Thus
ι# becomes the inclusion R⊥ ↪→ F(E#). Below, we will prove that CoOp(E, R)#

has the universal property ofOpf.t.(E
#, R⊥). By uniqueness and Remarks 6.5 and 6.6

(5.), the conclusion will follow.
LetP ∈ Opf.t. and let f : F(E#) → P be a morphism of operads such that f i = 0.

We need to find a unique g : CoOp(E, R)# → P such that the right square commutes:

We dualize this diagram. By our finiteness assumptions, all operads become cooper-
ads. By universality of CoOp(E, R), there is unique g1 such that the diagram below
commutes:
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Now we dualize once more and define the morphism g to be the composite

CoOp(E, R)#
g#1−→ P## ∼= P.

It is then an easy application of naturality to prove g has the required properties.

Let Q be a Koszul operad with presentation Q = F(E)/(R) for some R ⊂ F
2(E).

Recall that its Koszul dual cooperad has presentation Qi := CoOp(↓ E,↓⊗2 R),
where ↓⊗2 R is the image of R under the map F

2(E) → F
2(↓E) sending σ(e ◦i e′)

to (−1)|e|σ(↓ e◦i ↓ e′). Denote Qi the coaugmentation coideal. Recall that Koszul
resolution of Q is the cobar construction on Qi :

�(Qi ) = F(↑ Qi )

with differential ∂ being the operadic derivation given on generators by the composite

where �(1) is related to the infinitesimal coproduct �(1) : Qi �−→ Qi ◦ Qi proj−−→ F
2Qi

by the formula �(1)(x) = �(1) − 1 ◦1 x − ∑
i x ◦i 1. Rather than computing Qi

directly, we find it easier to dualize it and use Lemma 6.8. Then we dualize again to
obtain a cooperad isomorphic to Qi . These dualizations force us to put the finiteness
assumptions on Q.

Proof of Proposition 6.1

DkP = F(G ⊕ �)/(S ⊕ D),

where D = {φ ◦1 g − (−1)k|g|
∑

i g ◦i φ | g ∈ G}. We make the Koszul resolution of
DkP explicit. By definition,

(DkP)i = CoOp(↓ G⊕ ↓ �,↓⊗2 S⊕ ↓⊗2 D).

By assumption, F(↓ G⊕ ↓ �) ∈ �f.t.. Thus Lemma 6.8 implies

(DkP)i
# ∼= Op((↓ G)# ⊕ (↓ �)#, (↓⊗2 S⊕ ↓⊗2 D)⊥).
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We compute the orthogonal complement (↓⊗2 S⊕ ↓⊗2 D)⊥ with respect to� defined
at (14): denote

(↓⊗2 S)⊥G := {x ∈ F
2(↓ G)# | ∀s ∈↓⊗2 S �(x, s) = 0}.

Since every x ∈ F
2(↓G)# ⊂ F

2(↓G)# ⊕ (↓�)# is trivially orthogonal to ↓⊗2 D, we
obtain (↓⊗2 S)⊥G ⊂ (↓⊗2 S⊕ ↓⊗2 D)⊥. Similarly, elements of the form φ ◦1 φ,
φ ◦1 g, g ◦i φ are trivially orthogonal to ↓⊗2 S, where g ∈ (↓ G)# and φ ∈ (↓ �)# is
a fixed nonzero element of the 1-dimensional space. We immediately see that φ ◦1 φ

is also orthogonal to ↓⊗2 D. For the remaining cases, we compute:

�(φ ◦1 g⊗ ↓ φ◦1 ↓ g) = (−1)(1+|g|)(1+k)φ(↓ φ) · g(↓ g),

�(g ◦i φ⊗ ↓ g◦ j ↓ φ) = �(σi (σ
−1
i g ◦1 φ) ⊗ σ j (σ

−1
j ↓ g◦1 ↓ φ))

= δi j (−1)(1+k)(1+|g|)(σ−1
i g)(σ−1

j ↓ g) · φ(↓ φ)

= δi j (−1)(1+k)(1+|g|)g(↓ g) · φ(↓ φ)

where σl ∈ USh(1, n − 1) is the unique unshuffle such that σl(1) = l and δi j is the
Kronecker delta.

··· ···

g

φ

=

··· ···

g

φ

σ−1
i

σi

=

··· ···

σ−1
i g

φ

σi

g ◦i φ = σi(σ−1
i g ◦1 φ)

The right-to-left inclusion below follows by an easy calculation:

(↓⊗2 S⊕ ↓⊗2 D)⊥ = (↓⊗2 S)⊥G ⊕ k{φ ◦1 φ}
⊕k

{
φ ◦1 g − (−1)(1+k)(1+|g|)g ◦i φ

∣
∣ g ∈ (↓G)#, i

}

and the other inclusion is straightforward.

Now the operad (DkP)i
#
is easy to understand: Intuitively, we can vertically

exchange φ with g ∈ (↓G)# in a tree (with levels) encoding iterated ◦i composi-

tions of operations of (DkP)i
#
:

g1

φ

g2

= (−1)(1+k)(1+|g2|)

g1

φ

g2 = (−1)(1+k)(1+|g1|) g1

φ

g2

= · · ·
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Also, if two φ’s appear one above the other, then the whole composition vanishes:

φ

g

φ

= (−1)(1+k)(1+|g|)
φ

g

φ

= 0.

Hence only trees with at most one occurrence of φ remains and we assume that φ is

always at the root. The operations in (↓G)# are subject to the same relations as inP i #.
Thus

(DkP)i
# ∼= P i #⊕ ↑1−k P i # as � modules. (15)

The elements of the second summand are of the form φ ◦1 p for some p ∈ P i # and
we denote them just by φ p. The composition involving the ↑1−k P i # summand is as
follows:

φ p1 ◦i φ p2 = 0,

φ p1 ◦i p2 = φ(p1 ◦i p2),
p1 ◦i φ p2 = (−1)(1+k)|p1|φ(p1 ◦i p2),

where ◦i on the RHS means composition in P i #.

Nowwe consider (DkP)i
##
, which is isomorphic to (DkP)i . As in (15), its elements

are p̃ ∈ P i and φ̃ p̃ ∈↑k−1 P i . The partial cocomposition �(1) is dual to the partial

composition γ(1) : F
2(DkP)i

#
↪→ (DkP)i

# ◦ (DkP)i
# γ−→ (DkP)i

#
, which maps

σ(x ◦i y) in F2(DkP)i
#
to σ(x ◦i y) in (DkP)i

#
: we denote

�(1)( p̃) = 1 ◦1 p̃ +
∑

i

p̃ ◦i 1 +
∑

l

σl
(
p̃1,l ◦il p̃2,l

)
, (16)

where p̃1,l , p̃2,l ∈ P i , and then

�(1)(φ̃ p̃) = φ̃ ◦1 p̃ +
∑

i

(−1)(1+k)| p̃| p̃ ◦i φ̃

+
∑

l

σl

(
φ̃ p̃1,l ◦il p̃2,l

)
+

∑

l

(−1)(1+k)| p̃1,l |σl
(
p̃1,l ◦il φ̃ p̃2,l

)
. (17)

By definition, �((DkP)i ) = F(↑ (DkP)i ) and hence its generators are ↑ p̃ and ↑φ̃ p̃.
By the above calculation of �(1), the differential of �((DkP)i ) is:
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∂ (↑ p̃) =
∑

l

(−1)| p̃1,l |σl
(↑ p̃1,l◦i ↑ p̃2,l

)
,

∂
(
↑φ̃ p̃

)
= (−1)1+k ↑ φ̃◦1 ↑ p̃ + (−1)(1+k)| p̃|+| p̃| ∑

i

↑ p̃◦i ↑ φ̃

+
∑

l

(−1)

∣
∣
∣φ̃ p̃1,l

∣
∣
∣
σl

(
↑ φ̃ p̃1,l◦il ↑ p̃2,l

)

+
∑

l

(−1)(1+k)| p̃1,l |+| p̃1,l |σl
(
↑ p̃1,l◦il ↑ φ̃ p̃2,l

)
.

We define an operadic derivation s : F(↑ P i ) → F(↑ (DkP)i ) on generators by

s(↑ p̃) :=↑ φ̃ p̃.

Then the formula for ∂(↑ φ̃ p̃) turns into

∂
(
↑ φ̃ p̃

)
= (−1)1+k ↑ φ̃◦1 ↑ p̃ + (−1)1+k+1+k|p| ∑

i

↑ p̃◦i ↑ φ̃

+ (−1)1+ks(∂ (↑ p̃)).

After comparing with (1) for X :=↑ P i , it is obvious that the operad �((DkP)i ) is
isomorphic to DkR via ↑ φ̃ �→ (−1)1+kφ. 	


6.2 Coderivation description

In the second part of Appendix, we prove a generalization of Propositions 3.2 and 4.2:

Proposition 6.9 Let G be a � module such that F(↓ G⊕ ↓ �) is of finite type. Let
P be a Koszul operad generated by G. Let a be a degree 1 coderivation of the cofree
conilpotentP i coalgebraP i ◦A satisfying [a, a] = 0 and thus determining aP∞ alge-
bra (including the differential) on a graded vector space A. Then a degree k homotopy
derivations of the P∞ algebra are equivalently described as degree k coderivations θ

of the coalgebra P i ◦ A satisfying

[a, θ ] = 0.

The technical assumption on generators of P is needed to use the results from the
previous part of Appendix.

Following 10.1.17 of [11], we now recall the required theory.
Let Q be a Koszul operad, let (A, d) be a dg vector space. Let ε : Qi → k be

the counit and denote 1 ∈ Qi the image of 1 ∈ k under the coaugmentation k →
Qi . Denote Hom�(Qi , End A) the graded vector space of all � module morphisms
Qi → End A which needn’t commute with differentials. Recall that Q∞ algebras
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on (A, d), i.e. operad morphisms F(↑ Qi ) → End A, are in bijection with elements
α ∈ Hom�(Qi , End A) satisfying

|α| = 1, α(1) = d, α ∗ α = 0. (18)

Here ∗ is the convolution pre-Lie product given by

α1 ∗ α2 := γ(1)(α1 ◦(1) α2)�(1). (19)

Denote CoDer(Qi ◦ A) the graded vector space of all coderivations Qi ◦ A → Qi ◦ A
of the cofree conilpotent Qi coalgebra Qi ◦ A. There is an iso

Hom�(Qi , End A) ∼= CoDer(Qi ◦ A). (20)

The pre-Lie convolution induces a Lie structure onHom�(Qi , End A). The associative
composition of maps induces a Lie structure on CoDer(Qi ◦ A). (20) is in fact an iso
of graded Lie algebras. Finally, this iso takes α’s in Hom�(Qi , End A) satisfying (18)
(notice α ∗ α = 1

2 [α, α]) onto α’s in CoDer(Qi ◦ A) satisfying

|α| = 1, (ε ◦ 1)α(1) = d, [α,α] = 0.

Thus Q∞ algebras on a graded vector space A are equivalently described by degree 1
coderivations α : Qi ◦ A → Qi ◦ A satisfying [α,α] = 0.

Proof of Proposition 6.9 We apply the above for Q = DkP ∼= P i⊕ ↑k−1 P i with
the cooperad structure described in (16) and (17), in particular

�(1)(P i ) ⊂ P i ◦(1) P i ,

�(1)(↑k−1 P i ) ⊂↑k−1 P i ◦(1) P i ⊕ P i◦(1) ↑k−1 P i .

Let α ∈ Hom�(Qi , End A) satisfy |α| = 1 and

0 = α ∗ α.

Let a : P i → End A resp. b :↑k−1 P i → End A be restrictions of α. We get

(α ∗ α)|P i = a ∗ a,

where the convolution product on the right is calculated in the coalgebra P i ◦ A. Thus
0 = [a, a]. Under the iso (20), a becomes a degree 1 coderivation a on P i ◦ A such
that [a, a] = 0.

There is a degree k − 1 iso s : P i →↑k−1 P i of � modules given by s( p̃) = φ̃ p̃.
Let θ := bs : P i → End A. Consider
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↑k−1 P ¡ ↑k−1 P ¡ ◦(1) P ¡ ⊕ P ¡◦(1) ↑k−1 P ¡

P ¡ P ¡ ◦(1) P ¡ P ¡ ◦(1) P ¡ ⊕ P ¡ ◦(1) P ¡

EndA EndA ◦(1) EndA

Δ(1)

s−1◦(1)1+1◦(1)s−1s

Δ(1) diag

(−1)k−1θ◦(1)a+a◦(1)θ
γ(1)

The square commutes by direct calculation using (17). Going from P i to End A both
ways, we get

(α ∗ α)|↑k−1P i s = (−1)k−1θ ∗ a + a ∗ θ,

where the the convolution product on the right is calculated in the coalgebra P i ◦ A.
Thus 0 = [a, θ ]. Under the iso (20), θ becomes a degree k coderivation θ on P i ◦ A
such that 0 = [a, θ ].

It is easy to verify that the inverse construction, starting with a, θ and producing α,
is determined by the same formulas as above. 	

Remark 6.10 If we apply Proposition 6.9 for P = Ass, then we get coderivations a
and θ on Assi ◦ A rather than on T c(V ) ∼= Ass#◦ ↓ A as claimed in Proposition 3.2.
These two descriptions are related as follows:

From 7.2.2 of [11], we recall that the operadic suspension of an operad E is the
Hadamard productS⊗E , whereS is the endomorphismoperad on the 1 dimensional dg
vector space↓ k concentrated in degree−1. Similarly, there is the operadic suspension
S ⊗ C of a cooperad C. Then it is easy to verify that

Hom�(C, E) ∼= Hom�(S ⊗ C,S ⊗ E)

as graded pre-Lie algebras with convolution as in (19).
In particular, Hom�(P i , End A) ∼= Hom�(S ⊗ P i ,S ⊗ End A). Recall that there

is an iso S ⊗ End A ∼= End↓A of operads. Finally, recall that the Koszul dual operad
of P is defined to be P ! := (S ⊗ P i )# if P is of finite type. Thus

Hom�(P i , End A) ∼= Hom�((P !)#, End↓A)

as graded Lie algebras. Hence there is a bijection between degree 1 coderivations a
satisfying [a, a] = 0 on P i ◦ A and on (P !)# ◦ End↓A. Similarly, there is a degree
preserving bijection between coderivations θ satisfying [a, θ ] = 0 on P i ◦ A and on
(P !)# ◦ End↓A.

Applying this to P = Ass resp. Lie yields Proposition 3.2 (since Ass! = Ass)
resp. Proposition 4.2 (since Lie! = Com and Com# ◦ V ∼= Sc(V ), where V =↓ A),
at least for k �= 1.

Example 6.11 Let a be a coderivation as in Proposition 6.9. Let θ := a. Then [a, θ ] =
0 and we recover Example 2.11.
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