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Abstract This paper examines the mod 2 homology of the spaces in the Omega-
spectrum for connective Morava K -theory, i.e., the mod 2 Hopf ring for connective
Morava K -theory. A natural set of generators for this Hopf ring arising from the
homology and homotopy of the connective Morava K -theory spectrum is calculated
and the non-trivial circle product relations among the generators arising from homol-
ogy and homotopy are determined. This Hopf ring calculation is accomplished using
Dieudonné ring theory and Adams spectral sequences for the connective Morava K -
theory of Brown–Gitler spectra.
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1 Introduction

Suppose E is a ring spectrum, and let E k = �∞�k E denote the kth space in its
�-spectrum. The mod p homology H∗(E∗) is a Hopf ring, which is a ring object in
the category of coalgebras over Fp. Every Hopf ring H∗(E∗) has a unique suspension
class e ∈ H1(E1) with the property that

e ◦ (−) : Hd(E k) → Hd+1(E k+1) (1.1)
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is the homology suspension homomorphism. The homology stabilization (or infinitely
iterated homology suspension) homomorphism

e∞(−) : Hd+k(E k) → Hd(E) (1.2)

is the colimit of

· · · e◦(−)−→ Hd+k(E k)
e◦(−)−→ Hd+k+1(Ek+1)

e◦(−)−→ · · · . (1.3)

An element in a Hopf ring is unstable if it is in the kernel of the stabilization homo-
morphism, and stable if it is not. There is also a destabilization function

e−∞(−) : Hd(E) → Hd+k(E k) (1.4)

which is a right-inverse for the stabilization and maps a stable homology class back to
its space of origin in a canonical way. Specifically, for each x ∈ Hd(E) the homology
class e−∞(x) ∈ Hd+k(E k) has the following properties: (1) e

∞(e−∞(x)) = x , (2) the
value for k is the smallest value for which e−∞(x) exists and is nonzero in Hd+k(E k),
and (3) an algebraic expression for e−∞(x) is canonically determined fromanalgebraic
expression for x .

The category of Hopf rings over Fp is equivalent to the category of Dieudonné
rings over the p-adic integers Ẑp [9]. Thus, every Hopf ring H∗(E∗) is equivalent to a
Diedonné ring D∗(H∗(E∗)). In [8], a surjective homomorphism from the E-homology
ofBrown–Gitler spectra E∗(B(∗)) to theDieudonné ring D∗(H∗(E∗))was constructed
that is an isomorphism in certain degrees. In particular, En−k(B(n)) � Dn(H∗(Ek))

is an isomorphism at p = 2 when n is even, and at odd primes p when n �≡ ±1
mod 2p [9, Proposition 11.3]. Thus, it is often possible to calculate the Hopf ring
H∗(E∗) using the Adams spectral sequence for E∗(B(∗)) via the composition

Ext∗,∗
A (Fp, H∗(E ∧ B(∗))) ⇒ E∗(B(∗)) � D∗(H∗(E∗))

∼=→ H∗(E∗). (1.5)

The fact that it is possible to calculate the Hopf ring H∗(E∗) using Adams spectral
sequences for E∗(B(n)), n ≥ 0, is remarkable for several reasons. First, unlike the bar
spectral sequence which computes H∗(E k) inductively on k (i.e., one space at a time),
this method computes Hn(E∗) inductively on n (i.e., across all spaces at once) and
therefore identifies natural generators for the Hopf ring coming from the homotopy
and homology of the spectrum E very well. Second, this method for calculating the
homology of the spaces E∗ is done using only the (co)homology of the spectrum E
and the Brown–Gitler spectra B(∗) as input to the Adams spectral sequence. Third, the
stable classes in H∗(E∗) can be determined from the s = 0 line of the Adams spectral
sequences for E∗(B(n)) with n ≥ 0, while the unstable classes can be determined
from s ≥ 1 lines of these Adams spectral sequences. Finally, this approach can be
used even when the spaces E∗ have not been identified in terms of already known
spaces.
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The mod 2 Hopf ring for connective Morava K -theory 471

Now, let H∗(−) denote mod 2 homology, HF the mod 2 Eilenberg-Mac Lane
spectrum, and k(r) the r th connective Morava K -theory spectrum at p = 2. Recall
from [18] that

H∗(k(r)) = P(ζ1, ζ2, . . . , ζr , ζ
2
r+1, ζr+2, . . .) (1.6)

as comodule-algebras over the dual Steenrod algebra, and

π∗(k(r)) = k(r)∗ = P(vr ), (1.7)

where ζi = χ(ξi ) is the conjugate of theMilnor generator ξi in the dual of the Steenrod
algebra, deg(ζi ) = 2i −1, deg(vr ) = 2r+1−2, and P(x, y, . . .) denotes a polynomial
algebra over F2.

Our first main result describes the stable classes in the Hopf ring H∗(k(r)∗) as
generators of a sub Hopf ring of H∗(HF∗), which is described in detail in Sect. 4. This
result is a consequence of Lemma 7.10, which calculates the s = 0 line of the Adams
spectral sequence for k(r)∗(B(2n)), n ≥ 0, where B(2n) denotes a Brown–Gitler
spectrum at p = 2. The following theorem, which relies upon Lemma 7.10, is given
as Theorem 8.1.

Theorem 1.1 The destabilization function e−∞ : H∗(k(r)) → H∗(k(r)∗) is a restric-
tion of the destabilization function e−∞ : H∗(HF) → H∗(HF∗) given inDefinition 4.7
in that diagram (1.8) is commutative.

(1.8)

Consequently, every stable class in theHopf ring H∗(k(r)∗) is either the destabilization
of a class in H∗(k(r)) or an iterated homology suspension of a destabilized class, and
all of the ◦-product relations among stable classes in H∗(k(r)∗) are known because
they have already been determined in H∗(HF∗).

Our secondmain result identifies the unstable classes in H∗(k(r)∗). More precisely,
we show that the stable classes in H∗(k(r)∗) that support non-trivial ◦-multiplication
by powers of the unstable class vr correspond to elements in the Qr Margolis homology
of H∗(B(2n)). These Margolis homology calculations are made in Sect. 6, where we
also show that the Qr Margolis homology of H∗(k(r)) is filtered by the Qr Margolis
homology of H∗(B(2n)). The following theorem, which relies upon Lemma 7.11, is
given as Theorem 8.2.

Theorem 1.2 For n ≥ 0, there is a one-to-one correspondence ofF2-modules between
the stable classes in H2n(k(r)∗) that support non-trivial ◦-multiplication by powers
of vr and nonzero classes in the Margolis homology module H (H∗(B(2n)), Qr ).

Our third main result states that the most natural set of Hopf ring generators for
H∗(k(r)∗) arises from the homology andhomotopyof the spectrum k(r). This theorem,
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which is given as Theorem 8.4, is a consequence of the complete calculation of the
Adams spectral sequence for k(r)∗(B(2n)), n ≥ 0, which is given in Theorem 7.14.

Theorem 1.3 The Hopf ring H∗(k(r)∗) is generated by

1. stable generators e−∞(H∗(k(r))), and
2. the homotopy generator [vr ] ∈ H0(k(r) 2−2r+1).

Computations of H∗(k(r)∗) for primes p ≥ 3 have beenmade byHara [10] andWil-
son [23] using the bar spectral sequence. The results in this paper are novel because the
Hopf ring H∗(k(r)∗) is calculated without the bar spectral sequence and is also carried
out at p = 2. It should be straightforward to use the techniques introduced in this paper
to independently verify the results by Hara and Wilson for primes p ≥ 3 [10,23]. As
noted byHara [10], one drawback of the bar spectral sequence approach is the difficulty
in finding legitimate names for new generators constructed in the process of calcu-
lating H∗(k(r) k) by induction on k. Our approach, which calculates H2n(k(r)∗) by
calculating k(r)∗(B(2n)) and then uses Dieudonné ring theory to transfer results on
k(r)∗(B(2n)) to H2n(k(r)∗), identifies the most natural possible generators—those
coming from the homology and homotopy of k(r). However, one drawback of our
approach is that the map k(r)∗(B(2n + 1)) → H2n+1(k(r)∗), given later in Eq. (5.3),
is a surjection but not an isomorphism. As a result, H2n+1(k(r)∗) cannot be com-
pletely determined from k(r)∗(B(2n+1)) alone. Consequently, this paper focuses on
identifying the stable and unstable generators of this Hopf ring, which do happen to
lie in even dimensional homology, rather than trying to determine all of the relations
in this Hopf ring or the structure of each individual Hopf algebra H∗(k(r) k).

The organization of this paper is as follows. In Sect. 2 we define categories of Hopf
rings and Dieudonné rings and establish their equivalence. In Sect. 3 we recall the
Lambda algebra, and the Adams spectral sequence. In Sect. 4 we recall the dual of the
Steenrod algebra and the Hopf ring for the mod 2 Eilenberg–Mac Lane spectrum. In
Sect. 5 we give the connection between Brown–Gitler spectra and Dieudonné rings.
In Sect. 6 we calculate the Margolis homology of Brown–Gitler modules and of the
mod 2 homology of k(r). In Sect. 7, we calculate the Adams spectral sequence for
k(r)∗(B(∗)). Finally, in Sect. 8 we calculate the Hopf ring for k(r) using Dieudonné
ring theory and the calculation of k(r)∗(B(∗)).

2 Hopf rings and Dieudonné rings

Fix a prime p > 0. Let Fp be the finite field of p elements, and let C be the category
of graded connected cocommutative coalgebras with counit over Fp. Graded group
and ring objects in C comprise the categories of Hopf algebras HA and Hopf rings
HR over Fp, respectively. A Hopf algebra (or coalgebraic group) is an algebra with
addition +, multiplication ∗, conjugation χ , and coproduct ψ . Its multiplication ∗
is a categorical addition with inverse χ and zero element [0] = 1. A Hopf ring (or
coalgebraic ring) has an additional product ◦which is a categorical multiplication with
unit element [1]. For detailed information about Hopf rings and coalgebraic algebra,
please see [11,20,22,24].
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Example 2.1 Let E be a ring spectrum and let E k = �∞�k E be the kth space in its
�-spectrum. Write Hn,k for Hn(E k). Then H∗,k is a Hopf algebra over Fp for each
k, and H∗,∗ is a Hopf ring over Fp. Three sub Hopf rings of H∗,∗ are H0,∗, H∗,0, and
{Hn,k}(n,k)∈N×N.

Every Hopf algebra H = H∗,k over Fp has Frobenius and Verschiebung maps. Let
H∨ = HomFp−mod(H, Fp) denote the Fp-linear dual of H .

Definition 2.2 Fix k ∈ Z. The Frobenius F : Hn,k → Hpn,k is defined by F(x) =
x∗p. The Verschiebung V : Hn,k → Hn/p,k is the Fp-linear dual of the pth power
map f : H∨ → H∨, f : x �→ x p, and V is zero when p � n. If H is of finite type, it
is equivalent to define the Verschiebung by V (x) = ax ′ if the iterated coproduct is

ψ(p−1)(x) = a x ′ ⊗ x ′ ⊗ · · · ⊗ x ′
︸ ︷︷ ︸

pfactors

+ (other terms),

where each of the other terms have at least one tensor factor different from the others.

The Verschiebung is a homomorphism of Hopf rings (2.1), but the Frobenius is not.
Instead, these maps satisfy the Frobenius reciprocity relations (2.2) and (2.3).

V (x ◦ y) = V (x) ◦ V (y) (2.1)

F(x ◦ V (y)) = F(x) ◦ y (2.2)

F(V (x) ◦ y) = x ◦ F(y) (2.3)

The following Hopf algebras are used to define the Dieudonné functor.

Example 2.3 LetCW (0) = Ẑp[Z] be theHopf algebra over Ẑp concentrated in degree
0 with coproduct ψ([r ]) = [r ]⊗ [r ]. For n > 0, write n = pab where gcd(p, b) = 1,
and let CW (n) = Ẑp[x0, . . . , xa]. For 0 ≤ i ≤ a, give CW (n) the grading |xi | = pib
and the unique coproduct such that the Witt polynomials

wi = x∗pi
0 + px∗pi−1

1 + p2x∗pi−2

2 + · · · + pi xi

are primitive.
Let H(n) be the Hopf algebra over Fp which is the mod p reduction of CW (n).

Let v : H(n) → H(pn) be the identity map if n = 0 and the inclusion v : xi �→ xi if
n > 0. Let f : H(pn) → H(n) be the multiplication by p map if n = 0 and the map
f : xi �→ (xi−1)

p if n > 0, where x−1 = 0.

We now define the categories DM and DR of graded Dieudonné modules and
rings over Ẑp, respectively. Then, we show that the Dieudonné functor D establishes
an equivalence between the categories of Hopf rings over Fp and Dieudonné rings
over Ẑp. For more details on Dieudonné rings please see [6,9].

Definition 2.4 Fix k ∈ Z. A graded Dieudonné module M = M∗,k over Ẑp is a
non-negatively graded abelian group with a Frobenius map F : Mn,k → Mpn,k and
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a Verschiebung map V : Mn,k → Mn/p,k , which is zero when p � n, such that
F(V (x)) = V (F(x)) = px , V is the identity on M0,k , and pa+1Mpab,k = 0 if
gcd(p, b) = 1.

Example 2.5 Fix k ∈ Z. Let H = H∗,k be a Hopf algebra over Fp. The Dieudonné
module D∗(H) is the graded abelian group {Dn(H∗,k)}n∈N with

Dn(H∗,k) = HomHA(H(n), H∗,k).

The Frobenius and Verschiebung

F = f ∗ : Dn(H∗,k) → Dpn(H∗,k),

V = v∗ : Dpn(H∗,k) → Dn(H∗,k)

are induced by the maps f and v of Example 2.3.

Theorem 2.6 (Schoeller’s theorem [9, Theorem 4.7], [21]) The Dieudonné functor
D has a right adjoint U, and the pair (D,U ) is an equivalence between the category
HA of Hopf algebras and DM of Dieudonné modules.

We now define the category DR of Dieudonné rings.

Definition 2.7 A graded commutative Dieudonné ring over Ẑp is a collection of
Dieudonné modules {M∗,k}k∈Z together with bilinear maps

◦ : Mm, j ⊗̂
Zp

Mn,k → Mm+n, j+k

such that Eqs. (2.1)–(2.3) are satisfied. Graded commutativity is expressed by x ◦ y =
(−1)mn+ jk y ◦ x for x ∈ Mm, j and y ∈ Mn,k .

In [9], Goerss constructed a symmetric monoidal products �HA and �DM for the
categories of Hopf algebras and Dieudonné modules. He showed that the Dieudonné
functor was symmetric monoidal, and thus established an equivalence between the
category of Hopf rings over Fp that are group rings in degree zero and Dieudonné
rings over Ẑp.

Theorem 2.8 (Goerss’s Theorem [9, Theorem 7.7]) For any H, K ∈ HA such that
H0,k and K0,k are group rings for every integer k, there is a natural isomorphism of
Dieudonné modules

D∗(H) �
DM

D∗(K ) → D∗(H �
HA

K ).

Example 2.9 Let E be a ring spectrum. Then H0(E k) = Fp[π0(E k)] = Fp[π−k(E)]
is a group ring for each k. By Theorem 2.8, the Hopf ring H∗(E∗) overFp is equivalent
to the Dieudonné ring D∗(H∗(E∗)) over Ẑp, and under this equivalence Hn(E k)

corresponds to Dn(H∗(E k)).
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3 The Lambda algebra and the Adams spectral sequence

We review the Lambda algebra and the Adams spectral sequence at the prime p = 2.

Definition 3.1 (Lambda algebra [2]) The Lambda algebra 	 is the associative
bigraded differential algebra over F2 with generators λa , a ≥ −1, of bidegree
(1, a + 1) = (s, t) modulo the two-sided ideal generated by the relations

λaλb =
∑

�(b−2a)/2�≤c<b−2a

(

c − 1

2c − b + 2a

)

λa+cλb−c, if 0 ≤ 2a < b (3.1)

and the left ideal generated by λ−1. Its differential d1(λb) = λ−1λb is a derivation.

If I = (i1, . . . , is) is an s-tuple of nonnegative integers, set λI = λi1 · · · λis and
λ( ) = 1. We say that λI is admissible if 2i j ≥ i j+1 for 1 ≤ j < s. The admissible
monomials form a basis for 	.

The Lambda algebra provides an E1 term for the Adams spectral sequence [2]. Let
A denote the mod 2 Steenrod algebra.

Theorem 3.2 (Adams spectral sequence [1,2]) Let X be a complex or spectrum of
finite type, and let E be a spectrum. The E1-term of the E-based Adams spectral
sequence is the differential right (	, d1) module

E∗,∗
1 (A, E ∧ X) = H∗(E ∧ X) ⊗

F2

	 (3.2)

with differential d1(z ⊗ λI ) = ∑

i≥0 z · Sqi ⊗ λi−1(λI ). Its E2-term is

Es,t
2 (A, E ∧ X) = Exts,tA (F2, H∗(E ∧ X)) �⇒ πt−s(E ∧ X) = Et−s(X). (3.3)

If H∗(E) is a Hopf algebra quotient of the Steenrod algebra, the Adams spectral
sequence for calculating E∗(X) can be simplified by a change of rings theorem.

Theorem 3.3 (Change of rings [1]) If E is a ring spectrum such that H∗(E) =
A//C = A⊗C F2 for some sub Hopf algebra C ⊂ A, then there is an isomorphism,
natural in X,

Exts,tC (F2, H∗(X)) ∼= Exts,tA (F2, H∗(E ∧ X)).

4 The Hopf ring H∗(HF∗) and the dual of the Steenrod algebra

In this section we recall the structure of the Hopf ring H∗(HF∗), define its conjugate
generators zi , define its destabilization function, and determine how the Steenrod
algebra acts on it.

Recall that H∗(HF1) = H∗(RP∞) = F2{bi | i ≥ 0}, where |bi | = i and b0 = 1.
The product is bi ∗ b j = (i+ j

i

)

bi+ j , the Frobenius is F(bi ) = b∗2
i = 0, and the
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indecomposables are the module ∗-Ind(H∗(HF1)) = F2{xi | i ≥ 0} where xi = b2i .
The coproduct is ψ(bn) = ∑

0≤i≤n bn−i ⊗ bi , the Verschiebung is V (b2i ) = bi and
V (b2i+1) = 0, and the primitives are given by Newton polynomials, which are defined
recursively by Ni = Ni (b1, . . . , bi ) = ibi +∑i−1

j=1 b j ∗ Ni− j (b1, . . . , bi− j ) for i ≥ 1
[see ([1], pp. 93–94; [12], Sect. 3) for more details]. The suspension class in the Hopf
ring H∗(HF∗) is e = x0 = b1.

The dual of the Steenrod algebra is the stabilization of the Hopf ring H∗(HF∗). That
is, Hn(HF) = limk→∞ Hn+k(HF k), where the limit is taken by iterating the homology
suspension e ◦ (−). Recall from [16] that the dual of the mod 2 Steenrod algebra is
A∨ = H∗(HF) = P(ξi | i ≥ 0)/(ξ0 = 1). The stabilization homomorphism is given
by e∞(xi ) = ξi , and satisfies e∞(xi ∗ x j ) = 0 and e∞(xi ◦ x j ) = ξiξ j .

Theorem 4.1 [15,24] As Hopf algebras over F2 with addition + and multiplication
∗,

H∗(HF k) =
{

F2[F2], if k = 0,

E(xi1 ◦ · · · ◦ xik | 0 ≤ i1 ≤ · · · ≤ ik), if k ≥ 1.

Further, ∗-Ind(H∗(HF∗)) = Sym(xi | i ≥ 0), the bigraded symmetric algebra over
F2 with addition +, multiplication ◦, and generators xi ∈ H2i (HF1).

The generators xn ∈ H2n (HF1) are the destabilizations of the generators ξn ∈
H2n−1(HF) in that e∞(xn) = ξn and xn is not the suspension of a class in H∗(HF0).
We now define elements zn that are the destabilization of the conjugate ζn = χ(ξn) in
the dual of the Steenrod algebra [16].

Definition 4.2 An ordered partition of the integer n of length � is a sequence
(α1, α2, . . . , α�) of positive integers whose sum is n. Let Part(n) denote the set of
all 2n−1 ordered partitions of n. Given an ordered partition (α1, . . . , α�) ∈ Part(n),
let

σ(i) =
{

α1 + α2 + · · · + αi−1, if 1 ≤ i ≤ �,

2n − 1 − (2σ(1) + · · · + 2σ(�)), if i = 0.

Let e = x0 = z0 ∈ H1(HF1), and for n ≥ 1 define zn ∈ H2n+1−2(HF2n−1) by

zn =
∑

(α1,...,α�)∈Part(n)

x◦σ(0)
0 ◦ x◦2σ(1)

α1
◦ x◦2σ(2)

α2
◦ · · · ◦ x◦2σ(�)

α�
. (4.1)

Remark 4.3 Every term of the sum (4.1) has 2n−1 = deg(ζn) factors because for each
(α1, . . . , α�) ∈ Part(n) the sum of the exponents in the term x◦σ(0)

0 ◦x◦2σ(1)

α1
◦· · ·◦x2σ(�)

α�

is 2n − 1 by construction.

Wenowdescribe the right action of theSteenrod algebra on its dual andon H∗(HF∗).
Let Sq = ∑

i≥0 Sq
i be the total Steenrod square, which is a ring homomorphism.
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Lemma 4.4 [2], [5, Lemma 6.1] The right action of Sq on H∗(HF) is

ξn · Sq = ξn + ξn−1, ζn · Sq =
∑

0≤i≤n

ζ 2i
n−i ,

where ξ0 = 1 and ξ−1 = 0.

Wewill also need the canonical right action of theMilnor primitives on the conjugate
basis for the dual of the Steenrod algebra. TheMilnor primitives are defined by setting
Q0 = Sq1 and inductively defining Qi+1 = [Sq2i+1

, Qi ] = Sq2
i+1

Qi + QiSq2
i+1

for
i ≥ 0. Let Q = ∑

i≥0 Qi denote the total Milnor primitive, which is a derivation.

Lemma 4.5 The right action of Q on H∗(HF) is

ζn · Q =
∑

0≤i≤n

ζ 2i
n−i .

Proof We show that ζn · Qk = ζ 2k+1

n−(k+1) by induction on k. Clearly, ζn · Q0 = ζ 2
n−1.

Suppose that ζn · Qk−1 = ζ 2k
n−k for all n. Since ζ 2i

n−i · Sq2i = ζ 2i+1

n−(i+1) for i ≥ 0, we
have

ζn · Qk = ζn · (Sq2
k
Qk−1 + Qk−1Sq

2k ) = ζn · Qk−1Sq
2k = ζ 2k

n−k · Sq2k = ξ2
k+1

n−(k+1).

��
We now define the destabilization function e−∞ : H∗(HF) → H∗(HF∗) for Hopf

rings such that every element in the image of e−∞ cannot be desuspended any further,
and e−∞ is a right inverse for the stabilization homomorphism e∞, i.e., the composite
map

H∗(HF)
e−∞→ H∗(HF∗)

e∞→ H∗(HF). (4.2)

is the identity on H∗(HF). The destabilization function is given by e−∞(ξ I ) = x◦I
on monomials. For a sum of monomials

∑

ξ I ∈ Hd(HF), defining e−∞(
∑

ξ I ) ∈
Hd+k(HF k) is more complicated because k must be minimal and the sum e−∞(

∑

ξ I )

must have exactly k factors of xi ’s in each term.

Definition 4.6 Define the ξ factors function f actξ : H∗(HF) → N on monomials
by adding the exponents f actξ (ξ I ) = ∑n

j=1 i j , and on sums by f actξ (
∑

ξ I ) =
maxI { f actξ (ξ I )}. If ∑

ζ J = ∑

ξ I under change of basis, then set f actξ (
∑

ζ J )

equal to f actξ (
∑

ξ I ).

Definition 4.7 The destabilization function e−∞ : H∗(HF) → H∗(HF∗) is given as
follows. Set e−∞(1) = [1] ∈ H0(HF0) = F2[F2]. Suppose ∑

ξ I ∈ Hd(HF) with
d = deg(

∑

ξ I ) > 0 and k = f actξ (
∑

ξ I ), and that
∑

ξ I = ∑

ζ J under change of
basis. Then, in terms of the basis of xi ’s,

e−∞ (∑

ξ I
) = e−∞ (∑

ζ J
) := ∑

x
◦(k− f actξ (ξ I ))

0 ◦ x◦I ∈ Hd+k(HF k). (4.3)
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In terms of the basis of zi ’s,

e−∞ (∑

ξ I
) = e−∞ (∑

ζ J
) := z◦−(d−k)

0 ◦ (∑

z◦J
) ∈ Hd+k(HF k). (4.4)

Remark 4.8 By construction, every term in the sum (4.3) has exactly k factors of xi ’s.
In contrast, the sum (4.4) does not necessarily have the same number of factors of zi ’s
in each term. Since d ≥ k, there is a desuspension factor z◦−(d−k)

0 in (4.4) that needs
explanation. By remark 4.3, under the change of basis

∑

z◦J = ∑

x◦L , every term
x◦L has d = deg(

∑

ζ J ) factors. Since d−k ≥ 0 and k− f actξ (ξ I ) ≥ 0 for all terms
in

∑

ξ I , it follows that

∑

z◦J = ∑

x◦L

= ∑

x
◦(d− f actξ (ξ I ))

0 ◦ x◦I

= ∑

x
◦(d−k+k− f actξ (ξ I ))

0 ◦ x◦I

= x◦(d−k)
0 ◦

(

∑

x
◦(k− f actξ (ξ I ))

0 ◦ x◦I
)

= x◦(d−k)
0 ◦ e−∞ (∑

ξ I
)

,

and therefore
∑

z◦J desuspended (d−k) times equals e−∞(ζ J ) = e−∞(
∑

ξ I ). This
desuspension occurs for the following reason. When

∑

z◦J is written in terms of the
basis of xi ’s there may be cancellation of terms mod 2, and in the sum that remains
after cancellation (

∑

x◦L), the greatest common factor of x0 is x
◦(d−k)
0 .

Example 4.9 The destabilization of the element ξ23 + ξ21 ξ42 = ζ 2
3 + ζ 8

1 ζ 2
2 ∈ H14(HF)

with degree d = 14 and k = f actξ
(

ξ23 + ξ21 ξ42

) = 6 is

e−∞ (

ξ23 + ξ21 ξ42

)

= x◦4
0 ◦ x◦2

3 + x◦2
1 ◦ x◦4

2 ∈ H20(HF 6),

which also equals

e−∞ (

ζ 2
3 + ζ 8

1 ζ 2
2

)

= z◦(−8)
0 ◦

(

z◦23 + z◦81 ◦ z◦22
)

∈ H20(HF 6).

5 Brown–Gitler spectra and Dieudonné rings

Brown and Gitler constructed a family of spectra at the prime 2 in [3]. Analogues of
these spectra at odd primes were later constructed by Cohen [7]. We specialize to the
prime 2, although analogues at odd primes are also true [9].

The nth mod 2 Brown–Gitler spectrum, which was denoted B(n) and indexed by
n ∈ 1

2N in the original paper [3], will be denoted B(2n) and indexed byN in this paper.
There is a homotopy equivalence B(2n) � B(2n + 1) for all n ∈ N, and B(0) and
B(2) are the 2 complete sphere spectrum and mod 2 Moore spectrum, respectively.
The Brown–Gitler spectra realize certain cyclic modules over the Steenrod algebra.
They are characterized up to homotopy 2-equivalence by the following theorem.
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Theorem 5.1 [3] For each n ∈ N there is a 2-complete spectrum B(2n) satisfying

1. H∗(B(2n)) = A/A{χ(Sqi ) | i > n} as left A modules, and
2. If ι : B(2n) → HF2 classifies the element 1 ∈ H0(B(2n)), then the induced map

of reduced homology theories ι∗ : B(2n)i (X) → Hi (X) is an epimorphism for all
complexes X and 0 ≤ i ≤ 2n + 1.

Definition 5.2 Define the ζ weight function wtζ : A∨ → N on monomials by

wtζ (1) = 0 and wtζ (ζ
i1
1 ζ

i2
2 · · · ζ i�� ) = ∑�

j=1 i j2
j−1, and on sums by wtζ (

∑

ζ I ) =
maxI {wtζ (ζ I )}. If ∑

ξ I = ∑

ζ J under change of basis, then set wtζ (
∑

ξ I ) equal to
wtζ (

∑

ζ J ).

Definition 5.3 Define the ξ weight function on monomials by wtξ (1) = 0 and

wtξ (ξ
i1
1 ξ

i2
2 · · · ξ i�� ) = ∑�

j=1 i j2
j−1, and on sums by wtξ (

∑

ξ I ) = maxI {wtξ (ξ I )}.
If

∑

ξ I = ∑

ζ J under change of basis, then set wtξ (
∑

ζ J ) equal to wtξ (
∑

ξ I ).

The homology of Brown–Gitler spectra can be described as a right A submodule of
A∨ using the ζ weight function. This weight function is induced by the May filtration
of�2S3 by identifying the Thom spectrum of the canonical bundle on�2S3 with HF2
[13].

Lemma 5.4 [13] There is an isomorphism of right A modules

H∗(B(2n)) ∼= F2{ζ I ∈ A∨ | wtζ (ζ
I ) ≤ n}.

Remark 5.5 The right A module structure of A∨ = H∗(HF) is given in Lemma 4.4.

The following Mahowald cofiber sequence is very useful for computations.

Lemma 5.6 [9] For each integer n ≥ 1, there is a cofiber sequence of spectra

B(2n − 2)
ε→ B(2n)

v→ �n B(n) (5.1)

which induces a short exact sequence of right A modules

0 → H∗(B(2n − 2))
ε∗→ H∗(B(2n))

v∗→ �nH∗(B(n)) → 0 (5.2)

in which ε∗(ζ I ) = ζ I and v∗(ζ i11 ζ
i2
2 · · · ζ ikk ) = �nζ

i1
0 ζ

i2
1 ζ

i3
2 · · · ζ ikk−1, where ζ0 = 1.

We now show that E∗(B(∗)) is a Dieudonné ring.

Example 5.7 Let E∗(−) be a generalized homology theory. There are pairings B(m)∧
B(n) → B(m+n) that make B(∗) = {B(n)}n∈N a graded commutative ring spectrum,
and B(∗)∗(E) a graded commutative ring.Additionally, there aremaps f : �n B(n) →
B(2n) and v : B(2n) → �n B(n) so that f v and v f are multiplication by 2. The map
v is the map in the Mahowald cofiber sequence of equation (5.1). The maps f and v

induce the Frobenius and Verschiebungmaps in the Dieudonné ring E∗(B(∗)). See [9]
for more details.
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The next theorem states that Brown–Gitler spectra are, in a weak sense, the repre-
senting objects for the Dieudonné functor.

Theorem 5.8 [9] For any ring spectrum E and all (n, k) ∈ N × Z, the map

T : En−k(B(n)) � Dn(H∗(E k))

is a surjective homomorphism of Dieudonné rings that respects the Frobenius and
Verschiebung, and is an isomorphism when n is even.

To calculate Dieudonné ring and Hopf ring for a ring spectrum E , we use the
composite

E∗,∗
2 (A, E ∧ B(∗)) �⇒ E∗(B(∗))

T
� D∗(H∗(E∗))

U→ H∗(E∗) (5.3)

of the Adams spectral sequence, the surjective map T which is an isomorphism half
of the time, and the right adjoint U of the Dieudonné functor D.

The double suspension homomorphism ε and stabilization ε∞ in the context of
Dieudonné rings are the maps of Adams spectral sequences

ε :Ext∗,∗
A (F2, H∗(E ∧ B(2n))) → Ext∗,∗

A (F2, H∗(E ∧ B(2n + 2))),

ε∞ :Ext∗,∗
A (F2, H∗(E ∧ B(2n))) → Ext∗,∗

A (F2, H∗(E ∧ HF)),

induced by the inclusion maps ε : B(2n) → B(2n + 2) and ε∞ : B(2n) → B(∞) =
HF of Brown–Gitler spectra, respectively.

6 Margolis homology of H∗(B(2n)) and H∗(k(r))

In this section, we calculate the Qr Margolis homology of H∗(B(2n)) in order to
determine which classes on the s = 0 line of the E2-term Adams spectral sequence

Es,t
2 (A, k(r) ∧ B(2n)) = Exts,tE(Qr )

(F2, H∗(B(2n))) �⇒ k(r)t−s(B(2n)) (6.1)

will support non-trivial multiplication by vr in k(r)∗(B(∗)). Classes in H∗(B(2n))

that are not acted upon freely by Qr are classes on the s = 0 line of the Adams
spectral sequence that support non-trivial multiplication by vr , and therefore will sup-
port nonzero ◦-multiplication by [vr ] in the Hopf ring H∗(k(r)∗). Since H∗(k(r)) =
A ⊗E(Qr ) F2, the change of rings theorem (Theorem 3.3) was used to simplify the
Adams spectral sequence E2-term in Eq. (6.1). The Adams spectral sequence in
Eq. (6.1) will be completely calculated in Sect. 7.

To expedite calculation of the Margolis homology of H∗(B(2n)), we use that the
stable summands of �2S3 are Brown–Gitler spectra. Given a space X , let �∞X+
denote its suspension spectrum with disjoint basepoint.
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Lemma 6.1 [4,9] There is a stable homotopy 2-equivalence

�∞�2S3+ �
∨

n≥0

�n B(n). (6.2)

Lemma 6.2 [4] Let y1 ∈ H1(�
∞�2S3+) be the generator and define yi = (Q1)i−1y1,

where (Q1)i−1 = Q1 · · · Q1 denotes the composition of the first Araki-Kudo (or Dyer-
Lashof) operation i − 1 times. Then

H∗(�∞�2S3+) = P(y1, y2, . . .). (6.3)

where deg(yi11 · · · yi�� ) = ∑�
j=1 i j (2

j − 1) and wt (yi11 · · · yi�� ) = ∑�
j=1 i j2

j−1, and
the right action of the Steenrod algebra is given by

(yn) · Sq =
n−1
∑

i=0

y2
i

n−i .

Remark 6.3 The right action of the Steenrod algebra on a monomial y I ∈
P(y1, y2, . . .) is weight preserving, and (y1)Sq1 = 0. In contrast, the right action
of the Steenrod algebra on ζ I ∈ H∗(HF) is not weight preserving, and (ζ1)Sq1 = 1.

We now calculate the Margolis homology of H∗(�∞�2S3+). Given any right mod-
ule M over the Steenrod algebra, its Margolis homology H(M, Qr ) is the homology
of M with respect to the differential (−)Qr given by the Milnor primitive, which sat-
isfies Qr Qr = 0. Note that Qr is a derivation (i.e., (xy)Qr = (xQr )y+x(yQr )), and
that H(M1 ⊗ M2, Qr ) = H(M1, Qr ) ⊗ H(M2, Qr ). For more details on Margolis
homology, please see [14].

Lemma 6.4 For r ≥ 0, the Qr Margolis homology of H∗(�∞�2S3+) is

H (P(y1, y2, y3, . . .), Qr ) = Tr+1(y1, y2, . . . , yr+1) ⊗ Tr (y
2
r+2, y

2
r+3, . . .),

where Tm(x, y, . . .) = P(x, y, . . .)/(x2
m
, y2

m
, . . .) denotes a truncated polynomial

algebra over F2.

Proof For Qr Margolis homology with r ≥ 1, write P(y1, y2, . . .) as a tensor product
of subcomplexes

⎛

⎝

⊗

1≤i≤r+1

P(yi ) ⊗ E(yi+r+1)

⎞

⎠ ⊗
⎛

⎝

⊗

i≥r+2

P(y2i ) ⊗ E(yi+r+1)

⎞

⎠.

For 1 ≤ i ≤ r + 1, the Qr homology of P(yi ) ⊗ E(yi+r+1) is T2r+1(yi ) because

(y j
i yi+r+1)Qr = y j+2r+1

i and (y j
i )Qr = 0 for all j ≥ 0. For i ≥ r + 2, the Qr

homology of P(y2i ) ⊗ E(yi+r+1) is T2r (y
2
i ) because (y2 ji yi+r+1)Qr = y2 j+2r+1

i and

(y2 ji )Qr = 0 for all j ≥ 0. ��
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The topological splitting (6.2) induces an isomorphism between H∗(B(n)) and
the weight n elements of H∗(�∞�2S3+). To avoid duplication issues arising from
B(2n) � B(2n + 1), we only describe this isomorphism between H∗(B(2n)) and the
weight 2n elements of H∗(�∞�2S3+).

Lemma 6.5 The topological splitting (6.2) induces a graded isomorphism of right A
modules between �2nH∗(B(2n)) and the weight 2n elements in H∗(�∞�2S3+) given
by

f2n : �2nζ
i1
1 ζ

i2
2 · · · ζ i�� �→ y2n−2w

1 yi12 yi23 · · · yi��+1

wherew = wtζ (ζ I ). Given aweight 2n monomial y j1
1 y j2

2 · · · y jm
m , the inverse is defined

by

f −1
2n : y j1

1 y j2
2 · · · y jm

m �→ �2nζ
j1
0 ζ

j2
1 ζ

j3
2 · · · ζ jm

m−1,

where ζ0 = 1.

We can now determine the Margolis homology of H∗(B(2n)) from the Margolis
homology of H∗(�∞�2S3+) given in Lemma 6.4.

Lemma 6.6 The Q0 Margolis homology of a Brown–Gitler module is

H (H∗(B(2n)), Q0) =
{

F2{1} if n = 0,
0 if n ≥ 1,

.

For r ≥ 1, the Qr Margolis homology of a Brown–Gitler module is

H (H∗(B(2n)), Qr )

= F2

{

ζ I ∈ Tr+1(ζ1, ζ2, . . . , ζr ) ⊗ Tr (ζ
2
r+1, ζ

2
r+2, . . .) | n − 2r < wtζ (ζ

I ) ≤ n
}

.

Proof Suppose r = 0. Clearly, H(H∗(B(0)), Q0) = F2{1}. Since H∗(B(2)) is a
free right E(Q0) module, a straightforward induction using the Mahowald cofiber
sequence (5.2) gives that H∗(B(2n)), n ≥ 1, is also a free right E(Q0) module, and
thus H(H∗(B(2n)), Q0) = 0 for n ≥ 1.

Suppose r ≥ 1 and yi11 yi22 · · · yi�� is aweight 2nmonomial in H(P(y1, y2, . . .), Qr ),
so that

2n =
�

∑

j=1

i j2
j−1.

Then the ζ weight of f −1
2n (yi11 yi22 · · · yi�� ) = �2nζ

i1
0 ζ

i2
1 ζ

i3
2 · · · ζ i��−1 ∈ �2nH∗(B(2n))

is

w = wtζ (ζ
i1
0 ζ

i2
1 ζ

i3
2 · · · ζ i��−1) =

�
∑

j=2

i j2
j−2,
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and thus i1 = 2n − 2w. Since yi11 yi22 · · · yi�� is in H(P(y1, y2, . . .), Qr ), the exponent
on y1 must be less than 2r+1. Thus, i1 = 2n − 2w < 2r+1 and hence n − 2r < w.
Since ζ

i2
1 ζ

i3
2 · · · ζ i��−1 is in H∗(B(2n)), w ≤ n. ��

Next, we calculate the Qr Margolis homology of H∗(k(r)) and observe that it is
filtered by the Qr Margolis homology of H∗(B(2n)).

Lemma 6.7 The Q0 Margolis homology of H∗(k(0)) is

H
(

P(ζ 2
1 , ζ2, ζ3, . . .), Q0

)

= F2{1},

while for r ≥ 1 the Qr Margolis homology of H∗(k(r)) is

H
(

P(ζ1, . . . , ζr , ζ
2
r+1, ζr+2, . . .), Qr

)

=Tr+1(ζ1, ζ2, . . . , ζr ) ⊗ Tr (ζ
2
r+1, ζ

2
r+2, . . .).

Proof For Q0 Margolis homology, write P(ζ 2
1 , ζ2, . . .) as a tensor product of sub-

complexes

⊗

i≥1

P(ζ 2
i ) ⊗ E(ζi+1).

Then the Q0 homology is F2 because for each i ≥ 1, (ζ
2 j
i ζi+1)Q0 = ζ

2 j+2
i and

(ζ
2 j
i )Qr = 0 for all j ≥ 0.
For Qr Margolis homology, write P(ζ1, ζ2, . . . , ζr , ζ

2
r+1, ζr+2, . . .) as a tensor

product of subcomplexes

⎛

⎝

⊗

1≤i≤r

P(ζi ) ⊗ E(ζi+r+1)

⎞

⎠ ⊗
⎛

⎝

⊗

i≥r+1

P(ζ 2
i ) ⊗ E(ζi+r+1).

⎞

⎠

For 1 ≤ i ≤ r , the Qr homology is Tr+1(ζi ) because (ζ
j
i ζi+r+1)Qr = ζ

j+2r+1

i and

(ζ
j
i )Qr = 0 for all j ≥ 0. For i ≥ r + 1, the Qr homology is Tr (ζ

2
i ) because

(ζ
2 j
i ζi+r+1)Qr = ζ

2 j+2r+1

i and (ζ
2 j
i )Qr = 0 for all j ≥ 0. ��

7 The Dieudonné ring k(r)∗(B(∗))
In this section, we calculate the Adams spectral sequence

E∗,∗
1 (A, k(r) ∧ B(2n)) = H∗(k(r)) ⊗ H∗(B(2n)) ⊗ 	 �⇒ k(r)∗(B(2n)) (7.1)

for all r ≥ 0 and n ≥ 0.
We begin by defining the destabilization function ε−∞ for Dieudonné rings that

is equivalent to the destabilization function e−∞ for Hopf rings. Suppose E is a ring
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spectrum such that H∗(E) ⊆ H∗(HF). Under the Dieudonné equivalence, every stable
class in Hd+k(E k) corresponds to a nonzero element in Dd+k(H∗(E k)) that comes
from a permanent cycle in the s = 0 line of the Adams spectral sequence

H0,d(H∗(E) ⊗ H∗(B(d + k)) ⊗ 	, d1).

Wenowdefine the function that induces theDieudonné ring destabilization function
H∗(E) → D∗(H∗(E∗)).

Definition 7.1 Let E = HF. Define a function

ε−∞ : H∗(E) → H∗(E) ⊗ H∗(B(∞)) ⊗ 	 (7.2)

by ε−∞(y) = τ(χ ⊗ 1(ψ(y))) ⊗ 1, where ψ is the coproduct, χ is the antiauto-
morphism, and τ(x ⊗ y) = y ⊗ x is the graded twist map, which has no sign mod
2.

Lemma 7.2 ([17, Lemma 7.2]) The destabilization function ε−∞ in Eq. (7.2) is a ring
homomorphism.

Example 7.3 On basis elements, the destabilization ε−∞ is

ε−∞(ξn) =
n

∑

i=0

ξi ⊗ ζ 2i
n−i ⊗ 1 ∈ H∗(HF) ⊗ H∗(B(2n)) ⊗ 	, (7.3)

ε−∞(ζn) =
n

∑

i=0

ζ 2i
n−i ⊗ ξi ⊗ 1 ∈ H∗(HF) ⊗ H∗(B(2n+1 − 2)) ⊗ 	, (7.4)

where ε−∞(ξn) and ε−∞(ζn) both have bidegree (s, t) = (0, 2n − 1).

Lemma 7.4 For the spectrum E = HF, every element in the image of the destabiliza-
tion ε−∞ is a permanent cycle.

Proof We begin by showing that ε−∞(ξn) is a cycle for all n ≥ 0. By the Cartan
formula (x ⊗ y) · Sq = (x · Sq) ⊗ (y · Sq), we have

⎛

⎝

∑

0≤i≤n

ξi ⊗ ζ 2i
n−i

⎞

⎠ · Sq =
∑

0≤i≤n

⎛

⎝

∑

i≤ j≤n

(

ξ j ⊗ ζ 2 j

n− j + ξ j−1 ⊗ ζ 2 j

n− j

)

⎞

⎠

=
∑

0≤i≤n

ξi ⊗ ζ 2i
n−i ,

because all terms cancel except when i = j , and thus Sq0 is nonzero but Sqk is zero

for k ≥ 1. Since λ−1 · 1 = 0 and
(
∑n

i=0 ξi ⊗ ζ 2i
n−i

)

· Sqk = 0 for k ≥ 1, it follows

that
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d1(ε
−∞(ξn)) =

∑

k≥0

⎛

⎝

⎛

⎝

∑

0≤i≤n

ξi ⊗ ζ 2i
n−i

⎞

⎠ · Sqk
⎞

⎠ ⊗ λk−1 · 1 = 0.

Next, we show that ε−∞(
∑

ξ I ) is a cycle for any
∑

ξ I ∈ H∗(HF). Since the
coproduct ψ and total Steenrod square Sq are ring homomorphisms, and d1 is an F2-
module homomorphism, it follows that d1(ε−∞(

∑

ξ I )) = 0 for all
∑

ξ I ∈ H∗(HF).
Finally, we show that ε−∞(

∑

ξ I ) must be a permanent cycle. By change of rings
(Theorem 3.3),

Ext∗,∗
A (F2, H∗(HF) ⊗ H∗(B(∞))) ∼= Ext∗,∗

F2
(F2, H∗(B(∞))).

Thus, the spectral sequence is concentrated on the s = 0 line and collapses. ��
Lemma 7.5 Given

∑

ξ I ∈ Hd(HF), the degree d = deg(
∑

ξ I ), the maximum
number of factors k = f actξ (

∑

ξ I ), and the maximum weight n = wtξ (
∑

ξ I )

satisfy d + k = 2n.

Proof For every term ξ I in the sum
∑

ξ I , we have d = deg(ξ I ) = deg(ξ i11 ξ
i2
2 · · ·

ξ
i�
� ) = ∑�

j=1 i j (2
j − 1) = 2(

∑�
j=1 i j2

j−1) − ∑�
j=1 i j = 2wtξ (ξ I ) − f actξ (ξ I ).

For any term ξ I ′
in the sum

∑

ξ I which has the maximum number of factors, d+k =
2wtξ (ξ I ′

). Suppose for the sake of contradiction that wtξ (ξ I ′
) is not the maximum

weight of all terms in
∑

ξ I . Then, there exists ξ I ′′
so that wtξ (ξ I ′′

) > wtξ (ξ I ′
) and

k ≥ f actξ (ξ I ′′
). This implies that d+ f actξ (ξ I ′′

) = 2wtξ (ξ I ′′
) > 2wtξ (ξ I ′

) = d+k,
and thus f actξ (ξ I ′′

) > k, a contradiction. Therefore, any termwith amaximal number
of factors also has maximal weight, and d + k = 2n. ��

In the next definition and lemma, we show that ε−∞ preserves degree d, the
maximum number of ξ factors k, and the maximum weight n. Note that the anti-
automorphism χ and the twist map τ in the definition of ε−∞ have the effect of
mapping the ξ weight in H∗(E) to the ζ weight in the second tensor factor of
H∗(E) ⊗ H∗(B(∞)) ⊗ 	.

Definition 7.6 For each
∑

xi ⊗ yi ⊗ 1 ∈ H∗(E) ⊗ H∗(B(∞)) ⊗ 	, let

f act1ξ (
∑

xi ⊗ yi ⊗ 1) = maxi { f actξ (xi )},
wt2ξ (

∑

xi ⊗ yi ⊗ 1) = maxi {wtξ (yi )},
wt2ζ (

∑

xi ⊗ yi ⊗ 1) = maxi {wtζ (yi )}.

Lemma 7.7 If
∑

ξ I = ∑

ζ J ∈ H∗(HF) has d = deg(
∑

ξ I ), k = f actξ (
∑

ξ I ) and
n = wtξ (

∑

ξ I ), then f act1ξ (ε−∞(
∑

ξ I )) = k and ε−∞(
∑

ξ I ) ∈ H0,d(H∗(HF) ⊗
H∗(B(2n)) ⊗ 	, d1).

Proof It is clear that ε−∞ preserves degree and that the lemma is true for ε−∞(1) =
1 ⊗ 1 ⊗ 1. Suppose

∑

ξ I �= 1. First, we show that ε−∞ preserves k. From Eq. (7.3),
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it is clear that f act1ξ (ε−∞(ξr )) = 1. Since ε−∞ is a ring homomorphism and

ε−∞(
∑

ξ I ) = (
∑

ξ I ) ⊗ 1 ⊗ 1 + (other), it follows that f act1ξ (ε−∞(
∑

ξ I )) = k.
Second, we show that ε−∞ preserves n. From Eq. (7.4), it is apparent that

wt2ζ (ε−∞(ξn)) = wt2ζ (1 ⊗ ζn ⊗ 1).

Since ε−∞ is a ring homomorphism, it follows that

wt2ζ (ε−∞(
∑

ξ I )) = wt2ζ (1 ⊗ (
∑

ζ I ) ⊗ 1)

= wt2ξ (1 ⊗ (
∑

ξ I ) ⊗ 1)

= n.

Therefore, ε−∞(
∑

ξ I ) ∈ H0,d(H∗(HF) ⊗ H∗(B(2n)) ⊗ 	, d1). ��
The following lemma shows that the Diedonné ring destabilization ε−∞ is, in fact,

equivalent to the Hopf ring destabilization e−∞.

Lemma 7.8 Suppose
∑

ξ I = ∑

ζ J ∈ Hd(HF) with d = deg
(∑

ξ I
)

, k =
f actξ

(∑

ξ I
)

, and n = wtξ
(∑

ξ I
)

. Then under the Dieudonné equivalence of equa-
tion (5.3), the destabilized element

e−∞ (∑

ξ I
) = e−∞ (∑

ζ J
) ∈ Hd+k(HF k)

corresponds to

ε−∞ (∑

ξ I
) = ε−∞ (∑

ζ J
) ∈ E0,d

2 (A,HF ∧ B(2n)) ∼= D2n(H∗(HF k)).

Proof From Lemma 7.5, d+k = 2n and thus Hd+k(HF k) = H2n(HF k) is equivalent
to D2n(H∗(HF k)). From Eq. (5.3), it is clear that for any generator ξn ∈ H2n−1(HF),

U (T (ε−∞(ξn))) = xn

in the rank 1 module H2n (HF1). The one-to-one correspondence follows for any
∑

ξ I ∈ H∗(HF) since ε−∞ is a ring homomorphism and the right adjoint U to the
Dieudonné functor preserves + and ◦. ��
Example 7.9 The destabilization of the element ζ 6

1 + ζ 2
2 = ξ22 ∈ H6(k(1)) =

P(ζ1, ζ
2
2 , ζ3, . . .), which has degree d = 6, maximum number of ξ factors k =

f actξ (ξ22 ) = 2, and maximum ξ weight n = wtξ (ξ22 ) = 4, is

ε−∞(ζ 6
1 + ζ 2

2 ) = ε−∞(ξ22 ) = ξ22 ⊗ 1 ⊗ 1 + ξ21 ⊗ ζ 4
1 ⊗ 1 + 1 ⊗ ζ 2

2 ⊗ 1

∈ H0,6(H∗(k(1)) ⊗ H∗(B(8)) ⊗ 	, d1),

which corresponds to the class

z◦−4
0 ◦ (z◦61 + z◦22 ) = x◦2

2 ∈ H8(k(1)2).
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Lemma 7.10 There is a bijection of F2-modules

ε−∞ : {∑

ζ I ∈ H∗(k(r)) | wtξ (
∑

ζ I ) ≤ n
}

→ H0,∗(H∗(k(r)) ⊗ H∗(B(2n)) ⊗ 	, d1). (7.5)

Proof First, we show themap ε−∞ in (7.5) is well-defined. Take E = k(r) in Eq. (7.2).
From Eq. (7.4), it is clear that the elements in the first tensor factor of ε−∞(ζn) are

in H∗(k(r)) when n �= r + 1, and the same is true for ε−∞(ζ 2
r+1). Since ε−∞ is a

ring homomorphism, it follows that if
∑

ζ I ∈ H∗(k(r)), then the first tensor factor
of ε−∞(

∑

ζ I ) is also in H∗(k(r)).
Now suppose

∑

ζ I ∈ H∗(k(r)) satisfies wtξ (
∑

ζ I ) ≤ n. From Eq. (7.4),
ε−∞(ζn) = 1⊗ξn⊗1+(other)where all of the other terms have second tensor factor
of smaller ζ weight than wtζ (ξn) = 2n − 1. Since ε−∞ is a ring homomorphism, it
follows that ε−∞(

∑

ζ I ) = 1 ⊗ (
∑

ξ I ) ⊗ 1 + (other), where all of the other terms
have second tensor factor of smaller ζ -weight than wtζ (

∑

ξ I ), and none of the other
terms cancel with 1 ⊗ (

∑

ξ I ) ⊗ 1. Since wtζ (
∑

ξ I ) = wtξ (
∑

ζ I ), it follows that
ε−∞(

∑

ζ I ) is in H0,∗(H∗(k(r)) ⊗ H∗(B(2n)) ⊗ 	, d1).
Second, we show that ε−∞ in (7.5) is injective. Since ε−∞(

∑

ζ I ) = (
∑

ζ I ) ⊗
1⊗ 1+ (other), where none of the other terms cancels with (

∑

ζ I ) ⊗ 1⊗ 1, ε−∞ is
injective.

Third and finally, we show ε−∞ in (7.5) is surjective. Suppose z ∈ H0,∗(H∗(k(r))⊗
H∗(B(2n)) ⊗ 	, d1). Since H∗(k(r)) ⊂ H∗(HF), it is clear that diagram (7.6) com-
mutes.

(7.6)

From diagram (7.6), z can be included as an element H0,∗(H∗(HF) ⊗ H∗(B(2n)) ⊗
	, d1), which determines an element

∑

ζ I ∈ H∗(HF). Thus, z = ε−∞(
∑

ζ I ) =
(
∑

ζ I )⊗ 1⊗ 1+ (other) where none of the other terms cancel with (
∑

ζ I )⊗ 1⊗ 1,
and thus

∑

ζ I ∈ H∗(k(r)) by the definition of ε−∞. Since z ∈ H0,∗(H∗(k(r)) ⊗
H∗(B(2n)) ⊗ 	, d1) and z = ε−∞(

∑

ζ I ) = 1 ⊗ (
∑

ξ I ) ⊗ 1 + (other) where none
of the other terms cancel with 1 ⊗ (

∑

ξ I ) ⊗ 1, we must have wtζ (
∑

ξ I ) ≤ n. But,
wtζ (

∑

ξ I ) = wtξ (
∑

ζ I ), and therefore ε−∞ in Eq. (7.5) is also surjective. ��
Next, we determine which classes on the zero line of the E2 page of the Adams

spectral sequence for k(r)∗(B(2n)) might support non-trivial multiplication by vr at
E∞. These will be classes in H∗(B(2n)) that are not acted upon freely by Qr , and
will be represented by classes in the Qr Margolis homology of H∗(B(2n)), which is
given in Lemma 6.6.

Lemma 7.11 Let Ext∗,∗
E(Qr )

(F2, F2) = F2[ar ], where ar detects vr ∈ k(r)∗ =
F2[vr ]. There is a one-to-one correspondence of F2-modules between the classes
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in Ext0,∗E(Qr )
(F2, H∗(B(2n))) that support non-trivial multiplication by F2[ar ] and

classes in the Margolis homology H(H∗(B(2n)), Qr ).

Next, we show that the Adams spectral sequence for k(r)∗(�∞�2S3+) collapses
(E2 ∼= E∞), which will require the non-connective Morava K -theory for �∞�2S3+.

Lemma 7.12 [19, Theorem3.7], [25]Let K (r) denote the rth non-connectiveMorava
K -theory at p = 2 with K (r)∗ = F2[vr , v−1

r ]. Then,

K (r)∗(�∞�2S3+) = F2[vr , v−1
r ] ⊗ Tr+1(y1, y2, . . . , yr+1) ⊗ Tr (y

2
r+2, y

2
r+3, . . .).

(7.7)

Lemma 7.13 The Adams spectral sequence

E2 = Ext∗,∗
E(Qr )

(F2, H∗(�∞�2S3+)) �⇒ k(r)∗(�∞�2S3+)

collapses, i.e., E2 ∼= E∞.

Proof Let Ext∗,∗
E(Qr )

(F2, F2) = F2[ar ], where ar detects vr ∈ k(r)∗ = F2[vr ]. From
Lemma 6.4, the ar -torsion free quotient of E

∗,∗
2 = Ext∗,∗

E(Qr )
(F2, H∗(�∞�2S3+)) is

F2[ar ] ⊗ Tr+1(y1, y2, . . . , yr+1) ⊗ Tr (y
2
r+2, y

2
r+3, . . .).

Since the ar -torsion in E∗,∗
2 arises from free E(Qr ) summands of H∗(�∞�2S3+), this

ar -torsion is concentrated in E0,∗
2 . Thus, the only possibility for nonzero differentials

occurs in the ar -torsion free quotient; however, a nonzero differential in the ar -torsion
free quotient would contradict the results of Lemma 7.12. ��

To be useful for the computation of H∗(k(r)∗), we must express the result of
Lemma 7.13 in terms of Brown–Gitler spectra using the topological splitting in
Eq. (6.2). As a consequence of Lemmas 7.10, 7.11 and 7.13, we have now completely
calculated the Adams spectral sequence for k(r)∗(B(2n)).

Theorem 7.14 The Adams spectral sequence

Exts,tE(Qr )
(F2, H∗(B(2n))) �⇒ k(r)t−s(B(2n))

has s = 0 line consisting of elements
∑

ζ I ∈ H∗(k(r)) such that wtξ (
∑

ζ I ) ≤ n.
There is a bijection of F2-modules between the elements on the s = 0 line that
support non-trivial multiplication by all positive powers of ar , which represents vr in
homotopy, and classes in theMargolis homologymodule H(H∗(B(2n)), Qr ). Further,
this spectral sequence collapses.
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8 The Hopf ring H∗(k(r)∗)

We now take the results of Sect. 7 on the Dieudonné ring k(r)∗(B(∗)) and translate
them into results for the Hopf ring H∗(k(r)∗).

Theorem 8.1 The destabilization e−∞ : H∗(k(r)) → H∗(k(r)∗) is a restriction of
the destabilization e−∞ : H∗(HF) → H∗(HF∗), i.e., diagram (8.1) is commutative.

(8.1)

Proof Lemma 7.10 implies that diagram (8.2) commutes for all n ≥ 0.

(8.2)

The spectral sequences in diagram (8.2) collapse by Lemma 7.13. It follows that
diagram (8.1) commutes by translating diagram (8.2) from Dieudonné rings to Hopf
rings using Eq. (5.3). ��
Theorem 8.2 For n ≥ 0, there is a one-to-one correspondence ofF2-modules between
the stable classes in H2n(k(r)∗) that support non-trivial ◦-multiplication by powers
of vr and nonzero classes in the Margolis homology module H (H∗(B(2n)), Qr ).

Proof Since the Dieudonné functor preserves addition and scalar multiplication
and the Adams spectral sequence for k(r)∗(B(2n)) collapses, the Dieudonné cor-
respondence in Eq. (5.3) defines an F2-module isomorphism between classes
in Ext0,∗E(Qr )

(F2, H∗(B(2n))) that support non-trivial multiplication by P(ar ) =
Ext∗,∗

E(Qr )
(F2, F2) and stable classes in H2n(k(r)∗) that support non-trivial ◦-

multiplication by powers of vr . By Lemma 7.11, there is an F2-module isomorphism
between classes in Ext0,∗E(Qr )

(F2, H∗(B(2n))) that support non-trivialmultiplication by

P(ar ) = Ext∗,∗
E(Qr )

(F2, F2) and classes in the Margolis homology H(H∗(B(2n)), Qr )

. ��
The elements in the Hopf ring H∗(k(r)∗) that support non-trivial ◦-multiplication

by vr are the destabilized elements of the Margolis homology H(H∗(k(r)), Qr ). The
next example shows that the filtration

H(H∗(B(2n)), Qr ) ⊂ H(H∗(k(r)), Qr )

has an important role in determining which representative of a Margolis homology
class should be chosen as input to the destabilization function.
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Example 8.3 Consider the homology class ζ 2
2 in

H (H∗(B(8)), Q1) = F2{ζ 3
1 , ζ 2

2 } ⊂ H (H∗(k(1)), Q1) .

The destabilization of the degree 6 class represented by ζ 2
2 ∈ H(H∗(B(8)), Q1) will

be in H8(k(1) 8−6
) = H8(k(1) 2). Note that e

−∞(ζ 2
2 ) = x◦4

0 ◦x◦2
2 +x◦6

1 ∈ H12(k(1) 6),

which cannot be desuspended further, so ζ 2
2 is not the right choice of representative

for this Margolis homology class. However, ζ 2
2 is homologous to ζ 2

2 + ζ 6
1 = ξ22 in

H(H∗(B(8)), Q1) because ζ 4
1 = (ζ3)Q1, and e−∞(ξ22 ) = x◦2

2 in H8(k(1) 2) has the

correct bidegree. Thus, [v1]◦ j ◦ x◦2
2 is non-trivial in H8(k(1) 2−2 j

) for all j ≥ 0.

Finally, we identify the generators of the Hopf ring H∗(k(r)∗).

Theorem 8.4 The Hopf ring H∗(k(r)∗) is generated by

1. stable generators e−∞(H∗(k(r))), and
2. the homotopy generator [vr ] ∈ H0(k(r) 2−2r+1).

Proof This result follows from Theorem 7.14 by translating from Hopf rings to
Dieudonné rings using Eq. (5.3). ��
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